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Near-Optimal Lower Bounds for ε-nets for Half-spaces and Low

Complexity Set Systems

Andrey Kupavskii∗ Nabil H. Mustafa† János Pach‡

Abstract

Following groundbreaking work by Haussler and Welzl (1987), the use of small ε-nets has become
a standard technique for solving algorithmic and extremal problems in geometry and learning theory.
Two significant recent developments are: (i) an upper bound on the size of the smallest ε-nets for
set systems, as a function of their so-called shallow-cell complexity (Chan, Grant, Könemann, and
Sharpe); and (ii) the construction of a set system whose members can be obtained by intersecting a
point set in R4 by a family of half-spaces such that the size of any ε-net for them is Ω( 1

ε
log 1

ε
) (Pach

and Tardos).
The present paper completes both of these avenues of research. We (i) give a lower bound, matching

the result of Chan et al., and (ii) generalize the construction of Pach and Tardos to half-spaces in Rd,
for any d ≥ 4, to show that the general upper bound, O( d

ε
log 1

ε
), of Haussler and Welzl for the size of

the smallest ε-nets is tight.

1 Introduction

Let X be a finite set and let R be a system of subsets of an underlying set containing X. In computational
geometry, the pair (X,R) is usually called a range space. A subset X ′ ⊆ X is called an ε-net for (X,R)
if X ′ ∩ R 6= ∅ for every R ∈ R with |R ∩ X| ≥ ε|X|. The use of small-sized ε-nets in geometrically
defined range spaces has become a standard technique in discrete and computational geometry, with many
combinatorial and algorithmic consequences. In most applications, ε-nets precisely and provably capture
the most important quantitative and qualitative properties that one would expect from a random sample.
Typical applications include the existence of spanning trees and simplicial partitions with low crossing
number, upper bounds for discrepancy of set systems, LP rounding, range searching, streaming algorithms;
see [13, 18].

For any subset Y ⊆ X, define the projection of R on Y to be the set system

R|Y :=
{
Y ∩R : R ∈ R

}
.

The Vapnik-Chervonenkis dimension or, in short, the VC-dimension of the range space (X,R) is
the minimum integer d such that |R|Y | < 2|R| for any subset Y ⊆ X with |Y | > d. According to the
Sauer–Shelah lemma [21, 23] (discovered earlier by Vapnik and Chervonenkis [24]), for any range space

(X,R) whose VC-dimension is at most d and for any subset Y ⊆ X, we have |R|Y | ≤
∑d
i=0

(|Y |
i

)
= O(|Y |d).

A straightforward sampling argument shows that every range space (X,R) has an ε-net of size
O( 1

ε log |R|X |). The remarkable result of Haussler and Welzl [10], based on the previous work of Vapnik
and Chervonenkis [24], shows that much smaller ε-nets exist if we assume that our range space has small
VC-dimension. Haussler and Welzl [10] showed that if the VC-dimension of a range space (X,R) is at
most d, then by picking a random sample of size Θ(dε log d

ε ), we obtain an ε-net with positive probability.
Actually, they only used the weaker assumption that |R|Y | = O(|Y |d) for every Y ⊆ X. This bound was
later improved to (1 + o(1))(dε log 1

ε ), as 1
ε → ∞ and d is large [11]. In the sequel, we will refer to this

result as the ε-net theorem. The key feature of the ε-net theorem is that it guarantees the existence of an
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ε-net whose size is independent of both |X| and |R|X |. Furthermore, if one only requires the VC-dimension
of (X,R) to be bounded by d, then this bound cannot be improved. It was shown in [11] that given any
ε > 0 and integer d ≥ 2, there exist range spaces with VC-dimension at most d, and for which any ε-net
must have size at least

(
1− 2

d + 1
d(d+2) + o(1)

)
d
ε log 1

ε .

The effectiveness of ε-net theory in geometry derives from the fact that most “geometrically de-
fined” range spaces (X,R) arising in applications have bounded VC-dimension and, hence, satisfy the
preconditions of the ε-net theorem.

There are two important types of geometric set systems, both involving points and geometric objects
in Rd, that are used in such applications. Let R be a family of possibly unbounded geometric objects in
Rd, such as the family of all half-spaces, all balls, all polytopes with a bounded number of facets, or all
semialgebraic sets of bounded complexity, i.e., subsets of Rd defined by at most D polynomial equations or
inequalities in the d variables, each of degree at most D. Given a finite set of points X ⊂ Rd, we define the
primal range space (X,R) as the set system “induced by containment” in the objects from R. Formally, it
is a set system with the set of elements X and sets {X ∩R : R ∈ R}. The combinatorial properties of this
range space depend on the projection R|X . Using this terminology, Radon’s theorem [13] implies that the
primal range space on a ground set X, induced by containment in half-spaces in Rd, has VC-dimension at
most d+ 1 [18]. Thus, by the ε-net theorem, this range space has an ε-net of size O(dε log 1

ε ).
In many applications, it is natural to consider the dual range space, in which the roles of the points

and ranges are swapped. As above, let R be a family of geometric objects (ranges) in Rd. Given a finite
set of objects S ⊆ R, the dual range space “induced” by them is defined as the set system (hypergraph)
on the ground set S, consisting of the sets Sx := {S ∈ S : x ∈ S} for all x ∈ Rd. It can be shown that if
for any X ⊂ Rd the VC-dimension of the range space (X,R) is less than d, then the VC-dimension of the
dual range space induced by any subset of R is less than 2d [13].

