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Abstract. We consider the multidimensional generalised stochastic Burgers

equation in the space-periodic setting:

∂u

∂t
+ (∇f(u) · ∇)u− ν∆u = ∇η, t ≥ 0, x ∈ Td = (R/Z)d,

under the assumption that u is a gradient. Here f is strongly convex and satisfies

a growth condition, ν is small and positive, while η is a random forcing term,

smooth in space and white in time.

For solutions u of this equation, we study Sobolev norms of u averaged in

time and in ensemble: each of these norms behaves as a given negative power

of ν. These results yield sharp upper and lower bounds for natural analogues of

quantities characterising the hydrodynamical turbulence, namely the averages of

the increments and of the energy spectrum. These quantities behave as a power
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of the norm of the relevant parameter, which is respectively the separation ` in

the physical space and the wavenumber k in the Fourier space. Our bounds do

not depend on the initial condition and hold uniformly in ν.

We generalise the results obtained for the one-dimensional case in [10], con-

firming the physical predictions in [4, 32]. Note that the form of the estimates

does not depend on the dimension: the powers of ν, |k|, ` are the same in the

one- and the multi-dimensional setting.
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– a.s.: almost surely
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– i.i.d.: independent identically distributed

– r.v.: random variable

1. Introduction

1.1. Burgers turbulence. The multi-dimensional generalised Burgers equation

∂u

∂t
+ (∇f(u) · ∇)u− ν∆u = 0, x ∈ Rd, u(t,x) ∈ Rd, (1)

where ν > 0 is a constant (the classical Burgers equation [14] corresponds to

f(u) = |u|2/2) is historically a popular model for the Navier-Stokes equations,

since both of them have similar nonlinearities and dissipative terms.

Taking the curl of (1), we see that for a gradient initial condition u0 =

∇ψ0, the solution u remains a gradient for all times. Namely, this solution is
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the gradient of the solution ψ(t, ·) to the viscous generalised Hamilton–Jacobi

equation

∂ψ

∂t
+ f(∇ψ)− ν∆ψ = 0 (2)

with the initial condition ψ0. For shortness, in this case we will write the Burgers

equation as

∂u

∂t
+ (∇f(u) · ∇)u− ν∆u = 0; u = ∇ψ, ν > 0, (3)

where it is implicitly assumed that the potential ψ satisfies (2). We will do

likewise for the equation (3) with a gradient right part instead of 0, and we will

say that we are in the potential case. From now on, unless otherwise stated, we

will only consider this case. Moreover, we will only consider the space-periodic

setting, i.e.

x ∈ Td = (R/Z)d.

The mathematical advantage of the potential case is that the equation (2)

can be treated by variational methods (see for instance [31]). Moreover, for

f(u) = |u|2/2 the equation (3) has become popular as a model in astrophysics:

in the limit ν → 0, it corresponds to the adhesion approximation introduced

by Gurbatov and Saichev and developed later by Shandarin and Zeldovich

[33, 32, 48]. The equation (1) is also relevant for fields as different as statis-

tical physics, geology and traffic modelling (see the surveys [3, 4] and references

therein; see also [26]).

For f(u) = |u|2/2, the equation (3) can be transformed into the heat equation

by the Cole-Hopf method [16, 34]. In some settings (for instance when consid-

ering the Burgers equation with very singular additive noise) this method is

extremely helpful (see [4] and references therein). However, it is harder to make
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use of this transformation in the setting of our paper, where we are concerned

with the quantitative behaviour of solutions in the singular limit ν → 0+. More-

over, the Cole-Hopf method does not allow us to study the Burgers equation for

a nonlinearity other than f(u) = |u|2/2.

When studying the local (in space) fine structure of a function, natural ob-

jects of interest are the small-scale quantities, which play an important role in

the study of turbulence [28]. In the physical space, this denomination includes

the structure functions (i.e. the moments of increments in space) for small sep-

arations. In the Fourier space, an important quantity of interest is the energy

spectrum on small scales (i.e. the amount of energy carried by high Fourier

modes). It is important to understand the critical thresholds for the relevant pa-

rameters (respectively, in the physical space the separation distance and in the

Fourier space the wavenumber) between regions where the small-scale quantities

exhibit different types of behaviour. These values are referred to as length scales.

The systematic study of small-scale quantities for the solutions of nonlinear

PDEs with a small parameter with or without random forcing was initiated by

Kuksin. He obtained lower and upper estimates of these quantities by negative

powers of the parameter for a large class of equations (see [40, 41] and the refer-

ences in [41]). A natural way to study these quantities is through upper and lower

bounds for Sobolev norms: for a discussion of the relationship between Sobolev

norms and spatial scales, see [41]. For more recent results obtained for the 2D

Navier-Stokes equations, see the monograph [42] and the references therein.

Before treating the multi-d case, we recall some facts about the behaviour

of the solutions to (1) in the 1d setting. We only consider the case where f is
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strongly convex, i.e. there exists σ > 0 such that

f ′′(x) ≥ σ, x ∈ R. (4)

In this setting, the requirement that we are in the potential case implies the

vanishing of the space average of the solution.

We consider the regime ν � 1. Since all other parameters are fixed, in the hy-

drodynamical language this corresponds to the case of a large Reynolds number.

Under these assumptions, the solutions display turbulent-like behaviour, called

Burgers turbulence or “Burgulence” [14, 15, 36], which we describe now.

In the limit ν → 0 and for large enough times, we observe N -waves, i.e. the

graphs of the solutions u(t, ·) are composed of waves similar to the Cyrillic cap-

ital letter (the mirror image of N). In other words, at a time t0 the solution

stops being smooth, and for times t > t0 the solution u(t, ·) alternates between

negative jump discontinuities and smooth regions where the derivative is positive

and of the order 1/t (see for instance [25]). Thus, it exhibits small-scale spatial

intermittency [28], i.e. for a fixed time the excited behaviour only takes place in

a small region of space. For 0 < ν � 1 the solutions are still highly intermittent:

shocks become zones where the derivative is small and positive, called ramps,

which alternate with zones where the derivative is large in absolute value and

negative, called cliffs (cf. Figure 1).

For the prototypical N -wave, i.e. for the 1-periodic function equal to x on

(−1/2, 1/2], the Fourier coefficients satisfy |û(k)| ∼ k−1. On the other hand,

for 0 < ν � 1 the dissipation gives exponential decay of the spectrum for large

values of k. This justifies the conjecture that for ν small and for "moderately

large" values of k, the energy-type quantities 1
2 |û(k)|

2 behave, in average, as k−2

[15, 27, 36, 37].
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Figure 1. “Typical” solution of the 1d Burgers equation

In the physical space, the natural analogues of the energy 1
2 |û(k)|

2 at the

wavelength k−1 are the structure functions

Sp(`) =

∫
S1

|u(x+ `)− u(x)|p dx. (5)

Heuristically, the behaviour of the solutions which is described above implies

that for ν � ` � 1, these quantities behave as `min(1,p) for p ≥ 0: see [2] and

the introduction to [11].

Now we consider the potential multi-d case. In the case f(u) = |u|2/2, in

the inviscid limit ν → 0 it is numerically observed that the behaviour of the

solution is analogous to what is happening in 1d [4]. Namely, for large enough

times one observes a tesselation where cells inside which solutions are smooth

are separated by 1-codimension shock manifolds. In particular, in average, 1d

projections of the multi-d solution look like the 1d solution (cf. Figure 2).

Thus, it is reasonable to expect a behaviour of the longitudinal structure

functions

S‖p(r) =

∫
x∈Td

∣∣∣∣∣ (u(x+ r)− u(x)) · r
|r|

∣∣∣∣∣
p

dx (6)
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Figure 2. “Typical” solution of the 2d potential Burgers equation.

