
HAL Id: hal-01468723
https://hal.science/hal-01468723

Submitted on 15 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Handling limits of high degree vertices in graph
processing using MapReduce and Pregel

Mohamad Al Hajj Hassan, Mostafa Bamha

To cite this version:
Mohamad Al Hajj Hassan, Mostafa Bamha. Handling limits of high degree vertices in graph processing
using MapReduce and Pregel . [Research Report] Université Orléans, INSA Centre Val de Loire, LIFO
EA 4022, France. 2017. �hal-01468723�

https://hal.science/hal-01468723
https://hal.archives-ouvertes.fr

Handling limits of high degree
vertices in graph processing

using MapReduce and Pregel

Mostafa BAMHA

LIFO, Université d’Orléans

M. Al Hajj Hassan

Lebanese International University, Beirut.

Rapport no RR-2017-02

Handling limits of high degree vertices in graph

processing using MapReduce and Pregel

M. Al Hajj Hassan1 and Mostafa Bamha2

1 Lebanese International University, Beirut, Lebanon
mohamad.hajjhassan01@liu.edu.lb

2 Université Orléans, INSA Centre Val de Loire, LIFO EA 4022, France
Mostafa.Bamha@univ-orleans.fr

Abstract

Even if Pregel scales better than MapReduce in graph processing by reducing iteration’s
disk I/O, while offering an easy programming model using ”think like vertex” approach,
large scale graph processing is still challenging in the presence of high degree vertices:
Communication and load imbalance among processing nodes can have disastrous effects
on performance. In this paper, we introduce a scalable MapReduce graph partitioning
approach for high degree vertices using a master/slave partitioning allowing to balance
communication and computation among processing nodes during all the stages of graph
processing. Cost analysis and performance tests of this partitioning are given to show the
effectiveness and the scalability of this approach in large scale systems.

Keywords: Graph processing, High degree vertices, Data skew, MapReduce program-
ming model, Pregel, Distributed file systems.

1 Introduction

Distributed processing of algorithms on large scale graphs is increasingly used in applications
such as social, biological, communication and road networks. Most of these graph analysis al-
gorithms are iterative. For this reason, general-purpose distributed data processing frameworks
such as Hadoop [8] are not efficient for processing such algorithms since data should be read
from and written into disks between iterations.
Several specialised graph processing frameworks such as Google’s Pregel [12], Apache Giraph
[6] and GraphLab [1] are proposed to speed up the execution of iterative graph algorithms.
Most of these frameworks follow think like a vertex vertex centric programming model. In
frameworks such as Pregel and Giraph, based on Bulk Synchronous Parallel (BSP) model [15],
each vertex receives messages from its incoming neighbours, updates its state then sends mes-
sages to outgoing neighbours in each iteration. On the other side, GraphLab is based on GAS
(Gather, Apply, Scatter) model and shared memory abstraction. In this model, each active
node can directly access and collect data from its neighbours, in the Gather phase, without the
need for messages. Each active vertex then accumulates the collected values to update its state
in the Apply phase then updates and activates its adjacent vertices in the scatter phase .
In these frameworks, graph vertices are partitioned into sub-graphs which are distributed over
the computing nodes. In order to benefit from the processing capacity of parallel and distributed
machines, the partitions should be assigned to computing nodes in a way that balances their
work load and reduces the communication costs between different nodes. Due to power-law
degree distribution in real networks, where few number of vertices are connected to large frac-
tion of the graph [3, 11] such as celebrities on Facebook and Twitter, graph partitioning is
considered as NP-complete problem [4]. To this end, we propose a MapReduce based graph

2

partitioning algorithm that allows us to evenly assign the load of all computing nodes. The
algorithm proceeds in two MapReduce jobs. In the first one, the graph is read from HDFS
to determine high degree vertices. In the second job, we create for each high degree vertex a
master vertex in addition to incoming and outgoing slave vertices. Slave vertices are evenly
assigned to workers in order to balance their loads. Graph analysis algorithms can be applied
on the partitioned graph using any framework that supports reading data from HDFS. We
tested the performance of our approach by executing Single Source Shortest Paths algorithm
on partitioned and un-partitioned graphs with highly skewed nodes under Hadoop and Giraph
frameworks. The test results proved the efficiency of our approach.