Recent progress. In many geometric scenarios, however, one can find smaller ε-nets than those whose
existence is guaranteed by the ε-net theorem. It has been known for a long time that this is the case, e.g.,
for primal set systems induced by containment in balls in R2 and half-spaces in R2 and R3. Over the past
two decades, a number of specialized techniques have been developed to show the existence of small-sized
ε-nets for such set systems [3, 4, 5, 6, 7, 8, 11, 12, 14, 16, 20, 25, 26]. Based on these successes, it was
generally believed that in most geometric scenarios one should be able to substantially strengthen the
ε-net theorem, and obtain perhaps even a O

(
1
ε

)
upper bound for the size of the smallest ε-nets. In this

direction, there have been two significant recent developments: one positive and one negative.

Upper bounds. Following the work of Clarkson and Varadarajan [8], it has been gradually realized that
if one replaces the condition that the range space (X,R) has bounded VC-dimension by a more refined
combinatorial property, one can prove the existence of ε-nets of size o( 1ε log 1

ε ). To formulate this property,
we need to introduce some terminology.

Given a function ϕ : N → R+, we say that the range space (X,R) has shallow-cell complexity ϕ if
there exists a constant c = c(R) > 0 such that, for every Y ⊆ X and for every positive integer l, the
number of at most l-element sets in R|Y is O

(
|Y | · ϕ(|Y |) · lc

)
. Note that if the VC-dimension of (X,R)

is d, then for every Y ⊆ X, the number of elements of the projection of the set system R to Y satisfies
|R|Y | = O(|Y |d). However, the condition that (X,R) has shallow-cell complexity ϕ for some function
ϕ(n) = O(nd

′
), 0 < d′ < d− 1 and some constant c = c(R), implies not only that |R|Y | = O(|Y |1+d′+c),

but it reveals some nontrivial finer details about the distribution of the sizes of the smaller members of
R|Y .

Several of the range spaces mentioned earlier turned out to have low shallow-cell complexity. For
instance, the primal range spaces induced by containment of points in disks in R2 or half-spaces in R3

have shallow-cell complexity ϕ(n) = O(1). In general, it is known [13] that the primal range space induced
by containment of points by half-spaces in Rd has shallow-cell complexity ϕ(n) = O

(
nbd/2c−1

)
.

Define the union complexity of a family of objects R, as the maximum number of faces (boundary
pieces) of all dimensions that the union of any n members of R can have; see [1]. Applying a simple
probabilistic technique developed by Clarkson and Shor [9], one can find an interesting relationship
between the union complexity of a family of objects R and the shallow-cell complexities of the dual range
spaces induced by subsets S ⊂ R. Suppose that the union complexity of a family R of objects in the
plane is O

(
nϕ(n)

)
, for some “well-behaved” non-decreasing function ϕ. Then the number of at most

l-element subsets in the dual range space induced by any S ⊂ R is O
(
l2 · |S|l ϕ( |S|l )

)
= O

(
|S|ϕ(|S|)l

)
[22];

i.e., the dual range space induced by S has shallow-cell complexity O
(
ϕ(n)

)
. According to the above

2



definitions, this means that for any S ⊂ R and for any positive integer l, the number of subsets S ′ ∈
( S
≤l
)

for which there is a point p′ ∈ R2 contained in all elements of S ′, but in none of the elements of S \S ′, is at
most O

(
|S|ϕ(|S|)l

)
. For small values of l, the points p′ are not heavily covered. Thus, the corresponding

cells
⋂
S∈S′ S \

⋃
T∈S\S′ T of the arrangement S are “shallow,” and the number of these shallow cells is

bounded from above. This explains the use of the term “shallow-cell complexity”.
A series of elegant results [20, 3, 6, 26] illustrate that if the shallow-cell complexity of a set system is

ϕ(n) = o(n), then it permits smaller ε-nets than what is guaranteed by the ε-net theorem. The following
theorem represents the current state of the art; see [15] for a simple proof of this statement.

Theorem A. Let (X,R) be a range space with shallow-cell complexity ϕ(·), where ϕ(n) = O(nd) for
some constant d. Then, for every ε > 0, it has an ε-net of size O

(
1
ε logϕ( 1

ε )
)
, where the constant hidden

in the O-notation depends on d.

