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Epsilon-Mnets: Hitting Geometric Set Systems with Subsets *

, with recent applications in discrete and computational geometry. In this paper, we initiate the study of Macbeath regions in a combinatorial setting-and not only for the Lebesgue measure as is the case in the classical theorem-and establish near-optimal bounds for several basic geometric set systems.

Introduction

Given a convex body K in R d of unit volume, and a parameter > 0, a classical theorem of Macbeath [START_REF] Macbeath | A theorem on non-homogeneous lattices[END_REF] from convex geometry implies the existence of disjoint convex bodies of K, each of volume Θ( ), called Macbeath regions, such that any half-space containing at least -th volume of K completely contains one of these convex bodies. Formally, consider the following theorem (as stated in [START_REF] Brönnimann | How hard is half-space range searching[END_REF]):

Theorem A (Macbeath regions). Given a convex body K ⊂ R d of unit volume, and a parameter 0 < < 1/(2d) 2d , there exists a set M of O convex objects such that for any half-space h with vol(h∩K) ≥ , there exists a K i ∈ M such that K i ⊂ h ∩ K and

vol(K i ) ≥ 1 (30d) d • .
Similar partitions of convex bodies was used by Edwald, Larmen and Rogers [START_REF] Ewald | The directions of the line segments and of the r-dimensional balls on the boundary of a convex body in euclidean space[END_REF] for cap coverings, which were later further extended by Bárány and Larman [START_REF] Bárány | Convex bodies, economic cap coverings, random polytopes[END_REF]. They were also used for lower-bounds on range searching by Brönnimann, Chazelle and Pach [START_REF] Brönnimann | How hard is half-space range searching[END_REF]. Very recently, Macbeath regions were used in an elegant way by Arya, da Fonseca and Mount [START_REF] Arya | Optimal area-sensitive bounds for polytope approximation[END_REF] for computing near-optimal Hausdorff approximations of polytopes. We refer the reader to Bárány [START_REF] Bárány | Random polytopes, convex bodies, and approximation[END_REF] for a survey of these and several other applications of Macbeath regions.

Switching over to discrete and combinatorial geometry, a different structure--nets-has been developed over the past three decades as a fundamental and powerful tool in computational geometry. Given a set system (X, R), and a parameter , an -net is a set N ⊆ X such that N ∩ R = ∅ for all R ∈ R with |R| ≥ |X|. A famous theorem of Haussler and Welzl [START_REF] Haussler | Epsilon-nets and simplex range queries[END_REF] states the existence of -nets of size O d log d for (X, R), where d is the VC dimension of R. This bound was later improved in [START_REF] Komlós | Almost tight bounds for epsilon nets[END_REF] to an optimal bound of 1 + o(1) d log 1 . By now -nets are an indispensable tool in combinatorics, geometry and algorithms (we refer the reader to the books [START_REF] Pach | Combinatorial Geometry[END_REF][START_REF] Matoušek | Geometric Discrepancy: An Illustrated Guide[END_REF][START_REF] Chazelle | The Discrepancy Method: Randomness and Complexity[END_REF][START_REF] Matoušek | Lectures in Discrete Geometry[END_REF] for a small sampling of their constructions and applications).

The starting point of our work is the observation that the two--nets and Macbeath regions-are related. Indeed theorem A implies that for any convex body K in R d of volume V , it is possible to pick O( 1 ) points in K (in fact, even less) which hit all half-spaces containing an -th fraction of the volume of K. However, the statement itself is much stronger than that: instead of just points, it states the existence of O( 1 ) regions, each of volume Θ( V ), so that any half-space containing an -th fraction of the volume of K contains one of the regions completely. As we will prove in this paper, a strengthening of the -net statement is true for the counting measure for set systems induced by half-spaces in R 3 : given any set P of points in R 3 , there exist O( 1 ) subsets of P , each of size Θ |P | , such that any half-space containing at least • |P | points of P contains one of these regions completely. This raises the natural question: of the large number of results known for -nets for various geometric set systems, which can be optimally strengthened like the case above? Geometric set systems can be categorized into two frequently studied types. Let O be a family of geometric objects in R d -e.g., the family of all half-spaces, all balls and so on. We say that O has union complexity ϕ(•) if the combinatorial complexity of the union of any r of the regions of O is at most r • ϕ(r); we refer the reader to the survey [START_REF] Agarwal | State of the union (of geometric objects): A review[END_REF] for bounds on the union complexity of many geometric objects. Given a set X of points in R d , we say that (X, R) is a primal set system induced by O if for each R ∈ R, there exists an object O ∈ O such that R = X ∩ O. On the other hand, given a finite set S ⊆ O in R d , we say that (S, R) is a dual set system induced by S if for each R ∈ R, there exists a point q ∈ R d contained in precisely the elements of R, i.e.,

R = O ∈ S | q ∈ O .
In this paper we initiate a systematic study of the analogues of Macbeath regions-which we name -Mnets-for some commonly studied primal and dual geometric set-systems.

