
HAL Id: hal-01468586
https://hal.science/hal-01468586

Submitted on 15 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Multiview Framework Driven by Use Cases to
Support the Design of Service Components

Emmanuel Renaux, Gilles Vanwormhoudt, Christophe Tombelle

To cite this version:
Emmanuel Renaux, Gilles Vanwormhoudt, Christophe Tombelle. A Multiview Framework Driven by
Use Cases to Support the Design of Service Components. 2013 IEEE Seventh International Symposium
on Service-Oriented System Engineering, Mar 2013, San Francisco, United States. pp.268 - 273,
�10.1109/SOSE.2013.47�. �hal-01468586�

https://hal.science/hal-01468586
https://hal.archives-ouvertes.fr

A Multiview Framework Driven by Use Cases
to Support the Design of Service Components

Emmanuel Renaux1, Gilles Vanwormhoudt1,2 and Christophe Tombelle1
1 TELECOM Lille 1 / Institut MINES-TELECOM
2 LIFL / CNRS - University of Lille 1 (UMR 8022)

59655 Villeneuve d’Ascq cedex - France
{renaux, vanwormhoudt, tombelle}@telecom-lille1.eu

Abstract—In the field of software technologies, the adoption
of Service Oriented Architecture for IS has been accompanied
by the introduction of new service component models which
are well-suited to realize services. While these service compo-
nents offer new capabilities to simplify the construction and
maintenance of IS, the issue of their design needs to be further
examined as current existing works do not sufficiently bridge
the gap between requirements and service component models.
In this paper, we present a multi-view framework to support
the design of services along the development process. The
framework is grounded on the notion of Logical Service Block
which represents a service from Use case to assembly model
and acts as a pivot between views ensuring the consistency
and the traceability of services at different stages and levels
of detail. The proposed framework has been implemented to
provide a UML2 tool that helps designers in elaborating views
and projecting services towards a specific platform like SCA.

Keywords-service component, service design, use case, view,
UML, traceability, engineering process.

I. INTRODUCTION

Information systems (IS) have been the battlefield of
successive campaigns of re-engineering for new features
and new technologies. Recently, the technology change was
the Service Oriented Architecture (SOA) [1]. This architec-
ture framework has been adopted to partition IS in coarse
grained, loosely coupled and autonomous services which
encompass one or more business or technical discrete func-
tions. SOA adoption has led to propose new approaches and
new software artifacts for their design and implementation.
The introduction of several service component models [2],
[3], like SCA, OSGI and Fractal is one of these novelties.
The services are then provided by service components which
may in turn use services provided by other components and
be assembled into composites to provide specific business
capabilities. While service component models promise sev-
eral benefits in terms of evolution and maintenance, the
design of complex IS based on such components remains
an important issue. In particular, questions about how to
identify such service components, how to elaborate their
external and internal structure and how to put them in a
consistent assembly still need to be investigated.
Existing works only offer partial responses. On one side,

some works provide top-down solutions to identify services
from the requirements by using an approach driven either
by business process either by use cases [5], [6]. It appears
however that most of these works do not consider the rest of
the development process. The SOAML specification recently
adopted by OMG [7] fills the gap but its notion of service is
transverse to components and therefore is not well align with
current service component models. On the other side, some
works enable the modeling of service components during
the design phase, mainly in the scope of the UML notation.
According to these works, this modeling is achieved either
by reusing existing constructs and diagrams [8] either by
extending UML with appropriate profiles [9]. Unfortunately,
we observe that the modeling of service components pro-
moted by these works is generally not related with the
requirements about services. In addition, service components
are often considered as technological concerns.
In this paper, we propose a multi-view framework driven
by use cases to support the design of service components
from requirements to implementation. The novelty of this ap-
proach compared to existing works is explained in Section II.
In the framework, each view addresses a specific concern of
the design process and models parts of the services or their
assembly (see Section III). The framework is based on the
notion of Logical Service Block which represents a service
from requirements to design and acts as a pivot between
views ensuring their consistency and enabling round-trip
derivations. This pivot supports the traceability of services
at different levels of detail and consequently improves the
quality and readability of system models. The framework has
been implemented to provide a UML2 tool (see Section IV)
that helps designers during the elaboration of views and the
projection of services toward a specific platform like SCA.