The remaining of the paper is organised as follows. In section 2, we review MapReduce and
Pregel programming models. Our big graph partitioning and processing approach is presented
in section 3 with its complexity analysis. Experiments results presented in section 4 confirm the
efficiency of our approach. Related works are reviewed in section 5 and we conclude in section
6.

2 MapReduce vs Pregel programming model

Google’s MapReduce programming model presented in [5] is based on two functions: Map and
Reduce. Dean and Ghemawat stated that they have inspired their MapReduce model from
Lisp and other functional languages [5]. The programmer is only required to implement two
functions Map and Reduce having the following signatures:

map: (k1, v1) −→ list(k2, v2),
reduce: (k2, list(v2)) −→ list(v3).

The user must write the map function that has two input parameters, a key k1 and an associated
value v1. Its output is a list of intermediate key/value pairs (k2, v2). This list is partitioned
by the MapReduce framework depending on the values of k2, where all pairs having the same
value of k2 belong to the same group.

The reduce function, that must also be written by the user, has two parameters as input:
an intermediate key k2 and a list of intermediate values list(v2) associated with k2. It applies
the user defined merge logic on list(v2) and outputs a list of values list(v3).

MapReduce is a simple yet powerful framework for implementing distributed applications
without having extensive prior knowledge of issues related to data redistribution, or task alloca-
tion and fault tolerance in large scale distributed systems. Most MapReduce frameworks include
Distributed File Systems (DFS) designed to store very large files with streaming data access
patterns and data replication for fault tolerance while guaranteeing high disk I/O throughput.

To cover a large of application’s need in term of computation and data redistribution, in most
MapReduce frameworks, the user can optionally implement two additional functions : init() and
close() called before and after each map or reduce task. The user can also specify a “partition
function” to send each key k2 generated in map phase to a specific reducer destination. The
reducer destination may be computed using only a part of the input key k2 (Hadoop’s default
”partition function” is generally based on ”hashing” the whole input key k2) [9, 10]. The
signature of the partition function is :

partition: (Key k2) −→ Integer. /* Integer is between 0 and the number

of reducers #numReduceTasks */

3

Distributed File
System (DFS)

Mapper

Reducer
split
split
split
split
split
split
split
split
split

Mapper

Mapper

Mapper

bucket
bucketbucket
bucket

Reducer

Reducer

bucket
bucketbucket
bucket

bucket
bucketbucket
bucket

bucket
bucketbucket
bucket

split
split
split
split
split
split
split

Map phase Reduce phase

DFS data read.

Sort, Combine and Partition data.

DFS data write.

Shuffle and Sort data

Distributed File

System (DFS)

Figure 1: MapReduce framework.

For efficiency reasons, in Hadoop MapReduce framework, the user may also specify a ”Com-
bine function”, to reduce the amount of data transmitted from Mappers to Reducers during
shuffle phase (see fig 1). The “Combine function” is like a local reduce applied (at map worker)
before storing or sending intermediate results to the reducers. The signature of Combine func-
tion is:

combine: (k2, list(v2)) −→ (k2, list(v3)).

MapReduce excels in the treatment of data parallel applications where computation can be
decomposed into many independent tasks involving large input data. However MapReduce’s
performance degrades in the case of dependent tasks or iterative data processing such as graph
computations due to the fact that, for each computation step, input data must be read from
DFS for each map phase and intermediate output data must be written back to DFS at the end
of reduce phase for each iteration : This may induce high communication and disk I/O costs.
To this end, Pregel model (a variant of MapReduce) [12] was introduced for large scale graph
processing. Pregel is based on Bulk Synchronous Parallel (BSP) programming model [14] where
each parallel program is executed as a sequence of parallel Supersteps, each superstep is divided
into (at most) three successive and logically disjoint phases. In the first phase each processing
node uses its local data (only) to perform sequential computations and to request data transfers
to/from other nodes. In the second phase the network delivers the requested data transfers and
in the third phase a global synchronisation barrier occurs, making the transferred data available
for the next superstep.

To minimise execution time of a BSP program, design must jointly minimise the number
of supersteps and the total volume of communication while avoiding load imbalance among
processing nodes during all the stages of computation.

