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47 EPSILON-APPROXIMATIONS & EPSILON-NETS
Nabil H. Mustafa and Kasturi Varadarajan

INTRODUCTION

The use of random samples to approximate properties of geometric configurations
has been an influential idea for both combinatorial and algorithmic purposes. This
chapter considers two related notions—e-approximations and e-nets—that capture
the most important quantitative properties that one would expect from a random
sample with respect to an underlying geometric configuration. An example problem:
given a set P of points in the plane and a parameter € > 0, is it possible to choose
aset N of O(1) points of P such that N contains at least one point from each disk
containing €| P| points of P? More generally, what is the smallest non-empty set
A C P that can be chosen such that for any disk D in the plane, the proportion of
points of P contained in D is within € to the proportion of points of A contained
in D? In both these cases, a random sample provides an answer ‘in expectation;’
establishing worst-case guarantees is the topic of this chapter.

47.1 SET SYSTEMS DERIVED FROM GEOMETRIC CONFIG-
URATIONS

Before we present work on e-approximations and e-nets for geometric set systems,
we briefly survey different types of set systems that can be derived from geometric
configurations and study the combinatorial properties of these set systems due to
the constraints induced by geometry. For example, consider the fact that for any set
P of points in the plane, there are only O(]|P|?) subsets of P induced by containment
by disks. This is an immediate consequence of the property that three points of
P are sufficient to ‘anchor’ a disk. This property will be abstracted to a purely
combinatorial one, called the VC-dimension of a set system, from which can be
derived many analogous properties for abstract set systems.

GLOSSARY

Set systems: A pair ¥ = (X, R), where X is a set of base elements and R is a
collection of subsets of X, is called a set system. The dual set system to (X, R)
is the system ¥* = (X*,R*), where X* = R, and for each z € X, the set
R.:={R € R:x € R} belongs to R*.

VC-dimension: For any set system (X,R) and Y C X, the projection of R
on Y is the set system R|y := {Y NR:REe€ R} The Vapnik-Chervonenkis
dimension (or VC-dimension) of (X, R), denoted as VC-dim(R), is the minimum
integer d such that |R|y| < 2/¥ for any finite subset Y C X with |Y| > d.
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Shatter function: A set Y is shattered by R if |R|y| = 2I¥l. The shatter
function, mr : N — N| of a set system (X, R) is obtained by letting wg(m) be
the maximum number of subsets in R|y for any set ¥ C X of size m.

Shallow-cell complexity: A set system (X,R) has shallow-cell complexity
or : N XN —= N, if for every Y C X, the number of sets of size at most [ in
the set system Ry is O(|Y|-¢r(]Y],1)). For convenience, dropping the second
argument of o, we say that (X, R) has shallow-cell complezity pr : N — N, if
there exists a constant ¢(R) > 0 such that for every Y C X and for every positive
integer I, the number of sets of size at most [ in Rly is O(|Y|- pr(|Y]) - 1€R)).

Geometric set systems: Let R be a family of (possibly unbounded) geometric
objects in R%, and X be a finite set of points in R%. Then the set system (X, R|x)
is called a primal set system induced by R. Given a finite set S C R, the dual
set system induced by S is the set system (S,S*), where S* = {S, : z € R4}
andSm::{SeS : xGS}.

Union complexity of geometric objects: The union complexity, kg : N — N,
of a family of objects R is obtained by letting k% (m) be the maximum number
of faces of all dimensions that the union of any m members of R can have.

0-Separated set systems: The symmetric difference of two sets R, R’ is denoted
as A(R,R'), where A(R,R') = (R\ R')U(R'\ R). Call a set system (X,R)
d-separated if for every pair of sets R, R’ € R, |A(R, R')| > 4.

VC-DIMENSION

First defined by Vapnik and Chervonenkis [VCTI], a crucial property of VC-dimension
is that it is hereditary—if a set system (X, R) has VC-dimension d, then for any
Y C X, the VC-dimension of the set system (Y, R|y) is at most d.

LEMMA 47.1.1 [VCT1] [Sau72, [She72]

Let (X,R) be a set system with VC-dim(R) < d for a fized constant d. Then for
all positive integers m,

wim <3 (1) =0 ((5)").

Conversely, if Tr(m) < cm? for some constant c, then VC-dim(R) < 4dlog(cd).

Throughout this chapter, we usually state the results in terms of shatter func-
tions of set systems; the first part of Lemma [I7.1.1] implies that these results carry
over for set systems with bounded VC-dimension as well. Geometric set systems
often have bounded VC-dimension, a key case being the primal set system induced
by half-spaces in R?, for which Radon’s lemma [Rad21] implies the following.

LEMMA 47.1.2
Let H be the family of all half-spaces in RY. Then VC-dim(H) = d + 1. Conse-
quently, Ty (m) = O(m4+1).

Lemma is the starting point for bounding the VC-dimension of a large
category of geometric set systems. For example, it implies that the VC-dimension
of the primal set system induced by balls in R? is d 4 1, since if a set of points
is shattered by the primal set system induced by balls, then it is also shattered
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by the primal set system induced by half-spaced}] More generally, sets defined by
polynomial inequalities can be lifted to half-spaces in some higher dimension by
Veronese maps and so also have bounded VC-dimension. Specifically, identify each
d-variate polynomial f(z1,...,2q) with its induced set Sy := {p € R?: f(p) > 0}.

Then Veronese maps—i.e., identifying the d' = (D;'d) coefficients of a d-variate

polynomial of degree at most D with distinct coordinates of Rd/—together with
Lemma immediately imply the following.

LEMMA 47.1.3 [Mai02a]

Let Ra.p be the primal set system induced by all d-variate polynomials over R¢ of

degree at most D. Then VC-dim(Rq,p) < (D(';d).

Set systems derived from other bounded VC-dimension set systems using a fi-
nite sequence of set operations can be shown to also have bounded VC-dimension.
The number of sets in this derived set system can be computed by a direct com-
binatorial argument, which together with the second part of Lemma [47.1.1] implies
the following.

LEMMA 47.1.4 [HWS7]

Let (X, R) be a set system with VC-dim(R) < d, and k > 1 an integer. Define the
set system

Fi(R) :=={F(Ry,...,Ry) : Ry,..., R € R},
where F(S1,...,Sk) denotes the set derived from the input sets Si,..., Sk from a

fixed finite sequence of union, intersection and difference operations. Then we have
VC-dim (F;.C (R)) = O(kdlogk).

LEMMA 47.1.5 [AssS3]

Given a set system ¥ = (X, R) and its dual system ¥* = (X*,R*), VC-dim(R*) <
2VC—dim(R)+1 )

On the other hand, the primal set system induced by convex objects in R? has
unbounded VC-dimension, as it shatters any set of points in convex position.

SHALLOW-CELL COMPLEXITY

A key realization following from the work of Clarkson and Varadarajan [CV07] and
Varadarajan [Varl0] was to consider a finer classification of set systems than just
based on VC-dimension, namely its shallow-cell complexity, first defined explicitly
in Chan et al. [CGKS12]. Note that if (X, R) has shallow-cell complexity ¢r(m) =
O(m?!) for some constant ¢, then 7g(m) = O(m!++<(R)) for an absolute constant
¢(R), and so R has bounded VC-dimension. On the other hand, while the shatter
function bounds the total number of sets in the projection of R onto a subset Y, it
does not give any information on the distribution of the set sizes, which has turned
out to be a key parameter (as we will see later in, e.g., Theorem [47.4.5). Tight
bounds on shatter functions and shallow-cell complexity are known for many basic
geometric set systems.