Definition ( -Mnets). Given a set system (X, R) and a parameter > 0, 

a collection M = {X 1 , . . . , X t } of subsets of X is an -Mnet for R of size t if 1. |X i | = Ω • |X| for each i = 1, . . . ,

Our Results

Our first result establishes tight bounds for the sizes of -Mnets for the primal and dual set systems induced by axis-parallel rectangles in the plane. This already provides an example where -Mnets have larger sizes-by factors polynomial in 1 -than -nets for the corresponding set systems. The proof of the following statement is in Section 2.

Theorem 1. Let > 0, κ ≥ 2 be given parameters.

(a) Dual set system. Given a set S of axis-parallel rectangles in the plane, there exist for the dual set-system induced by S.

Furthermore, this is near-optimal: for any integer n > 0, there exists a set S of n axis-parallel rectangles in R 2 such that any 1 κ -heavy -Mnet for the dual set-system induced by S has size Ω

1 1+ 1 κ-1
.

(b) Primal set system. Given any set P of points in the plane, there exist -Mnets of size O 1 log 1 for the primal set-system induced by axis-parallel rectangles on P .

Furthermore, this is near-optimal: for any integer n > 0, there exists a set P of n points in the plane such that any 1 κ -heavy -Mnet for the primal set-system induced by axis-parallel rectangles on P has size

Ω 1 log κ 1 .
Our next result states the existence of small -Mnets for dual set systems as a function of the union complexity of the objects. Call a set S of objects in R d well-behaved if for any subset S ⊆ S and any Q ⊆ R d , one can decompose the cells in the arrangement of S that intersect Q into cells of constant descriptive complexity, where the complexity of this decomposition is proportional to the total number of vertices in the cells that intersect Q; we refer the reader to [START_REF] Chekuri | On the set multi-cover problem in geometric settings[END_REF] for more details. The proof of the following statement is in Section 3.

Theorem 2. Let R be the dual set system induced by a set of well-behaved regions S in R d with union complexity ϕ(•) and let > 0 be a given parameter. Then there exists an -Mnet for R of size O 1 ϕ( 1 ) .

Interestingly, as ϕ(m) = Ω(m) for the dual set system induced by axis-parallel rectangles in the plane, Theorem 1 implies that the dependence of ϕ(•) in Theorem 2 cannot be reduced to, for example, log ϕ(•), as is the case for -nets.

Our last result is to consider the primal case where the input is a set of points and the set system is defined by containment by geometric objects such as disks, lines, triangles and more generally, k-sided polygons in the plane. The proof of the following statement is in Section 4.

Theorem 3. Let P be a set of n points, and > 0 a given parameter. Then one can construct -Mnets of size:

(a) O( 1 d/2
) for the primal set system induced by half-spaces in R d , for d ≥ 2. Furthermore, this cannot be improved substantially: for any integers d ≥ 2 and n > 0, there exists a set of n points in R d such that any -Mnet for the primal set system induced by half-spaces has size Ω( 1 ).

(b) O 1 for the primal set system induced by disks in the plane.

(c) O 1 3 (log 1 ) 4 for the primal set system induced by triangles, and in general k-sided polygons in the plane (the constant in the asymptotic notation depends on k).

(d) O 1

2 (log 1 ) 2 for the primal set system induced by lines, O 1 2 (log 1 ) 3 for the one induced by cones, and O 1 2 (log 1 ) 4 for the one induced by strips in the plane. Furthermore, this is near-optimal: for any integer n > 0, there exists a set of n points in R 2 such that any -Mnet for the primal set system induced by lines or cones or strips has size Ω 1 2 .

(e) O 1 for the primal set system induced by axis-parallel rectangles in R 2 , all intersecting the y-axis.

Theorem 3 implies that near-linear bounds for -Mnets are not possible for even simple primal set-systems such as those induced by lines in the plane. This contrasts sharply with -net bounds for geometric set systems, which are near-linear for any set system with constant VC dimension.

2 Proof of Theorem 1

The following lemma, of independent interest, gives insight for studying -Mnets for both the primal and dual set systems induced by axis-parallel rectangles in the plane.

Lemma 2.1. For any integers r, d ≥ 3, consider the grid

G = {0, • • • , r -1} d in R d consisting of r d points.
Then there exists a bijective mapping π : G → R 2 such that the primal set system on G induced by axis-parallel lines can be realized by the primal set system induced by axis-parallel rectangles in R 2 on the set {π(p), p ∈ G}.

Proof. Let [r] represent the set {0, • • • , r-1}. For any i ∈ {1, . . . , d} and integers a 1 , • • • , a i-1 , a i+1 , • • • , a d ∈ [r], consider the set of points S i (a 1 , • • • , a i-1 , a i+1 , • • • , a d ) = (a 1 , • • • , a i-1 , t, a i+1 , • • • , a d ) : t ∈ [r] .
We call such a set a line in direction i. There are dr d-1 such lines, r d-1 in each of the d directions (along the axes) in R d .

