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Null controllability of a linearized Korteweg-de Vries equation by
backstepping approach

Shengquan Xiang*

Abstract

This paper deals with the controllability problem of a linearized Korteweg-de Vries
equation on bounded interval. The system has a homogeneous Dirichlet boundary condition
and a homogeneous Neumann boundary condition at the right end-points of the interval, a
non homogeneous Dirichlet boundary condition at the left end-point which is the control.
We prove the null controllability by using a backstepping approach, a method usually used
to handle stabilization problems.

Keywords. Korteweg-de Vries, backstepping, spectral theory, stabilization, null controllability.
AMS Subject Classification. 35Q53, 34H05, 35P10.

1 Introduction

In this paper we consider the null controllability of the following linearized KdV control system:

U + Ugpg + Uy = 0 in (0,400) x (0,L),
u(t,L) =wuy(t,L) =0 on (0,400), (1.1)
u(t,0) = k(t) on (0,+00),

where x(t) € R is the control term.

This control system is a little different from the pioneer one raised by Lionel Rosier [33],
the only difference is the place where control acts: u(¢,0) instead of ug(¢,L). For the model
given by Lionel Rosier, one surprisingly finds that the controllability of system depends on the
length of the interval, more precisely the system is controllable if and only if

2kt k2
L¢N = {27”/%; Lke N*}. (1.2)

This system has a great interest in mathematical and engineering points, the controllability
[4, 5, 7,9, 11, 33, 35] and stabilization [3, 14, 17, 32, 38] has been studied for years.

In the case of system (1.1), there is no critical length (but some regularity difficulties occur).
The controllability was first discovered by Lionel Rosier in [34], which was further discussed in
[6, 21]. In [6], Jean-Michel Coron and Eduardo Cerpa have given the rapid stabilization for this
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system by using the backstepping method. Recently, in [16], using the backstepping approach
Jean-Michel Coron and Hoai-Minh Nguyen proved the null controllability and the semi-global
finite time stabilization for a class of heat equations. This turned out to be a method to
reach possibly the semi-global finite time stabilization for those systems which can be rapidly
stabilized by means of backstepping methods. At the same time, this provides a visible way to
get the null controllability instead of using Hilbert Uniqueness Method by which one doesn’t
know explicitly what the control is.

In this paper, we use this new method developped by Jean-Michel Coron and Hoai-Minh
Nguyen to prove the null controllability of system (1.1).

Theorem 1. For any given T > 0, the control system (1.1) is null controllable in time T.

Remark 1. Instead of using Carleman estimate in [7/], we proved the null controllability of
linearized KAV control system (1.1). Let us recall that the exact controllability of system (1.1)
fails, which is proved in [7/]].

Introduced by Jean-Michel Coron and Brigitte d’Andréa-Novel in [12] for PDE stabilization
problems, the backstepping method has been well used and developped in recent 20 years (see
[10, 13, 14, 15]). One can see [25], due to Miroslav Krstic and his collaborators, for an excellent
starting point to get inside this method. Generally speaking, when we deal with a disspative
equation, by simply considering its eigenvalues (without feedback law) we can get asymptotic
stability. Backstepping method aims at changing the spectre (let the eigenvalues be away from
imaginary-axis) by adding a feedback on the control term (normally a boudary control), thus
making the transformed equation decay exponentially (even rapid decay). Normally we need
to solve a kernel equation. In the case of the heat equation the kernel equation is just a wave
equation, but in this paper the kernel equation turned out to be a third-order equation which
generates some difficulties in both estimation and well-posedness.

This paper is organized as follows. Section 2 is a preliminary part in which we present the
rapid stabilization obtained in [(]. In Section 3, we give explicitly the control and give some
estimates which will lead to the null controllability. In Section 4, we give the null controllability.
The article ends with an appendix where the proof of the uniqueness of solution to the kernel
equation, Proposition 1, which is essential in this paper, is given.

2 Preliminary

2.1 Well-posedness of the control system
We start with the non-homogeneous linear Cauchy problem
Ut + Upgy + Uy = h in (Th,T3) x (0, L),
ug(t,L) =wu(t,L)=0 on (Th,T3),
u(t,0) = k(t) on (T1,T3),
u(0,z) = uo(z) on (0,L),

(2.1)

for
—oo < Ty <Th < 400, (
ug € L0, L), (
h e LYTy,Ty; L*(0, L)), (
ke LX(Th,Ty). (



Definition 1. Let T1,T5 be given. A solution to Cauchy problem (2.1)—~(2.5) is a function
u € CO([Th, T); L*(0, L)) such that, for every T € [Ty, T3] and for every ¢ € C3([T1, 7] x [0, L])
such that

¢(t,0) = ¢(t, L) = ¢.(t,0) = 0,Vt € [T1, 7], (2.6)
one has
T L T T L
- /T 1 /0 (1 + o + dowe)udadt — /T (1)1, 0) ~ /T | /0 Shdzdt
L L
+/O u(T, x)p(r,x)dx —/0 uop(T, x)dx = 0. (2.7)

It is easy to see the uniqueness of the solution to Cauchy problem (2.1)—(2.5), one can get
the details in the book by Jean-Michel Coron [9]. For the existence of the solution, in [2], Jerry
L. Bona, Shu Ming Sun and Bing-Yu Zhang proved the following result.