II. USE CASE AND SERVICES

Despite intensive SOA adoption in recent years, no unified
methodological approach to identify and design services
from business requirements [1] has been reached yet. In-
stead, top-down and bottom-up approaches have been pro-
posed. In this paper, we are interested in top-down ones,
that can be further divided into those driven by the business

process and those driven by use cases. A lot of top-down
approaches [5], [7], [10] follow the process-driven method
either by formulating guidelines to identify services or by
deducting services from process models in a systematic
manner. However, process-driven approaches also commonly
bear some difficulties: need of a complete knowledge of
the enterprise processes, too much process-oriented and too
large scope for small and medium-sized systems.

Compared to process-driven approaches, the main ar-
guments in favor of use-case driven ones are: first, use
cases offer a systematic and intuitive means to capture
functional requirements with a focus on the value added for
the user, secondly, they can drive the whole development
process. Regarding the relationship between use cases and
services, we have found works with different focus. A first
group has explored use cases as a way to characterize and
integrate existing software services in relation with business
requirements [11], [12]. A second group of works, which is
more specifically related to our proposal, addresses the issue
of constructing new service-based systems from use cases
capturing requirements. We review these works hereafter.

Authors of [13] propose a description of services based
on several related use cases derived from parts of the Use
Case diagram: scripts like participants, system or extensions
paths. To complete this description, a process and guidelines
to direct the analysis are given. The work described in [6]
also proposes to derive the structure of services from the Use
Case diagram. For that purpose, each use case is assumed
to map a service-oriented artifact and associations between
primary actors and use-cases serve to identify interfaces of
such services. In [14], the mapping of use cases to services
is also considered. Business and technical criteria to decide
how to group use cases relatively to a particular business
service component are given to drive this mapping process.
[15] also discusses use case as a requirements acquisition
method which is applied to SOA requirements. The authors
mainly explain how to exploit use case as a supplement to
the model of business processes but they do not provide a
guideline to identify the relevant services. More recently,
[16] makes an extensive usage of use cases to produce
service inventories from business requirements. In this work,
each business service is itself modeled as a collection of
candidate services represented by use cases marked with
stereotype for services types and aggregated with inclusion
relationship. In addition, service repositories are related to
participants in a clustered Use Case diagram.

To sum up the reviewed works, few ones make the
association between use cases and services by just providing
guidelines while others aim to offer an explicit representa-
tion of services within the Use Case diagram. For the latter
category, we have found works that just rely on a particular
arrangement or interpretation of existing use case constructs.
Some other works extend use case with new concepts and
relationships using the profile mechanism. Although these

works provide a useful basis to relate use cases and services,
they mainly focus on the Use Case diagram but not on
all other steps of the development process. Exceptions are
[6], [14] but in these works, the issue of designing service
components is only treated superficially and no support is
provided to maintain the consistency of designed services
from requirements to implementation. In the next section, we
propose a multi-view framework in response to this problem.

III. OUR MULTI-VIEW FRAMEWORK FOR MODELING
SERVICE-BASED IS

A. Overview

In our framework, the notion of Logical Service Block
(LSB) is the main piece of design process of a system. This
unit of modeling represents the service from requirements
to design and groups elements related to a same service.
Thanks to this notion, we facilitate the traceability of ser-
vices at each stage and support a decomposition of the
system that enables to partition and reduces the design effort.