1: The value of ∂2ψ/∂x21 +∂2ψ/∂x22. The shaded regions correspond to zones where this value

is large, which in the limit ν → 0 correspond to the shock manifold.

2, 3, 4: 1d projections of the multi-d solution, respectively along the horizontal axis e1, the

vertical axis e2 and the diagonal axis e1 − e2.

for a certain range of values of |r| which is analogous to the behaviour of the

structure functions in 1d (at least after averaging with respect to r for a fixed

value of |r|). Similarly, we could expect spectral asymptotics of the type

∑
|n|∼k |û(n)|2∑
|n|∼k 1

∼ k−2,
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for a certain range of values of k.

By analogy with the 1d case, one can conjecture that we have the same

behaviour for f strongly convex, which in multi-d means that

tvD2f(x)v

|v|2
≥ σ > 0, v = (v1, . . . , vd) 6= 0, x ∈ Rd, (7)

where D2 is the Hessian matrix and |v| is the norm

√
v21 + · · ·+ v2d.

Now let us say a few words about the similarities and the differences be-

tween the multi-dimensional potential Burgulence and the real incompressible

turbulence. It is clear that the geometric pictures on small scales are quite differ-

ent for these two models: the multi-dimensional analogues of N -waves created

by infinitely strong compressibility do not have the same nature as the com-

plex multi-scale structures modeled by incompressibility constraints such as the

vortex tubes. However, the similarity in the form of the potential Burgers equa-

tion and the incompressible Navier-Stokes equations implies that some physical

arguments justifying different theories of turbulence can be applied to the Bur-

gulence. Indeed, both models exhibit an inertial nonlinearity of the form u · ∇u,

and a viscous term which in the limit ν → 0 gives a dissipative anomaly [28].

Hence, the Burgers equation is often used as a benchmark for turbulence theo-

ries, as well as for numerical methods for the Navier-Stokes equations. For more

information on both subjects, see [4].

1.2. State of the art and setting. For the unforced Burgers equation, some upper

estimates for Sobolev norms of solutions and for small-scale quantities are well-



10 Alexandre Boritchev

known. For references on classical aspects of the theory of scalar (viscous or

inviscid) conservation laws, see [19, 46, 47]. For some upper estimates for small-

scale quantities, see [38, 49]. To our best knowledge, rigorous lower estimates

were not known before Biryuk’s and our work.

In [5], Biryuk considered the unforced generalised Burgers equation (1) in

the 1d space-periodic case, with f satisfying (4). He obtained estimates for L2

Sobolev norms of the m-th spatial derivatives of the solutions:

1

T

∫ T

0

‖u(t)‖2m ∼ ν−(2m−1), m ≥ 1, ν ≤ ν0.

The constants ν0 and T and the multiplicative constants implicitly contained

in the symbol ∼ depend on the deterministic initial condition u0 as well as on

m. Biryuk also obtained almost sharp spectral estimates which allowed him to

give the correct value of the dissipation scale, which equals ν (see Section 2.6

for its definition). We can explain Biryuk’s method by a dimensional analysis

argument, considering the quantity

Am =
‖u(t)‖m
‖u(t)‖m+1

(see [40, 41]). Indeed, after averaging in time one gets

Am ∼ ν, m ≥ 1,

as ν → 0.

In [11], we generalised Biryuk’s estimates to the Lp Lebesgue norms of the

m-th spatial derivatives for 1 < p ≤ ∞. Moreover, we improved Biryuk’s es-

timates for small-scale quantities, obtaining sharp ν-independent estimates. In
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particular, for ` ∈ [Cν,C], we proved that

1

T2 − T1

∫ T2

T1

Sp(`)dt ∼


`p, 0 ≤ p ≤ 1.

`, p ≥ 1,

with Sp(`) defined by (5), and for k such that k−1 ∈ [Cν,C], we obtained that

1

T2 − T1

∫ T2

T1

∑
n∈[M−1k,Mk] |ûn|2∑
|n|∈[M−1k,Mk] 1

dt ∼ k−2.

The constants ν0,M , T1 and T2, as well as the different strictly positive constants

denoted by C and the multiplicative constants implicitly contained in the symbol

∼ depend on the deterministic initial condition u0 as well as on p. Note that here

again, the upper and the lower estimates only differ by a multiplicative constant.

Moreover, we rigorously prove that k−1 ∼ ν is the threshold parameter which

corresponds to the transition between algebraic (in k−2) and super-algebraic

behaviour of the energy spectrum.

To get results independent of the initial data, a natural idea is to introduce

random forcing and to average with respect to the corresponding probability

measure. In the articles [9, 10], we have considered the 1d case with 0 in the right-

hand side of (1) replaced by a random spatially smooth force, “kicked” and white

in time, respectively. In the “kicked” model, we consider the unforced equation

and at integer times, we add i.i.d. smooth in space impulsions. The white force

corresponds, heuristically, to a scaled limit of “kicked” forces with more and more

frequent kicks. On a formal level, this can be explained by Donsker’s theorem,

since by definition a white force is the weak derivative in time of a Wiener

process.

In the random case, the estimates for the Sobolev norms and for the small-

scale quantities seem at first sight to be almost word-to-word the same as in the
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unforced case. However, there are two major differences. The first one is that

along with the averaging in time we also need to take the expected value. The

second one is that we have estimates which hold uniformly with respect to the

starting time T1 for intervals [T1, T1 + T ] of fixed length on which we consider

the averaged quantities; moreover, the constants in the bounds do not any more

depend on the initial condition.

To explain the second difference, we observe that in the unforced case, no

energy source is available to counterbalance the viscous dissipation, whereas in

the forced case the stochastic term provides such a source. Thus, the existence

of a stationary measure which is nontrivial (i.e., not proportional to the Dirac

measure δ0) is possible in the randomly forced case, as opposed to the unforced

case where we have a decay to 0 of the solutions at the speed Ct−1. In the

language of statistical physics, this corresponds to the existence of a non-trivial

non-equilibrium steady state [29]. Indeed, in [10] we prove the existence and the

uniqueness of the stationary measure for the generalised white-forced Burgers

equation; our arguments also apply to the kick-forced case. For more details on

Biryuk’s and our work on 1d Burgulence, see the survey [7].

In this paper, we study the white-forced equation

∂u

∂t
+ (∇f(u) · ∇)u− ν∆u = ∇η; u = ∇ψ, ν > 0, x ∈ Td, (8)

under the additional convexity and growth assumptions (7, 17) on f . We obtain

estimates for the Sobolev norms and the small-scale quantities which are (up to

some changes in definitions due to the multi-dimensional setting) word-to-word

the same as those proved in [5, 9, 10, 11], with the same exponents for ν. The

only small difference between the results in 1d and in this article is that we do

not obtain upper estimates for theWm,∞ norms. Moreover, we obtain results on



Multidimensional potential Burgers turbulence 13

the existence and the uniqueness of the stationary measure µ for the equation

(8) as well as the rate of convergence to µ. Thus, we generalise the 1d results in

[10].

The assumption that u is a gradient plays a crucial role, since it allows us to

generalise the 1d arguments from the papers [5, 10], in particular for the upper

estimates; see Theorem 42. On the other hand there is a major difficulty specific

to the multi-d case. Namely, the energy balance is much more delicate to deal

with than in 1d; see Section 5. This is the reason why here, unlike in 1d, we

assume that the noise η is “diagonal”: in other words, there is no correlation be-

tween the different Fourier modes. This allows us to use a more involved version

of the "small-noise zones" argument (see for instance [35]). Roughly speaking,

this argument tells that if the noise is small during a long time interval, then

the solution of the generalised Burgers equation goes to 0, roughly at the same

rate as if there was no noise at all, i.e. at least as Ct−1. Note that by classical

properties of Wiener processes, such an interval will eventually occur with prob-

ability 1: see [10, Formula (10)] for a quantitative version of this statement.