1 Assume that a set X of points in R? is shattered by the primal set system induced by balls.
Then for any Y C X, there exists a ball B with Y = BN X, and a ball B’ with X \Y =B’ NnX.
Then any hyperplane that separates B \ B’ from B’ \ B also separates Y from X \ Y.
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TABLE 47.1.1 Combinatorial properties of some primal (P)
and dual (D) geometric set systems.

OBJECTS SETS p(m) VC-dim w(m)
Intervals P/D 0(1) 2 O(m?2)
Lines in R? P/D O(m) 2 O(m?2)
Pseudo-disks in R2 P O(1) 3 O(m3)
Pseudo-disks in R2 D o(1) o(1) O(m?2)
Half-spaces in R? P/D O(de/2J - d+1 O(m9)
Balls in R? P O(ml4/21-1) d+1 | 6(mdtl)
Balls in R¢ D O(mld/21=1) | d+1 O(m?)
Triangles in R? D O(m) 7 O(m7)
Fat triangles in R2 D O(log™ m) 7 Oo(m7)
Axis-par. rect. in R? | P O(m) 4 O(m*)
Axis-par. rect. in R? | D Oo(m) 4 O(m?2)
Convex sets in R? P o(2™/m) 00 o2™)

LEMMA 47.1.6 [CS39]

Let H be the family of all half-spaces in R%. Then @z (m) = O(ml¥/21=1). Fur-
thermore, this bound is tight, in the sense that for any integer m > 1, there exist
m points for which the above bound can be attained.

The following lemma, a consequence of a probabilistic technique by Clarkson
and Shor [CS89], bounds the shallow-cell complexity of the dual set system induced
by a set of objects in R2.

LEMMA 47.1.7 [Shadl]

Let R be a finite set of objects in R?, each bounded by a closed Jordan curve, and
with union complezity ki (-). Further, each intersection point in the arrangement of
R is defined by a constant number of objects of R. Then the shallow-cell complexity
of the dual set system induced by R is bounded by pgr~(m) = O(L(m))

m

Table 7.1.1] states the shatter function as well as the shallow-cell complexity
of some commonly used set systems. These bounds are derived from the above
two lemmas using known bounds on union complexity of geometric objects (e.g.,
pseudo-disks [BPR13], fat triangles [ABES14]).
A packing lemma. A key combinatorial statement at the heart of many of the
results in this chapter is inspired by packing properties of geometric objects. It
was first proved for the primal set system induced by half-spaces in R? by ge-

ometric techniques [CWRI]; the following more general form was first shown by
Haussler [Hau95)| (see [Maf99, Chapter 5.3] for a nice exposition of this result).

LEMMA 47.1.8 [Hau95]

Let (X,P), | X| = n, be a 5-separated set system with § > 1 and 7wp(m) = O(m?)
for some constant d > 1. Then |P| = O((%)?). Furthermore, this bound is tight.

A strengthening of this statement, for specific values of §, was studied for

2The theorem as stated in [Hau95] originally required that VC-dim(P) < d. It was later ver-
ified that the proof also works with the assumption of polynomially bounded shatter functions;

see [Mat95] for details.
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some geometric set systems in [PRO8| IMRI4], and for any é > 1 for the so-called
Clarkson-Shor set systems in [Ezr16l [DEG15]. This was then generalized in terms
of the shallow-cell complexity of a set system to give the following statement.

LEMMA 47.1.9 [MusI6]

Let (X,P), |X| = n, be a §-separated set system with wp(m) = O(m?) for some
constant d > 1, and with shallow-cell complexity pp(-,-). If |P| <k for all P € P,
lhen [P| < O(% - pp (s 2 ))

47.2 EPSILON-APPROXIMATIONS

Given a set system (X,R) and aset A C X, aset R € R is well-represented in A if
% ~ ‘F‘izfl. Intuitively, a set A C X is an e-approximation for R if every R € R
is well-represented in A; the parameter e captures quantitatively the additive error

between these two quantities. In this case the value ‘R‘QT‘I -|X] is a good estimate

for |R|. As an example, suppose that X is a finite set of points in the plane, and
let A be an e-approximation for the primal set system on X induced by half-spaces.

Then given a query half-space h, one can return Vﬂf' .| X| as an estimate for |hNX]|.

If |A| < | X|, computing this estimate is more efficient than computing |h N X]|.

GLOSSARY

e-Approximation: Given a finite set system (X, R), and a parameter 0 < e < 1,
a set A C X is called an e-approximation if, for each R € R,
|R[  [RNA]
XA

’Se.

Sensitive c-approximation: Given a set system (X, R) and a parameter 0 <
e <1,aset AC X is a sensitive e-approximation if for each R € R,

R [RNA[| _ef [IR|
| _jroAy e R

X A | X]
Relative (e, 6)-approximation: Given a set system (X,R) and a parameters

0<d,e<1,aset AC X is a relative (¢, d)-approximation if for each R € R,

IRl |RNA4]
| X Al

‘<max{6-|XR||, 5-6}

Discrepancy: Given a set system (X,R), and a two-coloring x : X — {—1,1},
define the discrepancy of R € R with respect to x as disc, (R) = | > per X(D)];
and the discrepancy of R with respect to x as discy (R) = maxper disc, (R).
The discrepancy of (X, R) is disc(R) = min,.x (1,1} discy (R).
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EPSILON-APPROXIMATIONS AND DISCREPANCY

When no other constraints are known for a given set system (X,R), the following
is the currently best bound on the sizes of e-approximations for R.

THEOREM 47.2.1 [Cha00]

Given a finite set system (X,R) and a parameter 0 < e < 1, an e-approximation
for (X, R) of size O(Z% log|R|) can be found in deterministic O(|X|-|R|) time.
If VC-dim(R) = d, the shatter function 7 (m) for (X, R) is bounded by O(m?)
(Lemma [47.1.1). In this case, |[R| = O(|X|%), and Theorem guarantees an
e-approximation of size at most O (6% log | X |) An influential idea originating in the
work of Vapnik and Chervonenkis [VCT1] is that for any set system (X,R) with
VC-dim(R) < d, one can construct an e-approximation of R by uniformly sampling
a subset A C X of size O(dliif%). Remarkably, this gives a bound on sizes of e-
approximations which are independent of |X| or |R|. To get an idea behind the
proof, it should be first noted that the factor of ‘log |R|” in Theorem comes
from applying union bound to a number of failure events, one for each set in R. The
key idea in the proof of [VCTI], called symmetrization, is to construct fewer failure
events based on comparing the random sample A with a second sample (sometimes
called a ghost sample in learning theory literature; see [DGLI6]). Together with
later work which removed the logarithmic factor, one arrives at the following.

THEOREM 47.2.2 [VC71, [Talo4, [LLS01]

Let (X,R) be a finite set system with mr(m) = O(m?) for a constant d > 1, and
0 < e,y <1 be given parameters. Let A C X be a subset of size

d log
« 672+ €2

chosen uniformly at random, where c is a sufficiently large constant. Then A is an
e-approzimation for (X, R) with probability at least 1 — .

The above theorem immediately implies a randomized algorithm for comput-
ing approximations. There exist near-linear time deterministic algorithms for con-
structing e-approximations of size slightly worse than the above bound; see [STZ06]
for algorithms for computing e-approximations in data streams.

