
HAL Id: hal-01468565
https://hal.science/hal-01468565

Submitted on 16 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A substructuring approach for modeling the acoustic
scattering from stiffened submerged shells coupled to

non-axisymmetric internal structures
Valentin Meyer, Laurent Maxit, Christian Audoly

To cite this version:
Valentin Meyer, Laurent Maxit, Christian Audoly. A substructuring approach for modeling the acous-
tic scattering from stiffened submerged shells coupled to non-axisymmetric internal structures. Journal
of the Acoustical Society of America, 2016, 140 (3), pp.1609-1617. �10.1121/1.4962235�. �hal-01468565�

https://hal.science/hal-01468565
https://hal.archives-ouvertes.fr


Scattering from non-axisymmetric cylindrical submerged shells Meyer et al.

A substructuring approach for modeling the acoustic

scattering from stiffened submerged shells coupled to

non-axisymmetric internal structures

April 27, 20165

Running title: Scattering from non-axisymmetric cylindrical submerged shells

Valentin Meyera), Laurent Maxit
INSA Lyon, Laboratoire Vibrations Acoustique, 25 bis, av. Jean Capelle, 69621 Villeurbanne, France

10

Christian Audoly
DCNS Research, 199 avenue Pierre-Gilles de Gennes, 83190 Ollioules, France

a) Author to whom correspondance should be addressed. Electronic mail: valentin.meyer@insa-lyon.fr

15

1



Scattering from non-axisymmetric cylindrical submerged shells Meyer et al.

Abstract

The scattered pressure from a stiffened axisymmetric submerged shell impinged by acous-
tic plane waves has been investigated experimentally, analytically and through numerical
models. In the case where the shell is periodically stiffened, they show that helical, Bragg,
and Bloch-Floquet waves can propagate. The influence of non-axisymmetric internal frames20

on the propagation of these waves is nevertheless not well known, as it can considerably
increase the computational costs. To overcome this issue, the Condensed Transfer Function
method, which has been developed to couple subsystems along linear junctions in the case
of a mechanical excitation, is extended to acoustical excitations. It consists in approximat-
ing transfer functions on the junctions and to deduce the behavior of the coupled system25

thanks to the superposition principle and the continuity equations. In particular, it can be
used to couple a dedicated model of an axisymmetric stiffened submerged shell with non-
axisymmetric internal structures modelled by the Finite Elements Method. Incident plane
waves are introduced in the formalism and far-field re-radiated pressure is estimated. An
application consisting in a stiffened shell with curved plates connecting the ribs is considered.30

Supplementary Bloch-Floquet trajectories are observed in the frequency-angle spectrum and
are explained using a simplified interference model.
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I INTRODUCTION

The scattering from a shell immersed in a heavy fluid and impinged by an acoustic plane
wave has been intensively studied in the past. In addition to the specular reflection of the35

incident wave, the elastic shell vibrates and reradiates noise. The farfield scattered pressure
shows typical patterns in the frequency-angle spectrum due to structural wave propagation
and geometric diffraction. Compressional and shear waves that propagate helicoidally on
the surface of the cylinder are highlighted using the elastic theory on infinite shells1, 2 or on
simply supported finite shells.3 For naval applications, cylinders are often reinforced by ring40

stiffeners or ribs to cope with the external static pressure. The influence of evenly spaced
ribs was first investigated experimentally.4–6 Two scattering phenomena are observed: the
Bragg scattering, which is due to the interferences between the geometrical reflections of
the incident plane wave on the ribs and the Bloch-Floquet scattering which is due to the
subsonic flexural waves that propagate along the shell and interact with the internal frames.45

Tran-Van-Nhieu7 derives the problem analytically on a simply supported slender cylindrical
shell, taking into account only the normal component of the reacting forces applied by the
stiffeners to the shell. Guo8 distinguishes geometric and dynamic effect of an internal plate
loading on an infinitely long cylinder, showing that resonances of the internal structure may
affect greatly the scattered field. A similar 2D problem is analytically derived by Klauson50

and Metsaveer9 and they point out that lengthwise ribs and walls act on the circumferential
waves. The inclusion of bulkheads is investigated in several studies10–12 which show that the
coupling has an influence on the scattered pressure field. A quadrant symmetric arrangement
of rods connected to the ring stiffeners through rubber blocks is considered by Park13 and
he shows that the internal structures can store energy and lengthen the decay rate of an55