In [6], Biryuk studied solutions of the space-periodic multi-d Burgers equa-

tion without the assumption that u is a gradient. He obtained upper and lower

estimates which are non-sharp, in the sense that there is a gap between the pow-

ers of ν for the upper and the lower estimates. In a setting very similar to ours,

Brzezniak, Goldys and Neklyudov [13, 30] have considered the multi-d Burgers

equation both in the deterministic and in the stochastic case, obtaining results

on the well-posedness both in the whole-space and in the periodic setting. More-

over, in the potential space-periodic case those authors have obtained estimates

which are uniform with respect to the viscosity coefficient ν; however, those es-



14 Alexandre Boritchev

timates are not uniform in time, unlike the ones proved in our paper.

We are concerned with solutions for small but positive ν. For a study of the

limiting dynamics with ν = 0, see [23, 24] for the 1d case, [31, 35] for the multi-d

case, and [20, 21] for the case of multi-d scalar conservation laws with nonconvex

flux.

In [5, 9, 10, 11] as well as in our paper, estimates on Sobolev norms and

on small-scale quantities are asymptotically sharp in the sense that ν, `, k enter

lower and upper bounds at the same power. Such estimates are not available for

the more complicated equations considered in [40, 41, 42]. Another remarkable

feature of our estimates is that the powers of the quantities ν, `, k are always

the same as in 1d. Thus, those estimates are in agreement with the physical

predictions for space increments [4, Section 7] and for spectral asymptotics [32]

of the solutions u(t, x).

The results of our paper extend to the case of a “kicked” force, under some

restrictions. Namely, while the upper estimates hold in a very general setting,

to prove the lower estimates we seem to need some non-trivial assumptions on

the support of the kick, since the dissipation relation for the energy 1/2
∫
Td |u|2

has an additional trilinear term compared to the 1d case. For the same reason,

the results in the unforced case are expected to be less general than in 1d.

To prove our results on the existence and the uniqueness of the stationary

measure and the rate of convergence to it, we use a quantitative version of

the "small-noise zones" argument [35], a coupling argument due to Kuksin and

Shirikyan [42] and L∞-contractivity for the flow of the Hamilton-Jacobi equation

satisfied by the potential ψ.
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1.3. Plan of the paper. After introducing the notation and the setup in Section 2,

we formulate the main results in Section 3. In Section 4, for t ≥ 1 and for a vector

k ∈ Rd with integer coefficients, we begin by estimating from above the moments

of the quantities

max
s∈[t,t+1], x∈Td

(k · ∇)2ψ(s,x)

for the potential ψ corresponding to the solution u(t,x) of (8).

In Sections 4-6 we get estimates for the Sobolev norms of the same type as

those obtained in [5, 9, 10, 11] with the same exponents for ν, valid for time

t ≥ T0; the only small difference with the 1d case is that here we do not obtain

sharp upper bounds for theWm,∞ norms. Here, T0 is a constant, independent of

the initial condition and of ν. Actually, for t ≥ T0, we are in a quasi-stationary

regime: all the estimates hold uniformly in t and in the initial condition u0.

In Section 7 we study the implications of our results in terms of the theory of

Burgulence. Namely, we give sharp upper and lower bounds for the dissipation

length scale, the increments and the spectral asymptotics for the flow u(t, x).

These bounds hold uniformly for ν ≤ ν0, where ν0 is a constant which is inde-

pendent of the initial condition. One proof in this section uses (indirectly) a 1d

argument from [2].

In Section 8, we prove the existence and the uniqueness of the stationary mea-

sure for the equation (8), and we give an estimate for the speed of convergence

to this stationary measure.

2. Notation and setup

2.1. Functions, indices, derivatives. All functions that we consider are real-

valued or, if written in bold script, vector-valued. When giving formulas which
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hold for functions which can be scalar or vector-valued, we use the usual script.

We denote by (e1, . . . , ed) the canonical vector basis of Rd. We assume that

d ≥ 2. Note that all of our estimates still hold for d = 1: see [10].

The subscript t denotes partial differentiation with respect to the variable t.

When we consider a scalar-valued function v, the subscripts i, 1 ≤ i ≤ N , which

can be repeated, denote differentiation with respect to the variables xi, 1 ≤ i ≤

N , respectively. Since the only scalar-valued functions v for which the notation

vi1,...,ik will be used are infinitely differentiable, by Schwarz’s lemma we will

always have

vi1,...,ik = vπ(i1),...,π(ik)

for any permutation π of the subscripts.

For a d-dimensional vector x and a (vector or scalar)-valued function v, the

notation v(x̃i) means that we fix all coordinates except one, i.e. we consider

v(x1, . . . , xi−1, ·, xi+1, . . . , xd).

Accordingly, the notation
∫
· dx̃i means that we integrate over the variables

x1, . . . , xi−1, xi+1, . . . , xd,

for a fixed value of xi. For shortness, a function v(t, ·) is denoted by v(t). The

norm of an N -dimensional vector v is defined by

|v| =
√
v21 + · · ·+ v2N .

It should not be confused with the L2 norm of a function, which will be intro-

duced in the next subsection and is also denoted by | · |: the meaning of the nota-

tion will always be clear from the context. We use the notation g− = max(−g, 0)

and g+ = max(g, 0).
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2.2. Sobolev spaces. For N, d′ ≥ 1, consider an integrable RN -valued function v

on Td′ .We only study spatial Sobolev norms for functions considered at a fixed

moment of time. We do not always assume that d′ = d: for instance, we will

study functions of the type v(x̃i) which are defined on T1. The dimensions N, d′

are always clear from the context, and thus are not specified in the notation for

Sobolev norms.

For p ∈ [1,∞], we denote the Lebesgue Lp norm of a scalar-valued function v

by |v|p. For a vector-valued function v, we define this norm as the norm in Lp of

the function |v|, and denote it by |v|p . We denote the L2 norm by | · |, and the

corresponding scalar product by 〈·, ·〉. From now on Lp, p ∈ [1,∞] denotes the

space of functions in Lp(Td
′
). Similarly, C∞ is the space of C∞-smooth functions

on Td′ .

Except in Appendix 1, we only study Sobolev norms for zero mean functions.

Thus, in the following, we always assume that
∫
Td′ v = 0. In particular, we never

study directly the Sobolev norms of the potential ψ: either we consider the mean

value function ψ −
∫
ψ or the partial derivatives of ψ.

For a nonnegative integer m and p ∈ [1,∞], Wm,p stands for the Sobolev

space of zero mean functions v on Td′ with finite homogeneous norm

|v|m,p =
∑
|α|=m

m!

α1! . . . αk!

∣∣∣∣(dmv1dxα
, . . . ,

dmvN
dxα

)∣∣∣∣
p

. (9)

Here and from now on, |α| denotes the norm of the multi-index

α = (α1, . . . , αd′),

defined by

α1 + · · ·+ αd′ .
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In particular, W 0,p = Lp for p ∈ [1,∞]. For p = 2, we denote Wm,2 by Hm, and

abbreviate the corresponding norm as ‖v‖m.

We recall a version of the classical Gagliardo–Nirenberg inequality (see [22,

Appendix]). We will refer to this inequality as (GN).