Lemma 1. If h € HY3(T,Ty), then Cauchy problem (2.1) has one and only one solution.
This solution is in C°([T1, Ta]; L?(0, L)) N L?(Ty, Ty; HY(0, L)), and there exist a constant c¢; > 0
depending only on Ty — T such that

lullcoqry )iz 0,)) + wll2(my 1osm 0,0)) +SUPeefo, ) |0 (@) | L2 (7 1)

< e (Jluoll 2o,y I8l sy HBl e mszzon ) - (28)

2.2 Rapid stabilization of (1.1)

We recall the results given in [6]. Given a positive parameter A, we consider the following
equations in the triangle 7 := {(x,y) : © € [0, L],y € [z, L]}:

kpaw + kyyy + ke + ky + Ak =0 in T,

k(x,L) =0 on [0, L], (2.9)
k(z,z) =0 on [0, L], '
k(2 2) = 3(L — x) on [0, L],
and
loaw + lyyy + o +1y — N =0 in T,
l(x,L)=0 on [0, L], (2.10)
l(.’L‘,‘T) :O on [OaL]a .
lo(z,2) = %(L — ) on [0, L].

In [6], it is pointed that both (2.9) and (2.10) have solution in C3(7T), in Section 3 we give
some estimations on ||k[[co(7) with respect to A. Actually, the solutions of the equation (2.9)
and of (2.10) satisfies the following condition

A

kyy(x,x) = —3 (2.11)
A

loy(z,x) = —3 (2.12)



respectively. Properties (2.11) and (2.12) can be checked as follows, we perform the change of
variables:
t=y—z, s=x+y (2.13)
and define
G(s,t) := k(x,y). (2.14)

Then equation (2.9) of k£ becomes the following equation of G:
6Gtts + 2Gsss + 2Gs +AG=0 in 76,

G(s,2L—3s)=0 on [L,2L], (2.15)
G(s,0) =0 on [0,2L], '
Gy(s,0) = 2(s —2L) on [0,2L],

where Ty := {(s,t);t € [0,L],s € [t,2L — t]}. From (2.15) one can easily get that
Gis(s5,0) = 0 in [0, 2L). (2.16)

Hence G(s,0) = G(2L,0). In order to calculate G4(2L,0), one observes from (2.15) that
A
Gu(2L,0) = 2G1s(2L,0) = 3. (2.17)
Direct calculations show that
A
koy(z,2) = —Gu(s,0) = 3 (2.18)
which concludes (2.11), the proof of (2.12) is similar.
Now, let us define a continuous transformation ITy : L2(0, L) — L?(0, L) by
L
wla) =y (u(w) i= u(a) ~ [ k(o uly)dy, (2.19)
and its inverse TI; * : L2(0, L) — L%(0, L) by
L
(o) = 113 () = w(a) + | U g)wly)dy, (2.20)
T

Let us point that the reason why the inverse of transformation IIy is given by (2.20) is that
k(x,y) and I(x,y) are related by the formula

la.) = Kog) = [ b )i, ), (2.21)

which is due to the uniqueness of solution k of (2.9). In fact, one can define

la,) = k(o) + [ " kw0, y)dn. (2.22)

Hence, one only need to prove that [ = . Direct calculations show that [ satisfies

lowe +lyyy +lo+1, =N =0 inT,

I(z,L) =0 on [0, L],

I(z,2) =0 on [0, ], (2.23)
lo(z, ) = 2(L—=x) on [0, L],
| Loy (2, 2) = —% on [0, L].



Comparing (2.23) with (2.10) and (2.12), one knows that lo := [ — [ satisfies

lozzz + loyyy +loz +loy =0 inT,

lo(x,L) =0 on [0, L],

lo(z,z) =0 on [0, L], (2.24)
log(z,2) =0 on [0, L],

lozy(z,2) =0 on [0, L].

From the uniqueness of the solution of (2.24), the following proposition, which will be proved
in Appendix A, one gets that lp = 0.

Proposition 1. Equation (2.24) has a unique solution in C3(T).

Remark 2. Proposition 1 is necessary in this paper. In the following section we will construct
precisely a solution of equation (2.9)(and (2.10) respectively), the proof of Theorem 1 relies on
the estimations of this solution. Proposition 1 ensures the solution we will construct satisfies
(2.21) hence (2.20).