impulse reponse. Pan et al.14 describe the scattering from a finite cylindrical shell loaded by
sets of stiffeners and bulkheads with two different spacings. They show that, in addition of
the Bragg and Bloch-Floquet scattering due to the stiffeners, the effect of regularly spaced
bulkheads can be seen. Experimental and numerical work are conducted to evaluate the effect
of an increasing structural complexity of the submerged cylindrical shells: irregularly spaced60

ribs are considered,15, 16 internal degrees of freedom are added through resonators,17 and the
axisymmetry of the system is broken by internal structures.18 The theoretical formalism
for these problems is given by Tran-Van-Nhieu.19 Several conclusions can be drawn from
these studies. First the ribs spacing irregularity has mainly an influence on the near-field
pressure, but can also modify the Bloch-Floquet and Bragg phenomena. Then, as mentioned65

by Soize,20 it shows that the internal fuzzy structures gives rise to an apparent damping effect.
Finally, it can be said that breaking the axisymmetry increases the radiation efficiency of
the structure.21

However, in industrial applications, internal substructures with various and complex
geometries can be rigidly mounted on the stiffeners. Systems such as engine foundations70

can be found and one can wonder whether they play a role in the backscattered pressure.
The experimental studies and semi-analytical methods presented so far are limited because of
their low versatility, meaning that a dedicated set up or model should be created for each type
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of internal structure. That is why numerical methods need to be developed as an alternative
to tackle this problem. In general, the element based methods, like for instance the Finite75

Element Method (FEM) or Boundary Element Method (BEM) are well suited for modeling
systems with high geometry and property complexity. Due to the current computational
limits, they are however limited to low frequencies when the system to be described is a
submerged shell. To tackle this issue, Maxit proposes a sub-structuring approach called
the Circumferential Admittance Approach (CAA) to describe the scattering of a submerged80

shell non periodically stiffened by internal frames.22 It is based on the superposition principle
for linear passive systems, where the admittances are defined on the circumferential orders,
and allows modeling the vibroacoustic behavior on a large frequency range (typically up to
ka = 40, where k is the acoustic wavenumber and a the shell radius). This approach presents
moreover several advantages: the cylindrical shell with heavy-fluid loading is described by85

a semi-analytical method that allows faster computation than usual discretization methods.
Besides, stiffeners and bulkheads can be irregularly spaced and are modeled by FEM with
shell elements. The stiffeners are thus not limited to 1D-beam models and radial, tangential,
and axial efforts are taken into account along with the tangential moment. This method is
nevertheless based on the assumption of an axisymmetric system, so that the circumferential90

orders can be studied separately one from the others.
Besides, a substructuring approach called the condensed transfer function (CTF) method

has been recently developed to couple an axisymmetric stiffened submerged shell with non-
axisymmetric internal frames.23 It consists in benefiting from the different methods proposed
above, by modeling the stiffened submerged shell by the CAA, whereas the internal frames95

are modeled by FEM, allowing flexibility on their geometry. In order to apply the CTF
method, the junctions between the stiffened shell and the non-axisymmetric internal frames
are supposed to be lines. Then, a set of orthonormal functions called condensation functions
are used as a basis for approximating the displacements and the forces at the junctions.
Condensed transfer functions are then defined and calculated for each uncoupled subsystems.100

The superposition principle for passive linear systems, the displacement continuity and the
force equilibrium lead to the vibroacoustic behavior of the coupled system. However, the
CTF method has so far only been applied to the case of mechanical point forces. In the
present paper, the authors propose to extend the method to acoustical exciations, in order
to study the scattering from non-axisymmetric submerged shells. The paper is organized as105

follows:

• The principle of the CTF method under an acoutical excitation in the case of a cylin-
drical shell is presented in section II.