Iterative
Process

Assembly View

«logicalServiceBlock»
DeskManagement

Book a room

Register
arriving guest

Check out
guest

Booking

Checking

«delegate»

«delegate»

«delegate»

Customer

guest

guest

HotelRoom

bookedRoom

occupedRoom

Payment«delegate»

Assign a room
assignedRoom

Compute bill

occupant

guest

«delegate»

room

«logicalServiceBlock»
DeskManagement

Book a room

Register
arriving guest

Check out
guest

Booking

Checking

«delegate»

«delegate»

«delegate»

Customer

guest

guest

HotelRoom

bookedRoom

occupedRoom

Payment«delegate»

Assign a room
assignedRoom

Compute bill

occupant

guest

«delegate»

room

«logicalServiceBlock»
DeskManagement

Booking

Checking

«control»
CheckOutGuest Payment

occupedRoom

guest

«delegate»

«control»
ComputeBill

«entity»
Customer

«entity»
HotelRoom

«delegate»

«delegate»

room

«control»
BookARoom

«control»
RegisterArrivingGuest

«control»
AssignARoom

«delegate»

guest

bookedRoom

«delegate»

guest

occupant assignedRoom

«logicalServiceBlock»
DeskManagement

Booking

Checking

«control»
CheckOutGuest Payment

occupedRoom

guest

«delegate»

«control»
ComputeBill

«entity»
Customer

«entity»
HotelRoom

«delegate»

«delegate»

room

«control»
BookARoom

«control»
RegisterArrivingGuest

«control»
AssignARoom

«delegate»

guest

bookedRoom

«delegate»

guest

occupant assignedRoom

«logicalServiceBlock»
DeskManagement

Booking

Checking

Payment

«logicalServiceBlock»
Accountancy

SetRoomRates

«logicalServiceBlock»
Accountancy

«logicalServiceBlock»
DeskManagement

Guest

DeskClerk

Book a room

Register
arriving guest

Check out
guest

Collect guest's
payment

«externalUse»

Set room ratesHotelManager

«include» Assign room

Compute bill
«include»

:CheckOutForm guest:
Customer

:CheckOutGuest:DeskClerc occupedRoom:
HotelRoom

:Payment

identify guest
identifyGuest()

getGuestData()

check room
checkRoom()

getStayDetails()

printBill()
show bill()

process payment
processPayment()

processPayment()

getRoomRate()

:ComputeBill

computeBill()

:CheckOutForm guest:
Customer

:CheckOutGuest:DeskClerc occupedRoom:
HotelRoom

:Payment

identify guest
identifyGuest()

getGuestData()

check room
checkRoom()

getStayDetails()

printBill()
show bill()

process payment
processPayment()

processPayment()

getRoomRate()

:ComputeBill

computeBill()

:CheckOutForm guest:
Customer

:CheckOutGuest:DeskClerc occupedRoom:
HotelRoom

:Payment

identify guest
identifyGuest()

getGuestData()

check room
checkRoom()

getStayDetails()

printBill()
show bill()

process payment
processPayment()

processPayment()

getRoomRate()

:ComputeBill

computeBill()

Service scope

Service scope

Collaboration scope

System scope

System scope
Use Case View

Interaction View

Service Design View

Collaboration Analysis View

Deductive derivation

Payment

View

Process step

Figure 1. Overview of the iterative process and its 3 scopes

In addition to the notion of LSB, our framework provides
several views to describe a system. Each view addresses a
specific concern related to a particular LSB or an assembly
of LSBs. The notion of LSB is omnipresent but each view
has a unique way to represent it with different constituents
depending on the view. As the semantics is the same in each
view, an LSB acts as a pivot that links the content of each
views. This pivot is a support for traceability of services

at different levels of detail and consequently improves the
quality and readability of system models.

Figure 1 gives an overview of our framework and its
underlying iterative process. In this process, each step
corresponds to a view. A specific view can be elaborated
iteratively, while remaining consistent with other views. For
instance, a designer can draft the Use Case view, then
proceed with the Collaboration Analysis view to refine the
LSBs. By getting them into details, new requirements may
be identified that cause the designer to revise the contents
of the corresponding LSB within the Use Case view.

In the following, we explain each view in more detail and
illustrate them with a management system for hotel rooms.