THEOREM 47.2.3 [CM96]

Let (X,R) be a set system with VC-dim(R) = d, and 0 < € < 1 be a given param-
eter. Assume that given any finite Y C X, all the sets in R|y can be computed ex-
plicitly in time O(|Y'|**1). Then an e-approzimation for (X,R) of size O(% log 4)
can be computed deterministically in O(d*®) (% log %)d|X\ time.

Somewhat surprisingly, it is possible to show the existence of e-approximations
of size smaller than that guaranteed by Theorem Such results are usually
established using a fundamental relation between the notions of approximations
and discrepancy: assume | X]| is even and let x : X — {—1,+1} be any two-coloring
of X. For any R C X, let R" and R~ denote the subsets of R of the two colors,
and w.l.o.g., assume that | X | = |)2(7\ +tand | X | = % —t for some integer ¢ > 0.

Assuming that X € R, we have || X*| — |X~|| < disc,(R), and so t < dm%m)
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Take A to be any subset of X of size | |, Then for any R e R,

@‘ < discy (R) .

|R*| = |R™[| = [|[R*| = (|R] = |[R*])| < discy (R) = MR+|— 5

AﬂRmApﬂRﬂ—uﬂmnmmﬁmmMRmApJ§¢gmm¢R)Tms

IR |ROAw ’m\ imm¢nw<2-m%gR)
X~ = lx X I {

and we arrive at the following.

LEMMA 47.2.4 |[MWW?93]
Let (X,R) be a set system with X € R, and let x : X — {+1,—1} be any two-

coloring of X. Then there exists a set A C X, with |A] = [@L such that A is an
e-approzimation for (X, R), with ¢ = MYT%’(‘(R)

The following simple observation on e-approximations is quite useful.

OBSERVATION 47.2.5 [MWW93]
If A is an e-approzimation for (X, R), then any € -approximation for (A, R|a) is
n (e + €')-approzimation for (X, R).
Given a finite set system (X, R) with X € R, put Xo = X, and compute a se-
quence X7, Xo, ..., X;, where X; C X;_; satisfies | X;| = [‘Xi 1‘ , and is computed

from a two-coloring of (X;_1,R|x,_ ) derived from Lemma47.2.4] Assume that X
is an €;-approximation for (X;_1, _,)- Then Observation |47.2.5|implies that X;

is a e-approximation for (X, R) Wlth €= Zle €;. The next statement follows by

setting the parameter ¢ to be as large as possible while ensuring that Zzzl € < e.

LEMMA 47.2.6 [MWW?93]

Let (X,R) be a finite set system with X € R, and let f(-) be a function such that
disc (Rly) < f(|Y]) for allY C X. Then, for every integer t > 0, there exists an
e-approzimation A for (X, R) with |A| = [5;] and

= 2o a([3]) +e2s([5))

In particular, if there evists a constant ¢ > 1 such that we have f(2m) < 2 f(m)
for allm > ( -1, then (W)
2t n

Many of the currently best bounds on e-approximations follow from applications
of Lemma e.g., the existence of e-approximations of size O(Ei2 log %) for set
systems (X, R) with 7z (m) = O(m?) (for some constant d > 1) follows immediately
from the fact that for such R, we have disc(R|y) = O(y/|Y|log|Y). The next two
theorems, from a seminal paper of Matousek, Welzl, and Wernisch [MWW93]|, were
established by deriving improved discrepancy bounds (which turn out to be based

on Lemma |47.1.8]), and then applying Lemma 47.2.6



8

Nabil H. Mustafa and K. Varadarajan

THEOREM 47.2.7 |[MWW93, Mat95]
Let (X,R) be a finite set system with the shatter function 7 (m) = O(m?), where
d > 1 is a fized constant. For any 0 < € < 1, there exists an e-approzximation for

R of size O

2
62_ d+1

Improved bounds on approximations are also known in terms of the shatter
function of the set system dual to (X,R).

THEOREM 47.2.8 [MWW93]

Let (X, R) be a finite set system and 0 < ¢ < 1 be a given parameter. Suppose
that for the set system (X*,R*) dual to (X,R), we have Tr-(m) = O(m?), where
d > 1 is a constant independent of m. Then there exists an e-approximation for R
of size O (2_12(10g 1)1_“1“1) )
€ d+1 €

Theorems [47.2.7 and [47.2.§] yield the best known bounds for several geomet-
ric set systems. For example, the shatter function (see Table of the pri-
mal set system induced by half-spaces in R? is O(m?), and thus one obtains e-
approximations for it of size 0(64%) from Theorem For the primal set
system induced by disks in R?, the shatter function is bounded by ©(m?); Theo-
rem then implies the existence of e-approximations of size O(—z). In this
case, 1t turns out that Theorem [A7.2.8| gives a better bound: the shatter function
of the dual set system is bounded by O(m?), and thus there exist e-approximations
of size O (= (log %)%)

Table states the best known bounds for some common geometric set
systems. Observe that for the primal set system induced by axis-parallel rectangles

in R?, there exist e-approximations of size near-linear in %

TABLE 47.2.1 Sizes of e-approximations for geometric set systems
(multiplicative constants omitted for clarity).

Objects SETS UPPER-BOUND

Intervals Primal %

Half-spaces in R? Primal/Dual 627% [MWW93, Mat95]
Balls in R? Primal g (log %)17ﬁ [MWW93]
Balls in R9 Dual g [MWW93|, [Mat95)]
Axis-par. rect. in R% | Primal % - (log2® %) -log®d (log %) Phi08]

RELATIVES OF EPSILON-APPROXIMATIONS

It is easy to see that a sensitive e-approximation is an e-approximation and an €/-net,
for € > € (see the subsequent section for the definition of e-nets) simultaneously.
This notion was first studied by Bronnimann et al. [BCM99]. The following result
improves slightly on their bounds.
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THEOREM 47.2.9 [BCM99, [HP1]

Let (X, R) be a finite system with VC-dim(R) < d, where d is a fized constant. For
a given parameter 0 < e <1, let A C X be a subset of size
c-d ) d
~ " log =
2 B
chosen uniformly at random, where ¢ > 0 is an absolute constant. Then A is
a sensitive e-approximation for (X, R) with probability at least % Furthermore,
assuming that given any Y C X, all the sets in R|y can be computed explicitly in
time O(|Y|d+1), a sensitive e-approximation of size O(G%log%) can be computed
deterministically in time O(d®) - 47 (log 2)¢ - | X|.
On the other hand, a relative (e, §)-approximation is both a J-approximation
and an €’-net, for any € > e. It is easy to see that a (e - d)-approximation is a
relative (e, §)-approximation. Thus, using Theorem [47.2.2] one obtains a relative

(€, §)-approximation of size O( =% ). This bound can be improved to the following.

THEOREM 47.2.10 [LLS0T, [HPSTI]

Let (X,R) be a finite set system with shatter function g (m) = O(m?) for some
constant d, and 0 < 6,¢,v < 1 be given parameters. Let A C X be a subset of size

1 1
.. dlog < n IOgAY
€62 €62
chosen uniformly at random, where ¢ > 0 is an absolute constant. Then A is a
relative (e, 0)-approzimation for (X, R) with probability at least 1 — .

A further improvement is possible on the size of relative (e, d)-approximations
for the primal set system induced by half-spaces in R? [HPSII] and R? [Ezr16],
as well as other bounds with a better dependency on  (at the cost of a worse
dependence on %) for systems with small shallow-cell complexity [Ezr16, DEG15].