• An application case is presented in section III. Numerical results are shown and physical
phenomena are discussed.110

• Conclusions are drawn in section IV.
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II COUPLING OF A STIFFENED SUBMERGED SHELL

WITH NON-AXISYMMETRIC INTERNAL FRAMES

A Principle of the Condensed Transfer Function (CTF) method

In this section, a substructuring method called the Condensed Transfer Function (CTF)115

method is introduced in the case of an acoustical excitation. As shown in Fig. 1, the system
considered is made of an axisymmetric stiffened submerged cylindrical shell (subsystem 2),
coupled to an internal non-axisymmetric frame (subsystem 1). An acoustic domain Ω is
surrounding the cylindrical shell and M is a point in the fluid domain. An acoustic plane
wave impinges the shell in the vertical plane θ = 0, with a varying incidence α with regard120

to the normal to the shell. No fluid is considered inside the cylindrical shell.

x0
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non-axisymmetric frame
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kα
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eθ
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θN+1
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θi=0
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(b)

Figure 1: Sections of a stiffened cylindrical shell model including a non-axisymmetric internal
frame and impinged by an oblique incident wave. (a) View in the plane θ = 0. (b) View in
the plane x = xA. (Color online)

The subsystems are modeled as thin mechanical structure such as plates or shells, so
that the junctions between the two subsystems are lines. Considering here the cylindrical
coordinates (x, r, θ), each junction between the subsystems is located at constant x and r,
and thus a point on the junction can be completely characterized by its coordinate θ. Γ125

represents the coupling line and the curvilinear abscissa s is used to locate a point on Γ.
The harmonic acoustic excitation is characterized by the blocked pressure, i.e. the pressure
induced in the fluid when the system is considered as rigid.24 The total pressure in the fluid
medium Ω can then be decomposed as the sum of the blocked pressure pbl and the reradiated
pressure pre due to the system vibrations:130

p = pbl + pre (1)
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The aim is to calculate the reradiated pressure at the point M when the two subssystems are
coupled. To achieve this goal, the CTF (Condensed Transfer Function) approach previously
developed in the case of mechanical excitations23, 26 is extended to calculate the reradiated
pressure from informations calculated on the uncoupled sybsystems separatly. This method
is based on the classical admittance (or mobility) method developed for point coupling.25

135

A set of N orthonormal functions called the condensation functions is considered: {ϕi}1≤i≤N .
They are defined on the junction Γ and are functions of the curvilinear abscissa s. Examples
of sets of condensation functions and the validation on the case of the vibrational behavior of
a thin plate excited by a harmonic point load have been presented in an earlier study.26 An
example of condensation functions which have shown good results and are easy to implement140

are the gate functions, defined according to their length Ls as follows:

ϕi(s) =

{

1√
Ls

if (i − 1)Ls ≤ s < iLs

0 elsewhere
(2)

This set consists in dividing the junction Γ in N segments of size Ls. The number of conden-
sation functions N plays a key role in the convergence of the method. Results show that Ls

should be smaller than half the smallest structural wavelength at the considered frequency
to ensure good convergence.23, 26 In the present case of a circular shell, the displacement at a145

point s is written as a 4 components vector Uα(s) = (Tx, Tr, Tθ, Rθ), accounting for 3 transla-
tions and one rotation around the tangential coordinate. The rotations around the axial and
radial coordinates can be deduced from the translations by the system continuity and are
thus unnecessary in this formulation. Similarly, F α(s) is a 4 components vector accounting
for the forces in the 3 directions and the moment around the tangential coordinate.150

The principle of the CTF method consists in approximating the displacements vector
Uα(s) and the forces vector F α(s) at the junction as a linear combination of these conden-
sation functions for each subsystem α ∈ {1, 2}:

{

U1(s) ≃
∑N

i=1 u1
i ϕi(s)

U2(s) ≃
∑N

i=1 u2
i ϕi(s)

and

{

F 1(s) ≃
∑N

i=1 f 1
i ϕi(s)

F 2(s) ≃
∑N

i=1 f 2
i ϕi(s)

(3)

where uα
i (resp. fα

i ) is the displacement amplitude vector (resp. the force amplitude vector)
of subsystem α associated to the condensation function ϕi.155

For the uncoupled subsystems, the following quantities need to be calculated:

1. The condensed transfer function between ϕi and ϕj , defined by applying a force F α =
ϕj on Γ:

Y α
ij =

〈Ūα
j , ϕi〉

〈F α, ϕj〉
= 〈Ūα

j , ϕi〉 (4)

where Ūα
j is the displacement of the junction Γ when the subsystem α is excited by

F α = ϕj , and 〈•, •〉 is a scalar product defined in the case of gate functions by160