B. Detail of views and illustrations

1) Use Case view: The Use Case view (UCv) concerns
the requirements and is founded on the UML use case
diagram with adding of the LSB notion and externalUse
relationship. A UCv allows to decompose a system in
LSBs, by grouping use cases related to the same service.
For our example (see figure 2), we obtain two LSBs, one
for reservation and occupation of the room and one for
accountancy concerns. As we can see, each LSB contains the
subset of the use cases related with the service it contributes
to. These use cases will be realized by elements enclosed
within the LSB in other views of the system.

«logicalServiceBlock»
Accountancy

«logicalServiceBlock»
DeskManagement

Guest

DeskClerk

Book a room

Register
arriving guest

Check out
guest

Collect guest's
payment

«externalUse»

Set room rates HotelManager«include»
Assign room

Compute bill

«include»

Figure 2. Use case view of the Hotel Management System

Standard relationships between use cases, extend and
include, are kept but their use is limited to the inside of
an LSB. To cross LSB boundaries, we add the non-standard
externalUse relationship which explicitly shows the func-
tional dependencies between service use cases. Relations
that cross boundaries, either between actors and services,
either between services, will be captured into interfaces
between services in other views. In Figure 2, the externalUse
relation between the two LSBs, expresses the interactions
between the use cases of these services. Designers are free
to choose the best decomposition, the one that reduces
interactions and dependencies through boundaries, or simply
the one that takes into account IS constraints. UML activity
diagrams, modeling business process flows, can help in
grouping use cases. As we will see after, this decomposition
is maintained in subsequent views to make the corresponding
model simpler to understand, change, and maintain.

2) Collaboration Analysis view: The Collaboration Anal-
ysis view (CAv) describes the realization of identified use
cases in terms of collaborations and objects. Like in UML,
a collaboration defines a set of roles played by objects. This
concept precises how a use case is realized. To enhance
the traceability, collaborations are grouped like use cases
following the LSB they describe.

In figure 3, we can see that each use case contained
in an LSB is transformed into a set of one or several
collaborations which define the roles played by the objects
to realize the use case. These roles are attached to participat-
ing objects through collaboration bindings. This way, each
participation of an object in a collaboration is represented
by a link characterizing its role in this interaction. For
instance, a customer object is enrolled in the CheckOutGuest
collaboration and has a guest role within it. Roles played by
an object will determine its interfaces in the design view.
Ports appear in this view to hold required and provided
interfaces to implement dependencies detected in the UCv.
Here, the Booking provided interface realizes the relationship
between Guest actor and Book a room use case. These
interfaces allow actors to request services and services to
be connected.

«logicalServiceBlock»
DeskManagement

: BookARoom

: RegisterArrivingGuest

: CheckOutGuest

Booking

Checking

guestGui

deskClerkGui

deskClerkGui

customer : <Undefined>

guestHandler

guestHandler

room:
HotelRoomManager

bookedRoomHandler

occupedRoomHandler

Paymentpayment

: AssignARoom

assignedRoomHandler
occupant

guestHandler

Collaboration Analysis View

BookARoom

gestGui

guestHandler
bookedRoomHandler

AssignARoom

occupantHandler assignedRoomHandler

CheckOutGuest

deskClekGui guestHandler

payment

: ComputeBill

payment

roomHandler

roomToPay

Collaborations

roomToPay payment

ComputeBill

...

Figure 3. Collaboration Analysis View of the DeskManagement Service

An object can play a role in several collaborations speci-
fied for an LSB but it does not inevitably play the same role.
However, as one goal is to minimize dependencies between
services, we do not authorize the enrollment of an object in
collaborations within another LSB. If needed, it is possible
to add required interfaces to define connections between ser-
vices as actors interactions. For instance, Payment required
interface comes from externalUse relation of the UCv.

3) Interaction view (Iv): The Interaction view (Iv) par-
tially models the collaborations identified for an LSB in the
CAv. This view represents message exchanges between the

roles of a collaboration during the execution of a use case
scenario. In addition, to give more details about a particular
collaboration, this view is also intended to prepare the design
of a service within the Service Design view. Furthermore,
this view can help to discover LSBs and to establish their
boundaries iteratively with the other views.