47.3

APPLICATIONS OF EPSILON-APPROXIMATIONS

One of the main uses of e-approximations is in constructing a small-sized repre-
sentation or ‘sketch’ A of a potentially large set of elements X with respect to an
underlying set system R. Then data queries from R on X can instead be performed
on A to get provably approximate answers. Suppose that we aim to preprocess a
finite set X of points in the plane, so that given a query half-space h, we can ef-
ficiently return an approximation to |k N X|. For this data structure, one could
use an e-approximation A C X for the set system (X,R) induced by the set of

all half-spaces in R2. Then given a query half-space h, simply return ‘h‘g‘f‘ -1 X;
this answer differs from |k N X| by at most € - | X|. If instead A is a relative (9, €)-
approximation, then our answer differs from the true answer by at most J - |h N X|,
provided |h N X| > €| X|. Two key properties of approximations useful in appli-

cations are (a) ‘ﬁgfl approximates ‘IT;})‘Q sitmultaneously for each R € R, and (b)

e-approximations exist of size independent of |X| or |R|. This enables the use of
e-approximations for computing certain estimators on geometric data; e.g., a com-
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binatorial median g € R? for a point set X can be approximated by the one for an
e-approximation, which can then be computed in near-linear time.

GLOSSARY

Product set systems: Given finite set systems 31 = (X1, R1) and ¥y = (X3, Ra),
the product system ;i ® Yo is defined as the system (X; x X3, 7), where
T consists of all subsets T' C X; x X5 for which the following hold: (a) for
any x2 € Xo, {x € Xy : (x,22) € T} € Ry, and (b) for any z; € Xy,
{reXy : (z1,2) €T} € Ro.

Centerpoints: Given a set X of n points in R?, a point ¢ € R? is said to be
a centerpoint for X if any half-space containing ¢ contains at least 75 points
of X; for e > 0, ¢ is said to be an e-centerpoint if any half-space containing ¢
contains at least (1 — e)ﬁ points of X. By Helly’s theorem, a centerpoint exists
for all point sets.

Shape fitting: A shape fitting problem consists of the triple (R%, F, dist), where
F is a family of non-empty closed subsets (shapes) in R% and dist : R¥xR? — R
is a continuous, symmetric, positive-definite (distance) function. The distance of
a point p € R? from the shape F' € F is defined as dist(p, F) = minger dist(p, q).
A finite subset P C R? defines an instance of the shape fitting problem, where
the goal is to find a shape F* = argmingc ZPGP dist(p, F).

e-Coreset: Given an instance P C R? of a shape fitting problem (R?, F,dist),
and an € € (0,1), an e-coreset of size s is a pair (S,w), where S C P, |S| = s,
and w : S — R is a weight function such that for any F' € F:

‘ Z dist(p, F') — Zw(q) - dist(q, F)‘ <e Z dist(p, F).

peEP qeSs peEP

APPROXIMATING GEOMETRIC INFORMATION

One of the main uses of e-approximations is in the design of efficient approximation
algorithms for combinatorial queries on geometric data. An illustrative example
is that of computing a centerpoint of a finite point set X C R%; the proof of the
following lemma is immediate.

LEMMA 47.3.1 [Mat91a]

Let X C R? be a finite point set, 0 < € < 1 be a given parameter, and A be an
e-approxzimation for the primal set system induced by half-spaces in R on X. Then
any centerpoint for A is an e-centerpoint for X.

We now describe a more subtle application in the same spirit, in fact one of the
motivations for considering products of set systems, first considered in Bronnimann,
Chazelle, and Matousek [BCM99]. For i = 1,2, let X; be a finite set of lines in
R? such that X; U X, is in general position, and let R; be the family of subsets
of X; that contains every subset X’ C X, such that X’ is precisely the subset
of lines intersected by some line segment. The VC-dimension of the set system
¥ = (X, R;) is bounded by some constant. We can identify (r,b) € X; x Xy with
the intersection point of r and b.
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Considering the product set system ¥ @ Yo = (X7 x X5,7), it is easy to
see that for any convex set C, the set of intersection points between lines of X3
and X5 that lie within C' is an element of 7. The VC-dimension of X1 ® X5 is in
fact unbounded. Indeed, notice that any matching {(7‘1, b1), (re,ba),. .., (1, bk)} C
X1 x X5 is shattered by ¥ ® ¥o. Nevertheless, it is possible to construct small
e-approximations for this set system:

LEMMA 47.3.2 [Cha93, BCM99]
Fori=1,2 and 0 <¢; <1, let A; be an e;-approximation for the finite set system
¥ =(Xi,Ri). Then Ay x Ay is an (€1 + e2)-approzimation for X1 @ Xo.

We can apply this general result on ¥ ® X5 to estimate V(X x X5, C)—defined
to be the number of intersections between lines in X; and X5 that are contained
in a query convex set C—by IV(Alxéfl’ﬂ&!lXﬂ'lxﬂ. Lemma [47.3.2| implies that the
error of this estimate can be bounded be

V(X1 X XQ,C) . V(Al X AQ,
| Xa| - | Xo| |A1] - [A2

C)
| ‘§€1+62-

The notion of product of set systems and Lemma[47.3.2] can be generalized to more
than two set systems [BCM99, [Cha00].

SHAPE FITTING AND CORESETS

Consider the scenario where the shape family F contains, as its elements, all possible
k-point subsets of R?; that is, each F' € F is a subset of R? consisting of k points. If
the function dist(+, -) is the Euclidean distance, then the corresponding shape fitting
problem (R? F,dist) is the well-known k-median problem. If dist(-, -) is the square
of the Euclidean distance, then the shape fitting problem is the k-means problem.
If the shape family F contains as its elements all hyperplanes in R¢, and dist(-, -)
is the Euclidean distance, then the corresponding shape fitting problem asks for
a hyperplane that minimizes the sum of the Euclidean distances from points in
the given instance P C R?. The shape fitting problem as defined is just one of
many versions that have been considered. In another well-studied version, given an
instance P C R?, the goal is to find a shape that minimizes max,e p dist(p, F).

Given an instance P, and a parameter 0 < € < 1, an e-coreset (S, w) ‘approx-
imates’ P with respect to every shape F' in the given family F. Such an e-coreset
can be used to find a shape that approximately minimizes ) . p dist(p, F): one
simply finds a shape that minimizes > g w(q) - dist(q, F). For this approach to
be useful, the size of the coreset needs to be small as well as efficiently computable.
Building on a long sequence of works, Feldman and Langberg [FLII] (see also
Langberg and Schulman [LS10]) showed the existence of a function f : R — R such
that an e-approximation for a carefully constructed set system associated with the
shape fitting problem (R¢, F,dist) and instance P yields an f(e)-coreset for the
instance P. For many shape fitting problems, this method often yields coresets
with size guarantees that are not too much worse than bounds via more specialized
arguments.



12 Nabil H. Mustafa and K. Varadarajan

47.4 EPSILON-NETS

While an e-approximation of a set system (X,R) aims to achieve equality in the
proportion of points picked from each set, often only a weaker threshold property
is needed. A set N C X is called an e-net for R if it has a non-empty intersection
with each set of R of cardinality at least ¢|X|. For all natural geometric set sys-
tems, trivial considerations imply that any such N must have size Q(%) one can
always arrange the elements of X into disjoint L%J groups, each with at least €| X|
elements, such that the set consisting of the elements in each group is induced by
the given geometric family. While e-nets form the basis of many algorithmic and
combinatorial tools in discrete and computational geometry, here we present only
two applications, one combinatorial and one algorithmic.