C0
I × C0

I → C

〈f, g〉 7→
∫

Γ
f(s)g∗(s) ds (5)
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where C0
I is the set of piecewise continuous functions on intervals [a, b[⊂ Γ, and ∗

means the complex conjugate. It can be easily verified that the gate functions form
an orthonormal set for this scalar product. For a couple (i, j), Y α

ij is a 4 × 4 matrix
that describes the couplings between the condensed physical quantities for all degrees
of freedom.165

2. The condensed transfer function between ϕi and an observation point M on subsystem
2 is defined by

Y 2
Mi = P 2

i (M) , ∀i ∈ {1, 2, . . . , N} (6)

where P 2
i (M) is the pressure at the point M when the subsystem 2 is uncoupled and

excited by F 2 = ϕi on Γ. As the force can be applied in one of the 4 directions, Y 2
Mi

is a 4 components vector.170

3. The free condensed displacements vector of each uncoupled subsystem α are defined
by:

ũα
i = 〈Ũα, ϕi〉 , ∀i ∈ {1, 2, . . . , N} (7)

where Ũα is the displacement at the junction of the uncoupled subsystem α when only
external loading is applied. As in the example of Fig. 1 the subsystem 1 has no external
load, then: ũ1

i = 0, ∀i ∈ {1, 2, . . . , N}.175

In response to the line coupling forces and to the external load, the superposition principle
for passive linear systems enables to write the displacements coefficients uα

i as follows:

{

u1
i = ũ1

i +
∑N

j=1 Y 1
ijf

1
j

u2
i =

∑N
j=1 Y 2

ijf
2
j

, ∀s ∈ Γ, ∀i ∈ {1, 2, . . . , N} (8)

Besides, the displacement continuity and the force equilibrium equation at the junction
lead to

{

U1(s) = U2(s)
F 1(s) + F 2(s) = 0

, ∀s ∈ Γ (9)

The set of condensation functions being orthonormal, the projection of Eq. (9) on a180

function ϕi yields
{

u1
i = u2

i

f 1
i = −f 2

i

, ∀i ∈ {1, 2, . . . , N} (10)

The coupling forces Fc = F1 = −F2 between the subsystems is deduced by injecting Eq. (8)
into Eq. (10):

(

Y1 + Y2
)

Fc = Ũ2 (11)

where Y1 (resp. Y2) is the condensed transfer function matrix of subsystem 1 (resp. sub-
system 2) and is built by making i and j vary in Eq. (4), resulting in a 4N square matrix.185

Similarly, Ũ2 is the free condensed displacements vector where each element is given by
Eq. (7).
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Once the coupling forces have been calculated by inverting Eq. (11), the pressure at the
point M of the coupled system can be deduced:

pre(M) = p̃2
re(M) −

N
∑

i=1

Y 2
MiF

c
i (12)

where p̃2
re(M) is the pressure at the point M when the subsystem 2 is uncoupled and excited190

by the external acoustic excitation.
The approach has been presented in the case of the coupling on only one junction but

can easily be extended to systems with more junctions.

B Calculation of the subsystems CTF

In this section, details about how to calculate the Condensed Transfer Functions for each195

uncoupled subsstem are given, in order to use the method introduced in the previous sub-
section. The uncoupled internal non-axisymmetric frame (subsystem 1) and axisymmetric
stiffened submerged cylindrical shell (subsystem 2) are respectively shown in Fig. 2a and b.

(a)

x0

F

A

A

er

Water

kα

(b)

Figure 2: Sections in the plane θ = 0 of (a) a non-axisymmetric internal frame and (b) an
axisymmetric stiffened cylindrical shell model. (Color online)

Subsystem 1 (the non-axisymmetric frame shown in Fig. 1) is modeled by the Finite
Element Method (FEM) and its condensed transfer functions are calculated by applying a200

force ϕj on the junction and projecting the resulting displacement of the junction on ϕi,
for all combinations of (i, j) ∈ {1, 2, . . . , N}2 (see Eq. (4)). Regarding computational costs,
as subsystem 1 is uncoupled and has no fluid loading, the Finite Element analysis can be
carried out on a wide frequency band, provided that the mesh is fine enough.