Similarly to BSP, Pregel programs proceed into three logical phases:

1. A Setup phase orchestred by a master node where Workers read input graph data from
DFS, this data is partitioned among Workers using a partitioning function on vertices,
this partitioning is based on hashing functions and each partition is assigned to single
worker,

4

Figure 2: Supersteps in Pregel computation model for a graph processing

2. A compute phase where each processing node performs a sequence of Supersteps, each
one consists of a local computation on worker’s data : Active vertices can modify their
state or that of its outgoing edges, handle received messages sent to them in the previous
superstep, This step is followed by a communication step where processing nodes can
send asynchronously messages or vertices/edges modification requests to other processing
nodes (these messages are received in the next superstep to perform vertex data/state
modification, Vertex/Edges modifications, ...), and then a global synchronisation barrier
is performed to make transferred data and graph topology modifications available for the
next superstep,

3. A close phase where workers store output result to DFS.

Figure 2 shows an example of a superstep computation in Pregel where only a set of ”active”
vertices performs a local computation. Each idle vertex is activated whenever it receives one
or more messages from other vertices. The program terminates (halts) when all the vertices
become inactive.

Even if, Pregel scales better than MapReduce for graph processing, it still remains inefficient
in the presence of high degree vertices since for each processing iteration, high degree vertices
may communicate with all their neighbours which can induce load imbalance among processing
nodes. This can also lead to a memory lack whenever these messages or the list of neighbours
can not fit in processing node’s memory which limits the scalability of the model. To this end,
we introduce, in this paper, a partitioning approach for high degree vertices based master/slave
repartition allowing to avoid the load imbalance among processing nodes while guaranteeing
that the amount of data communicated at each computation step never exceed a user defined
value.
In this partitioning, a high degree vertex H is transformed into a master vertex called H− 0
connected to set of ”Left” and “Right” slaves (called H− Li and H− Rj respectively) depending
on the number of the incoming and outgoing edges to vertex H. Figure 3 shows an example
where a high degree vertex is partitioned into m ”left” slaves and n ”right” slaves.

5

Figure 3: High degree vertex partitioning approach

In this paper, we used an open source version of MapReduce called Hadoop developed by
”The Apache Software Foundation”. Hadoop framework includes a distributed file system called
HDFS1 designed to store very large files with streaming data access patterns.

3 GPHD : A solution for big graph partitioning/process-
ing in the presence of high degree vertices

To avoid the effect of high degree vertices in graph processing, we introduce, in this section, a
new approach, called GPHD (Graph Partitioning for High Degree vertices) to evenly partition
each high degree vertex into a master and a set of left and right slave vertices depending on
the number of incoming and outgoing edges to these high vertices. This partitioning allows
to balance communication and computation during all stages of graph processing. Vertex
partitioning, in this approach, can be generalised to many graph processing problems ranging
from SSSP, PageRank to Connected Components problems.

We will describe, in detail, computation steps in GPHD while giving an upper bound of
execution cost for each step. GPHD proceeds in two MapReduce jobs :

a. the first job is used to identify high degree vertices and to generate high degree vertices
partitioning templates,

b. the second job is used to partition input graph data using generated partitioning templates.
In this partitioning, only high degree vertices are partitioned into masters and slave
vertices. These slave vertices are affected to different workers in a round-robin manner to
balance load among processing nodes.

We consider a weighted n-vertex, m-edge graph G(V,E) where V is the set of vertices of G
and E the set of edges in G. For scalability, we assume that graph G(V,E) is stored as a set
of edges E divided into blocks (splits) of data. These splits are stored in Hadoop Distributed
File System (HDFS). These splits are also replicated on several nodes for reliability issues, and
throughout this paper, we use the following notations:

• |V |: number of pages (or blocks of data) forming the set of vertices V ,

• ‖V ‖: number n of vertices in V ,

• V : the restriction (a fragment) of set V which contains only high degree vertices. ‖V ‖ is, in
general, very small compared to the number of vertices ‖V ‖,

1HDFS: Hadoop Distributed File System.

6

• V map
i : the split(s) of set V affected to mapper (Worker) i, V map

i contains all (source and desti-
nation) vertices of Emap

i ,

• V red
i : the split(s) of set V affected to reducer (Worker) i. V red

i is the subset of V obtained by a
simple hashing of vertices in V ,

• Vi: the split(s) of set V affected to mapper i holding only high degree vertices from V ,

• |E|: number of pages (or blocks of data) forming the set of edges E,

• ‖E‖: number m of edges in E,

• Emap
i : the split(s) of set E affected to mapper (Worker) i,

• Ered
i : the split(s) of set E affected to reducer (Worker) i,

• cr/w: read/write cost of a page of data from/to distributed file system (DFS),

• ccomm: communication cost per page of data,

• tis: time to perform a simple search in a Hashtable on node i,

• tih: time to add an entry to a Hashtable on node i,

• NB mappers: number of job’s mapper nodes,

• NB reducers: number of job’s reducer nodes.