We will show that there exists a mapping π : G → R 2 such that for each line l in any direction, the inclusionminimal axis-parallel rectangle containing the image, under π(•), of the points in l does not contain the image of any other point of G. Here is the mapping π(•) that we will use:

π (a 1 , • • • , a d ) = j a j v j
, where v j = (r j , r d+1-j ).

For any point z ∈ G, we will interpret p = π(z) both as a vector and as a point, as suitable. When treating it as a vector, we will denote it by p.

For any z = (a 1 , • • • , a d ) ∈ G, let V <i (z )
denote the vector j<i a j v j and V >i (z ) denote the vector j>i a j v j . Thus we can write π(z

) = V <i (z ) + a i v i + V >i (z ).
Consider any line, say

l = S i (a 1 , • • • , a i-1 , a i+1 , • • • , a d )
, and let R be the smallest rectangle containing the set of r mapped points of l in the plane, namely the set

f (l) = π (a 1 , . . . , a i-1 , t, a i+1 , . . . , a d ) : t ∈ [r] . Let z l = (a 1 , • • • , a i-1 , 0, a i+1 , • • • , a d ) and z r = (a 1 , • • • , a i-1 , r -1, a i+1 , • • • , a d )
be the two extreme points lying on l. As all the coordinates except the i-th one are the same for all points lying on l, the mapped point with the maximum x-coordinate is the one that maximizes t • r i , i.e., the point π(z r ). Similarly, π(z r ) has the maximum y-coordinate, and π(z l ) has the minimum xand y-coordinates. Furthermore, the width of R is defined by the difference in the x-coordinates of π(z r ) and π(z l ), and so it is precisely (r -1)r i . Likewise, the height of R is (r -1)r d+1-i .

It remains to show that for any other point, say

z = (b 1 , • • • , b d ) ∈ G \ l, π(z) does not lie in R. Let z = (a 1 , . . . , a i-1 , b i , a i+1 , .
. . , a d ) ∈ G be the point lying on the line l with the same i-th coordinate as z. Let

p = π(z) = V <i (z) + b i v i + V >i (z) and q = π(z ) = V <i (z ) + b i v i + V >i (z ). Then p -q = V <i (z) -V <i (z ) + V >i (z) -V >i (z ) .
Since p = q, one of the above two summands must be non-zero. Without loss of generality assume that the second summand is non-zero. The other case is similar.

As V >i (z) -V >i (z ) = j>i (b j -a j ) v j
, it is a nonzero integral combination of the vectors v j for j > i, and so its x-coordinate has magnitude at least r i+1 . On the other hand the x-coordinate of V <i (z) -V <i (z ) has magnitude at most 1≤j<i (r -1)r j = r ir. Therefore the difference in the x-coordinates between p and q is at least r i+1 -(r ir), which is greater than the width of R. Hence, p / ∈ R. When V <i (z) -V <i (z ) = 0, a similar argument holds for the y-coordinates of p and q, showing that the difference in their y-coordinates is larger than the height of R.

Case (a): Dual set system.

Lower-bound. We now show that for any integers κ ≥ 2 and n ≥ 0, there exists a set R of n axis-parallel rectangles such that any 1 κ -heavy -Mnet for the dual set system induced by R has size Ω = n. Since each of the points in G is contained in d lines (one in each direction), each point of P is contained in d rectangles of R and consequently n rectangles of R. Since there is at most one line through two points in G, there are at most n d rectangles of R that contain any pair of points p, q ∈ P . Since for any 1 κ -heavy -Mnet M, each U ∈ M has size greater than n κ , it must be that no set in M can be contained in two sets R(p) and R(q) induced by two distinct points p and

q in P . Therefore |M| ≥ |P | = r d = -κ k-1 = 1 1+ 1 κ-1
.

Upper-bound. We now establish an upper-bound for the dual set systems induced by axis-parallel rectangles in the plane.

Construct a hierarchical subdivision on S, as follows. Let k = 1 1/κ , and for i = 0, . . . , κ, set the parameters n i = n k i , and i = ( k 2 ) i . At the 0-th level (here i = 0), let l 0 1 , . . . , l 0 k-1 be a set of k -1 vertical lines such that the number of rectangles of S lying between two consecutive lines-call this region a 'slab'-is at most n 0 k . Let S 0 j be the set of rectangles lying entirely in the j-th slab. For each index j = 1, . . . , k -1, construct a 0 4 -Mnet for all the rectangles of S intersecting l 0 j . Furthermore, construct an ( k 2 )-Mnet for the rectangles in S 0 j , for each j = 1, . . . , k -1 in the similar manner as above. The construction continues for κ steps: at the i-level, there are k i total sub-problems, each sub-problem consists of at most n i = n k i rectangles and with i = ( k 2 ) i . At the base case of the recursion, we use a direct O( 2 . Now take any point q ∈ R 2 lying in at least κ |S | rectangles of S and let c be the cell induced by L containing q. At least one of the boundary edges of any rectangle R containing q but not containing c must lie in the vertical or horizontal slab induced by L containing q. Thus there can be only κ|S | 2 such rectangles that contain q but not the cell c. The remaining at least κ|S | 2 rectangles that contain q must then all contain c, and so would form a set in M of size at least κ|S | 2 . Note that the total number of sets added to M is O(

1 2 k
).