Subsystem 2 is described by the Circumferential Admittance Approach (CAA), which is205

a dedicated method to predict the vibroacoustic behavior of a submerged shell with internal
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axisymmetric frames. The approach consists in partitioning the axisymmetric system and
considering the submerged shell separately from the internal frames (ring stiffeners, bulk-
heads, end caps). It has been first introduced in the case of a point harmonic force28 and
extended to model the sound scattering.22 All the physical variables (i.e. efforts, shell210

displacements, and pressure) can be written as Fourier series depending on circumferential
orders kθ:

f(θ) =
∑

k∈Z

f̃(kθ)e
jkθθ (13)

where kθ ∈ Z, because the system is 2π-periodic along the circumference, and with

f̃(kθ) =
1

2π

∫ π

−π
f(θ)e−jkθθ dθ (14)

The shell and the frames are supposed to be axisymmetric and the fluid domain is infinite,
so that the circumferential orders are independent one from the others. The circumferential215

admittances of the fluid loaded shell are estimated using the Flügge equations of motions
and by solving the problem in the wavenumber space. Different types of ring stiffeners
can be modeled using axisymmetric FEM. This strategy enables to save computational costs
because the fluid loaded is solved semi-analytically and the stiffeners have no fluid loading and
are of reasonable size regarding the current computational capacities. The coupling forces220

F̃frame between the shell and the stiffeners are then calculated thanks to the circumferential
admittances of the subsystems Ỹshell and Ỹframe and to the free displacements of the shell
˜̄W

shell
, by inverting the following equation:

[

Ỹshell + Ỹframe
]

F̃frame = − ˜̄W
shell

(15)

The free displacements are calculated from the Flügge equations using on the right hand
term the blocked pressure due to the oblique plane wave:22

225

pbl(x, r, θ) = ejk̄xx
+∞
∑

n=−∞
p̄bl,n(r)ejnθ (16)

where k̄x = k0 sin α, and:

p̄bl,n(r) = p0jn



Jn(k̄rr) −
1

cos α

J ′
n(k̄rR)

H
(2)
n

′
(k̄rR)

H(2)
n (k̄rr)



 (17)

with p0 the amplitude of the incident pressure, R the radius of the shell, k̄r = k0 cos α, Jn the
Bessel function of first kind of order n and H(2)

n the Hankel function of the second kind of
order n. The forces are finally injected in the shell model to deduce the shell displacements.
The stationary phase theorem is used to calculate the far-field reradiated pressure.230

The axisymmetry of subsystem 2 is used in order to calculate its condensed transfer
functions more efficiently. As only the tangential coordinate θ is supposed to vary along the
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junctions, it is thus sufficient to calculate the reponse U2
0 to a point force on the junction

(for instance for θ = 0) and deduce the reponse Ū2
j to a condensed force ϕj by convolution:

Ū2
j (θ) =

∫ θN+1

θ0

U2
0 (θ − α)ϕj(α) dα (18)

The condensed transfer functions are then calculated by projecting this reponse on ϕi (see235

Eq. (4)):

Y 2
ij =

〈Ū2
j (θ), ϕi(θ)〉

〈ϕj(θ), ϕj(θ)〉

= 〈
∫ θN+1

θ0

U2
0 (θ − α)ϕj(α) dα, ϕi(θ)〉 (19)

Besides, the displacements of the axisymmetric stiffened shell impinged by an oblique
incident wave are also calculated through the CAA method, as explained in.22 The free
condensed displacements (right-hand term in Eq. (11)) are deduced by projecting this reponse
on ϕi (see Eq. (7)).240

Once the condensed transfer functions have been calculated for each subsystem, the cou-
pling forces at the junction between the axisymmetric stiffened shell and the non-axisymmetric
internal frame are calculated by inverting Eq. (11). In the final step, the pressure scattered
from the whole system is deduced thanks to Eq. (12). In this equation, p̃2

re(M) and Y 2
Mi have

been calculated with the CAA in the same step than the CTF calculation of subsystem 2.245

Hence, if these terms are stored in a database, no extra calculations are needed.

III TEST CASE APPLICATION

A Description of the system

In this section, non-axisymmetric internal frames are added to the stiffened shell experimen-
tally investigated by Liétard et al.,6 and numerically modeled by Maxit.22 The system is250

modeled by a 750 mm long simply-supported cylindrical shell with a radius of a = 50 mm
and a thickness of h = 1 mm. It is stiffened by 49 evenly spaced internal rings having 5 mm
× 1 mm rectangular cross-sections. The stiffeners spacing is d = 15 mm. The system is made
of steel (E = 2.4 × 1011 Pa, ρ = 7900 kg.m−3, ν = 0.3) and immersed in water (ρ0 = 1000
kg.m−3, c0 = 1470 m.s−1). A structural damping coefficient of η = 0.2% is accounted for as255