We use UML-like sequence diagrams to represent the
interactions of a collaboration in terms of roles but we
introduce some new specific role types to better characterize
the kind of behavior attached to a role and render the
interactions of an LSB with external services and actors.
The Control role manages all the steps described in the
scenario. The Entity role is a kind of business object easily
identified in specifications. It contains the information of the
system as well as the business processes. Boundary roles are
ones played by the service to respond to actors. Finally, the
External Control role represents required functions provided
by another system or service. Boundary and External Con-
trol roles can be considered respective representations of the
provided and required ports.

:CheckOutForm guestHandler:
CustomerManager

:CheckOutGuest:DeskClerk occupedRoomHandler:
HotelRoomManager

payment
:Payment

identify guest
identifyGuest()

getGuestData(id)

check room
checkRoom()

getStayDetails(id)

show bill()

process payment
processPayment()

processPayment()

computeBill()

printBill()

:ComputeBill

getRoomRate()

Actor Control role Boundary roleEntity role External Control role

Figure 4. An interaction View of the Checkout Guest Collaboration

Figure 4 shows one Iv for the Checkout collaboration pre-
sented previously. The CheckOutForm boundary role models
the interactions between the service and its environment.
The latter role exchanges messages with the CheckoutGuest
Control role. Other roles are Entity roles (e.g. HotelRoom-
Manager). The Payment External Control role involved in
the payment phase captures the use of a Control role from
another service. The message receives by the Control role
through boundary roles and the messages sent through
External Control roles serve to define respectively provided
and required interfaces of a service.

4) Service design view: The Service Design view (SDv)
describes the software elements, their structure and the
relationships supporting the behavior of an LSB described
in its Interaction views. In this view, an LSB provides
interfaces that expose its business methods and organize
them according to the points of view of the client service.

The control and the entity parts contain respectively the
business processing and information management. The con-
trol parts encapsulate processing due to use case scenarios
and manage all its steps. It plays the intermediate role
between ports and entity parts. The entity parts manage the
business objects, containing facility to access data as well
as the business processes.

Service Design View

«logicalServiceBlock»
DeskManagement

Booking

Checking
«control»

: CheckOutGuest

Payment

«entity»
: CustomerManager

«entity»
: HotelRoomManager

«control»
: BookARoom

«control»
RegisterArrivingGuest

«control»
: AssignARoom

fetch(id)
getGuestData(id)

id

«entity»
CustomerManager

fetch(number)
getStayDetails(id)

number

«entity»
HotelRoomManager

identifyGuest()
checkRoom()
processPayment()

«control»
CheckOutGuest

Class Diagram

«control»
: ComputeBill

computeBill()

«control»
ComputeBill

...

Figure 5. Service Design View of the DeskManagement service

In the example, the DeskManagement LSB service has
provided interfaces corresponding to control roles described
in the Iv (e.g. CheckoutGuest, figure 5). Provided interfaces
are implemented by one or several parts. Entity roles are
good candidates to become Entity Parts of a service as the
HotelRoomManager. Some parts, such as ComputeBill, need
data or processing from another service. To do that, they
delegate to required ports like Payment.

5) Assembly View (Av): As shown by Figure 6, the
Assembly view (Av) has the same scope as the UCv, i.e.
the representation of the whole system in terms of LSBs,
but gives a black box view of services and focuses on
their connections. Each logical service is only represented
with its ports and these ports are connected to ports of
other services when it needs their operations. A connector
always links a port specifying a required interface to a
port specifying a provided interface of distinct LSBs. The
connections between LSBs are the realization in the design
view of their related externalUse relations in the UCv.