Lemma 21. For a smooth zero mean function v on Td′ , we have

|v|β,r ≤ C |v|
θ
m,p |v|

1−θ
q ,

where m > β ≥ 0, and r is defined by

d′

r
= β − θ

(
m− d′

p

)
+ (1− θ)d

′

q
,

under the assumption θ = β/m if m − |β| − d′/p is a nonnegative integer, and

β/m ≤ θ < 1 otherwise. The constant C depends on m, p, q, β, θ, d′.

Let us stress that we only use this inequality in cases when it gives the same

value of θ as in 1d. Actually, the only place where we use it in a multi-d setting

is when we mention that the proof of Lemma 48 is word-to-word the same as in

1d.

We will use a norm denoted by | · |∼m,p, which is defined for m ≥ 0, p ∈

[1,+∞) and is equivalent to the norm | · |m,p defined above. For its definition,

see Corollary 410. By analogy with the notation ‖ · ‖m, we will abbreviate as

‖ · ‖∼m the norm | · |∼m,2.

For any s ≥ 0, we define Hs as the Sobolev space of zero mean functions v

on Td′ with finite norm

‖v‖′s =
(
〈v, (−∆)sv〉

)1/2
= (2π)s

( ∑
n∈Zd′

|n|2s|v̂(n)|2
)1/2

, (10)

where v̂(n) are the complex Fourier coefficients of v(x). For integer values of

s = m, this norm is equivalent to the previously defined Hm norm ‖·‖. For
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s ∈ (0, 1), ‖v‖′s is equivalent to the norm

‖v‖
′′

s =

(∫
x∈Td′ , |r|≤1

|v(x+ r)− v(x)|2

|r|2s+d′
dx dr

)1/2

. (11)

Moreover, for all integers m ≥ 0 we have the embedding

|v|m,∞ ≤ C(s) ‖v‖
′

m+s , s > d/2 (12)

(see [1, 50]).

Finally, it should be noted that the integer s0(d), defined by:

s0 = (d+ 1)/2 if d even; d/2 + 1 if d odd (13)

plays a crucial role in the study of the well-posedness for (19) (see Section 2.4

and Appendix 1).

2.3. Random setting. We provide each space

Wm,p(Td), m ≥ 0, p ∈ [1,∞]

of scalar-valued functions with the Borel σ-algebra. Then we consider a random

process w(t) = wω(t), ω ∈ Ω, t ≥ 0, valued on the space of zero mean value

functions in L2(Td) and defined on a complete probability space (Ω,F ,P). We

suppose that w(t) defines a smooth in space Wiener process with respect to a

filtration Ft, t ≥ 0, in each space Wm,p(Td), m ≥ 0, p ∈ [1,∞]. Moreover, we

assume that the process w(t) is diagonal in the sense that its projections on the

Fourier modes are independent weighted Wiener processes. In other words, we

assume the following:

i) The process w(t) can be written as

w(t,x) =
∑
n∈Z̃d

(anwn(t) cos(2πn · x) + bnw̃n(t) sin(2πn · x)), (14)
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where

Z̃d ={n ∈ Zd | n1 > 0} ∪ {n ∈ Zd | n1 = 0, n2 > 0} . . .

∪ {n ∈ Zd | n1 = 0, . . . , nd−1 = 0, nd > 0},

wn, w̃n are independent Wiener processes and for any k > 0 we have an, bn =

o(|n|−k). Without loss of generality, we can assume that for all n, we have

an, bn ≥ 0.

ii) The process w(t) is non-trivial: in other words, at least one of the coeffi-

cients an, bn is not equal to 0.

Thus, for ζ, χ ∈ L2,

E(〈w(s), ζ〉 〈w(t), χ〉) = 1

2
min(s, t) 〈Qζ, χ〉 ,

where Q is the correlation operator defined by

Q(cos(2πn · x)) = a2n cos(2πn · x); Q(sin(2πn · x)) = b2n sin(2πn · x),

which defines a continuous mapping from L2(Td) into Hm(Td) for each m ≥ 0.

Note that since we have w(t) ∈ C∞ for every t, a.s., we can redefine the

Wiener process w so that this property holds for all ω ∈ Ω. We will denote

w(t)(x) by w(t, x). For more details on the construction of infinite-dimensional

Wiener processes, see [17, Chapter 4].

For m ≥ 0, we denote by Im the quantity

Im = TrHm(Q) = E ‖w(1)‖2m .

From now on, the term dw(s) denotes the stochastic differential corresponding

to the Wiener process w(s) in the space L2.
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Now fix m ≥ 0. By Fernique’s Theorem [43, Theorem 3.3.1], there exist

ιm, Cm > 0 such that for T ≥ 0,

E exp
(
ιm ‖w(T )‖2m /T

)
≤ Cm. (15)

Therefore by Doob’s maximal inequality for infinite-dimensional submartingales

[17, Theorem 3.8. (ii)] we have the following inequality, which holds uniformly

in τ ≥ 0:

E sup
t∈[τ,T+τ ]

‖w(t)− w(τ)‖km ≤
( k

k − 1

)k
E ‖w(T + τ)− w(τ)‖km (16)

= C(m, k)T k/2 < +∞,

for any T > 0 and 1 < k <∞.

Note that the estimates in this subsection still hold for the successive spatial

derivatives of w, which are also smooth in space infinite-dimensional Wiener

processes.

2.4. Preliminaries. We begin by considering the viscous Hamilton-Jacobi equa-

tion (2). Here, t ≥ 0, x ∈ Td = (R/Z)d and the viscosity coefficient satisfies

ν ∈ (0, 1]. The function f is strongly convex, i.e. it satisfies (7), and C∞-smooth.

We also assume that for any m ≥ 0 the m-th partial derivatives of f satisfy

∃h ≥ 0, Cm > 0 :
∣∣∣ ∑
|α|=m

∂mf(x)

∂xα

∣∣∣ ≤ Cm(1 + |x|)h, x ∈ Rd, (17)

where h = h(m) is a function such that 1 ≤ h(1) < 2 (the lower bound on h(1)

follows from (7)). The usual Burgers equation corresponds to f(x) = |x|2/2.

The white-forced generalised Hamilton-Jacobi equation is (2) with the ran-

dom forcing term

ηω = ∂wω/∂t,
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added on the right-hand side. Here, wω(t), t ≥ 0 is the Wiener process with

respect to Ft defined above.

Definition 22. We say that an Hs0(d)-valued process u(t, x) = uω(t, x) (for the

definition of s0 see (13)) is a solution of the equation
∂u
∂t + (∇f(u) · ∇)u− ν∆u = ∇ηω

u = ∇ψ
(18)

if for every t ≥ 0 and for every ω ∈ Ω, u = ∇ψ, where ψ satisfies the following

properties:

i) For t ≥ 0, ω 7→ ψω(t) is Ft-measurable.

ii) The function t 7→ ψω(t) is continuous in Hs0+1 (its gradient t 7→ uω(t) is

therefore continuous in Hs0) and ψω satisfies

ψω(t) = ψω(0)−
∫ t

0

(
νLψω(s) + f(∇ψω)(s)

)
ds+ wω(t), (19)

where L = −∆.

As a corollary of this definition, we obtain that u satisfies

uω(t) = uω(0)−
∫ t

0

(
νLuω(s) +

1

2
B(uω)(s)

)
ds+∇wω(t), (20)

where B(u) = 2(∇f(u)·∇)u. When studying solutions of (18), we always assume

that the initial potential ψ0 = ψ(0, ·) is C∞-smooth.