a complex factor in the stiffness matrix.
48 curved plates (15×73 mm2, 1 mm thick, curvature radius of rint = 45 mm, represented

by the mesh in Fig 3b) are added at the tip of the stiffeners, on the whole length of the
shell, as shown in Fig. 3a. This results in 47 junctions between one rib and two plates
and 2 junctions between one rib and one plate at the extremities. These plates are non-260

axisymmetric and extend from θ = −46◦ to θ = 46◦, covering thus approximately one
fourth of the circumference. A plane wave impinges the system in a manner that it remains
symmetric (i.e. in the plane θ = 0, coming from under the shell in Fig. 1 and 3a).
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x (m)

0 0.75

48 non-axisymmetric curved plates

a=0.05 m

(a) (b)

Figure 3: Submerged hull. (a) Cylindrical shell: 50 mm radius, 0.75 m length, 1 mm thick.
Sitffeners: spacing 15 mm, rectangular cross-section (mm): 5 × 1 (a) Section in the plane
θ = 0. (b) FEM model of one curved plate.

According to the convergence criterion defined in,26 the length of the gates Ls is chosen
shorter than half the smallest flexural wavelength in the frequency range. Considering fre-265

quencies up to 200 kHz (ka ≃ 42) this criterion allows a maximum gate length of 3.6 mm
for the present case. As the coupling junction between a rib and the curved plates is 73 mm
long, N = 20 condensation functions are then considered.

The FE model used for calculating the condensed transfer functions of the plates is made
of quadrilateral isotropic shell elements. The mesh is fine enough to respect the criterion of270

6 elements per bending wavelength at the highest frequency. As the 48 plates are identical,
it is sufficient to calculate the condensed transfer functions on one plate and use them for all
the junctions. Details on the parameters for the CAA calculation are found in.22 It is worth
noting that the Love’s first approximations for shells are still valid at high frequencies and
the shell theories can thus still be used.29

275

In section II, the process to couple an axisymmetric shell described by CAA with non-
axisymmetric internal structures described by FEM has been explained. The sketch in Fig. 4
summarizes the different steps and gives calculation times for each step for the test case used
in this section. Given calculation times correspond to the frequency of 200 kHz, and for all
incidence angles α varying between 0 and 179◦ with a step of 1◦. The method is coded280

in Matlab. FEM is used to calculate the internal structures admittances: NASTRAN for
the axisymmetric ribs and the SDT Structural Dynamics Toolbox for the non-axisymmetric
internal frames. Calculations are performed on a 64 Gb RAM computer. Fig. 4 shows
that the calculation for the axisymmetric case takes approximately 15 minutes (the response
to mechanical excitations is only necessary to calculate the condensed transfer functions285

for the coupling). As quantities are stored in a database, taking into account the 48 non-
axisymmetric plates adds less than 32 minutes of calculation, that being three times more
than the axisymmetric case. This time can however be shortened by parallelizing some
steps that are independent, as for instance the response of the axisymmetric subsystem to
acoustical and mechanical excitations.290

No comparison can be proposed by classical numerical methods such as FEM-BEM,
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Immersed shell 
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Axisymmetric stiffened submerged shell (CAA)
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Reradiated pressure

Eq. (11)
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0.5
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plates (FEM)

1

0.02

Figure 4: Sketch of the method to account for non-axisymmetric internal frames in a non
periodically stiffened submerged shell, with corresponding calculation times (in minutes).

regarding the size of the whole system and the frequencies of interest. Nevertheless,the
CTF method has been previously validated,23, 26 and the originality of this work consists in
replacing the free displacement in the right hand side of Eq. (11), which does not affect the
validity of the method. On the other hand, the free displacement calculation has also been295

validated.22

B Influence of the non-axisymmetric internals on the backscatter-
ing

The reradiated component of the backscattered pressure from the stiffened shell, without the
non-axisymmetric internal frames, is plotted on Fig. 5a, as a function of the dimensionless300

frequency ka and the incidence angle α. Higher values of backscattered pressure are due to
helical waves in the case of low incidence angles (α<30o) and for ka ∈ [0, 30]. High values
of pressure can also be seen because of Bloch-Floquet and Bragg scattering, for which the
incidence angle decreases with the frequency. These two phenomenon are due to the regularly
spaced ribs. Bragg scattering is the result of interferences of the geometrical reflections of305

the incident plane wave on the rings. Bloch-Floquet scattering results from the quasi-flexural
waves which propagates along the shell and interacts with the ribs.6