The next two claims conclude the proof by showing that all these Mnets together form an -Mnet M for S of the required size.

Claim 1. Each set in M has size Θ n 2 κ . The size of M is O 4 κ 1+ 1 κ .
Proof. At the i-level there are k i sub-problems, each of size at most

n i = n k i with i = ( k 2 ) i .
For each such sub-problem, we partition its set of at most n i rectangles by k-1 lines, and construct a i 4 -Mnet for the rectangles intersecting these k -1 lines. Note that the set of rectangles intersecting any line, and clipped to one side of the line have linear union complexity [START_REF] Agarwal | State of the union (of geometric objects): A review[END_REF] and by Theorem 2, there exists a i 4 -Mnet of size O( 1 i ). Hence the total size over all internal sub-problems is:

κ i=0 k i • (k -1) • O 1 i ≤ κ i=0 k i+1 • O 2 i k i = κ i=0 O 2 i 1+ 1 κ = O 2 κ 1+ 1 κ .
At the last level, after κ steps, we have k κ sub-problems, each with at most n k κ rectangles, and κ = ( k 2 ) κ . Now use a direct construction which constructs an -Mnet of size O( 12 ), to get the total size of Mnet at the last step to be O(

κ k • 1 2 k ) = O( 4 κ 2 k κ ) = O( 4 κ ).
At any level i, we construct a i -Mnet on a set of at most n k i rectangles. So each set in the constructed Mnet has size

Ω( i • n k i ) = Ω( n 2 i ) = Ω( n 2 κ ).
Claim 2. For each point q ∈ R 2 lying in at least n rectangles of S, there exists a set U ∈ M such that q lies in all the rectangles of U .

Proof. Take a point q lying in at least n rectangles of S. At the 0-th level, say q lies in the vertical slab defined by lines l 0 j and l 0 j+1 . If q is contained in at least n 4 rectangles intersected by either l 0 j or l 0 j+1 , say l 0 j , then it is contained in at least n 4 rectangles out of a total of at most n rectangles intersected by l 0 j . So the 4 -Mnet for l 0 j will have a set U such that each rectangle in U contain q. Otherwise q is contained in at least n 2 = ( k 2 )( n k ) = 1 n 1 rectangles of the set S 0 j of size at most n 1 = n 0 k , and we proceed to this sub-problem. In general, at the i-level, each sub-problem has at most n i = n k i rectangles, with i = ( k 2 ) i . Then either q is contained in at least i n i 4 rectangles intersecting one of the lines, and so will contain a set from the i 4 -Mnet constructed for each of the k -1 vertical lines. Or q is contained in at least i n i 2 rectangles out of a total of at most n i+1 = n i k rectangles lying in one of the slabs defined by the k -1 vertical lines. But as

i n i 2 = 2 • k 2 i • n k i = k 2 i+1 n k i+1 = i+1 n i+1 ,
q will be covered inductively by the i+1 -Mnet constructed for the n i+1 rectangles in one of the resulting subproblems at level i + 1.

Case (b): Primal set system.

Lower-bound. We now show that for any integers κ ≥ 2 and n ≥ 0, there exists a set P of n points in R 2 such that any 1 κ -heavy -Mnet of P for the primal set system induced by axis-parallel rectangles in the plane has size Ω( 1 log κ 1 ). Apply Lemma 2.1 with r = κ, and with parameter d set with r d-1 = 1 . According to the lemma, there is a mapping π from the grid G = {0, • • • , r -1} d to the plane so that for each subset S ⊂ G of the grid obtained by intersecting G with an axis-parallel line, there exists an axis-parallel rectangle R in the plane such that R ∩ π(G) = π(S); i.e., R contains exactly the mapped points of S. There are dr d-1 = Θ( 1 log κ 1 ) such subsets and let R be the set of axis-parallel rectangles corresponding to these. Let P be the set of points obtained by replacing each point p ∈ π(G) with n r copies of p (note that P is not a multi-set; think of each copy of the same point in π(G) as a distinct point). The number of points in P is r d-1 • n r = n. Each rectangle in R contains r • n r = n points of P . Also, any pair of rectangles in R share at most n r = n k points of P . Thus no two rectangles in R may share the same set U ∈ M of a 1 k -heavy -Mnet M. Since each of them must contain some U ∈ M, we have |M| ≥ |R| and the result follows.

Upper-bound. We now present a matching upper-bound for the primal set system induced by axis-parallel rectangles in the plane.