Proof. (Sketch.) The main result in [6] shows the existence of ε-nets of size O
(
1
ε logϕ(|X|)

)
for any

non-decreasing function ϕ1. To get a bound independent of |X|, first compute a small (ε/2)-approximation
A ⊆ X for (X,R) [13]. It is known that there is such an A with |A| = O

(
d
ε2 log 1

ε

)
= O( 1

ε3 ), and for any

R ∈ R, we have |R∩A||A| ≥
|R|
|X| −

ε
2 . In particular, any R ∈ R with |R| ≥ ε|X| contains at least an ε

2 -fraction

of the elements of A. Therefore, an (ε/2)-net for (A,R|A) is an ε-net for (X,R). Computing an (ε/2)-net
for (A,R|A) gives the required set of size O

(
2
ε logϕ(|A|)

)
= O

(
1
ε logϕ( 1

ε3 )
)

= O
(
1
ε logϕ( 1

ε )
)
.

Note that in the bounds on the sizes of ε-nets based on VC-dimension, we explicitly state the dependence
on d. On the other hand, in the bounds based on shallow-cell complexity, we will assume that d is a constant.

Lower bounds. It was conjectured for a long time [14] that most geometrically defined range spaces of
bounded Vapnik-Chervonenkis dimension have “linear-sized” ε-nets, i.e., ε-nets of size O

(
1
ε

)
. These hopes

were shattered by Alon [2], who established a superlinear (but barely superlinear!) lower bound on the
size of ε-nets for the primal range space induced by straight lines in the plane. Shortly after, Pach and
Tardos [19] managed to establish a tight lower bound of Ω( 1

ε log 1
ε ) for the size of ε-nets in primal range

spaces induced by half-spaces in R4, and in several other geometric scenarios.

Theorem B. [19] Let F denote the family of half-spaces in R4. For any ε > 0 and any sufficiently large
integer n, there exists a set X ⊂ R4 of n points such that in the (primal) range spaces (X,F), the size of
every ε-net is at least 1

9ε log 1
ε .

Our contributions. The aim of this paper is to complete both avenues of research opened by Theorems A
and B. Our first theorem, proved in Section 2, generalizes Theorem B to Rd, for d ≥ 4. It provides an
asymptotically tight bound in terms of both ε and d, and hence completely settles the ε-net problem for
half-spaces.

Theorem 1. For any integer d ≥ 4, real ε > 0 and any sufficiently large integer n ≥ n0(ε), there exist
primal range spaces (X,F) induced by n-element point sets X and collections of half-spaces F in Rd such

that the size of every ε-net for (X,F) is at least bd/4c9ε log 1
ε .

As was mentioned in the first subsection, for any d ≥ 1, the VC-dimension of any range space induced
by points and half-spaces in Rd is at most d + 1. Thus, Theorem 1 matches, up to a constant factor
independent of d and ε, the upper bound implied by the ε-net theorem of Haussler and Welzl. Noga
Alon pointed out to us that it is very easy to show that for a fixed ε > 0, the lower bound for ε-nets in
range spaces induced by half-spaces in Rd has to grow at least linearly in d. To see this, suppose that we
want to obtain a 1

3 -net, say, for the range space induced by open half-spaces on a set X of 3d points in
general position in Rd. Notice that for this we need at least d+ 1 points. Indeed, any d points of X span

a hyperplane, and one of the open half-spaces determined by this hyperplane contains at least |X|3 points.

The key element of the proof of Theorem B [19] was to construct a set B of (k + 3)2k−2 axis-parallel
rectangles in the plane such that for any subset of them there is a set Q of at most 2k−1 points that hit
none of the rectangles that belong to this subset and all the rectangles in its complement (the precise
statement is given in Section 3). We generalize this statement to Rd by constructing roughly d

2 times more
axis-parallel boxes2 than in the planar case, but the size of the set Q remains the same size. In Section 3,
we prove

1Their result is in fact for the more general problem of small weight ε-nets.
2An axis-parallel box in Rd is the Cartesian product of d intervals. For simplicity, in the sequel, they will be called

“boxes”.
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Lemma 2. Let k, d ≥ 2 be integers. Then there exists a set B of bd2c(k + 3)2k−2 axis-parallel boxes in Rd
such that for any subset S ⊆ B, one can find a 2k−1-element set Q of points with the property that

(i) Q ∩B 6= ∅ for any B ∈ B \ S, and
(ii) Q ∩B = ∅ for any B ∈ S.

In the next section we show how this lemma implies the bound of Theorem 1, which is bd4c times
better than the bound in Theorem B. The proof of Lemma 2 will be given in Section 3.

In Section 4, we show that the bound in Theorem A cannot be improved.

Definition 1. A function ϕ : R+ → R+ is called submultiplicative if there exists a x0 ∈ R+ such that for
every α, 0 < α < 1, and x > x0, we have ϕα(x1/α) ≤ ϕ(x).

Some examples of submultiplicative functions are xc for any positive c, 2
√
log x, log x, log log x, log∗ x,

and the inverse Ackermann function.