For a given initial condition, (19), and therefore (18), has a unique solution,

i.e. any two solutions coincide for all ω ∈ Ω. For shortness, this solution (resp.,

the corresponding potential) will be denoted by ψ (resp., u). To prove this,

we can use the same arguments as in 1d (cf. [8]). Namely, to prove local well-

posedness we use the “mild solution” technique (cf. [18, Chapter 14]) and a
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bootstrap argument. Finally, global well-posedness follows from uniform bounds

of the same type as in Section 4. For more details, see Appendix 1.

Once u0 = ∇ψ0 is fixed, ψ0 is fixed up to an additive constant. Moreover, if

we consider two different initial conditions ψ0 and ψ0 + C, then the difference

between the corresponding solutions to (19) will always be equal to C. In other

words, fixing u0 is equivalent to fixing an equivalence class of initial conditions

ψ0 + C, C ∈ R.

Since the forcing and the initial condition are smooth in space, we can also

show that t 7→ u(t) is time-continuous in Hm for every m ≥ s0 and the spatial

derivatives of t 7→ ψ(t) − w(t) are in C∞ for all t. Consequently, ψ is also a

strong solution of the equation

∂(ψ − w)
∂t

+ f(∇ψ)− ν∆ψ = 0, (21)

and u0 is a strong solution of the equation

∂(u−∇w)
∂t

+ (∇f(u) · ∇)u− ν∆u = 0. (22)

Solutions of (18) make a time-continuous Markov process in Hs0 . For details,

we refer to [42], where the stochastic 2D Navier-Stokes equations are studied in

a similar setting.

Now consider, for a solution u(t, x) of (18), the functional

Gm(u(t)) = ‖u(t)‖2m

and apply Itô’s formula [17, Theorem 4.17] to (20). We get

‖u(t)‖2m =
∥∥u0

∥∥2
m
−
∫ t

0

(
2ν ‖u(s)‖2m+1 + 〈L

mu(s), B(u)(s)〉
)
ds

+ 2

∫ t

0

〈Lmu(s), d∇w(s)〉+ Im+1t. (23)
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We recall that for m ≥ 0, Im = TrHm(Q). Consequently,

d

dt
E ‖u(t)‖2m = −2νE ‖u(t)‖2m+1 −E 〈Lmu(t), B(u)(t)〉+ Im+1. (24)

2.5. Agreements. From now on, all constants denoted by C with an eventual

subscript are positive and nonrandom. Unless otherwise stated, they depend only

on f and on the distribution of the Wiener process w. By C(a1, . . . , ak) we denote

constants which also depend on the parameters a1, . . . , ak. By X
a1,...,ak

. Y we

mean that X ≤ C(a1, . . . , ak)Y . The notation X a1,...,ak∼ Y stands for

Y
a1,...,ak

. X
a1,...,ak

. Y.

In particular, X . Y and X ∼ Y mean that X ≤ CY and C−1Y ≤ X ≤ CY ,

respectively. All constants are independent of the viscosity ν and of the initial

value u0.

We denote by u = u(t, x) the solution to (18) with an initial condition u0 =

∇ψ0 and by ψ the corresponding solution to (19), which is, for a given value of

u0, uniquely defined up to an additive constant.

For simplicity, in Sections 4-7, we assume that u0 is deterministic. However,

we can easily generalise all results in these sections to the case of a random

initial condition u0(ω) independent of w(t), t ≥ 0. Indeed, in this case for any

measurable functional Φ(u(·)) we have

EΦ(u(·)) =
∫

E
(
Φ(u(·)) | u0 = u0(ω)

)
dµ(u0(ω)),

where µ(u0(ω)) is the law of the r.v. u0(ω).

For τ ≥ 0 and u(τ) independent of w(t)−w(τ), t ≥ τ , the Markov property

yields that

EΦ(u(τ + ·)) =
∫

E
(
Φ(u(·)) |u0 = uω(τ)

)
dµ(uω(τ)).
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Consequently, all u0-independent estimates which hold for time t or a time in-

terval [t, t+ T ] actually hold for time t+ τ or a time interval [t+ τ, t+ τ + T ],

uniformly in τ ≥ 0. Thus, for T ≥ 0, to prove a u0-independent estimate which

holds uniformly for t ≥ T , it suffices to consider the case t = T .

2.6. Setting and notation in Section 7. Consider an observable A, i.e. a real-

valued functional on a Sobolev space Hm, which we evaluate on the solutions

uω(s). We denote by {A} the average of A(uω(s)) in ensemble and in time over

[t, t+ T0]:

{A} = 1

T0

∫ t+T0

t

E A(uω(s)) ds, t ≥ T1 = T0 + 2.

The constant T0 is the same as in Theorem 61. In this section, we assume that

ν ≤ ν0, where ν0 is a positive constant. Next, we define the intervals

J1 = (0, C1ν]; J2 = (C1ν, C2]; J3 = (C2, 1]. (25)

For the value of ν0, C1 and C2, see (66). In other words, J1 = {` : 0 < ` . ν},

J2 = {` : ν . ` . 1}, J3 = {` : ` ∼ 1}.

In terms of the Kolmogorov 1941 theory [28], the interval J1 corresponds

to the dissipation range. In other words, for the Fourier modes n such that

|n|−1 � C1ν, the expected values of the Fourier coefficients {|û(n)|2} decrease

super-algebraically in |n|. The interval J2 corresponds to the inertial range,

where quantities such as the (layer-averaged) energy spectrum E(k) defined by

E(k) = k−1
∑

|n|∈[M−1k,Mk]

{|û(n)|2} (26)

behave as a negative degree of k. Here M ≥ 2 is a large enough constant (cf.

the proof of Theorem 715). The boundary C1ν between these two ranges is the
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dissipation length scale. Finally, the interval J3 corresponds to the energy range,

i.e. the sum
∑
{|û(n)|2} is mostly supported by the Fourier modes corresponding

to |n|−1 ∈ J3.

The positive constants C1 and C2 can take any value provided that

C1 ≤
1

4
K−2; 5K2 ≤ C1

C2
<

1

ν0
. (27)

Here, K is a positive constant (see (65)). Note that the intervals defined by (25)

are non-empty and do not intersect each other for all values of ν ∈ (0, ν0], under

the assumption (27).

The constants C1 and C2 can be made as small as desired. On the other hand,

by (75) the ratio ∑
|n|−1∈J3 |û(n)|

2∑
n∈Zd |û(n)|2

tends to 1 as C2 tends to 0, uniformly in ν. This allows us to choose C2 so that

∑
|n|<C−1

2

{|û(n)|2} ≥ 99

100

∑
n∈Zd

{|û(n)|2}.

Now we suppose that r ∈ Rd, p, α ≥ 0. We consider the averaged directional

increments

Sp,α,i(r) =
{(∫

x∈Td

|ψi(x+ r)− ψi(x)|pdx
)α}

, 1 ≤ i ≤ d,

the averaged longitudinal increments

S‖p,α(r) =

{(∫
x∈Td

∣∣∣∣∣ (u(x+ r)− u(x)) · r
|r|

∣∣∣∣∣
p

dx

)α}

and the averaged increments

Sp,α(r) =
{(∫

x∈Td

|u(x+ r)− u(x)|pdx
)α}

.



Multidimensional potential Burgers turbulence 27

Now, for 0 < ` ≤ 1, we define the averaged moments of the space increments

on the scale ` for the flow u(t, x):

Sp,α(`) = c−1d `−(d−1)
∫
r∈`Sd−1

Sp,α(r)dσ(r),

where dσ stands for the surface measure on `Sd−1 and cd is the surface of Sd−1.

The quantity Sp,1(`) is denoted by Sp(`); it corresponds to the structure function

of order p, while the flatness F (`), given by

F (`) = S4(`)/S
2
2(`), (28)

measures spatial intermittency at the scale ` [28].