Assume P = {p 1 , . . . , p n } are labeled in the order of increasing x-coordinates. Given P , construct a balanced binary subdivision of P with vertical lines: divide P by a vertical line into two equal-sized subsets P 1 0 , P 1 1 , and then recursively divide each of these sets into two equal-sized subsets and so on for log 1 levels. At the i th level of recursion, there are 2 i sets of size n 2 i . Let P i j denote the j-th subset of P at level i, i.e.,

For

1 ≤ i ≤ log 1 , 0 ≤ j < 2 i , P i j = p j n 2 i +1 , . . . , p (j+1) n 2 i .
For each set P i j , and for each of its two bounding lines, say lines l 0 and l 1 , construct a 2 i-1 -Mnet for the following primal set-system: the base set is P i j , and given a line l ∈ {l 0 , l 1 }, the sets are induced by axis-parallel rectangles intersecting the line l. Note that all points of P i j lie on the same side of l. Let M be the union of all these Mnets. Crucially, the primal set system induced by the set of axis-parallel rectangles on the same side of l admits an -Mnet of size O( 1) by Theorem 3 (e).

We now prove that M is an -Mnet of P , of size O( 1 log 1 ).

Claim 3. Each set in M has size Θ( n), and size of M is O( 1 log 1 ).

Proof. The set P i j has size n 2 i , and so each set in a (2 i-1 )-Mnet of P i j has size Ω(2 i-1 • n 2 i ) = Ω( n). Note that each 2 i-1 -Mnet has size O( 1 2 i ), there are 2 i sets P i j at level i, and a total of log 1 levels. Hence the size of M is O(

1 2 i • 2 i • log 1 ) = O( 1 log 1
). Claim 4. Each axis-parallel rectangle containing at least n points of P contains a set of M.

Proof. Let R be an axis-parallel rectangle containing at least n points of P . Let i be the smallest index such that R intersects exactly one vertical line separating two sets P i j and P i j+1 at level i. Say R intersects the line l separating P i j and P i j+1 . Then R must contain at least n 2 points from either P i j or P i j+1 , say P i j . Let R be the part of R on the side of l towards P i j . Thus R must contain at least one set of the 2 i-1 -Mnet for P i j , as

|R ∩ P i j | = |R ∩ P i j | ≥ n 2 = 2 i-1 • n 2 i = 2 i-1 • |P i j |.

Proof of Theorem 2

Given the input set S of regions in R d , define the depth of any point q ∈ R d with respect to S to be the number of regions of S containing q. The key tool used in the proof are shallow cuttings:

Theorem B ( [START_REF] Matoušek | Reporting points in halfspaces[END_REF][START_REF] Chekuri | On the set multi-cover problem in geometric settings[END_REF]). Given a set S of n well-behaved regions in R d with union complexity ϕ(•) and two parameters r, l > 0, there exists a partition of R d into a set Ξ of interior-disjoint cells (of constant description complexity) such that 1. each cell of Ξ is intersected by the boundary of at most n r regions of S, and 2. the number of cells in Ξ that contain points of depth less than l (with respect to S) is

O rl n +1 d • n l •ϕ n l .
Such a partition Ξ is called a ( 1 r , l)-shallow cutting of S.

We will construct the required -Mnet M as a union of log 1 collections M i , for i = 0, . . . , log 1 . For a fixed index i, construct the sets in M i by setting l i = 2 i+1 n, r i = 1 2 i-1 , and construct a ( 1 r i , l i )-shallow cutting, denoted by Ξ i , for S. Call a cell ∆ ∈ Ξ i shallow if it contains points of depth less than l i . For each ∆ ∈ Ξ i , let r(∆) be the set of regions in S that completely contain ∆; i.e., S ∈ r(∆) if and only if ∆ ⊂ S. Now, for all shallow cells ∆ with r(∆) ≥ n 2 , add r(∆) to M i . We can trivially upper-bound |M i | by the number of shallow cells of Ξ i , i.e., cells containing a point of depth less than l i = 2 i+1 n. Thus using Theorem B, we get

|M i | = O r i • 2 i+1 n n + 1 d • n 2 i+1 n • ϕ n 2 i+1 n = O 4 d • 1 2 i • ϕ 1 2 i .
First we bound the size of

M = i M i : |M| ≤ log 1 i=0 |M i | = log 1 i=0 O 4 d • 1 2 i • ϕ 1 2 i = O 4 d • 1 • ϕ 1 log 1 i=0 1 2 i = O 4 d • 1 • ϕ 1 .
To see that sets in M form the required -Mnet, let p ∈ R d be any point contained in t regions of S, where t ≥ n. Let i be the index such that 2 i n ≤ t < 2 i+1 n. Let ∆ p be the shallow cell in the ( 1 r i , l i )-shallow cutting that contains p. Recall that the ( 1 r i , l i )-shallow cutting Ξ i partitions R d into a set of cells such that each cell intersects the boundary of at most n r i = 2 i-1 n objects in S. Thus, of all the t ≥ 2 i n regions containing p, the boundary of at most 2 i-1 n regions can intersect ∆ p . The remaining at least 2 i-1 n ≥ n 2 regions of S containing p must then completely contain ∆ p , and so are in the set r(∆ p ). Thus the set r(∆ p ) is added to M i , and we have