GPHD proceeds into 3 phases (two phases are carried out in the first MapReduce Job and a single
phase in the second Job) :

a.1: Map phase to generate mapper’s ”local” incoming and outgoing degrees for
each vertex in mapper’s input graph
Each mapper i reads its assigned data splits (blocks) of subset Emap

i from the DFS,
and gets source vertex ”s” and destination vertex ”d” from each input edge
e(source vertex : s, destination vertex : d, value : a) and emits two tagged records for ”s” and
”d” vertices with frequency ”One”.

– Emit a couple (<A,s>,1) : This means that, we found ”One” outgoing edge starting
from source vertex ”s”,

– Emit a couple (<B,d>,1): This means that, we found ”One” incoming edge arriving
to destination vertex ”d”,

Tag ’A’ is used to identify outgoing edges from a source vertex whereas tag ’B’ is used to
identify incoming edges to a destination vertex. The cost of this step is:

T ime(a.1.1) = O
(NB mappers

max
i=1

cr/w ∗ |Emap
i |+ 2 ∗ NB mappers

max
i=1

‖Emap
i ‖

)
.

The term maxNB mappers
i=1 cr/w ∗|Emap

i | is time to read input graph from HDFS by mappers,
whereas the term 2*maxNB mappers

i=1 ‖Emap
i ‖ is time to scan mapper’s edges and to emit two

tagged records for each edge.
Emitted couples (<Tag,v>,1) are then combined to generate local frequencies (incoming
and outgoing degrees) for each source and destination vertex in Emap

i . These combined
records are, then, partitioned using a user ”defined partitioning function” by hashing only
key part v and not the whole mapper tagged key <Tag,v>. The result of combine phase
is then sent to reducers of destination in the shuffle phase of the following reduce step.
This step is performed to compute the number of local incoming and outgoing edges to
each vertex. The cost of this step is at most :

T ime(a.1.2) = O

(
NB mappers

max
i=1

ccomm ∗ |V map
i |+ NB mappers

max
i=1

‖V map
i ‖ ∗ log (‖V map

i ‖)
)
.

The term ccomm ∗ |V map
i | is time to communicate data from mappers to reducers, whereas

the term ‖V map
i ‖ ∗ log (‖V map

i ‖) is time to sort mapper’s emitted records. And the global
cost of this step is therefore : Timestepa.1

= Time(a.1.1) + Time(a.1.2).

7

Algorithm 1 GPHD algorithm’s workflow

a.1I Map phase: /* To generate ”Local incoming and outgoing” degrees for each vertex in input
graph */

� Each mapper i reads its assigned data splits (blocks) of subset Emap
i from the DFS

� Get source vertex ”s” and destination vertex ”d” from each input edge
e(source vertex : s, destination vertex : d, value : a) from Emap

i .
� Emit a couple (<A,s>,1) /* ’A’ tag identifies one outgoing edge from source vertex ”s” */
� Emit a couple (<B,d>,1) /* ’B’ tag identifies one incoming edge to destination vertex ”d” */

I Combine phase: /* To compute local frequencies (incoming and outgoing degrees) for each source
and destination vertex in set Emap

i */
� Each combiner, for each source vertex ”s” (resp. destination vertex ”d”) computes local outgoing
(resp. local incoming) degree : the sum of generated local frequencies associated to a source
(resp. destination) vertex generated in Map phase.
I Partition phase:
� For each emitted couple (key, value)=(< Tag, ”v” >, frequency) where Tag is ”A” (resp. ”B”)
for source (resp. destination) vertex ”v”, compute reducer destination according to only vertexID ”v”.
a.2I Reduce phase: /* To combine Shuffle’s records and to create Global histogram for

”high degree vertices partitioning templates” */
� Compute the global frequencies (incoming and outgoing degrees) for each vertex present in set V .
� Emit, for each high degree vertex ”v”, a couple (”v”, Nb leftSlaveVertices, Nb rightSlaveVertices):