GLOSSARY

e-Nets: Given a finite set system (X, R) and a parameter 0 < e <1, aset N C X
is an e-net for R if N N R # 0 for all sets R € R with |R| > €| X|.

Weak e-nets: Given a set X of points in R? and family of objects R, a set
Q C R is a weak e-net with respect to R if Q N R # () for all R € R containing
at least €|X| points of X. Note that in contrast to e-nets, we do not require Q
to be a subset of X.

Semi-algebraic sets: Semi-algebraic sets are subsets of R obtained by taking
Boolean operations such as unions, intersections, and complements of sets of the
form {z € R? | g(x) > 0}, where g is a d-variate polynomial in R [z1,...,z4].

e-Mnets: Given a set system (X, R) and a parameter 0 < ¢ < 1, a collection of
sets M = {Xy,..., X} on X is an e-Mnet of size ¢ if |X;| = O(e|X|) for all 4,
and for any set R € R with |R| > €|X]|, there exists an index j € {1,...,¢} such
that X; C R.

EPSILON-NETS FOR ABSTRACT SET SYSTEMS

The systematic study of e-nets started with the breakthrough result of Haussler and
Welzl [HWST], who first showed the existence of e-nets whose size was a function
of the parameter ¢ and the VC-dimension. This was later improved upon and
extended in several ways: the precise dependency on VC-dim(R) was improved, the
probabilistic proof in [HWS&T7] was de-randomized to give a deterministic algorithm,
and finer probability estimates were derived for randomized constructions of e-nets.

THEOREM 47.4.1 [OWS7, KPW92

Let (X, R) be a finite set system, such that Tr(m) = O(m?) for a fived constant d,
and let € > 0 be a sufficiently small parameter. Then there exists an e-net for R
of size (1 + 0(1)) % log % Furthermore, a uniformly chosen random sample of X of
the above size is an e-net with constant probability.

An alternate proof, though with worse constants, follows immediately from e-
approximations: use Theorem 47.2.2|to compute an §-approximation A for (X, R),
where |A| = O(%). Observe that an £-net for (4,R|4) is an enet for (X, R),
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as for each R € R with |R| > €|X|, we have |% - ‘ITQIM < § and so lR‘Q‘Al >

5. Now a straightforward random sampling argument with union bound (or an
iterative greedy construction) gives an $-net for R|4, of total size O(Llog|R|4|) =

O(%log %)

THEOREM 47.4.2 [HWST]
Let (X,R) be a finite set system with g (m) = O(m?) for a constant d, and 0 <

6,7 <1 be given parameters. Let N C X be a set of size

4 2 8d 8d
max{flogf7 —log—}
€ v o€ €

chosen uniformly at random. Then N is an e-net with probability at least 1 — .

THEOREM 47.4.3 [BCM99]

Let (X, R) be a finite set system such that VC-dim(R) = d, and € > 0 a given pa-
rameter. Assume that for anyY C X, all sets in R|y can be computed explicitly in
time O(|Y|d+1). Then an e-net of size O(g log %) can be computed deterministically
in time O(d3%) - (Llog 1) - |X]|.

It was shown in [KPW92] that for any 0 < e < 1, there exist e-nets of size
max {2, [1] — 1} for any set system (X,R) with VC-dim(R) = 1. For the case
when VC-dim(R) > 2, the quantitative bounds of Theorem [47.4.1] are near-optimal,
as the following construction shows. For a given integer d > 2 and a real ¢ > 0,
set n = @(% log %) and construct a random en-uniform set system by choosing
@(ﬁ) sets uniformly from all possible sets of size en, where « is sufficiently
small. It can be shown that, with constant probability, this set system has VC-
dimension at most d and any e-net for it must have large size.

THEOREM 47.4.4 [KPW92]

Given any € > 0 and integer d > 2, there exists a set system (X, R) such that
VC-dim(R) < d and any e-net for R has size at least (1—2+ m +0(1)) g log L.

Over the years it was realized that the shatter function of a set system is too
crude a characterization for purposes of e-nets, and that the existence of smaller
sized e-nets can be shown if one further knows the distribution of sets of any fixed
size in the set system. This was first understood for the case of geometric dual set
systems in R? using spatial partitioning techniques, initially in the work of Clarkson
and Varadarajan [CVQT7] and then in its improvements by Aronov et al. [AES1O0].
Later it was realized by Varadarajan [VarQ9, [Var10] and its improvement by Chan et
al. [CGKS12] that one could avoid spatial partitioning altogether, and get improved
bounds on sizes of e-nets in terms of the shallow-cell complexity of a set system.

THEOREM 47.4.5 [Varl0, [CGKSI?

Let (X, R) be a set system with shallow-cell complezity pr(+), where pr(n) = O(n?)
for some constant d. Let € > 0 be a given parameter. Then there exists an e-nef]
for R of size O(%log @R(%)) Furthermore, such an e-net can be computed in
deterministic polynomial time.

3The bound in these papers is stated as O(% log @R(|X\)) , which does not require the assumption

that g (n) = O(n?) for some constant d. However, standard techniques using e-approximations
imply the stated bound; see [Var09, KMP16] for details.
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We sketch a simple proof of the above theorem due to Mustafa et al. [MDG16].
For simplicity assume that |R| = ©(en) for all R € R. Let P C R be a maximal -
separated system, of size |P| = O(1¢r (1)) by Lemma By the maximality
of P, for each R € R there exists a Pp € P such that |[R N Pg| > <, and thus
a set N which is a 3-net for each of the |P| set systems (P,R|p), P € P, is
an e-net for R. Construct the set N by picking each point of X uniformly with
probability @(i log @R(%)) For each P € P, PN N is essentially a random subset
of size ©(logpr (L)), and so by Theorem N fails to be a 3-net for R|p
with probability O(m). By linearity of expectation, N is a %—net for all but
expected O(m) [Pl = O(L) sets of P, and for those a O(1)-size 3-net can be
constructed individually (again by Theorem and added to N, resulting in
an e-net of expected size © (2 logpr(1)).

Furthermore, this bound can be shown to be near-optimal by generalizing the

random construction used in Theorem [{7.4.4]

THEOREM 47.4.6 [KMPI6|

Let d be a fized positive integer and let v : N — RT be any submultiplicative func-
tz'o with ¢(n) = O(n?) for some constant d. Then, for any € > 0, there eists
a set system (X, R) with shallow-cell complexity ¢(-), and for which any e-net has
size Q(% log go(%))

On the other hand, there are examples of natural set systems with high shallow-
cell complexity and yet with small e-nets [MatI6]: for a planar undirected graph
G = (V,E), let R be the set system on V induced by shortest paths in Gj i.e., for
every pair of vertices v;,v; € V, the set R; ; € R consists of the set of vertices on
the shortest path between v; and v;. Further, assume that these shortest paths are
unique for every pair of vertices. Then (V, R) has e-nets of size O(%) [KPRI3|, and
yet or(n) = Q(n) can be seen, e.g., by considering the star graph. As we will see in
the next part, the primal set system induced by axis-parallel rectangles is another
example with high shallow-cell complexity and yet small e-nets.

The proof in [VarI0,[CGKS12] presents a randomized method to construct an e-
net N such that each element z € X belongs to NV with probability O(ﬁ log gpn(%))
This implies the following more general result.

COROLLARY 47.4.7 [Vari0, [CGKSIZ]

Let (X, R) be a set system with shallow-cell complexity pr(-), and € > 0 be a given
parameter. Further let w : X — RY be weights on the elements of X, with W =
> wex wW(x). Then there exists an e-net for R of total weight O(Ellx‘ log pr(1)).