3. Main results

In Sections 4-6, we prove sharp upper and lower estimates for a large class of

Sobolev norms of u. A key result is proved in Theorem 42. Namely, there we

obtain that for k ≥ 1,

E
(

max
s∈[t,t+1], x∈Td

max
1≤i≤d

ψii(s,x)
)k k

. 1, t ≥ 1. (29)

This result is generalised to all second derivatives (k · ∇)2ψ, where k is a vector

with integer coefficients, in Lemma 45.

The main estimates for Sobolev norms are contained in the first part of The-

orem 61, where we prove that for m = 0 and p ∈ [1,∞], m = 1 and p ∈ [1,∞),

or m ≥ 2 and p ∈ (1,∞), we have{
|u(s)|αm,p

}1/α m,p,α∼ ν−γ , α > 0, t, T ≥ T0, (30)

where γ = max(0,m−1/p) and T0 is a constant. In particular, this result implies

that
{‖u(s)‖m}
{‖u(s)‖m+1}

∼ ν, m ≥ 1.
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In the language of the turbulence theory, the characteristic dissipation scale of

the flow is therefore of the order ν.

For m ≥ 1 and p = ∞, we do not have a similar bound, as opposed to the

1d case. However, there exists 1 ≤ i ≤ d such that we have the following result,

which will play a key role when we estimate the small-scale quantities:

{∫
x̃i

|ψi(s, x̃i)|αm,∞
}1/α m,α∼ ν−m, α > 0, t, T ≥ T0. (31)

This result tells us that in average, the 1d restrictions of ψi (which is, as we

recall, the i-th coordinate of u) for fixed values of x̃i have the same behaviour

as the 1d solutions (see [10]).

In Section 7 we obtain sharp estimates for analogues of the quantities char-

acterising the hydrodynamical turbulence. Although we only prove results for

quantities averaged over a time period of length T0, those results can be imme-

diately generalised to quantities averaged over time periods of length T ≥ T0.

We assume that ν ∈ (0, ν0], where ν0 ∈ (0, 1] is a constant. As the first appli-

cation of the estimates (29-31), in Section 7 we obtain sharp estimates for the

quantities Sp,α, α ≥ 0. Namely, by Theorem 712, for ` ∈ J1:

Sp,α(`)
p,α∼


`αp, 0 ≤ p ≤ 1.

`αpν−α(p−1), p ≥ 1,

and for ` ∈ J2:

Sp,α(`)
p,α∼


`αp, 0 ≤ p ≤ 1.

`α, p ≥ 1.

Consequently, for ` ∈ J2 the flatness function F (`) = S4(`)/S
2
2(`) satisfies

F (`) ∼ `−1. Thus, solutions u are highly intermittent in the inertial range.
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On the other hand, we obtain estimates for the spectral asymptotics of Bur-

gulence. Namely, for all m ≥ 1 and n ∈ Zd − {0}, (71) tells us that

{|û(n)|2}
m

. (ν|n|)−2mν,

and for k such that k−1 ∈ J2, by Remark 716 we get{(
k−1

∑
|n|∈[M−1k,Mk]

|û(n)|2
)α}

α∼ k−2α, α > 0.

In particular, in the inertial range the energy spectrum satisfies E(k) ∼ k−2.

Finally, in Section 8 we prove that (18) has a unique stationary measure µ,

and we give an estimate of the speed of convergence to it. Then we deduce that

all estimates listed above still hold if we replace the brackets {·} with averaging

with respect to µ.

4. Upper estimates for Sobolev norms

Remark 41. In all results in Sections 4-7, quantities estimated for fixed ω, such

as maxima in time of Sobolev norms or

max
s∈[t,t+1], x∈Td

max
1≤i≤d

ψii(s,x)

can be replaced by their suprema over all smooth initial conditions. For instance,

the quantity

max
s∈[t,t+1]

|u(s)|m,p

can be replaced by

sup
u0∈C∞

max
s∈[t,t+1]

|u(s)|m,p.

For the lower estimates, this fact is obvious. For the upper ones, the reason is

that these quantities admit upper bounds of the form

(1 + max
s∈[t−τ,t+τ ]

‖w(s)‖m)α(m)ν−β(m).
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For more details, see [10, Section 3.3], where this fact is proved in the 1d setting:

the proof of the general case is word-to-word the same.

The following theorem is proved using a stochastic version of the Kruzhkov

maximum principle [39]. The main idea is that if there was no forcing, then

the partial derivatives ψii would be bounded from above by C/t. Since the

Wiener process w is smooth in space, we have good (i.e. uniform with respect

to the initial condition) upper bounds for those derivatives. In this theorem

and in the following ones, the potential assumption is crucial. Without it, the

maximum principle still holds for the components ui. However, we do not have

any estimates which are uniform in time in the forced nonpotential case.

Theorem 42. Denote by Xi,τ the r.v.’s

Xi,τ = max
s∈[τ,τ+1], x∈Td

ψii(s,x), 1 ≤ i ≤ d.

For k ≥ 1, we have

E ( max
1≤i≤d

Xi,τ )
k
k

. 1, τ ≥ 1.

Proof. It suffices to consider the case τ = 1. For simplicity, we will denote Xi,τ

by Xi.

By (16), it suffices to prove the lemma’s statement with ψii replaced by ψii−

wii. Consequently, it suffices to prove the lemma’s statement with [1, 2] replaced

by [0, 2] and Xi replaced by Yi, where Yi denotes

Yi = max
s∈[0,2], x∈Td

s(ψii(s,x)− wii(s,x)), 1 ≤ i ≤ d.

Without loss of generality, we can assume that the maximum of Yi is reached

for i = 1. We will denote Y1 by N .



Multidimensional potential Burgers turbulence 31

Consider the equation (21). Differentiating twice in x1, we obtain that

(ψ11 − w11)t +
∑

1≤i,j≤d

ψ1iψ1jfij(∇ψ) +
∑

1≤i≤d

(ψ11)ifi(∇ψ) = ν∆ψ11.

Putting v = ψ − w and using (7), we get

(v11)t + σ|∇ψ1|2 +
∑

1≤i≤d

(v11)ifi(∇ψ) +
∑

1≤i≤d

w11ifi(∇ψ)

≤ ν∆v11 + ν∆w11. (32)

Consider ṽ(t, x) = tv11(t, x) and multiply (32) by t2. For t > 0, ṽ satisfies

tṽt − ṽ + σ(ṽ + tw11)
2 + t

∑
1≤i≤d

ṽifi(∇ψ) + t2
∑

1≤i≤d

w11ifi(∇ψ)

≤ νt∆ṽ + νt2∆w11. (33)

Now observe that if the zero mean function ṽ does not vanish identically on the

domain S = [0, 2]× Td, then it attains its positive maximum N on S at a point

(t0,x0) such that t0 > 0. At such a point, we have ṽt ≥ 0, ṽi = 0 for all i and

∆ṽ ≤ 0. By (33), at (t0,x0) we have the inequality

σ(ṽ + tw11)
2 ≤ νt2∆w11 + ṽ − t2

∑
1≤i≤d

w11ifi(∇ψ). (34)

Now denote by K the r.v.

K = max
t∈[0,2]

|w(t)|4,∞

and by δ the quantity

δ = 2− h(1).