We can find that after the transformation IIy, the solution of (1.1) with

L
)= [ KO putt. (2.25)
is mapped into the trajectory w(¢,z), which is the solution of the linear system
Wi+ Wape + Wy +Aw =0 in (0,400) x (0, L),

w(t,L) =wz(t,L) =0 on t(0,+00), (2.26)
w(t,0) =0 on (0,400).

For system (2.26), one can easily obtain exponential decay of the solution

o, 20,09 < € (0, )l 2(0,1)- (2.27)
Hence the solution of (1.1) with feedback law (2.25) satisfies:

[u(t, ) z20,0) < T3 £200,2)—220,0) [9(ts M 2200,
< ei)\tHH)_\IHLQ(O,L)—>L2(O,L)”w(oa I r20,1)
<

e M3 22 (0,2) - 22(0.0) A £2(0,2) = £2(0.0) 1120, ) | 120, 1) - (2.28)

2.3 Well-posedness of system (2.26)
For a parameter A\ > 0, we consider the following linear operator Ay : D(A,) C L*(0,L) —
L%(0, L) with
D(Ay) = {f € H*(0,L); f(0) = f(L) = fo(L) = 0}, (2.29)
A\ = —fr — fazax — Mf,Vf € D(A)). (2.30)

As already seen in the special case when A\ = 0 in [9, page 38-43], here we also have the
following properties:

D(A,) is dense in L*(0, L), (2.31)
Ay is closed, (2.32)
Ay and A" are dissipative. (2.33)



Hence, A, generates a strongly continuous semigroup of linear operator {Sy(t)}+=0 on L?(0, L).
Furthermore, for every initial data wy € D(Ay), system (2.26) has one and only one solution
w(t,z) € C°([0,+00); L*(0, L)), which also satisfies:

w € C([0,+00); L2(0, L)) N C°([0, +00); D(Ay)), (2.34)
|z (- 0)[| 20,7 < llwoll2(0,1), VT > 0, (2.35)
lwll 20,78 0,0)) < Crllwoll 20,2y, Where Cr only depends on T > 0. (2.36)

By standard methods, it follows that when wy € L?(0,L), (2.26) has one and only one
solution w(t, ) € C°([0, +00); L2(0, L)), which also satisfies (2.35) and (2.36).

One can see more details on the results and proofs of this subsection in Jean-Michel Coron’s
book [9, page 38-43 and page 374-377]. Although only the special case where A = 0 is consid-
ered, the general case A > 0 follows by considering e*w.

Remark 3. Inequality (2.35) is a hidden inequality, which was first found by Lionel Rosier in
[95]. Inequality (2.36) is the Kato smoothing effect.

3 Control design

Inspired by the work of Jean-Michel Coron and Hoai-Minh Nguyen in [16], we want to give a
piecewise control such that, on each piece the solution of (1.1) can be transformed to a solution
of (2.26). More precisely, we select:

{A\n}, increasing positive numbers that tends to infinity, (3.1)
{t,}, increasing numbers with ¢y = 0 that tends to T as n tends to infinity. (3.2)
We first define

u(0) := ug and u(T') := 0, (3.3)

and then, for ¢, <t < t,+1, we successively define
u(t) =I5 S), (t — tn)IIy, u(ty), (3.4)

L

k(t) :== /0 kx, (0,y)u(t,y)dy, (3.5)

where S is the semigroup given in Section 2.3.
One can verify that (the proof is given at the end of this section):

Lemma 2. Thus defined u(t)|t,<i<t,,, 95 @ solution of (2.1) with Ty = t,,T> = tni1,h =0
and k(t) given by (3.5).
Notice that if we define

n—1

s0 := 0 and s, := Z Me(tgs1 — tg) forn > 1, (3.6)
k=0

then, from (3.4) and (2.28) we get that, for ¢, <t < t,41,

n
e )2 < e ffwoll 2 TT (IR T (3.7)
k=0



RO < ™ o | 2 on, (0, )z T T (ITRAHTIA ) - (3.8)

k=0

Hence, if we have a good estimation on ky, it will be possible to get u(t) — 0 when ¢ tends
to T'. Actually, we have the following estimation:

Lemma 3. Let A\ > 2, equation (2.9) has a unique solution ky € C3(T) (respectively (2.10)
has a unique solution Iy € C3(T)) which satisfies

< IF+D°VA (1+L)*VA (3.9)

Il coer) and [[Ix[|corm< e

The existence of solution to (2.9) is given in [0], here we proceed the same method introduced
there in order to get (3.9). We give the proof of uniqueness of solution in Appendix A.
Let us make the following change of variable:

t=y—z, s=x+y (3.10)

and define
G(s,t) = k(x,y). (3.11)

Then we can transform equation (2.9) into an integral equation of G(s,t) (see (21) in [0]):
At
G(s,t) = _F(QL —t—3)
1 2L—t t T
+ 6/ / / (2Gsss + 2G5 + AG) (n,§)dEdTdn, (3.12)
s 0 JO
in 7o := {(s,t);t € [0,L],s € [t,2L — t]}.