Theorem 3. Let d be a fixed positive integer and let ϕ : R+ → R+, ϕ(n) → ∞, be a monotonically
increasing submultiplicative function that tends to infinity such that ϕ(n) = O(nd). Then, for any ε > 0,
there exist range spaces (X,F) that have

(i) shallow-cell complexity ϕ(·), and for which
(ii) the size of any ε-net is Ω( 1

ε logϕ( 1
ε )).

Theorem 3 becomes interesting when ϕ(n) = o(n) and the upper bound O
(
1
ε logϕ( 1

ε )
)

in Theorem A

improves on the general upper bound O
(
1
ε log 1

ε

)
guaranteed by the ε-net theorem. Theorem 3 shows that,

even if ϕ(n) = o(n), this improved bound is asymptotically tight.
The best upper and lower bounds for the size of small ε-nets in range spaces with a given shallow-cell

complexity ϕ(·) are based on purely combinatorial arguments, and they imply directly or indirectly all
known results on ε-nets in geometrically defined range spaces (see [17] for a detailed discussion). This
suggests that the introduction of the notion of shallow-cell complexity provided the right framework for
ε-net theory.

2 Proof of Theorem 1 using Lemma 2

Let B be a set of d-dimensional axis-parallel boxes in Rd. We recall that the dual range space induced by
B is the set system (hypergraph) on the ground set B consisting of the sets Bp := {B ∈ B : p ∈ B} for all
p ∈ Rd.

Lemma 4. Let d ≥ 1 be an integer, and consider the dual range space induced by a set of axis-parallel
boxes B in Rd. Then there exists a function f : B → R2d such that for every point p ∈ Rd, there is a
half-space H in R2d with {f(B) : B ∈ Bp} = H ∩ {f(B) : B ∈ B}.

Proof. By translation, we can assume that all boxes in B lie in the positive orthant of Rd.
Consider the function g : B → R2d mapping a box B = [xl1, x

r
1] × [xl2, x

r
2] × · · · × [xld, x

r
d] to the

point (xl1, 1/x
r
1, x

l
2, 1/x

r
2, . . . , x

l
d, 1/x

r
d) lying in the positive orthant of R2d. Furthermore, for any p =

(a1, a2, . . . , ad) ∈ Rd in the positive orthant, let Cp denote the box [0, a1]× [0, 1/a1]× [0, a2]× [0, 1/a2]×
· · · × [0, ad] × [0, 1/ad] in R2d. Clearly, a point p lies in a box B in Rd if and only if g(B) ∈ Cp in R2d.
Thus, g maps the set of boxes in B to a set of points in R2d, such that for any point p in the positive
orthant of Rd, the set of boxes Bp ⊂ B that contain p are mapped to the set of points that belong to the
box Cp. (Note that Cp contains the origin.)

We complete the proof by applying the following simple transformation ([19, Lemma 2.3]) to the set
Q = g(B): to each point q ∈ Q in the positive orthant of R2d, we can assign another point q′ in the
positive orthant of R2d such that for each box in R2d that contains the origin, there is a half-space with
the property that q belongs to the box if and only if q′ belongs to the corresponding half-space. The
mapping f(B) = (g(B))′ for every B ∈ B meets the requirements of the lemma.

Lemma 5. Given any integer d ≥ 2, a real number ε > 0, and a sufficiently large integer n ≥ n0(ε), there
exists a set B of n axis-parallel boxes in Rd such that the size of any ε-net for the dual set system induced

by B is at least
b d2 c
9ε log 1

ε .

Proof. Let ε = α
2k−1 with k ∈ N, k ≥ 2, and 1

3 ≤ α ≤ 2
3 . Applying Lemma 2, we obtain a set B of

bd2c(k + 3)2k−2 boxes in Rd. We claim that the dual range space induced by these boxes does not admit
an ε-net of size (1− α)|B|.
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Assume for contradiction that there is an ε-net S ⊆ B with | S | ≤ (1− α)|B|. According to Lemma 2,
there exists a set Q of 2k−1 points in Rd with the property that no box in S contains any point of Q, but
every member of B \ S does. By the pigeonhole principle, there is a point p ∈ Q contained in at least

|B \ S |
|Q|

≥ α|B|
|Q|

=
α|B|
2k−1

= ε|B|

members of B \ S. Thus, none of the at least ε|B| members of B hit by p belong to S, contradicting the
assumption that S was an ε-net.

Hence, the size of any ε-net in the dual range space induced by B is at least

(1− α)|B| = (1− α)bd
2
c(k + 3)2k−2 =

(1− α)α

2
· bd

2
c · k + 3

ε
≥ 1

9
· bd

2
c · 1

ε
· log

1

ε
.

The system of boxes constructed above has a fixed number of elements, depending on the value of
1/ε. We can obtain arbitrarily large constructions by replacing each box of B ∈ B with several slightly
translated copies of B (we refer the reader to [19] for details).