«logicalServiceBlock»
DeskManagement

Booking

Checking

Payment

«logicalServiceBlock»
Accountancy

SetRoomRates

Figure 6. Assembly view of the Hotel Room Management system

Given this last view and all the previous ones, we reach a
complete model of the system with consolidated LSBs. This

View Stereotype Target metaclasses
System «System» Package
UCv «UseCaseView» Package
UCv «LogicalServiceBlock» Package
UCv «externalUse» Relationship
CAv «CollaborationView» Package
CAv «LogicalServiceBlock» Component
CAv «Required» Port
CAv «Provided» Port
CAv «LogicalServicePart» CollaborationUse
Iv «ControlRole» LifeLine
Iv «EntityRole» LifeLine
Iv «BoundaryRole» LifeLine
Iv «ExternalRole» LifeLine
SDv «LogicalServiceBlock» Component
SDv «ControlPart» Property
SDv «EntityPart» Property
SDv «delegate» Relationship
Av «AssemblyView» Package
Av «LogicalServiceBlock» Component

Table I
STEREOTYPES DEFINED FOR THE PROFILE

modeling is completely independent of any technological
aspects and follows the classical Model Driven Architecture
approach, it is then possible to translate these services into
artifacts corresponding to a technological platform like SCA
as explained in the following section.

IV. TOOLING

To experiment and validate our framework, we have de-
veloped a modeling tool integrated into Eclipse environment.
This tool provides a set of functions to help the designer with
the creation of views, the maintenance of the consistency of
the complete model and its projection to specific platforms.

A. Metamodeling

Most of the concepts in our framework are close to UML2
ones. As a result, we have implemented them in the form
of a profile for the UML modeling tools included with the
Eclipse environment. Table I gives the set of stereotypes
and metaclasses targeted, used to represent these concepts
and each separate view. The capacity of a stereotype to be
applied to distinct UML concepts is exploited to render the
same concept in distinct views (see Component and Package
for example). Inversely, we also use the capacity to apply
distinct stereotypes to a same concept in order to render
views of a system with separate packages.

B. View Consistency

We have defined OCL constraints to guarantee the con-
sistency of views. These constraints are classified in two
categories: 1) Intra-view constraints check the correct appli-
cation of the proposed stereotypes on UML2 elements and
check properties on the structure of stereotyped elements
within a view; 2) Inter-views constraints concern with the
consistency between views. They check properties between
elements of a view with those included in other views. Here-
after, we give some OCL constraints defined for our profile

in each category. Inter-views constraints are expressed in
the context of the «System» root package to simplify the
comparison of elements from multiple views.
/ / Query t o t e s t i f an e l e m e n t has a s t e r e o t y p e
c o n t e x t Element

d e f : h a s S t e r e o t y p e (s t e r e o t y p e : S t r i n g) : Boolean = s e l f . g e t A p p l i e d S t e r e o t y p e s
()−>one (s : S t e r e o t y p e | s . name = s t e r e o t y p e))

/ / I n t r a−v iew C o n s t r a i n t : A l l <<e x t e r n a l U s e >> r e l a t i o n s h i p s must l i n k UseCases
from <<L o g i c a l S e r v i c e B l o c k >>.

c o n t e x t Dependancy inv :
s e l f . h a s S t e r e o t y p e (’ e x t e r n a l U s e ’) i m p l i e s
(s e l f . s o u r c e . owner . h a s S t e r e o t y p e (’ L o g i c a l S e r v i c e B l o c k ’) and
(s e l f . t a r g e t . owner . h a s S t e r e o t y p e (’ L o g i c a l S e r v i c e B l o c k ’))

/ / I n t r a−v iew C o n s t r a i n t : Source and t a r g e t UseCase o f a l l <<e x t e r n a l U s e >>
r e l a t i o n s h i p s must n o t be l on g t o t h e same LSB .

c o n t e x t Dependancy inv :
s e l f . h a s S t e r e o t y p e (’ e x t e r n a l U s e ’) i m p l i e s
(s e l f . s o u r c e . owner <> s e l f . t a r g e t . owner)