We use the method of successive approximations to give a solution of function (3.12). We

take
At

Gl(s,t) := —GRL—t=s) (3.13)
and define
20—t
G"(s,t) / / / (2G%, + 2G™ + AG™) (1, &)dédTdn. (3.14)
For instance, we can see that
G2(s,t) = — {t3()\ AL+ ﬁ)(QL —t— )+ 2[(2L 42— 32]} (3.15)
’ 108 4 4 ’ '

But unfortunately, we can’t perform such explicit calculation each time. We try to estimate
G"(s,t) from another way. At first we give following observations:
Suppose that f(s,t) := g(s)h(t), then

/2L t/ | st e)dcaran
/ a / / = 9(mh(€)dedrdn
:/SzL ' o dﬂ/ / ¢)dédr. (3.16)



We define by P the space of polynomials of one variable on R. We define operator T by

T:PP-PRP
2Lt
) L / / / (2633 + 27 + /\Id> (- h)(p, E)dedrdn. (317
Equality (3.16) tells us that (3.17) is well defined. In fact,

T(g(s)h(t)) = gr(s,t)hr(t), (3.18)

where gr(s,t) and hr(t) are given by

1 20—t 83 o
mistyimg [ (20 + 25+ Md) G)nan, (3.19)
t T
_ / / h(€)dedr. (3.20)
0 Jo
We observe that, if
|h(t)| <t",VO0<t< L, (3.21)
then, when t € [0, L] we have
t T 1 o
hr(t)] = h(&)dédr| < —————t""“. 3.22

As for gr(s,t), we notice that, if g(s) = s with m > 3, then

gr(s.1) :é (2m(m — 1)(2L — )" — 2m(m — )"
)\(QL*t)m—H )\Sm-‘rl)

2(2L, — £)™ — 2™ _
+2 ) S E—— m+1

(3.23)

Hence, this inspires us to separate T into following 6 linear operators {T;}1<i<s from P& P to
PxP:

Ty« 7h(t) s (@2m(m —1)(2L — )™ ?)hy(t), when m > 3, (3.24)
0, when 0 < m < 2,
-2 —1)s™2)hp(t h >3
Ty : s™h(t) s 5 (2mlm = 1)s")hr(t), - when m >3, (3.25)
0, when 0 < m < 2,
L(2(2L — t)™) hp(t h >1
Ty : s™h(t) — {6( ( ")k (@), w e (3.26)
0, when m = 0,
m L(2s™)hp(t), when m > 1,
Ty : s™h(t) — {0 5(25") when m — 0 (3.27)



Ts:s™ - 2
5:8"h(t) — 6 mtl hr(t), (3.28)
A Sm+1
Tg : s"h(t —= hr(t). 2
o5 h(t) =~ S (t) (3:29)
Since that T; is linear, we have
T;(0) = 0. (3.30)
From (3.17)—(3.29), we know that
6
T=) T onPgP. (3.31)
i=1
Hence,
G"l(s,t) = TG"(s,1)
6
- (ZT,)G”(S,t)
i=1
6 n
- (ZTi) Gl(s,1).
i=1
By (3.13)
A A
Gl(s,t) = —gt(QL —t) + 6(st) = I(s,t) + J(s,1), (3.32)
where N \
I(s,t) = —gt(QL —t) and J(s,t) := g(st). (3.33)
Let us define the sets
A, = {(:L’l,.%'g, )iz € {1,2,3,4,5,60,Y 1 < i < n},v n>1. (3.34)

For any n € N*, for any a = (a(1),a(2),...,a(n)) € A,, let us define the operator
Ta = Ta(n)Ta(nfl)“'Ta(l)' (335)

We define additionally A := {ag} and Ty, := Id (identity operator on P).
Hence for any n € N, we have

GmHl(s,t) = T" <I i J)
= > (Tu)+ > (TaJ). (3.36)

aEAn aEAn
Now we are going to use mathematical induction to conclude following lemma:

Lemma 4. For every X\ > 2, for every n € N, and for every a € A, Tol and T,J are of the
form s'h(t) and satisfy

t2n+l

A
(2n + 1)!(

[A6)] < ()"

1
: 2L +1)"1 1= te o, L] (3.37)

n

9



Proof of Lemma 4. When n = 0, one can check that Lemma 4 holds. We suppose that when
n = k Lemma 4 holds, where k > 0, then we consider the case where n = k + 1.
For any n > 1, and any a := (a(1),a(2),...,a(n + 1)) € Aj,41, let us define

o(a) := (a(1),a(2),...,a(n)). (3.38)

For any a € A1, let us define
o(a) == ap. (3.39)

Hence for any a := (a(1),a(2),...,a(k+ 1)) € Ag+1, we have

To = Ta+1)Ty(a)- (3.40)
From the assumption, we know that
I =5s'h(t). (3.41)

If Ty(q)I = 0, then we conclude the proof.
If Tyyl = s'h(t), then we know from (3.37) that