Now we are in a position to establish Theorem 1. By Lemma 4, any lower bound for the size of ε-nets
in the dual range space induced by the set B of boxes in Rd gives the same lower bound for the size of an
ε-net in the (primal) range space on the set of points f(B) ⊂ R2d corresponding to these boxes, in which
the ranges are half-spaces in R2d. For any integer d ≥ 4 and any real ε > 0, Lemma 5 guarantees the
existence of a set B of n axis-parallel boxes in Rbd/2c such that any ε-net for the dual set system induced

by B has size at least
b bd/2c2 c

9ε log 1
ε = bd/4c

9ε log 1
ε . This fact, together with Lemma 4, implies the stated

bound.

3 Proof of Lemma 2

The proof of Lemma 2 is based on the following key statement.

Lemma C ([19]). Let k ≥ 2 be an integer. Then there exists a set R of (k+3)2k−2 axis-parallel rectangles
in R2 such that for any S ⊆ R, there exists a 2k−1-element set Q of points in R2 with the property that

(i) Q ∩R 6= ∅ for any R ∈ R \ S, and
(ii) Q ∩R = ∅ for any R ∈ S.

Denote the x- and y-coordinates of a point p ∈ R2 by x(p) and y(p) respectively, and set m = bd2c.
Let R = {R1, . . . , Rt}, t = (k + 3)2k−2, be a set of rectangles satisfying the conditions of Lemma C. By
scaling, one can assume that R ⊂ [0, 1]2 for every R ∈ R.

Given that a box in Rd is the product of d intervals, the idea of the construction is to ‘lift’ the rectangles
in Lemma C, i.e., the set R, to boxes in Rd. So a rectangle R ∈ R can be mapped to a box in Rd which is
the product d intervals: the first two being the intervals defining R, and the other d− 2 intervals in the
product being the full interval [0, 1]. One can then again lift the same set R in a ‘non-interfering’ way by
mapping R to a box whose 3-rd and 4-th intervals are the intervals of R and the remaining intervals are
[0, 1]. In this way, by packing intervals of each R ∈ R into disjoint coordinates, one can lift R m times to
get a set of bd2c · |R| boxes in Rd.

Formally, for i = 1 . . .m, define the injective functions fi that map a point in R2 to a product of d
intervals in Rd, as follows.

fi(p) = [0, 1]× · · · × [0, 1]︸ ︷︷ ︸
2i− 2 intervals

×x(p)× y(p)× [0, 1]× · · · × [0, 1]︸ ︷︷ ︸
d− 2i intervals

, p ∈ R2.

This mapping lifts each rectangle R ∈ R to the box fi(R) = {fi(p) : p ∈ R}, and each set of rectangles
R′ ⊆ R to the set of boxes fi(R′) = {fi(R) : R ∈ R′}.

We now show that B =
⋃m
i=1 fi(R) is the desired set of bd2c(k + 3)2k−2 boxes in Rd. Let S ⊆ B be a

fixed set of boxes. For any index i ∈ [1,m], set Ri ⊆ R to be the set of preimage rectangles under fi of
the boxes in S ∩fi(R), i.e., Ri satisfies S ∩fi(R) = fi(Ri). Let Qi = {qi1, . . . , qi2k−1} ⊂ R2 be the set of
points hitting all rectangles in R \ Ri and no rectangle in Ri; such a set exists by Lemma C. Now we
argue that the set

Q =


{(
x(q1j ), y(q1j ), . . . , x(qmj ), y(qmj )

)
: j ∈ [1, 2k−1]

}
if d is even,{(

x(q1j ), y(q1j ), . . . , x(qmj ), y(qmj ), 1
)

: j ∈ [1, 2k−1]
}

if d is odd,
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of 2k−1 points in Rd is the required set for S; i.e., Q hits all the boxes in B \ S, and none of the boxes in
B ∈ S. Take any box B ∈ B \ S; then there exists an index i and a rectangle R ∈ R \ Ri such that R
is the preimage rectangle of B under fi. By Lemma C, R contains a point q ∈ Qi, and thus B = fi(R)
contains the point q′ ∈ Q with x(q) and y(q) in its (2i− 1)-th and 2i-th coordinates, as all the remaining
intervals defining B are [0, 1] and so each such interval contains the corresponding coordinate of q′. On the
other hand, let B ∈ S be a box with the preimage rectangle R ∈ Ri. By Lemma C, R is not hit by any
point of Qi, and thus for any point q′ ∈ Q, the (2i− 1)-th and 2i-th coordinates cannot both be contained
in the corresponding two intervals defining B. Therefore, q′ does not hit B.

4 Proof of Theorem 3

The goal of this section is to establish lower bounds on the sizes of ε-nets in range spaces with given
shallow-cell complexity ϕ(·), where ϕ(·) is a submultiplicative function. We will use the following property
of submultiplicative functions.

Claim 6. Let ϕ : R+ → R+ be a submultiplicative function. Then

(i) for all sufficiently large x, y ∈ R+, we have ϕ(xy) ≤ ϕ(x)ϕ(y), and

(ii) if there exists a sufficiently large x ∈ R+ and a constant c such that ϕ(x) ≤ xc, then ϕ(n) ≤ nc for
every n ≥ x.