(see (17)). Since δ > 0, we get∣∣∣t2 ∑
1≤i≤d

w11ifi(∇ψ)
∣∣∣ ≤ CKtδ(t+ t|∇ψ|)2−δ

≤ CKtδ(t+ t|∇(ψ − w)|+ t|∇w|)2−δ.
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Since N = min1≤i≤d Yi is reached for i = 1 and for every i and x̃i, t(ψi−wi)(x̃i)

is the zero mean primitive of t(ψii − wii)(x̃i), at (t0,x0) we have the inequality

∣∣∣t2 ∑
1≤i≤d

w11ifi(∇ψ)
∣∣∣ ≤ CK(1 +N +K)2−δ.

From now on, we assume that N ≥ 2K. Since ν ∈ (0, 1], the relation (34) yields

σ(N − 2K)2 ≤ 4K +N + CK(1 +N +K)2−δ. (35)

Consequently, if N ≥ 2K, then N ≤ C(K + 1)1/δ. Since by (16) all moments of

K are finite, all moments of N are also finite. This proves the lemma’s assertion.

Corollary 43. For k ≥ 1,

E max
s∈[t,t+1]

|u(s)|kp
k

. 1, p ∈ [1,∞], t ≥ 1.

Proof. It suffices to consider the case p = ∞. Since the space average of ψi(x̃i)

vanishes for every x̃i, Theorem 42 yields that for k ≥ 1,

E max
x∈Td

|ψi(x)|k ≤ E
(

max
x̃i∈Td−1

∫
T1

(ψii(x̃i))
+dxi

)k k

. 1, 1 ≤ i ≤ d.

Corollary 44. For k ≥ 1,

E max
s∈[t,t+1], 1≤i≤d

max
x̃i∈Td−1

|ψii(s, x̃i)|k1
k

. 1, t ≥ 1.

Proof. For every s, i and x̃i, the space average of ψii(s, x̃i) vanishes identically.

Thus, we get

∫
T1

|ψii(s, x̃i)| dxi = 2

∫
T1

(ψii(s, x̃i))
+dxi ≤ 2max

x∈Td
ψii(s,x),

and then we apply Theorem 42.



Multidimensional potential Burgers turbulence 33

For any vector k ∈ Zd, the Gram–Schmidt method allows us to build an orthog-

onal basis of Rd of the form

(k1 = k, . . . ,kd)

such that all the vectors ki belong to Zd. Then we can consider functions on Td

as (a subset of the set of) functions on the quotient

Rd/Z(k1, . . . ,kd).

The corresponding coordinates will be denoted by (y1, . . . , yd). By analogy with

the notation x̃i, we define the notation ỹi. Consequently, when considering func-

tions which can be written as f(ỹi) in the new coordinates, we can apply (GN)

with d′ = 1.

Lemma 45. Fix a vector k ∈ Rd with integer coordinates. Denote by Xt the r.v.

Xt(k) = max
s∈[t,t+1]

max
x∈Td

(k · ∇)2ψ(s,x).

For k ≥ 1, we have

EXk
t

k

. 1, t ≥ 1.

Proof. The proof is exactly the same as for Theorem 42, up to a change of

coordinates: it suffices to work in the orthogonal basis (k1 = k, . . . ,kd) with the

corresponding coordinates (y1, . . . , yd).

Corollary 46. Fix a vector k ∈ Rd with integer coordinates. For k ≥ 1, we have

E max
s∈[t,t+1], ỹ1∈Td−1

∣∣∣∣∂2ψ(s, ỹ1)

∂y21

∣∣∣∣k
1

k

. 1, t ≥ 1.

Proof. This result follows from Lemma 45 in the same way as Corollary 44

follows from Theorem 42.
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Corollary 47. For k ≥ 1,

E max
s∈[t,t+1]

|u(s)|k1,1
k

. 1, t ≥ 1.

Proof. We have

|u|1,1 ∼
∑

1≤i≤d

|ψii|1 +
∑

1≤i<j≤d

|ψij |1.

For every i, the estimate for |ψii|1 follows from Corollary 44. Now it remains to

estimate the terms corresponding to ψij , i < j. We observe that by the triangle

inequality, ∫
Td

|ψij(s)| ≤
1

2

∫
Td

|ψii(s)|+
1

2

∫
Td

|ψjj(s)|

+
1

2

∫
Td

|ψii(s) + ψjj(s)− 2ψij(s)|,

and then we use Corollary 46 for k = ei − ej .

Now we recall a standard estimate of the nonlinearity 〈Lmv,B(v)〉 (see Sec-

tion 2.4 for the definitions of L and B). The proof is word-to-word the same as

the 1d proof in [10].

Lemma 48. For v ∈ C∞ such that |v|∞ ≤ N , we have

Nm(v) = |〈Lmv, B(v)〉| ≤ C ′ ‖v‖m ‖v‖m+1 , m ≥ 1,

with

C ′ = Cm(1 +N)n
′
, (36)

where Cm, as well as the natural number n′, depend only on m.

Now we define a norm which is equivalent to the norm given by (9) and is

adapted to the use of (GN) in the 1d setting. The idea is to replace derivatives

along the multi-indices in (9) (where we differentiate repeatedly over different
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directions) with a sum of derivatives along a well-chosen set of directions (i.e. in

each term of the sum we differentiate repeatedly along the same direction). For

this, we need the following result:

Lemma 49. For every m, d ≥ 1, there exists a finite set Πd
m of homogeneous

polynomials of degree 1 in d variables X1, . . . , Xd with integer coefficients such

that their m-th powers form a basis for the real vector space of homogeneous

polynomials of degree m in d variables.

For a proof of this result, see Appendix 2. We will always use a fixed set Πd
m for

fixed values of m, d. Moreover, every time that we consider an element k ∈ Πd
m,

we will always take a fixed “canonical” orthogonal basis (k1 = k, . . . ,kd) as

above.

Now we define a norm equivalent to | · |m,p.

Corollary 410. For m ≥ 0, p ∈ [1,+∞), the following quantity is equivalent to

the norm | · |m,p:

|v|∼m,p =
∑

k∈Πd
m

(∫
y∈Td

∣∣∣∣∣∂mv

∂ym1

∣∣∣∣∣
p)1/p

(37)

=
∑

k∈Πd
m

(∫
ỹ1∈Td−1

(∫
y1∈T1

∣∣∣∣∣∂mv(ỹ1)

∂ym1

∣∣∣∣∣
p

dy1

)
dỹ1

)1/p

, (38)

where we canonically identify Zd with the set of homogeneous polynomials of

degree 1 in d variables with integer coefficients by the correspondence

(n1, . . . , nd) 7→
∑

1≤i≤d

niXi.

By analogy with the notation introduced above, we denote |v|∼m,2 by ‖v‖∼m.

Note that no analogous characterisation of the Wm,∞ norms as an average

of 1d norms exists: we would have to consider the essential upper value of these
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norms instead.

Proof of Corollary 410. We note that by Hölder’s inequality each of the

quantities raised to the power p in (37) can be bounded from above by a linear

combination of the summands in (9) raised to the power p. Using Hölder’s in-

equality again, we obtain that |v|∼m,p . |v|m,p.

To prove the converse inequality, we identify the set of linear constant coeffi-

cient differential operators with the set of polynomials in d variables:

∑
α∈A

cα
∂|α|

∂Xα1
1 . . . ∂Xαd

d

7→
∑
α∈A

cαX
α1
1 . . . Xαd

d .

This allows us to see that by Lemma 49, a differential operator ∂|α|/∂xα can be

written as a linear combination of the operators

(∂/∂ỹ1)
|α|.

corresponding to the vectors k ∈ Πd
m. Now the converse inequality follows by

Hölder’s inequality in the same way as the direct one.