A kel
nl < () 2k +1)!

t2k’+1 1
(2L + D)Lt e o, I). (3.42)

e
For Ty, we know that Ty(s'h(t)) = 0 if I < 2. Therefore, we only need to consider the case
where [ > 3. From (3.20)—(3.22), (3.24) and (3.42), we know that

(10 = DL = 1) (t)|
A) 1+k  ¢2k+3

(11 — 1)(2L — £)2) <E 2L+ ekt L

(2k + 3) Il
1
(-2

s (2L + D! (3.43)
Notice that T (s'h(t)) is of the form s%g(t), so one can see from (3.43) that (3.37) is satisfied

in this case.
With the same procedure, we can check that:

T < (5) " e CE D (3.49)
Tsh0) < (5)" g 21+ D (3.45)
o) < (5) " g @E D (3.46)
T (s'h(1))] < (2)“2(222?33)!(% + 1)k+2(z+11)!’ (3.47)
IT6(s'h(1))] < (2)k+2(2t]:]zz)!(2L v 1)1+’”(ls_l:)!. (3.48)
Hence, we complete the proof. ]

10



By the same idea of partition and Lemma 4, we can conclude that
Lemma 5. For every \ > 2, for every n € N, and for every a € A,, ToI and T,J are of the
form s'h(t) and satisfy

1
n+3—I
2L+ 1)

A)nﬂ e telo, ). (3.49)

20 <2(5) G

Remark 4. One can get similar estimates for C?-norm even C™-norm. However, since in this
paper we don’t need such precise estimates, we omit them. For C*-norm one can directly obtain
these estimations by using Lemma / (just like the way to get Lemma 5), but for C™-norm (with
n > 3) which would be rather complicated. Furthermore, one can see from [25] that for the heat
equation the kernel is analytic in the triangle, to know if the kernel we obtained in this article
s also analytic, it is an interesting open problem.

We come back to the estimation (3.36). From Lemma 4, we know that for every n € N, for
every a € A, for every m € N and ¢ € [0, L],

e s ol < (2)T T op 4 gy 3.50
‘88’”( a)(s, )‘\(6> (2n+1)!( R (3:50)
om A\ 147 t2n+1
T ) ‘g(f) oL+ 1), 51
asm< J)50<5)  @rPEtY (3:51)
which together with (3.36) imply that
a 1 )\l—i-n t2n+1
et < ———=(2L+1 ntl .52
which implies that the series
Z as—mG" s,t) is uniformly convergent in 7p. (3.53)
The same approach shows that the series
+oo am—i—l
5i5am G"(s,t) is uniformly convergent in 7p. (3.54)
n=1

We define .
t) =Y G"(s,t), (3.55)
n=1

which is the solution of (3.12) (see [0, page 1691]). First we can estimate |G| from (3.52), (3.53)
and (3.55):

2L+ 1
|G(s,t)| < <3+)>\e\/(2L+l))‘t, in 7. (3.56)
Hence,
(14+L)\/(2L+1)A

G(s,t)] < ¢ < e(1+L)2\F’\, in 7p. 3.57
3

11



It only remains to prove that G(s,t) € C3(Tp). Actually, from (3.53) and (3.54) we know that
it suffice to prove Gy, Gys, Gir € CO(To), we know from (2.15) that Gys € CO(Ty) € CO(To).
For the other two, one notice that from (3.12):

t T
6Gy(s,1) = —A(2L — s — 2¢) — / / (2G s + 2Gs + AG) (2L — 1, €)dédr
0 JO
2L—t t
+ [ [ @Gt 26, +36) 0 9)dedn,
s 0
t T
6Gu(s,t) = 2\ + / / (2Ggsss + 2Gs + AGy) (2L — ¢, &)dédr
0 Jo
t t
- / (2G5 + 2G5 + AG) (2L — t,£)d¢ — / (2Gyss + 2G5 + AG) (2L — t, €)d¢
0 0
2L—t
+ / (2Gsss + 2G5 + AG) (n, t)dn,
s
t T t
6Gttt(57 t) = - / (2Gsssss + 2Gsss + )\Gss) (2L - ta f)dédT + / (2Gssss + 2Gss + )\Gs) (2L - t, f)df
0 Jo 0
t
-2 (2Gsss + 2Gs + )\G) (2L - t, t)df + 2/ (2Gssss + 2Gss + )\Gs) (2L - t, é)df
0
2L—t
+ / (2G asst + 2Ga1 + AGy) (1, ) — (2Gsss + 2G5 + AG) (2L — 1),

with (3.53)—(3.54), we get the continuity of Gy and Gy, which completes the proof of Lemma
3.

Remark 5. As we can see from [10, 25] for the heat equation, the L™ -norm of the kernel ky
s of the form exp()\l/2). One may naturally wonder the sharp estimate on L*-norm of kernel
ky is of the form exp()\l/S) for the KdV case, since KdV is of order 3. We do not know how to
get such estimate.