Proof. Both of these properties follow immediately from the submultiplicativity of ϕ(·):

(i). ϕ(xy) =
(
ϕ(xy)

)logxy x · (ϕ(xy)
)logxy y ≤ ϕ((xy)logxy x

)
· ϕ
(
(xy)logxy y

)
= ϕ(x) · ϕ(y).

(ii). ϕlogn x(n) ≤ ϕ(x) ≤ xc =⇒ ϕ(n) ≤ x
c

logn x = xc logx n = nc.

Theorem 3 is a consequence of the following more precise statement.

Theorem 7. Let ϕ : R+ → R+ be a monotonically increasing submultiplicative function which tends to
infinity and is bounded from above by a polynomial of constant degree. For any 0 < δ < 1

10 , one can find
an ε0 > 0 with the following property: for any 0 < ε < ε0, there exists a range space with shallow-cell

complexity ϕ(·) on a set of n =
logϕ( 1

ε )

ε elements, in which the size of any ε-net is at least
( 1
2−δ)
ε logϕ( 1

ε ).

Proof. The parameters of the range space are as follows:

n =
logϕ( 1

ε )

ε
, m = εn = logϕ

(1

ε

)
, p =

nϕ1−2δ(n)(
n
m

) .

Let d be the smallest integer such that ϕ(n) = O(nd). By Claim 6, part (ii), for any large enough n′,
we have (n′)d−1 ≤ ϕ(n′) ≤ c1(n′)d, for a suitable constant c1 ≥ 1. In the most interesting case where
ϕ(n) = o(n), we have d = 1. For a small enough ε, we have c1 ≤ logϕ( 1

ε ), so that

m = logϕ
(1

ε

)
≤ log

(
c1ε
−d) ≤ d log

c1
ε
≤ d log n. (1)

Consider a range space ([n],F) with a ground set [n] = {1, 2, . . . , n} and with a system of m-element
subsets F , where each m-element subset of [n] is added to F independently with probability p. The next
claim follows by a routine application of the Chernoff bound.

Claim 8. With high probability, |F| ≤ 2nϕ1−2δ(n).

Theorem 7 follows by combining the next two lemmas that show that, with high probability, the range
space ([n],F)

(i) does not admit an ε-net of size less than
1
2−δ
ε logϕ( 1

ε ), and
(ii) has shallow-cell complexity ϕ(·).
For the proofs, we need to assume that n = n(δ, d, ϕ) is a sufficiently large constant, or, equivalently,

that ε0 = ε0(δ, d) is sufficiently small.

Lemma 9. With high probability, the range space ([n],F) has shallow-cell complexity ϕ(·).
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The reason why this lemma holds is that for any X ⊂ [n] and any k, it is very unlikely that the number
of at most k-element sets exceeds the number permitted by the shallow-cell complexity condition. To
bound the probability of the union of these events for all X and k, we simply use the union bound.

Proof. It is enough to show that for all sufficiently large x ≥ x0, every X ⊆ [n], |X| = x, and every l ≤ m,
the number of sets of size exactly l in F|X is O(xϕ(x)), as this implies that the number of sets in F|X of
size at most l is O

(
xϕ(x)l

)
. In the computations below, we will also assume that l ≥ d+ 1 ≥ 2; otherwise

if l ≤ d, and assuming x ≥ x0 ≥ 2d, we have(
x

l

)
≤
(
x

d

)
≤ xd ≤ xϕ(x),

where the last inequality follows by the assumption on ϕ(x), provided that x is sufficiently large. We
distinguish two cases.

Case 1: x > n
ϕδ/d(x)

. In this case, we trivially upper-bound |F|X | by |F|. By Claim 8, with high

probability, we have

|F| ≤ 2n · ϕ1−2δ(n) ≤ 2n ·
(
ϕ(x) · ϕ

(n
x

))1−2δ (
by Claim 6

)
≤ 2n ·

(
ϕ(x) · ϕ

(
ϕδ/d(x)

))1−2δ (
as

n

x
≤ ϕδ/d(x)

)
≤ 2n ·

(
c1ϕ(x)ϕδ(x)

)1−2δ (
using ϕ(t) ≤ c1td

)
≤ 2c′1nϕ(x)1−δ ≤ 2c′1xϕ(x)1−δ+δ/d = O(xϕ(x)).