The notion of e-Mnets of a set system (X, R), first defined explicitly and stud-
ied in Mustafa and Ray [MR14], is related to both e-nets (any transversal of the
sets in an e-Mnet is an e-net for R) as well as the so-called Macbeath regions in con-
vex geometry (we refer the reader to [BL8S| Bar07] for more details on Macbeath
regions). The following theorem concerns e-Mnets with respect to volume for the
primal set system induced by half-spaces.

4A function ¢ : RT — RY is called submultiplicative if (a) ¢ (n) < p(n®) for any 0 < o < 1 and
a sufficiently large positive n, and (b) ¢(z)p(y) > ¢(zy) for any sufficiently large =,y € RT.
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THEOREM 47.4.8 [BCP93|

Given a compact convex body K in R? and a parameter 0 < € < W, let R be
the primal set system on K induced by half-spaces in RY, equipped with Lebesque

measure. There there exists an e-Mnet for R of size O( 1_;). Furthermore, the
a+1

sets in the e-Mnet are pairwise-disjoint convex bodies lying in K.

The role of shallow-cell complexity carries over to the bounds on e-Mnets; the proof
of the following theorem uses the packing lemma (Lemma [47.1.9).

THEOREM 47.4.9 [DGJIMI6]

Given a set X of points in R, let R be the primal set system on X induced by
a family of semi-algebraic sets in R with shallow-cell complexity pr(-), where
or(n) = O(n') for some constant t. Let € > 0 be a given parameter. Then there
exists an e-Mnet for R of size O(%@R(%)), where the constants in the asymptotic
notation depend on the degree and number of inequalities defining the semi-algebraic
sets.

Together with bounds on shallow-cell complexity for half-spaces (Lemmal47.1.6)),
this implies the existence of e-Mnets of size O(ﬁ) for the primal set system in-
duced by half-spaces on a finite set of points in R

EPSILON-NETS FOR GEOMETRIC SET SYSTEMS

We now turn to set systems, both primal and dual, induced by geometric objects
in R Tt turns out that all known asymptotic bounds on sizes of e-nets for such
primal and dual set systems follow from Theorem and bounds on shallow-
cell complexity (Table . The relevance of shallow-cell complexity for e-nets
was realized after considerable effort was spent on inventing a variety of specialized
techniques for constructing e-nets for geometric set systems. These techniques and
ideas have their own advantages, often yielding algorithms with low running times
and low constants hidden in the asymptotic notation. Table lists the most
precise upper bounds known for many natural geometric set systems; all except one
are, asymptotically, direct consequences of Theorem The exception is the
case of the primal set system induced by the family R of axis-parallel rectangles in
the plane, which have shallow-cell complexity ¢x (n) = n, as for any integer n there
exist a set X of n points in R? such that the number of subsets of X of size at most
two induced by R is ©(n?). However, Aronov et al. [AESI0] showed that there
exists another family of object:ﬂ R’ with pr/(n) = O(logn), such that an §-net for
the primal set system on X induced by R’ is an e-net for the one induced by R;
now e-nets of size O (2 loglog %) for the primal set system induced by R follow by
applying Theorem h on R'.

Precise sizes of e-nets for some constant values of € have been studied for the
primal set system induced by axis-parallel rectangles and disks in R? [AAG14]. It
is also known that the visibility set system for a simple polygon P and a finite set
of guards G——consisting of all sets S,, where S}, is the set of points of G visible
from p € P—admits e-nets of size O(%loglog 1) [KKI1].

5Constructed as follows: let I be a vertical line that divides X into two equal-sized subsets, say
X1 and Xo; then add to R’ all subsets of X induced by axis-parallel rectangles with one vertical
boundary edges lying on . Add recursively subsets to R’ for X7 and Xa.
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TABLE 47.4.1 Sizes of e-nets for both primal (P) and dual (D) set systems (ceil-
ings/floors and lower-order terms are omitted for clarity).

Objects SETS | UPPER-BOUND LOWER-BOUND

Intervals P/D % %

Lines, R? P/D %log% [HWST] Q(%w(%)) vmam
Half-spaces, R2 P/D % -1 [KPW92] % -2 [KPW92|
Half-spaces, R3 P/D O(%) [MSW90] Q(%)

Half-spaces, R4, d >4 | P/D g log % KPW92| %% log % %’
Disks, R2 P 13-4 [BGMRI6] | 2 -2 [KPW92
Balls, R3 P 2log 1 Q1)

Balls, R?, d > 4 P d+l Jog 1 [KPWo2] | L2121 10g 1 [RNMPT6)
Pseudo-disks, R? P/D O(%) [PRO8] | Q()

Fat triangles, R? D O(% log log* %) [AESTO0| Q(%)

Axis-par. rect., R? D Slogl [HWSRT7] | $1log [PTT3]
Axis-par. rect., R? P O(% log log %) %% log log % [PT13)
Union s (-), R2 D O(w) [AESTO0] Q(%)

Convex sets, R, d >2 | P |X| — e X| |X| — e X|

Lower bounds for e-nets for geometric set systems are implied by the following
connection, first observed by Alon [Alo12], between e-nets and density version of
statements in Ramsey theory. Given a function f : Nt — N let (X, R), |X|=n,
be a set system with the Ramsey-theoretic property that for any X’ C X of size
5, there exists a set R € R such that |[R| > f(n) and R C X'. Then any @—
net N for (X,R) must have size at least %, as otherwise the set X \ IV of size at
least 5 would violate the Ramsey property. As 5 = w(%) for any monotonically
increasing function f(-) with f(n) — oo as n — oo, this gives a super-linear lower
bound on the size of any @—net; the precise lower-bound will depend on the
function f(-). Using this relation, Alon [Alo12] showed a super-linear lower bound
for e-nets for the primal set system induced by lines, for which the corresponding
Ramsey-theoretic statement is the density version of the Hales-Jewett theorem. By
Veronese maps this implies a nonlinear bound for e-nets for the primal set system
induced by half-spaces in R®. Next, Pach and Tardos [PT13] showed that, for any
€ > 0 and large enough integer n, there exists a set X of n points in R* such that
any e-net for the primal set system on X induced by half-spaces must have size at
least i log %; when * is a power of two, then it improves to the lower bound of
é log % See Table for all known lower bounds.

Weak e-nets. When the net for a given primal geometric set system (X, R)
need not be a subset of X—i.e., the case of weak e-nets—one can sometimes get
smaller bounds. For example, O(%) size weak e-nets exist for the primal set system
induced by balls in R? [MSW90]. We outline a different construction than the one

THere w(s) is the minimum number k so that k4%(2) > s where Ay, is the k-th function in the
Ackermann hierarchy.

8Map each point p : (pz,py) € R? to the point f(p) = (pz,py,pzpy,pi,pi) € R%, and each line
1:ax+by = c to the half-space f(1) : (—2ac) - x1 + (—2bc) - 2 + (2ab) - x3 +a? - x4 +b% -5 < —2.
Then it can be verified by a simple calculation that a point p € R? lies on a line [ if and only if
the point f(p) € R® lies in the half-space f(1).



Chapter 47: e-approximations and e-nets 17

in [MSW90], as follows. Let B be the smallest radius ball containing a set X’ of at
least €| X| points of X and no point of the current weak e-net @ (initially Q = 0).
Now add a set Q' € R? of O(1) points to @ such that any ball, of radius at least
that of B, intersecting B must contain a point of @’, and compute a weak e-net for
X\ X’. Weak e-nets of size O(% log log %) exist for the primal set system induced
by axis-parallel rectangles in R?, for d > 4 [Ezr10].