At last, it remains to give the proof of Lemma 2.
Proof of Lemma 2. 1t is equivalent to prove the following statement:

Given ug € L?(0,L),\ > 0,s > 0, one has
(S) K(t) = fOL Ex (0, -)(H;lSA(t)H,\u()) (‘)dy € L?(0,s), and
u(t) == I, 'S\ (t)Iup is the solution of (2.1) on [0, s] with h=0.

We only prove the case where ug € H;lD(AA), since standard method then leads to the general
case of (S). From Subsection 2.3, we know that

w(t) := Sx(t)Izug € C([0, s]; D(Ay)) N CL([0, s]; L*(0, L)), (3.58)

which shows that x(t) € C°([0, s]). Direct calculation, thanks to (2.10), shows that (similar to
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page 1690 in [0]):

L
U = wy + / (ly + lyyy — Al)(z, 2)w(z)dz

— ly(z, 2)wz(x) + lyy (2, v)w(x), (3.59)

Uy = / lp(x, 2)w (3.60)
L

Upy = Wag(x) — lp(z, 2)w(T) +/ lpe(z, 2)w(2)dz, (3.61)

Upre = Wore — (lm(x,a:) + lg;y(a:,x))w(x)

L
—lp(z, 2wz () — lpe (2, x)w(z) + / lpaz (T, 2)w(x)dz, (3.62)

all these calculations are on C°([0,7]; L?(0, L)). Hence, with (2.10) and (3.59)—(3.62) we get
that

u(t,z) € C1([0,s]; L*(0, L)) N C°([0, s]; H3(0, L)), (3.63)

Ug + Ug + Ugge = 0, in L*(0, L), (3.64)

u(t,L) = ug(t,L) =0, (3.65)

u(t,0) = k(1), (3.66)

which show that u verifies Definition 1. O

Remark 6. In fact, by using (2.9) and the hidden inequality (2.35), we can also prove that
k(t) € H'(0,s) with its norm controlled by |luol| 12(0,1)-

4 Null controllability

Finally, we are able to prove the null controllability (Theorem 1) by constructing a piecewise
continuous bounded control. The way of constructing this control is explained in Section 3,
thanks to Lemma 2, (3.1)—(3.8), we only need to find good sequences {\,} and {t,} such that:

n
Jim e TT (I ) = o (4.1)
n
tim e e, (0,2 [T (1T 1T ) = 0 (4.2)
k=0
and that
u(t)|o<i<r is a solution of (2.1) with h = 0, k(t) given by (3.5). (4.3)

Thanks to Lemma 2, from Definition 1, (3.7), (3.8), (4.1) and (4.2), one can easily deduce that
u(t)|o<e<r is the solution of (1.1). It remains to prove that (4.1)—(4.2) hold.
From the definition of IT) and TI, ', (2.19)(2.20), we know that

T 2222 < (14 LllEallcogr) < 20+, (4.4)
T 2222 < (14 Llalleoery) < 20FD*VA, (4.5)
1kr(0, )| 2 < VIl oy < €20+, (4.6)

13



where Lemma 3 is used. Hence it suffice to select {\,} and {¢,} such that
n
e [ 0B VA — . (4.7)
k=0

Inspired by the construction of Jean-Michel Coron and Hoai-Minh Nguyen in [16, Proposi-
tion 1], we choose t,, := T — 1/n? and \, := 2n8. One can easily verify that (4.7) holds, which
completes the proof.

Remark 7. To deal with heat equations by using backstepping approach, one need to study wave
equation instead, which is already well investigated. In this article, we study KdV system whose
order is 3, where the kernel system (see (A.1)) becomes a third order "wave-like” equation. For
this reason, we encountered some difficulties, Lemma 3 for estimation and Proposition 1 for
uniqueness. We believe this method as well as those techniques introduced in this paper could
be used to other systems whose order is greater than 3. As we know, backstepping method can
be well used for first-order hyperbolic systems for rapid stablization, see [2/], but since it is
of order one we are not sure if some good estimation could be obtained for null controllability
or even finite time stabilization. However, looking for [15, 23, 20], this might be possible for
quasilinear hyperbolic systems.

Acknowledgments. I would like to thank Jean-Michel Coron for having attracted my
attention to this problem, for his constant support, and for fruitful discussions. I also thank
Amaury Hayat, Qi Lii, Peipei Shang, Bingyu Zhang and Chritophe Zhang for discussions on
this problem.