Case 2: x ≤ n
ϕδ/d(x)

. Denote the largest integer x that satisfies this inequality by x1. It is clear that

x1 = o(n) (recall that ϕ(·) is monotonically increasing and tends to infinity). We also denote the system
of all l-element subsets of F|X by F|lX and the set of all l-element subsets of X by

(
X
l

)
. Let E be the

event that F does not have the required ϕ(·)-shallow-cell complexity property. Then Pr[E] ≤
∑m
l=2 Pr[El],

where El is the event that for some X ⊂ [n], |X| = x, there are more than xϕ(x) elements in F|lX . Then,
for any fixed l ≥ d+ 1 ≥ 2, we have

Pr[El] ≤
x1∑

x=x0

Pr
[
∃X ⊆ [n], |X| = x, |F|lX | > xϕ(x)

]

≤
x1∑

x=x0

(
n

x

) (xl)∑
s=dxϕ(x)e

Pr
[
For a fixed X, |X| = x, |{S ∈ F|X , |S| = l}| = s

]

≤
x1∑

x=x0

(
n

x

) (xl)∑
s=dxϕ(x)e

((x
l

)
s

)
Pr
[
For a fixed X, |X| = x,S ⊆

(
X

l

)
, |S| = s,

we have F|lX = S
]

≤
x1∑

x=x0

(
n

x

) (xl)∑
s=dxϕ(x)e

((x
l

)
s

)(
1− (1− p)(

n−x
m−l)

)s
(1− p)(

n−x
m−l)((

x
l)−s) (2)

≤
x1∑

x=x0

(xl)∑
s=dxϕ(x)e

(en
x

)x(e ( exl )l
s

)s (
p

(
n− x
m− l

))s
(3)

≤
x1∑

x=x0

(xl)∑
s=dxϕ(x)e

(en
x

)x(el+1xl−1

llϕ(x)
p

(
n

m

)
ml

(n− x−m)l

)s
(4)

≤
x1∑

x=x0

(xl)∑
s=dxϕ(x)e

(en
x

)x((emx
n

)l−1 e2mϕ1−2δ(n)

ϕ(x)

)s
(5)
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In the transition to the expression (3), we used several times (i) the bound
(
a
b

)
≤
(
ea
b

)b
for any a, b ∈ N;

(ii) the inequality (1− p)b ≥ 1− bp for any integer b ≥ 1 and real 0 ≤ p ≤ 1; and (iii) we upper-bounded
the last factor of (2) by 1.

In the transition from (3) to (4) we lower-bounded s by xϕ(x). We also used the estimate
(
n−x
m−l

)
≤(

n
m

)
ml

(n−x−m)l
, which can be verified as follows.

(
n− x
m− l

)
=

(
n− x
m

) l−1∏
i=0

m− i
n− x−m+ (i+ 1)

≤
(
n− x
m

)(
m

n− x−m

)l
≤
(
n

m

)
ml

(n− x−m)l
.

Finally, to obtain (5), we substituted the formula for p and used the fact that

ll(n− x−m)l =
(
l · (n− x−m)

)l ≥ (l · n
2

)l ≥ nl,
as x ≤ x1 = o(n), m = εn ≤ n

4 for ε < ε0 ≤ 1/4 and l ≥ 2.
Denote x2 = dn1−δe. We split the expression (5) into two sums Σ1 and Σ2. Let

Σ1 :=

x2−1∑
x=x0

(xl)∑
s=dxϕ(x)e

(en
x

)x((emx
n

)l−1 e2mϕ1−2δ(n)

ϕ(x)

)s

Σ2 :=

x1∑
x=x2

(xl)∑
s=dxϕ(x)e

(en
x

)x((emx
n

)l−1 e2mϕ1−2δ(n)

ϕ(x)

)s
These two sums will be bounded separately. We have

Σ1 ≤
x2−1∑
x=x0

(xl)∑
s=dxϕ(x)e

(en
x

)x((emx
n

)l−1 c1−2δ1 e2mnd−2dδ

xd−2dδϕ2δ(x)

)s
(6)

≤
x2−1∑
x=x0

(xl)∑
s=dxϕ(x)e

(en
x

)x((emx
n

)l−1−d+2dδ

Cmd+1−2dδ
)s

(for some C > 0)

≤
x2−1∑
x=x0

(xl)∑
s=dxϕ(x)e

(en
x

)x((
n−δ/2

)l−1−d+2dδ

Cmd+1

)s
(7)

≤
x2−1∑
x=x0

xl
(en
x

)x (
n−

δ
2 ·2dδn

δ2

2

)xϕ(x)
≤

x2−1∑
x=x0

xl
(en
x

)x
n−

xϕ(x)dδ2

2 (8)

≤
x2−1∑
x=x0

n2x−
xϕ(x)dδ2

2 ≤
x2−1∑
x=x0

n−2x ≤ n

n2x0
= o
( 1

m

)
. (9)

To obtain (6), we used the property that ϕ(n) ≤ ϕ(x)ϕ(nx ) ≤ c1ϕ(x)(nx )d, provided that n, x, nx are

sufficiently large. To establish (7), we used the fact that x ≤ x2 = n1−δ and that em ≤ ed log n ≤ nδ/2. In

the transition to (8), we needed that l ≥ d+ 1, d ≥ 1 and that Cmd+1 ≤ C(d log n)d+1 = o(nδ
2/2). Then

we lower-bounded s by xϕ(x). To arrive at (9), we used that l ≤ x. The last inequality follows from the
fact that x0 is large enough, so that ϕ(x) ≥ ϕ(x0) ≥ 8/(dδ2) and that m = o(n).