The main open question at this time on weak e-nets is for the primal set system
induced on a set X of n points by the family C of all convex objects in R%. It is
easy to see that if X is in convex position, then any e-net for this set system must
have size at least (1 —€)n. All currently known upper bounds depend exponentially
on the dimension d. In Alon et al. [ABFK92], a bound of O(Z%) was shown for
this problem for d = 2 and O(—&) for d > 3. This was improved by Chazelle
et al. [CEG™95], and then slightly further via an elegant proof by Matousek and
Wagner [MWO04].

THEOREM 47.4.10 [MW04]

Let X be a finite set of points in R?, and let 0 < € < 1 be a given parameter.
Then there exists a weak e-net for the primal set system induced by conver objects
of size O(Z7log?(1)), where a = ©(d*In(d + 1)). Furthermore, such a net can be
computed in time O(n log %)

The above theorem—indeed many of the weak e-net constructions—are based
on the following two ideas. First, for a parameter ¢ that is chosen carefully, construct
a partition P = {Xy,..., X;} of X such that (a) |X;| < [} ] for all 4, and (b) for any
integer k > 1, there exists a point set @ of small size such that any convex object
having non-empty intersection with at least ek sets of P must contain a point of Q.
Note that @); is a weak e-net, as any convex set containing en points must intersect

at least (;% = et sets. Second, compute recursively a weak €’-net @} for each X;,

for a suitably determined value of €’. If a convex set C'is not hit by | J Q}, it contains
at most E/T” points from each set of P, and so has non-empty intersection with at
least % = %f sets of P. Then |J Q) together with Q?t/ is a weak e-net; fixing
the trade-off parameters ¢, ¢ gives the final bound. Theorem 47.4.10| uses simplicial
partitions for P, and centerpoints of some representative points from each set of P

as the set Q.

There is a wide gap between the known upper- and lower- bounds. Matousek [Mat02b]
showed the existence of a set X of points in R? such that any weak 5—10-net for the

set system induced by convex objects on X has size Q(e@). For arbitrary values
of €, the current best lower bound is the following.

THEOREM 47.4.11 [BMINTI|

For every d > 2 and every € > 0, there exists a set X of points in R? such that
any weak e-net for the primal set system induced on X by convex objects has size
Q(% log?~! %)

There is a relation between weak e-nets induced by convex sets and e-nets for the
primal set system induced by intersections of half-spaces, though the resulting size
of the weak e-net is still exponential in the dimension [MROS8]. The weak e-net
problem is closely related to an old (and still open) problem of Danzer and Rogers,
which asks for the area of the largest convex region avoiding a given set of n points
in a unit square (see [PT12] for a history of the problem). Better bounds for
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weak e-nets for primal set systems induced by convex objects are known for special
cases: an upper-bound of O(%a(%)) when X is a set of points in R? in convex
position [AKNT08]|; optimal bounds when ¢ is a large constant [MR09]; a bound of

O(%(log 1)6(d*In 9) when the points lie on a moment curve in R? [MW04].

€

47.5

APPLICATIONS OF EPSILON-NETS

As e-nets capture some properties of random samples with respect to a set sys-
tem, a natural use of e-nets has been for derandomization; the best deterministic
combinatorial algorithms for linear programming [CM96] [Chal6] are derived via
derandomization using e-nets. Another thematic use originates from the fact that
an e-net of a set system (X, R) can be viewed as a hitting set for sets in R of size
at least €| X|, and so is relevant for many types of covering optimization problems;
a recent example is the beautiful work of Arya et al. [AFM12] in approximating a
convex body by a polytope with few vertices. At first glance, the restriction that
an e-net only guarantees to hit sets of size at least €| X | narrows its applicability. A
breakthrough idea, with countless applications, has been to first assign multiplici-
ties (or weights) to the elements of X such that all multisets have large size; then
e-nets can be used to ‘round’ this to get a solution. Finally, e-nets can be used for
constructing spatial partitions that enable the use of divide-and-conquer methods.

SPATIAL PARTITIONING

Consider the set system (H,R) where the base set H is a set of n hyperplanes
in R%, and R is the set system induced by intersection of simplices in R¢ with
H. An enet for R consists of a subset H’ such that any simplex intersecting at
least en hyperplanes of H intersects a hyperplane in H’. This implies that for any
simplex A lying in the interior of a cell in the arrangement of H’, the number of
hyperplanes of H intersecting A is less than en. One can further partition each cell
in the arrangement of A’ into simplices, leading to the powerful concept of cuttings.
After a series of papers in the 1980s and early 1990s [CEF90, [Mat91b], the following
is the best result in terms of both combinatorial and algorithmic bounds.

THEOREM 47.5.1 [Chad3]

Let H be a set of n hyperplanes in R?, and r > 1 a given parameter. Then there
exists a partition of R? into O(r?) interior-disjoint simplices, such that the interior
of each simplex intersects at most = hyperplanes of H. These simplices, together
with the list of hyperplanes intersecting the interior of each simplex, can be found
deterministically in time O(nrd=1).

There are many extensions of such a partition, called a %-cutting, known for objects
other than hyperplanes; see Chapter 28. Here we state just one such result.

THEOREM 47.5.2 [BS95, [Pel97]

Let S be a set of n (d—1)-dimensional simplices in R and let m = m(S) denote the
number of d-tuples of S having a point in common. Then, for any € > 0 and any

given parameter v > 1, there exists a %—cutting of S with the number of simplices
2

d
at most O (r + n:;) ford=2, and O (rd_1+€ + Tr:;) ford > 3.
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Cuttings have found countless applications, both combinatorial and algorith-
mic, for their role in divide-and-conquer arguments. A paradigmatic combinato-
rial use for upper-bounding purposes, initiated in a seminal paper by Clarkson
et al. [CEGF90], is using cuttings to partition R? into simplices, each of which
forms an independent sub-problem where one can apply a worse—and often purely
combinatorial—bound. The sum of this bound over all simplices together with ac-
counting for interaction on the boundaries of the simplices gives an upper-bound.
This remains a key technique for bounding incidences between points and various
geometric objects (see the book [Gutl6]), as well as for many Turdn-type problems
on geometric configurations (see [MP16] for a recent example). Algorithmically,
cuttings have proven invaluable for divide-and-conquer based methods for point lo-
cation, convex hulls, Voronoi diagrams, combinatorial optimization problems, clus-
tering, range reporting and range searching. An early use was for the half-space
range searching problem, which asks for pre-processing a finite set X of points in
R? such that one can efficiently count the set of points of X contained in any query
half-space [Mat93b]. The current best data structure [ACQ9] for the related prob-
lem of reporting points contained in a query half-space is also based on cuttings;
see Chapter 40.