A Proof of Proposition 1

In this part, we give the proof of uniqueness of solution to equation (2.24). As the function is
defined in a triangle T, we extend [y by 0 in lower triangle [0, L] x [0, L] \ 7, we will denote by
h the extended function. Since on the diagonal x =y, C3(T) function Iy satisfies

loz = lOy = loze = ley = lOyy =0,

which ensures the extended function, h, to be a H3([0, L] x [0, L]) function. Moreover, h satisfies

haze + hyyy + by + hy =0 in [0, L] x [0, L],
h(z,L)=0 0,L
(x,L) on [0, L], (A1)
h(z,0) = hy(z,0) = hyy(z,0) =0 on [0, L],
h(L,y) = hy(L,y) = hee(L,y) =0 on [0,L

By simply change of variables £ = L — x and § = L — y, it suffice to prove that solution
h € H3([0, L] x [0, L]) of equation

haze + hyyy + by + hy =0 in [0, L] x [0, L],
h(z,0) =0 on [0, L
h(xz,L) = hy(x,L) = hyy(x,L) =0 on [0,L
h0,y) = he(0,y) = hez(0,4) =0 on [0, L

l (A.2)

is 0.
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We can notice that (A.2) is similar to a wave equation, it is quite natural to consider the
eigenfunctions of operator (with respect to y variable):

A, : D(A,) C L*(0,L) — L*(0, L), (A.3)
D(A,) == {f € H*(0,L); f(0) = f(L) = f,(L) = 0}, (A4)
Ayf ==y = fyyy, VS € D(Ay). (A.5)

If the eigenfunctions, {¢y,(y)}, form a Riesz basis of L?(0, L), then the fourier series decompo-
sition

h(w,y) =D én(@) - nly) (A.6)

could easily linfer the uniqueness required. Unfortunately, this operator is a non-self-adjoint
operator and eigenfunctions do not form a Riesz basis, see [31].

Another idea is to investigate the completeness of eigenfunctions, {¢)(y)n }n, of the adjoint
operator A7

A% i D(AY) € L*(0,L) — L*(0, L), (A.7)
D(A;) := {f € H*(0,L); f(0) = f(L) = f,(0) = 0}, (A.8)
A f = —fy — fyyy, Vf € D(A). (A.9)

In fact, suppose that {1, (y)}» is an eigenfunction of the adjoint operator Ay, then from (A.2)
as well as the boundary conditions of A and 1 one can deduce that

(Ozzz + Oz — An)(¥n(+), h(z, '))LZ(O,L) =0. (A.10)

Combine (A.10) with the fact that

(n(+), R (0, ‘)>L2(07L) = 0 (¥n(:), M(O, ')>L2(O,L) = Oza(Yn(-), R(0, '))LQ(O,L) =0, (A.11)

we obtain
<1/}n()7 h(CE, ‘)>L2(O,L) = 07 Vr € [07 L] (A12)

If {1 (y) }n is complete in L2(0, L), then h(x,0) is 0. However, we don’t know the completeness
of the eigenfunctions {¢n(y)}n -

More generally, one could consider eigenfunctionals or generalized eigenfunctions, following
Gel’fand and coauthors [19, 20]. More precisely, in the non-self-adjoint cases it is not always
possible expand a function as the sum of eigenfunctions. In order to avoid this problem, one uses
different generalizations of eigenfunctions. For example, the generalization introduced by John
Locker and the coauthors and called augmented eigenfunctions, which is itself a generalization of
Gel’fand’s eigenfunctions (allow the appearance of remainder functionals). This generalization
turned out to be a powerful tool to investigate the initial-boundary value problem (IBVP), one
can find an almost complete investigation from the papers [27, 28, 37]. In general, suppose that
® a function space defined on the closure of an real interval I with sufficient smoothness and
decay conditions, that £ a linear operator defined on ®. Let v be an oriented contour in C and
let E = {E) : A € v} be a family of functionals (imagine as a family of eigenfunction when =
is only defined on a discrete set). Then the corresponding remainder functionals Ry € &' with
respect to eigenvalues A is

R,\(0) == \"E\(¢) — Ex(L), Vo€ ®,VAE . (A.13)
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One is interested in the cases in which one of the following two conditions is satisfied:

/ei’\’”R,\(qb)d)\ =0, Voped,Vrel, (A.14)
A
and )
/ eAn Ry(¢)d\ =0, Vo€ ® Voel, (A.15)
A

where (A.14) (resp. (A.15)) is called the type I (resp. type II) condition of augmented eigen-
functions of £ up to the integration along ~.

As we can see above, study of augmented eigenfunctions involved very complicated asymp-
totic calculations. In John Locker’s work this method is only used to study the evolution
equations based on a good tranform pair, which doesn’t seem to be a good (easy) option to
our problem (A.2). Instead of augmented eigenfunctions, John Locker [2&] also considered
generalized eigenspace &g given by

UN(()‘ZJ — L)), union for all m; € N, and \; eigenvalues,

where L denote the operator, N denote the kernel. More precisely, to linearized KdV operator
he proved:

Theorem 2. Let L > 0, let a be a constant. For differential operator Lf := foze + af, with
boundary conditions

f(0) = f(L) =0, (A.16)
fm(o) + sz(L) =0, (A17)
the generalized eigenfunction space Eg is complete in L*(0, L) space when B # 0.