r i (∆) ≥ 2 i-1 n ≥ n 2 .
4 Proof of Theorem 3 (a). First we establish the upper-bound on the sizes of -Mnets for the primal set system induced by half-spaces in R d . For a point p ∈ P , let H p be its dual hyperplane, and let H = {H p | p ∈ P }. Let H + (resp. H -) be a set of upperward-facing (resp. downward-facing) half-spaces defined by H. Apply Theorem 2 to the dual set system induced by H + (resp. H -) to get an -Mnet M + (resp. M -), and let M be the corresponding collection of sets for P corresponding to both M + and M -. As M + (resp. M -) is an -Mnet for H + (resp. H -), for any point q ∈ R d contained in at least n half-spaces in H + (resp. H -), there exists a set in M + (resp. M -) of size Ω( n), such that each half-space in this set contains q. Switching to the primal viewpoint, any upward-facing (resp. downward-facing) half-space H q containing at least n points of P , corresponds in the dual to a point q that is contained in at least n downward-facing (resp. upward-facing) half-spaces in H + (resp. H -). As M + (resp. M -) is an -Mnet for H + (resp. H -), it follows that M is an -Mnet for the primal set system induced by half-spaces. To bound the size of M obtained from Theorem 2, it suffices to note that for half-spaces, rϕ(r

) = O(r d/2 ) [1].
For the lower-bound for -Mnets for the primal set system induced by half-spaces in R d , we first prove the following more general theorem.

Theorem 4. Given a real parameter > 0, integer n > 1 and two constants δ and k, there exists a set P of n points in the plane, and a set D of Ω( 1 δ+1 ) curves, each of degree at most δ, such that a) each curve contains n points of P and b) no two curves in D have more than n k points of P in common. In particular, any 1 k -heavy -Mnet for the primal set system on P induced by curves of degree at most δ has size Ω( 1δ+1 ) (the constants in the asymptotic notation depend on k and δ).

Proof. Denote by G the set of δk grid points in {0, . . . , δk -1} × {0, . . . , 1 -1}. The set of curves in D will be all univariate functions in x of the form y = δ i=0 a i • x i , where each a i ∈ 0, 1, . . . , 1 (δ + 1)(δk) i -1 .

Clearly we have

|D| = δ i=0 1 (δ + 1)(δk) i = Ω 1 δ+1 (δk) Θ(δ 2 ) = Ω 1 δ+1 .
Since for each value of x ∈ {0, . . . , δk -1}, the corresponding value of y for each of the curves in D lies in {0, . . . , 1 -1}, each of the curves of D contain precisely δk points of G. Furthermore, as these curves have degree at most δ, no two intersect in more than δ points of G. .

Let

Proof. First assume that d-2 3 is an integer, and apply Theorem 4 with δ = d-2 3 and k = 2 to get a set P of n points in R 2 and a set D of curves such that any -Mnet for the primal set system induced by D on P has size Ω( 1δ+1 ). We now use Veronese maps [START_REF] Matoušek | Lectures in Discrete Geometry[END_REF] to map the incidences between points and curves in D to incidences between points and half-spaces in R d . More precisely, consider the map:

π : p = (p x , p y ) ∈ R 2 -→ (x, x 2 , . . . , x 2δ , y, yx, . . . , yx δ , y 2 ) ∈ R d .
We claim that for any curve D ∈ D, say defined by the equation y = δ i=0 a i • x i , there exists a half-space H D in R d such that the set of points of P contained in D is precisely the set of points of π(P ) contained in H D . The required half-space can be constructed as follows:

p ∈ D if and only if y - δ i=0 a i • x i = 0 y - δ i=0 a i • x i 2 ≤ 0 a 1 x + a 2 x 2 + • • • + a 2δ x 2δ + -2y • a 0 x 0 + • • • + a δ x δ + y 2 ≤ a 0
for constants a 0 , . . . , a 2δ depending on a 0 , . . . , a δ . Labeling the coordinates in R 3δ+2 with x 1 , . . . , x 3δ+2 , the required half-space H D is then

H D : a 1 • x 1 + • • • + a 2δ • x 2δ + (-2a 0 ) • x 2δ+1 + • • • + (-2a δ )x 3δ+1 + x 3δ+2 ≤ a 0 ,
containing precisely the points that lie on the curve D ∈ D. This now implies a lower-bound of Ω( 1 δ+1 ) = Ω( 1 (d+1)/3 ) for the -Mnet for the primal set system induced by half-spaces in R d . Finally, the lower-bound follows for any value of d by applying the bound for the largest d ≤ d with integer value of d -2

3 .

(b). By Veronese maps, points P and disks D can be lifted to half-spaces H in R 3 such that each point is lifted to a point in R 3 and each disk is lifted to a half-space in R 3 in such a way that their incidences are preserved. Now the required upper-bound follows from applying the bound in part (a) for half-spaces in R 3 to the lifted point set of P .

(c). As a k-sided polygon can be partitioned into k triangles, one of which must contain at least n k points,

We will need the following theorem from [START_REF] Matoušek | Efficient partition trees[END_REF].

Theorem C (Simplicial partition theorem). Given a set P of n points in R d , and an integer parameter t > 0, there exists a partition of P into t sets, each of size Θ( n t ), such that any hyperplane intersects the convex-hull of at most O(t 1-1/d ) sets of the partition.