Finally, we state one consequence of a beautiful result of Guth [Gutl5] which
achieves spatial partitioning for more general objects, with a topological approach
replacing the use of e-nets: given a set H of n k-dimensional flats in R? and a
parameter r > 1, there exists a nonzero d-variate polynomial P, of degree at most
7, such that each of the O(r?) cells induced by the zero set Z(P) of P (i.e., each
component of R?\ Z(P)) intersects O(r*~9n) flats of H. Note that for the case
k =d — 1, this is a ‘polynomial partitioning’ version of Theorem [47.5.1

ROUNDING FRACTIONAL SYSTEMS

We now present two uses of e-nets in rounding fractional systems to integral ones—
as before, one will be algorithmic and the other combinatorial. Given a set system
(X,R), the hitting set problem asks for the smallest set Y C X that intersects all
sets in R. Let OPTx be the size of a minimum hitting set for R. Given a weight
function w : X — R with w(z) > 0 for at least one z € X, we say that N C X is
an e-net with respect to w(-) if NN R # () for any R € R such that w(R) > e-w(X).
The construction of an e-net with respect to weight function w(-) can be reduced
to the construction of a regular e-net for a different set system (X', R’); the main
idea is that for each z € X we include multiple “copies” of x in the base set X',
with the number of copies being proportional to w(x). Using this reduction, many
of the results on e-nets carry over to e-nets with respect to a weight function.

THEOREM 47.5.3 [BG95, Lon01, [ERS05]

Given (X, R), assume exists a function f : RT — N* such that for any ¢ > 0 and
weight function w : X — RY, there is an e-net of size at most % . f(%) with respect
to w(-). Further assume a net of this size can be computed in polynomial time.
Then one can compute a f(OPTx)-approzimation to the minimum hitting set for

R in polynomial time, where OPTyx is the size of a minimum hitting set for R.

The proof proceeds as follows: to each p € X assign a weight w(p) € [0,1]
such that the total weight W = 3 v w(p) is minimized, under the constraint



20

Nabil H. Mustafa and K. Varadarajan

that w(R) = > cpw(p) > 1 for each R € R. Such weights can be computed
in polynomial time using linear programming. Now a %-net (with respect to the
weight function w(+)) is a hitting set for R; crucially, as W < OPTg, this net is
of size at most W f(W) < OPTg -f(OPTg ). In particular, when the set system
has e-nets of size O(%), one can compute a constant-factor approximation to the
minimum hitting set problem. For example, there exist constant-factor approxi-
mation algorithms for the geometric minimum hitting set problem for points and
disks in the plane. Furthermore these algorithms can be implemented in near-linear
time [AP14] BMRI5]. When the elements of X have costs, and the goal is to min-
imize the cost of the hitting set, Varadarajan [VarlQ] showed that e-nets imply the
corresponding approximation-factor.

THEOREM 47.5.4 [Varl0]

Given (X, R) with a cost function ¢ : X — RT, assume that there ezists a function
f : N = N such that for any € > 0 and weight function w : X — RT, there is an
e-net with respect to w(-) of cost at most c;f) - f(). Further assume such a net can
be computed in polynomial time. Then one can compute a f(OPTg)-approximation

to the minimum cost hitting set for R in polynomial time.

We now turn to a combinatorial use of e-nets in rounding. A set C of n convex
objects in R? is said to satisfy the HD(p,q) property if for any set C' C C of
size p, there exists a point common to at least ¢ objects in C' (see Chapter 4).
Answering a long-standing open question, Alon and Kleitman [AK92] showed that
then there exists a hitting set for C whose size is a function of only p,¢q and d—
in particular, independent of n. The resulting function was improved to give the
following statement.

THEOREM 47.5.5 [AK92, [KST16]

Let C be a finite set of convex objects in R%, and p,q be two integers, where p >
q > d+ 1, such that for any set C' C C of size p, there exists a point in R?
common to at least q objects in C'. Then there exists a hitting set for C of size
O(pdg%é logcld3 1Ogdp), where ¢’ is an absolute constant.

We present a sketch of the proof. Let P be a point set consisting of a point from
each cell of the arrangement of C. For each p € P, let w(p) be the weight assigned
to p such that the total weight W = pr(p) is minimized, while satisfying the
constraint that each C' € C contains points of total weight at least 1. Similarly,
let w*(C) be the weight assigned to each C' € C such that the total weight W* =
Yo cw*(C) is maximized, while satisfying the constraint that each p € P lies in
objects of total weight at most 1. Now linear programming duality implies that
W = W¥*, and crucially, we have ¢ - W* < 1 for some constant ¢ > 0: using the
HD(p, q) property, a straightforward counting argument shows that there exists a
point p € P hitting objects in C of total weight at least ¢ - W*, where ¢ > 0 is a
constant depending only on p,q and d. Thus W = W* < %, and so a weak c-net
for P (with respect to the weight function w(-)) induced by convex objects hits all
objects in C, and has size O(Z% log® (@ ls d) 1) by Theorem This idea was
later used in proving combinatorial bounds for a variety of geometric problems;
see [AK95, [Alo98] [AKMMO2, MRI6] for a few examples.
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47.6 OPEN PROBLEMS

We conclude with some open problems.

1.

Show a lower-bound of ©(1log 1) on the size of any e-net for the primal set
system induced by lines in the plane.

. Prove a tight bound on the size of weak e-nets for the primal set system

induced by convex objects. An achievable goal may be to prove the existence
of weak e-nets of size O(ﬁ)

Improve the current best bound of O(%log log%) for weak e-nets for the
primal set system induced by axis-parallel rectangles in R2.

. Show a lower bound of (% — 0(1)) % log % for the size of any e-net for the primal

set system induced by half-spaces in R%.

. Show a lower bound of Q(% log %) for e-nets for the primal set system induced

by balls in R3.

An unsatisfactory property of many lower bound constructions for e-nets is
that the construction of the set system depends on the value of e—typically
the number of elements in the construction is only ©(%log1); each element
is then ‘duplicated’ to derive the statement for arbitrary values of n. Do
constructions exist that give a lower bound on the e-net size for every value
of €?

Improve the slightly sub-optimal bound of Theorem to show the fol-
lowing. Let S be a set of n (d — 1)-dimensional simplices in R?, d > 3, and
let m = m(S) denote the number of d-tuples of S having a point in common.
d
mr
Then for any r < n, there is a %—cutting of § with size at most O(rd_l + T)
n
Improve the current bounds for e-approximations for the primal set system

induced by balls in R? to O( L )

Tt
Let (X, R) be a set system with o (m, k) = O(m®k?%), where 1 < d; < d
are constants (with pg(m, k) as defined in the first section). Do there exist

relative (e, §)-approximations of size O(ﬁ) for (X,R)?
cdtt gait

47.7 SOURCES AND RELATED MATERIALS

READING MATERIAL

See Matousek [Mat98] for a survey on VC-dimension, and its relation to discrepancy,
sampling and approximations of geometric set systems. An early survey on e-nets
was by Matousek [Mat93a]. Introductory expositions to e-approximations and e-
nets can be found in the books by Pach and Agarwal [PA95], Matousek [Mat02al,
and Har-Peled [HP11]. The monograph of Har-Peled [HP11] also discusses sensitive
approximations and relative approximations. The books by Matousek [Mat99] on



22 Nabil H. Mustafa and K. Varadarajan

geometric discrepancy and by Chazelle [Cha00] on the discrepancy method give
a detailed account of some of the material in this chapter. From the point of
view of learning theory, a useful survey on approximations is Boucheron et al.
[BBLO5], while the books by Devroye, Gyorfi, and Lugosi [DGLI6] and Anthony
and Bartlett [AB09| contain detailed proofs on random sampling for set systems
with bounded VC-dimension. For spatial partitioning and its many applications,
we refer the reader to the book by Guth [Gut16].

RELATED CHAPTERS

Chapter 13: Geometric discrepancy theory and uniform distribution
Chapter 40: Range searching

Chapter 44: Randomization and derandomization

Chapter 48: Coresets and sketches
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