Nb leftSlaveVertices and Nb rightSlaveVertices are fixed depending on the values of the incoming
and outgoing degrees of vertex ”v”,
b.1I Map phase:
� Each mapper reads Global histogram of ”high degree vertices partitioning templates” from DFS,
and creates a local Hashtable.
� Each mapper, i, reads its assigned edge splits of input graph from DFS and generates a set of left
and right slave vertices for each edge depending on the degrees of source and destination vertices:
only edges associated to a high degree for a source or a destination vertex are transformed whereas
those associated to low degree for both source and destination vertices are emitted as they are without
any graph transformation. Note that, left and right slave vertices associated to a high degree vertex
are created only once by a designated worker and new edges are created from each master vertex to
its left and right slave vertices.
� Emit all edges resulting from this graph transformation, and mark high degree vertices for a later
removal.

a.2: Reduce phase to combine Shuffle’s records and to create Global histogram for
”high degree vertices partitioning templates”

At the end of the shuffle phase, each reducer i will receive a subset, called V red
i , of vertices

(and their corresponding incoming and outgoing local degrees) obtained through hashing
of distinct values of V map

j held by each mapper j. In this step, received incoming and
outgoing local frequencies are then merged to compute the global frequencies (the global
incoming and outgoing degrees) for each vertex present in set V . To this end, each re-
ducer i, emits, for each high degree vertex ”v”, a couple (”v”, Nb leftSlaveVertices,
Nb rightSlaveVertices) where :

– Nb leftSlaveVertices: is the number of ”left” slaves to create in the following
phase b.1; these ”left” slaves are used to partition incoming edges to a high degree
vertex ”v”. Nb leftSlaveVertices depends only on the number of incoming edges
to vertex ”v”,

8

– Nb rightSlaveVertices: is the number of ”right” slaves (these slaves are cre-
ated in phase b.1) used to partition outgoing edges of a high degree vertex ”v”.
Nb rightSlaveVertices depends only on the number of outgoing edges of ”v”.

Using this information, each reducer i, has local knowledge of how high degree vertices
will be partitioned in the next map phase.
The global cost of this step is at most: T imestepa.2 = O

(
maxNB reducers

i=1 ‖V red
i ‖

)
.

To avoid the effect of high degree vertices in graph processing, generated ”left” and ”right”
slave vertices are affected to distinct ”workers” in a round-robin manner to balance load
during all the stages of graph’s computation.
To guarantee a perfect balancing of the load among processing nodes, partitioning tem-
plates and graph partitioning are carried out jointly by all reducers (and not by a coordi-
nator node). Note that, only edges associated to high degree vertices are split and sent to
distinct workers whereas edges associated to low degrees for both source and destination
vertices are emitted without any transformation.

b.1: Map phase to generate partitioned graph
Each mapper reads Global histogram of ”high degree vertices partitioning templates”
from DFS, and creates a local Hashtable.
In this step, each mapper i, reads its assigned edge splits of input graph from DFS and
generates a set of left and right slave vertices for each edge depending on the degrees of
source and destination vertices: only edges associated to a high degree source or destina-
tion vertex are transformed whereas those associated to low degree for both source and
destination vertices are emitted as they are without any graph transformation. Note that,
left and right slave vertices associated to a high degree vertex are created only once by a
designated worker and new edges are created from each master vertex to its left and right
slave vertices.
At the end of this step, mappers emit all edges resulting from this graph transformation,
and mark high degree vertices for a later removal. The cost of this step is at most :

T ime(b.1) = O

(
NB mappers

max
i=1

cr/w ∗ |Emap
i |+ tih ∗ ‖V ‖+ 2 ∗ tis ∗ ‖Emap

i ‖
)
.

The term cr/w|Emap
i | is time to read edges of input graph from DFS on each mapper i,

the term tih ∗ ‖V ‖ is time to build the Hashtable holding high degree vertices and their
corresponding values Nb leftSlaveVertices and Nb rightSlaveVertices whereas the
term 2 ∗ tis ∗ ‖Emap

i ‖ is time to perform a Hashtable search for both source and destination
vertices of mapper’s input edges. We recall that, the size of this Hashtable, is in general,
very small compared to the size of input graph.

The global cost, TimeGPHD, of GPHD algorithm is therefore the sum of above three phases.
GPHD has asymptotic optimal complexity when:

‖V ‖ ≤ max

(
NB mappers

max
i=1

|‖Emap
i ‖ ∗ log(‖Emap

i ‖),NB reducers
max
i=1

‖Ered
i ‖

)
, (1)

this is due to the fact that, all other terms in TimeGPHD are, at most, of the same order
of ‖Emap

i ‖. Inequality 1 holds, in general, since V contains only high degree vertices and the
number of these high degree vertices is very small compared to the number of input graph
vertices.