The influence of the non-axisymmetric internals on the backscattered pressure spectrum
is evaluated through the method presented in section II and the results are plotted in Fig. 5b.
Differences can be seen on the backscattered spectrum and the following comments can be310
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(a) (b)

Figure 5: (a) Spectrum of monostatic backscattered pressure of the axisymmetric shell.22

(b) Spectrum of the shell including the non-axisymmetric internal frames.

made:

• The propagation of helical waves on the shell is not significantly affected by the presence
of the internal frames.

• Similarly, as the regularly spaced ribs have not been modified, the Bragg scattering
due to geometrical reflections can still be clearly seen.315

• Supplementary trajectories, that can be apparented to Bloch-Floquet scattering, can be
observed. A focus on this phenomenon is proposed in the next section. In the following,
the adjective "standard" refers to the Bloch-Floquet waves seen in the axisymmetric
case, whereas "supplementary" refers to the trajectories marked in Fig. 5b and that are
due to the internal structures.320

• In the areas marked (A) and (B), standard Bloch-Floquet waves that are visible in
the axisymmetric case cannot longer be clearly seen. This can be explained by the
apparition of supplementary vibration energy propagation paths that reduces the ones
at the origin of the standard Bloch-Floquet waves.

In the CAA, the circumferential orders are calculated separately and the quantities p̃2
re(M)325

and Y 2
Mi can be expressed as Fourier series. Hence, the left hand term of Eq. (12) can also

be written as a Fourier serie. In this sense, it is possible to isolate the contribution of a
given circumferential order. For kθ = 4 for isntance, only two trajectories related to helical
waves can be seen for the axisymmetric case: one due to shear waves and the other one to
compressional waves, as shown in the upper part of Fig 6. This spectrum can be compared to330

the non-axisymmetric case in the lower part of Fig 6. The dominant trajectories correponding
to the shear and compressional helical waves are the same than in the axisymmetric case.
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Nevertheless, additional trajectories can be seen between the two dominant trajectories. This
observation highlights that there is a coupling between the circumferential orders due to the
non-axisymmetry. This result is consistent with the litterature,18, 21, 23 and can also explain335

why the patterns are more complex in the areas marked (A) and (B) in Fig. 5b.

Figure 6: Spectrum of monostatic backscattered pressure for the circumferential order kθ = 4.
Upper part: axisymmetric shell. Lower part: non-axisymmetric shell.

C Discussion on the supplementary trajectories

In order to take a close look on the supplementary trajectories marked in Fig. 5b, only the
contribution of the circumferential order kθ = 1 is plotted in Fig. 7a. According to their shape
and to the litterature,4, 6, 7 these supplementary trajectories are apparented to Bloch-Floquet340

scattering and are marked BF (F) for the forward waves and BF (B) for the backward waves.
At high incidence (α ∼ 80◦), the Bloch-Floquet forward waves appear at the same frequency
than for Bragg scattering. This observation happens to be a simple geometrical coincidence
but is helpful to check the trajectories locations on the frequency-angle spectrum.

To analyze more in details the phenomenon, a simple scattering/interference model based345

on the formulation given in6 is developed. The sketch in Fig. 8 shows that in addition of the
propagation wave along the shell, the flexural waves can propagate in the internal structures.
Indeed, an incoming wave impinges the shell on a stiffener n, creates a structural vibration
that can propoagate through the stiffeners and the curved plate to finally reradiate through
the shell at another stiffener m. Taking into account that all the stiffeners are excited by the350

acoustic wave, the trajectories of this Bloch-Floquet scattering is thus given by the following
double summation:

P BF = P0

49
∑

n=1

ej2k(n−25)d sin α
49
∑

m=1

ejΨmn (20)

with
Ψmn = (m − n) (sgn(m − n)kxf(2hw + d) + kd sin α) (21)
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(a) (b)

Figure 7: (a) Spectrum of monostatic backscattered pressure of the non-axisymmetric shell
for the circumferential order kθ = 1 only. (b) Trajectories of Bragg and Bloch-Floquet waves
using the simplified interference model.