/ / I n t e r−v i e w s C o n s t r a i n t : R e q u i r e d Por t o f a LSB i n t h e CAv must match <<
e x t e r n a l U s e >> r e l a t i o n s h i p i n t h e use case UCVview

c o n t e x t Package
inv : s e l f . h a s S t e r e o t y p e (’ System ’) i m p l i e s

l e t u s e c a s e v i e w = s e l f . n e s t e d P a c k a g e−>s e l e c t (p : Package | p . h a s S t e r e o t y p e (’
UseCaseView ’)) i n

l e t usecaseLSB = u s e c a s e v i e w . a l lOwnedElements ()−>s e l e c t (e : Element | e .
h a s S t e r e o t y p e (’ L o g i c a l S e r v i c e B l o c k ’)) i n

l e t c o l l a b v i e w = s e l f . n e s t e d P a c k a g e−>s e l e c t (p : Package | p . h a s S t e r e o t y p e (’
C o l l a b o r a t i o n V i e w ’) i n

l e t co l labLSB = d e s i g n v i e w . a l lOwnedElements ()−>s e l e c t (e : Element | e .
h a s S t e r e o t y p e (’ L o g i c a l S e r v i c e B l o c k ’)) i n

col labLSB−>f o r A l l (c : Component | usecaseLSB−>e x i s t s (p : Package | c . name = p .
name and

p−>s e l e c t (e : Element | e . h a s S t e r e o t y p e (’ e x t e r n a l U s e ’)) . s i z e () = c .
ownedPort−>(p o r t : P o r t | p o r t . h a s S t e r e o t y p e (’ R e q u i r e d ’)) . s i z e ())

All the OCL constraints have been implemented using the
OCL engine included in the Eclipse environment. They can
be checked at any time during the design to test the model
consistency and its conformity with our abstract model.

C. View derivation

Guest

DeskClerk

Book a room

Register
arriving guest

Check out
guest

Collect guest's
payment

«externalUse»

Set room rates

HotelManager

«include»
Assign room

Compute bill
«include»

«logicalServiceBlock»
DeskManagement

Book a room

Register
arriving guest

Check out
guest

Guest
ProvidedPort

DeskClerk
ProvidedPort

«delegate»

«delegate»

«delegate»

Accountancy
Service

«delegate»

Assign a room

Compute bill

«delegate» Guest
RequirecPort

View Derivation
(UseCaseView to
 CollaborationView)

DeskManagement «logicalServiceBlock»

Accountancy«logicalServiceBlock»

(UML2 Package)

(UML2 Component)

Figure 7. Example of view derivation

As explained in section III-A, the dependencies between
the contents of some views and the contents of other ones
ensure traceability along the design. To facilitate the creation
of a view from another one, we provide a set of model
transformations (see deductive derivations in Figure 1). Each
transformation takes a profiled model containing the input
view and completes the model by adding the target view. The

input view must include all the elements required to produce
the output view. The result is not intended to be complete
and must be considered as a first sketch to be refined and
improved. In Figure 7, we can observe that the derived view
lacks some elements included in the CAv of figure 3 like
role bindings or parts for instance. These elements cannot
be deduced from the input view. The designer will generally
add them afterwards. All the provided transformations have
been written using the QVT language.

D. Projection to the Service Component Architecture

The objective of our modeling framework is to obtain a
system specification which is independent of technological
concerns. In order to target a specific platform of services, a
transformation of models. In our modeling tool, we propose
a QVT transformation that enables the construction of a
Service Component Architecture (SCA) model from a model
based upon our profile. The provided transformation uses
the profiled UML2 as the source metamodel and the SCA
metamodel as target one. For this transformation, only the
SDv of each LSBs and the Av of a profiled UML2 model
are considered to produce the resulting SCA model. In the
resulting model, nor bindings of services and references nor
SCA components implementations are specified in order
to let the designers choose the best technical platform to
implement their services (JAVA, EJB, WSDL, ...).

V. CONCLUSION

In this paper, we propose a multi-view framework to
deal with service boundaries very early in the development
process and to better ensure their traceability. The proposed
framework has been experimented in actual projects from
large business domains, i.e. insurance, banking, health care.
Two case studies experimenting the framework are described
in [17], [18], one to design an E-Learning system and one
to refund parts of IS of French waterways. All along these
experiments, it has been felt that applying services division
early in the process and that maintaining consistency with
a tool is more efficient. Furthermore, the framework has
also enabled and accelerated human interactions, making
all stakeholders participating in the service identification of
their IS. Finally, traceability has been maintained more easily
and the impact of an evolution is more quickly detected.