9

4 Experiments

To evaluate the performance of our high degree vertex partitioning approach we compared
the execution of the Single Source Shortest Paths (SSSP) problem on both partitioned and
unpartitioned graph data using Hadoop-1.2.1 and Giraph-1.2.0 frameworks2. We ran a large
series of experiments where 49 Virtual Machines (VMs) were randomly selected from our
university cluster using OpenNebula software for VMs administration. Each Virtual Machine
has the following characteristics : 1 Intel(R) Xeon@2.53GHz CPU, 2 Cores, 6GB of Memory
and 80GB of Disk. Setting up a Hadoop cluster consisted of deploying each centralised entity
(namenode and jobtracker) on a dedicated Virtual Machine and co-deploying datanodes and
tasktrackers on the rest of VMs. The data replication parameter was fixed to three in the HDFS
configuration file.

To study the effect of data skew on SSSP performance, we use a synthetic graphs following
a power low distribution. To this end, generated graphs have been chosen to follow a Zipf
distribution [16] as it is the case in most database tests: Zipf factor has been varied from 0 (for
a uniform data distribution) to 2.8 (for a highly skewed data). Note that natural graphs follow
a power low of ∼ 2 which corresponds to a highly skewed data [7,13]. In our experiments, each
input graph had a fixed size : 200M vertices and 1B edges (corresponding to about ∼25GB for
each graph data).

We noticed, in all the tests and also those presented in Figure 4, that using GPHD partition-
ing graph algorithm, Giraph’s execution for SSSP problem is insensitive to data skew whereas
the same execution using non partitioned graphs fails due to lack of memory for skew factors
varying from 1.2 to 2.8. Moreover, in Figure 4, we can see that, GPHD processing time (which
includes both ”High degree vertices processing” and ”Graph partitioning”) remains very small
compared to Giraph SSSP execution time and the overhead related to GPHD preprocessing re-
mains very small compared to the gain in performance related to the use of partitioned graphs
due to the fact that, in partitioned graphs, computation and communication are much more
balanced with respect to Giraph execution using non partitioned graphs. This shows that,
GPHD preprocessing makes Giraph more scalable and insensitive to high degree vertices in
large scale graph processing.

5 Related Work

Apache Giraph: [6] A distributed framework for processing iterative algorithms on large-
scale graph. Giraph is an open implementation of Pregel [12] inspired by the Bulk Synchronous
Parallel (BSP) model [15] and based on a vertex-centric programming model. In Giraph, ver-
tices are divided into partitions assigned to a set of workers. The default partitioning method is
based on a hash function (or range) applied on vertices IDs. In addition, a partitioning method
implemented by the developer can be used. Vertices can communicate by sending messages
and periodic checkpoints are executed for fault-tolerance. Giraph has extended Pregel API
by adding master compute function, out-of-core capabilities that allows to treat main memory
limitation by spilling graph partitions and messages to local disks, shared aggregators, edge-
oriented input, and so on.

GraphLab: [1] An asynchronous parallel framework based on a distributed shared-memory
architecture. In GraphLab, each vertex-program can directly access and accumulate data from

2Hadoop and Giraph are respectively implementations of MapReduce and Pregel by developed by ”The
Apache Software Foundation”.

10

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

S
S

S
P

pr
oc

es
si

ng
 ti

m
e

(s
ec

)

Attribute Value Skew : Zipf parameter

High degree vertices processing
Graph partitionning

Partitionned SSSP
Non partitionned SSSP

Jo
b

fa
il

ed
 :

O
ut

 o
f

m
em

or
y

Jo
b

fa
il

ed
 :

O
ut

 o
f

m
em

or
y

Jo
b

fa
il

ed
 :

O
ut

 o
f

m
em

or
y

Jo
b

fa
il

ed
 :

O
ut

 o
f

m
em

or
y

Jo
b

fa
il

ed
 :

O
ut

 o
f

m
em

or
y

Jo
b

fa
il

ed
 :

O
ut

 o
f

m
em

or
y

Jo
b

fa
il

ed
 :

O
ut

 o
f

m
em

or
y

Jo
b

fa
il

ed
 :

O
ut

 o
f

m
em

or
y

Jo
b

fa
il

ed
 :

O
ut

 o
f

m
em

or
y

Figure 4: Graph skew effects on SSSP processing time

its adjacent edges and vertices to update its state. The updated vertex or edge data are auto-
matically visible to the adjacent edges.