where x 7→ sgn(x) is the sign function, hw is the height of a stiffener, and kxf is the wavenum-
ber of the flexural waves in the internals, decomposed in the plane θ = 0. kxf depends on355

the circumferential order kθ and on the flexural wavenumber of an equivalent in vacuo plate
kf :

kxf(kθ) =

√

√

√

√k2
f −

(

kθ

R

)2

(22)

Plotting these equations for kθ = {1, 4} with a normalized amplitude gives the spectrum in
Fig. 7b. The standard Bloch-Floquet waves due to the waves propagating on the shell are
not represented for the sake of clarity, but Bragg scattering is kept as a point of reference360

on the frequency-angle spectrum. The fourth circumferential order has been chosen because
it might play a particular role considering that the curved plates cover one fourth of the
circumference. The flexural wavenumber kf at a frequency f is calculated through the
following formula:24

kf =

√

2πf

h′

(

12(1 − ν2)ρ

E

)1/4

(23)

where h′ is a corrected thickness that accounts for the fact that the plates are stiffened by365

the ribs and is calculated by averaging the material added by the stiffeners along the shell,
resulting in h′ ≃ 1.3 mm.

Comparing Fig. 7a and Fig. 7b show satsifying results. Indeed, the locii of the supplemen-
tary Bloch-Floquet trajectories evaluated with the model match the ones on the numerical
simulations. Slight shifts can however be observed, especially at high frequencies. This is370

explained by the fact that the interference model is built to give trends and is highly sim-
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x
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d
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(α
)

hw=5 mm

Figure 8: Sketch of the insonified shell and of the propagation of flexural waves in the internal
structures. (Color online)

plified. More precisely, it is not able to accurately account for the all the couplings between
the shell, the ribs, and the internal plates.

Supplementary simulations have been conducted on modified geometries to check the
assumptions made in this section. The spectra are not presented for the sake of brievity but375

the following comments can be made and prove that the supplementary trajectories only
depends on the internals geometrical parameters:

• If the shell thickness is doubled, the supplementary Bloch-Floquet trajectories are not
modified. Bragg scattering is also unchanged but the locations of the standard Bloch-
Floquet waves traveling on the shell are changed.380

• If the plates length is reduced (covering only one eight of the circumference for instance),
the supplementary Bloch-Floquet trajectories are the same but can be seen less clearly.

• If the internal plates thickness is changed, the supplementary trajectories are no longer
visible. In this case, the plates thickness is no longer the same than the ribs thickness.
Hence, there is an impedance mismatch between the stiffened shell and the internal385

structures, and the waves cannot propagate easily.

IV CONCLUDING REMARKS

The substructuring CTF method has been presented to predict numerically the scattering
from a stiffened submerged shell with non-axisymmetric internal frames. As only condensed
transfer functions at the junctions between the subsystems are needed, one of the main ad-390

vantages of this method is that it is able to couple subsystems that are described by different
approaches. In this paper, the stiffened shell has been described by the Circumferential Ad-
mittance Approach while the internal frames by the Finite Element Method. As the FEM
offers great flexibility on the geometrical design, any non-axisymmetric internal frame cou-
pled along a line junction can be taken into account by the CTF method. The method is395

however more efficient for junctions where the axial and radial coordinates remain constant
in order to benefit from the axisymmetric properties of the stiffened shell. Two other ad-
vantages of the CTF approach is that it can reach high frequencies (ka > 40) and that the
results can be directly investigated in the wavenumber space.
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Through a particular example of an immersed shell with internal plates joining adjacent400

stiffeners all along the shell. It has been shown that the non-axisymmetric frames have an
influence on the backscattered spectrum. Indeed, the Bloch-Floquet scattering is harder to
identify than in the axisymmetric case. Moreover, supplementary trajectories apparented to
Bloch-Floquet scattering, for which waves propagate through the non-axisymmetric internal
structures, have been pointed out and explained through a simple interference model. These405

trajectories highly depend on the geometry of the internal structures, but it shows that scat-
tering due to flexural waves traveling inside the shell can be seen in the far-field. As the
developed model presents high versatiliy concerning the design of the internal structures, fur-
ther work consists in modeling cases of internal structures taken from industrial applications
and investigate their effect on the scattered pressure field. Moreover, as the modeling of410

the internal structure is carried out independantly from the stiffened shell modeling for the
calculation of the CTF, this approach is well adapted to optimize internal structures with
regard to the backscattered pressure.
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