Remark 8. One can see that when 8 = 0, it does not seem to be known whether generalized
eigenfunction space Eg is complete in L*(0,L). This is one of the reasons much more compli-
cated augmented eigenfunctions are introduced (the other reasons are about the regularities or
more general boundary conditions). Actually, this case can be regarded as the limit of the cases
when the coupling constant B approaches 0.

In fact, in [28] John Locker only considered the operator Lf := fyzq, one can easily verify
with the same prove that the same result holds when we add f,.

In order to solve our problem, we need to use another kind of generalized eigenfunctions
which is more general than & but less than augmented eigenfunctions, namely eigenfunctions
and associated functions (e.a.f.). The definition of e.a.f., which is defined on equations with A

as a parameter, is rather complicated, one can see [29, chapter 1] and [30] for precise description
on this subject.
With eigenfunctions and associated functions, Andrei A. Shkalikov in [36] proved the fol-

lowing theorem:

Theorem 3. The eigenfunctions and associated functions of the boundary-value problem gen-
erated by an ordinary differential equation with separated boundary conditions

I(y) — X" = y™ + pp_a(@)y™ P + ..+ po(z)y — Ny = 0, (A.18)
n—1
Uj(y) = > _ ajey®(0) = 0, with j =1,2,...,1, (A.19)
k=0
n—1
Ui(y) =Y _ Biy™(L) =0, with j =1,2,..,n — 1, (A.20)
k=0
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form a complete system in the space L*[0, L], where p;(x) are arbitrary summable functions,
andl >n—1>0.

Apply Theorem 3 to our case (linearised KdV), we get:
Corollary 1. For the ordinary differential equation with seperated boundary conditions
N(f):l(f)_)‘gf:fyyy"’"fy_)‘gfzoa (
UL(f) = f(0) =0, (A.22
Ua(f) = f4(0) =0 (
Us(f) = f(L) =0, (
the eigenfunctions and associated functions form a complete system in the space L?[0, L].

Finally we are able to proof Proposition 1:

Proof of Proposition 1. Let us consider the boundary-value problem (A.21)—(A.24). For this
boundary problem, let \g be an eigenvalue, and let ¢o(y) = ¢(y) an eigenfunction for the
eigenvalue \g. Then the associated functions associated with the eigenfunction ¢(y) are given
by the functions

©1(Y), p2(y); - er(y)

who satisfy the boundary conditions
UI(SOi) 5 UQ((,DZ') = U3(<,02‘> = O, Vi = 0, 1, veey k, (A.25)
and, for A = )\g, the following relations

10 1 ai :

Now we want to prove that for all those functions (e.a.f.), we have
(h(z,-), i) 12000y =0, Vo €[0,L], Vi=0,1,..,k (A.27)
At first, for ¢g, as what we have done in (A.12), clearly
(h(z,-),00()) 1200,y =0, Va €[0,L]. (A.28)
For ¢1, (A.26) shows that

(01)yyy + (©1)y — Ade1 — 3A\50 = 0. (A.29)

Hence from (A.2), (A.25), (A.28) and (A.29) we get that

= (83 + 02 + 0y + By)h(z, ), 01()) 12(0,1)
= (95 + 02) (h(x, ), 1)) 220,y — (B(x,-), (B + By) 1 () L2(0,1)
= (0 4 0u)(h(,), ('))L?(o, — (h(x, "), =X3e1(-) = 3A30 () 12(0,1)
= (03 + 0 + X)) (h(m, ), 01(-)) r2(0.1)- (A.30)
Then using the the fact that
(h(0,-)s1()) 20,) = O ((0,-), 01(-)) L2(0,2) = Oua(R(0,-),01(-)) L2(0,L) = O, (A.31)
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we get
(h(z,),01(-)) 2000y = 0, Vz € [0, L] (A.32)

Repeating this argument we get (A.27), which combined with Corollary 1 shows that
h(z,-) =0, Yz e€][0,L]. (A.33)
Hence the proof of Proposition 1 is completed. O

Remark 9. One can find that, for y-variable, we only used 3 boundary conditions during the
proof, h(xz, L) = hy(z,L) = h(x,0) = 0, to deduce the uniqueness of the solution h. It is quite
natural since when one consider 4 boundary conditions for a third order differential operator,
the eigenfunctions could never be a basis.

One may also wander if we can get the uniqueness of h by using the other 3 boundary
conditions in y-variable: h(x,L) = hy(z,L) = hyy(xz,L) = 07 Unfortunately, for these 3
boundary conditions Theorem 3 cannot be applied, as we can observe from (A.19) and (A.20)
that there should be boundary conditions on both side. That is the reason why it is difficult to get
the uniqueness of h by using Carleman estimate, see [1, Chapter 4], [3] and [22], which is the
standard way to solve the unique continuation problem: we have to use the fact that h(x,0) =0
and it is not clear how it should be used.
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