Take this set O of maximal objects, each containing n points of P , and every pair of objects in O intersecting in less than n 2 points. For each object ∆ i ∈ O , do the following: apply the simplicial partition theorem to ∆ i ∩ P with the parameter t, set to a large enough constant, to get a partition of ∆ i ∩ P into t sets of size Θ( |∆ i ∩P | t ). Add each of these t = O(1) sets to the -Mnet M for P . Proof. First note that each set added to M had size Θ( ) points of ∆ i to ∆. Setting t to be a large-enough constant (say, t = 38), this is less than n 2 . Therefore ∆ must contain a point in ∆ i which lies in a partition for ∆ i not intersecting ∂∆, i.e., the partition lies completely inside ∆.

|∆ i ∩P | t ) = Θ( n),
Finally, when O is a set of anchored triangles in the plane, a routine application of the Clarkson-Shor method [START_REF] Matoušek | Lectures in Discrete Geometry[END_REF] implies that f O (n, l) = O(n 3 • l). Then Lemma 5 implies the existence of -Mnets for the primal set system induced by O of size O ( c log 1 ) 3 • 2c log 1 = O 1 3 (log 1 ) 4 .

(d).

The upper-bounds for the primal set systems induced by lines, strips, cones in the plane again follow from Lemma 5. The function f (n, l) correspondingly denotes the number of subsets of size l induced by the objects of the appropriate type (lines, strips, cones). For lines, f (n, l) = O(n 2 ) implies the existence of -Mnets of size O( 1 2 (log 1 ) 2 ); for strips f (n, l) = O(n 2 • l) implies the existence of -Mnets of size O( 1 2 (log 1 ) 3 ); and for cones, f (n, l) = O(n 2 • l 2 ) implies the existence of -Mnets of size O( 12 (log 1 ) 4 ). The lower-bound for the primal set system induced by lines, strips and cones in the plane follows from Theorem 4 by setting δ = 1: Corollary 4.2. For any > 0 and integer n, there exists a set P of n points in the plane such that any -Mnet for the primal set system on P induced by lines must have size Ω( 12 ).

As the set system induced by lines is a special case for the ones induced by strips and cones, this implies the same lower-bound for the primal set system induced by strips and cones in the plane.

(e). As each rectangle contains n points of P and intersects the y-axis, for each rectangle R, take the portion of the rectangle on the side of the y-axis that contains at least n 2 points. We can construct 2 -Mnets for the two sides of the y-axis separately and return the union of the two Mnets. Now for the primal set system induced by axis-parallel rectangles with one vertical edge lying on the y-axis, we have f (n, l) = O(n) [START_REF] Pyrga | New existence proofs epsilon-nets[END_REF]. Now Lemma 5 implies that one can construct 2 -Mnets of size O( 1 ).

Conclusion and future work

We conclude our study by observing that the above series of results-with proofs that use different techniquesindicate an intriguing relation between the sizes of -nets and the sizes of -Mnets. In all cases, they obey the following pattern: if there exist -nets of size O 1 f ( 1 ) for some primal or dual set system, then the size of -Mnets for the same set system is O( 1 c f ( 1 ) ), where c is some constant. For example, for all spaces known to have linear-sized -nets (which is optimal), our proofs establish the existence of linear-sized -Mnets (which is optimal). For the primal set system induced by axis-parallel rectangles in the plane, -nets have size O( 1 log log 1 ) (shown to be optimal) [START_REF] Aronov | Small-size -nets for axis-parallel rectangles and boxes[END_REF][START_REF] Pach | Tight lower bounds for the size of epsilon-nets[END_REF]; our results show the existence of -Mnets of size O( 1 log 1 ) (which we show to be optimal). For the primal set system induced by half-spaces in R d , -nets have size O( d log 1 ) (shown to be optimal [START_REF] Kupavskii | New lower bounds for epsilon-nets[END_REF]); our results establish the existence of -Mnets for this set system of size O( 1 (d+1)/3 ). Similarly, for the remaining set systems for which there exist -nets of size O( 1 log 1 ), we show the existence of -Mnets of size O( 1 c ). It would be interesting to see if there is any connection with the (still) open problem of finding the right bound on the size of -nets for the primal set system induced by lines in the plane.

1 1+1/

 1 (κ-1) . Apply Lemma 2.1 with d = κ and r = -1 d-1 . Let G be the grid [r] d as before. We set P = {π(p) : p ∈ G} and let R be the set of dr d-1 rectangles corresponding to the dr d-1 lines in G. Construct the required set R by replacing each rectangle of R with n d copies. Note that |R| = n d • dr d-1

1

 1 

  2 κ )-sized construction for the κ -Mnet of the k κ subproblems at the last κ-level: for the sub-problem of computing a κ -Mnet for a set of rectangles S where |S | ≤ n κ , construct a set L of 8 κ vertical and 8 κ horizontal lines such that each vertical (resp. horizontal) slab induced by L contains at most κ|S | 4 vertical (resp. horizontal) boundary edges of the rectangles in S . For each bounded cell c induced by L , add to M all the rectangles of S completely containing c, if their total number is at least k |S |

Corollary 4 . 1 .