PowerGraph: [7] A distributed framework that supports both Pregel’s bulk-synchronous
and GraphLab’s asynchronous models of computation. PowerGraph relies on Gather, Apply
and Scatter (GAS) programming model to implement the vertex-program. In Giraph and
GraphLab, the graph is partitioned, using edge-cut approach based on hash partitioning, in
order to balance the load of different processors. However, hash partitioning is not efficient in
the case of natural graph due to the skewed power-law distribution where only few vertices are
connected to high number of vertices (for example celebrities on social media) while most ver-
tices have few neighbours. To address this problem, PowerGraph follows vertex-cut approach,
where high degree vertices are split over several machines thus balancing the load of machines
and reducing communication costs.
GPS: [2] An open-source distributed big graph processing framework. GPS is similar with
three new features. It extends Pregel’s API with a new master.compute() function that allows
to develop global computation in an easier way. In addition, GPS follows a dynamic graph
repartition approach that allows to reassign vertices during job execution to other machines
in order to reduce communication costs. It also has an optimization technique called large
adjacency list partitioning (LALP) that allows to partition neighbours of high-degree vertices
over the machines.

6 Conclusion and future work

In this paper, we have introduced an efficient and scalable MapReduce graph processing par-
titioning approach in the presence of high degree vertices where data associated to each high

11

degree vertex is partitioned among many workers in a round-robin manner. This partitioning is
proved to solve, efficiently, the problem of load imbalance among “workers“ where existing ap-
proaches fail to handle high degree vertices communication/processing imbalances and also the
limitations of existing approaches to handle large graph datasets whenever data associated to
high degree vertices cannot fit in available worker’s local memory. We recall that, partitioning
in GPHD is performed by all the mappers and not by a coordinator processor which guarantees
the scalability of this algorithm. This makes also Giraph insensitive to the problem of high
degree vertices while guaranteeing perfect balancing properties during all the stages of graph
processing.

References

[1] Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud.

[2] GPS: A Graph Processing System. In Proceedings of the 25th International Conference on Scientific
and Statistical Database Management, SSDBM.

[3] Multilevel Algorithms for Partitioning Power-law Graphs. In Proceedings of the 20th International
Conference on Parallel and Distributed Processing, IPDPS’06.

[4] Some Simplified NP-complete Problems. In Proceedings of the Sixth Annual ACM Symposium on
Theory of Computing, STOC ’74.

[5] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. In
OSDI ’ 04: Sixth Symposium on Operating System Design and Implementation, San Francisco,
CA, 2004.

[6] http://giraph.apache.org/.

[7] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. PowerGraph:
Distributed Graph-parallel Computation on Natural Graphs. In Proceedings of the USENIX Con-
ference on Operating Systems Design and Implementation, pages 17–30, Berkeley, CA, USA, 2012.

[8] Apache hadoop. http://hadoop.apache.org/core/.

[9] M. Al Hajj Hassan and M. Bamha. Towards scalability and data skew handling in groupby-joins
using mapreduce model. In Proceedings of the International Conference on Computational Science,
ICCS 2015, Reykjav́ık, Iceland, 1-3 June, 2015, 2014, pages 70–79, 2015.

[10] M. Al Hajj Hassan, M. Bamha, and Frédéric Loulergue. Handling data-skew effects in join opera-
tions using mapreduce. In Proceedings of the International Conference on Computational Science,
ICCS 2014, Cairns, Queensland, Australia, 10-12 June, 2014, pages 145–158, 2014.

[11] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Community Structure
in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters.

[12] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser,
and Grzegorz Czajkowski. Pregel: A System for Large-scale Graph Processing. In Proceedings of
ACM SIGMOD International Conference on Management of Data, New York, NY, USA, 2010.

[13] M E J Newman. Power Laws, Pareto Distributions and Zipf’s Law. 2004.

[14] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103–
111, August 1990.

[15] Leslie G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990.

[16] G. K. Zipf. Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology.
Adisson-Wesley, 1949.

12

http://giraph.apache.org/

	Introduction
	MapReduce vs Pregel programming model
	 GPHD : A solution for big graph partitioning/processing in the presence of high degree vertices
	Experiments
	Related Work
	Conclusion and future work