A first perspective aims to synchronize views in our
modeling tools. Currently, views are not updated to reflect
the changes in others. To avoid consistency problems, we
want to propose a solution that automatically propagates
the changes in dependent views or, if not possible, provides
the designer with suggestions to make the update manually.
In the scope of this paper, we have mainly focused on
functional requirements which are generally the first and
main focus of interest during services design. We acknowl-
edge that non-functional requirements are also an issue of
SOA [4] and we are currently studying policies (security,

transaction) of service component model to address this
dimension in the scope of our approach. Finally, the last
perspective concerns the reusability of services modeled
with our approach, particularly with regard to their view-
based structuring. This perspective will be investigated with
the goal to make reusable LSBs a key accelerator for the
design of service-oriented systems.

REFERENCES

[1] M. Bell, Service-Oriented Modeling: Service Analysis, De-
sign, and Architecture. Wiley&Sons, 2008.

[2] A. Karmarkar and M. Edwards. Assembly of business systems
using service component architecture. In Proc. of Service-
Oriented Computing ICSOC 2006, LNCS, Springer, 2006.

[3] B.J. Kramer, Component meets service: what does the mon-
grel look like?, Journal of Innovations in Systems and Soft-
ware Engineering, Springer, 2008.

[4] H. Becha and D. Amyot. Non-functional Properties in SOA -
a Consumer’s Perspective. Journal of Software, 2012.

[5] A. Arsanjani et al., SOMA: A method for developing service-
oriented solutions, IBM System Journal, vol. 47, 2008.

[6] L. Bocchi, J.L. Fiadeiro, and A. Lopes. A use-case driven
approach to formal service-oriented modelling. In Proc. of
Symp. on Leveraging Applications of Formal Methods, Ver-
ification and Validation, Springer, 2008.

[7] B. Elvesoeter et al., Model-driven service engineering with
SOAML. In book Service Engineering, Springer, 2011.

[8] P. Weiss, J. Zendulka, Modeling of Services and Service
Collaboration in UML 2.0. In Proc. of Information Systems
and Formal Models, 2007.

[9] V. Ermagan, I.H. Kruger, A UML2 Profile for Service Mod-
eling. In Proc. of MDE Languages and Systems, 2007.

[10] L.G. Azevedo et al., A Method for Service Identification
from Business Process Models in a SOA Approach. In Proc.
of 10th Int. Workshop on Enterprise, Business-Process and
Information Systems Modeling, 2009.

[11] B. Zhao, G. Cai, Z. Jin, From Use Case Model to Service
Model: An Environment Ontology Based Approach, In Proc.
of Conference on Grid and Cooperative Computing, 2010.

[12] V. Alkkiomaki, K. Smolander, Integration Use Cases - An
Applied UML Technique for Modeling Functional Require-
ments in SOA. In Proc. of the Conference on Requirements
Engineering: Foundation for Software Quality, 2007.

[13] S. Huayou et al., A Service-Oriented Analysis and Modeling
Using Use Case Approach. In Proc. of Computational Intel-
ligence and Software Engineering, 2009.

[14] PZ. Stojanovic, A. Dahanayake, and H. Sol. Modeling and
design of SOA. In Proc. of Int. Conference on Systems, Man
and Cybernetics, IEEE, 2004.

[15] E. Knauss and D. Lubke. Using the Friction between Business
Processes and Use Cases in SOA requirements. In Proc. of
Conference on Computer Software and Applications, 2008.

[16] P. Lago and M. Razavian. A Pragmatic Approach for Analysis
and Design of Service Inventories. In Proc. of Service-
Oriented Computing - ICSOC Workshops, Springer, 2011.

[17] E. Renaux, Component based approach to design Information
System, Phd Thesis from the University of Lille, 2004.

[18] E. Renaux, P.A. Caron, X. Le Pallec, Learning Management
System component-based design: a model driven approach,
In Proc. of Montreal Conference on eTechnologies, 2005.