 41 P be the set of n points obtained by replacing each point of G with n δk copies to get a set of n points in the plane. Now each curve in D contains δk • n δk = n points of P and every pair of curves have less than d • n δk = n k points of P in common. Finally observe that any 1 k -heavy -Mnet M for the primal set system on P induced by D must consist of at least |D| sets: each curve D ∈ D must completely contain a set R ∈ M of size at least n k , and furthermore R cannot be contained in any other curve D ∈ D, as any two curves of D have less than n k points of P in common. Now we show the desired lower-bound for -Mnets for the primal set system induced by half-spaces in R d . For any > 0 and integers n and d, there exists a set P of n points in R d such that any -Mnet for the primal set system on P induced by half-spaces has size Ω 1 d+1 3

Claim 5 .

 5 M is an -Mnet for the primal set-system induced by O, of size O f O c • log 1 , 2c log 1 .

  and the number of such sets is O(|O | • t) = O(|O |). It remains to show that any object containing n points of P contains one set of M. Take any triangle ∆ containing n points of P (any triangle containing greater than n points can always be shrunk to a triangle containing fewer points). By the maximality of O , there exists ∆ i ∈ O such that |∆ ∩ ∆ i | ≥ n 2 . Furthermore, of all the sets in the simplicial partition of ∆ i , each edge of ∂∆ can intersect only O( √ t) sets; so in total the three bounding segments of ∆ can intersect at most O(3 √ t) sets. Each of these sets has O( |∆ i ∩P |

t ) points. So these sets can contribute at most O(3 √ t • |∆ i ∩P | t
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an k -Mnet with respect to triangles is an -Mnet with respect to k-sided polygons. Thus from now on we restrict ourselves to the primal set system induced by triangles in the plane.

Consider any triangle T in the plane that contains n points of P . By moving the sides of the triangle we can ensure that each side of T contains at least two points of P and this can be done in such a way that no point outside T enters the interior of P . Some points in the interior of T may have moved to its boundary and some point outside T may also have moved to the boundary. Since at most 6 points may be on the boundary of T , due to P being in general position, the interior of T still contains at least n 2 points, assuming n ≥ 12 (observe that for n < 12, the collection of singletons of P is an -Mnet of size O( 1)). Thus we can further restrict ourselves to the interior of triangles each of whose sides contain at least two points. The figure above shows a triangle with each side containing two points of P . The points q and r could be identical, they could both be equal at the corner b of the triangle. Similarly s and t could be at c and u and p could be at a. Observe that the triangles aqt, bsp, cur and prt cover the triangle T and therefore one of them must contain at least n 4 points of P . Each of these triangles are of the following type: at least two of the corners are in P and all sides contain at least two points of P . We call such triangles anchored triangles. Thus we can again restrict ourselves to the problem of anchored triangles in the plane containing n points of P .

Let O be the set of all anchored triangles for P . Let O = {∆ 1 , . . . , ∆ t } be a maximal set of t triangles from O such that

is the maximum number of subsets of size at most l in the primal set system induced by objects in O on any subset of m points of P , and c is some fixed constant.

Proof. Pick each point of P independently at random with probability p = c 2 n • log 1 to get a random sample S. First, observe that with probability greater than 1 2 , the sets ∆ i ∩ S, i = 1 . . . t, are distinct and |S| ≤ c • log 1 : consider the range space (P, R ), where R = (∆ i \ ∆ j ) ∩ P | ∀1 ≤ i < j ≤ t . From the definition of O , each set in R has size at least nn 2 = Θ( n). We now use the fact that ranges induced by polygons with k sides have VC dimension at most 2k + 1 [START_REF] Matoušek | Lectures in Discrete Geometry[END_REF]; it is easy to see that R is a subset of the ranges induced by polygons (or union of polygons) with at most 9 sides, and so the VC dimension of R is at most 19. Then by the Haussler-Welzl theorem [START_REF] Haussler | Epsilon-nets and simplex range queries[END_REF], for c > 19 • 4, with probability greater than 3 4 , S is an -net for (P, R ). Now observe that if ∆ i ∩ S = ∆ j ∩ S, then the set (∆ i \ ∆ j ) ∩ S is empty, a contradiction to the fact that S is an -net for R . From standard concentration estimates from Chernoff bounds, it follows that |S| ≥ c • log 1 with probability less than 1 4 . For each ∆ i ∈ O , let X i be the random variable which is 1 if |∆ i ∩ S| ≥ 2c log 1 , and 0 otherwise. For a fixed i, by linearity of expectation, we have

, and by Markov's inequality applied to Y , we get that Pr X i ≥ t 2 ≤ 1 2 . We can conclude that there exists a subset S of size c log 1 such that ∆ i ∩ S are distinct for all objects in O , and for at least Remark: After the appearance of the conference version of this paper, the statement of Lemma 4.1 has been formalized as the shallow packing lemma. We refer the reader to [START_REF] Mustafa | A simple proof of the shallow packing lemma[END_REF] for details and recent history.