Next, we turn to bounding Σ2. First, observe that

ϕ1−2δ(n) ≤ ϕ
1−2δ
1−δ (n1−δ) ≤ ϕ

1−2δ
1−δ (x) ≤ ϕ1−δ(x),

where we used the submultiplicativity and monotonicity of the function ϕ(n) and the fact that x ≥ x2 =
dn1−δe. Second, note by that restricting ε to be small enough, by the submultiplicativity of ϕ(·), we have
that for any x ≥ x2,

m ≤ logϕ(
1

ε
) ≤ ϕδ/4(

1

ε
) ≤ ϕδ/3(x2) ≤ ϕδ/3(x). (10)
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Substituting the bound for ϕ1−2δ(n) in Σ2, setting C = e2, and by (10), we obtain

Σ2 ≤
x1∑

x=x2

(xl)∑
s=dxϕ(x)e

(en
x

)x((emx
n

)l−1
Cϕ−2δ/3(x)

)s

≤
x1∑

x=x2

xl
(en
x

)x (emx
n

Cϕ−2δ/3(x)
)xϕ(x)

(11)

≤
x1∑

x=x2

(n
x

)x−xϕ(x) (
e1+x/(xϕ(x))mxl/(xϕ(x))Cϕ−2δ/3(x)

)xϕ(x)
≤

x1∑
x=x2

(n
x

)x−xϕ(x) (
C ′ϕ−δ/3(x)

)xϕ(x)
(for some constant C ′ > 0) (12)

≤n
(
n

x1

)x2−x2ϕ(x2) (
Cϕ−δ/3(x2)

)x2ϕ(x2)

≤
(
n

x1

)x2−x2ϕ(x2)

(13)

=
(x1
n

)x2ϕ(x2)−x2

= o
( 1

m

)
.

In the transition to (11), we used that l ≥ 2 and n1−δ ≤ x1 ≤ n/ϕδ/d(x1), which implies that
x ≤ x1 ≤ n/ϕδ/2d(n) and, therefore,

emx < e logϕ(1/ε)
n

ϕδ/2d(n)
≤ e logϕ(n)

n

ϕδ/2d(n)
≤ n

ϕδ/3d(n)
≤ n.

To get (12), we used that for some constant c > 1 we have xl/(xϕ(x)) ≤ cm/ϕ(x) ≤ clogϕ(x)/ϕ(x) = O(1)
and that m ≤ ϕδ/3(x) for x ≥ x2 by (10). To obtain (13), observe that n1/(x2ϕ(x2)) = O(1). At the last
equation, we used that x1 = o(n), ne/x1 →∞ as n→∞ and that x2ϕ(x2)− x2 ≥ x2 = Ω(n1−δ).

We have shown that for every l = 2, . . . ,m, we have Pr[El] = o(1/m), as m tends to infinity. Thus, we
can conclude that Pr[E] ≤

∑m
l=2 Pr[El] = o(1) and, hence, with high probability the range space ([n],F)

has shallow-cell complexity ϕ(.).

Now we are in a position to prove that with high probability the range space ([n],F) does not admit a
small ε-net.

Lemma 10. With high probability, the size of any ε-net of the range space ([n],F) is at least
( 1
2−δ)
ε logϕ( 1ε ).

Proof. Denote by µ the probability that the range space has an ε-net of size t =
( 1
2−δ)
ε logϕ( 1ε ) = ( 12 − δ)n.

Then we have

µ ≤
∑
X⊆[n]
|X|=t

Pr
[
X is an ε-net for F

]
≤
(
n

t

)
(1− p)(

n−t
m ) ≤

(
n

t

)
e−p(

n−t
m ) ≤ 2ne−nϕ

δ/2(n) = o(1). (14)

To verify the last two inequalities, notice that, since 1− ax > e−bx for b > a, 0 < x < 1
a −

1
b , we have

p

(
n− t
m

)
≥ p
(
n

m

)(
n−m− t
n− t

)t
≥ nϕ1−2δ(n)

(
1− m

n− t

)t
= nϕ1−2δ(n)

(
1− m

( 1
2 + δ)n

)t
≥ nϕ1−2δ(n)e

− mt
1
2
(1+δ)n

= nϕ1−2δ(n)e−
1−2δ
1+δ logϕ( 1

ε ) = nϕ1−2δ(n)ϕ−
1−2δ
1+δ
(1

ε

)
≥ nϕ1−2δ(n)ϕ−

1−2δ
1+δ
(
n
)
≥ nϕδ/2(n).

Here the last but one inequality follows from n ≥ 1
ε and from the monotonicity of ϕ(·). The last inequality

holds, because δ ≤ 1/10.

Thus, Lemma 9 and Lemma 10 imply that with high probability the range space ([n],F) has shallow-cell

complexity ϕ(·) and it admits no ε-net of size less than
( 1
2−δ)
ε logϕ( 1

ε ). This completes the proof of the
theorem.
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