The following upper estimate of E ‖u(t)‖2m holds uniformly for t ≥ 2. The proof

is very similar to the proof in 1d. The only delicate point is that to get the right

power of ν, we have to use (GN) in a 1d setting, which requires the use of the

| · |∼ norms.

Lemma 411. For m ≥ 1,

E ‖u(t)‖2m
m

. ν−(2m−1), t ≥ 2.

Proof. Fix m ≥ 1. We will use the notation

x(s) = E ‖u(s)‖2m ; y(s) = E ‖u(s)‖2m+1 .
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It suffices to consider the case t = 2. We claim that for s ∈ [1, 2] we have the

implication

x(s) ≥ C ′ν−(2m−1) =⇒

d

ds
x(s) ≤ −(2m− 1)(x(s))2m/(2m−1), (39)

where C ′ ≥ 1 is a fixed number, chosen later. Below, all constants denoted by C

are positive and do not depend on C ′ and we denote by Z the quantity

Z = C ′ν−(2m−1).

Indeed, assume that x(s) ≥ Z. By (24) and Lemma 48, we have

d

ds
x(s) ≤− 2νE ‖u(s)‖2m+1 + CE

(
(1 + |u(s)|∞)n

′
‖u(s)‖m

× ‖u(s)‖m+1

)
+ Im+1, (40)

with n′ = n′(m).

Now we denote by ϕ the zero mean value function

ϕ = ψ −
∫
Td

ψ

For each k ∈ Πd
m+1, we apply (GN) to the corresponding 1d restrictions

∂2ϕ

∂y21
(s, ỹ1) =

∂2ψ

∂y21
(s, ỹ1), ỹ1 ∈ Td−1.

We get

‖ϕ(s, ỹ1)‖2m+1 ≤ C‖ϕ(s, ỹ1)‖(4m−2)/(2m+1)
m+2 |ϕ(s, ỹ1)|4/(2m+1)

2,1 .

Integrating in ỹ1 and then summing over all k ∈ Πd
m+1, we get

∑
k∈Πd

m+1

∫
ỹ1∈Td−1

‖ϕ(s, ỹ1)‖2m+1dỹ1

.
∑

k∈Πd
m+1

∫
ỹ1∈Td−1

‖ϕ(s, ỹ1)‖(4m−2)/(2m+1)
m+2 |ϕ(s, ỹ1)|4/(2m+1)

2,1 dỹ1.
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By Corollary 410 and Hölder’s inequality, we obtain that

‖u(s)‖2m ∼ (‖ϕ(s)‖∼m+1)
2 ≤ C(‖ϕ(s)‖∼m+2)

(4m−2)/(2m+1)N4/(2m+1)
max

≤ C ‖u(s)‖(4m−2)/(2m+1)
m+1 N4/(2m+1)

max , (41)

where Nmax is the maximum over all k ∈ Πd
m+1 and all ỹ1 ∈ Td−1 of the

quantity |ϕ(s, ỹ1)|2,1 ∼ |u(s, ỹ1)|1,1.

Consequently, (40) yields that

d

ds
x(s) ≤− 2νE ‖u(s)‖2m+1 + CE

(
(1 + |u(s)|∞)n

′
N2/(2m+1)
max

× ‖u(s)‖4m/(2m+1)
m+1

)
+ Im+1.

Corollary 46 tells us that all moments of Nmax are finite. Thus by Hölder’s

inequality and Corollary 43 we get

d

ds
x(s) ≤

(
− 2ν(y(s))1/(2m+1) + C

)
(y(s))2m/(2m+1) + Im+1.

On the other hand, (41) and Hölder’s inequality yield that

x(s) ≤C(y(s))(2m−1)/(2m+1)(EN2
max)

2/(2m+1)

≤C(y(s))(2m−1)/(2m+1),

and thus

(y(s))1/(2m+1) ≥ C(x(s))1/(2m−1).

Consequently, since by assumption x(s) ≥ C ′ν−(2m−1), for C ′ large enough we

have

d

ds
x(s) ≤

(
−CC ′1/(2m−1) + C

)
(x(s))2m/(2m−1) + Im+1.
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Thus we can choose C ′ in such a way that (39) holds.

Now we claim that

x(2) ≤ Z. (42)

Indeed, if x(s) ≤ Z for some s ∈ [1, 2], then the assertion (39) ensures that x(s)

remains below this threshold up to s = 2.

Now, assume that x(s) > Z for all s ∈ [1, 2]. Denote

J(s) = (x(s))−1/(2m−1), s ∈ [1, 2] .

Using the implication (39) we get dJ(s)/ds ≥ 1. Therefore J(2) ≥ 1. As ν ≤ 1

and C ′ ≥ 1, we get x(2) ≤ Z. Thus in both cases inequality (42) holds. This

proves the lemma’s assertion.

The following statement is proved using the 1d (GN) trick as above and then

proceeding in the same way as in [10].

Corollary 412. For m ≥ 1,

E||u(t)||km
m,k

. ν−k(2m−1)/2, k ≥ 1, t ≥ 2.

Proof. The cases k = 1, 2 follow immediately from Lemma 411. For k ≥ 3, we

consider only the case when k is odd, since the general case follows by Hölder’s

inequality. We set M = (k(2m − 1) + 1)/2 and as previously, for k ∈ Πd
m+1 we

apply (GN) to the corresponding restrictions

∂2ψ

∂y21
(t, ỹ1), ỹ1 ∈ Td−1.

We get

‖u(t, ỹ1)‖2m
m,k

. ‖u(t, ỹ1)‖2/kM |u(t, ỹ1)|(2k−2)/k1,1 .
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Integrating in ỹ1 and then summing over all k ∈ Πd
m+1 and using Hölder’s

inequality, we obtain that

‖u(t)‖km
k,m

. ‖u(t)‖M Nk−1
max,

where Nmax is the same as in the proof of Lemma 411. Since all moments of

Nmax are finite, by Hölder’s inequality and Lemma 411 we get

E ‖u(t)‖km
k,m

. (E |u(t)‖2M )1/2
k,m

. ν−(2M−1)/2 = ν−k(2m−1)/2.

The following lemma follows from the corollary in exactly the same way as in

1d (see [10, Lemma 3.8.])

Lemma 413. For m ≥ 1,

E max
s∈[t,t+1]

||u(s)||2m
m

. ν−(2m−1), t ≥ 2.

Now denote γ = max(0,m − 1/p). The following result is proved for m ≥ 1

and p ∈ (1,∞) in the same way as Corollary 412. For m = 0 and p ∈ [1,+∞]

or m = 1 and p = 1, this result is just a reformulation of Corollary 43 and

Corollary 47, respectively.

Theorem 414. For m = 0 and p ∈ [1,+∞], for m = 1 and p ∈ [1,+∞), or for

m ≥ 2 and p ∈ (1,∞),(
E max
s∈[t,t+1]

|u(s)|αm,p
)1/α m,p,α

. ν−γ , α > 0, t ≥ 2.

The problem with the 1d (GN) trick is that it cannot be used for p = ∞.

However, it allows us to prove a slightly weaker statement, which is sufficient to

obtain sharp estimates for small-scale quantities in Section 7.

Theorem 415. For m ≥ 1 and 1 ≤ i ≤ d, we have(
E max
s∈[t,t+1]

∫
x̃i

|ψi(s, x̃i)|αm,∞
)1/α m,α

. ν−m, α > 0, t ≥ 2. (43)
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5. Lower estimates for Sobolev norms

In 1d, the lower estimates all follow by (GN) from the lower estimate for the

quantity

1

T

∫ t+T

t

E‖u(s)‖21,

which is obtained by considering the energy dissipation identity for |u|2. Indeed,

using Itô’s formula and integrating by parts (see (24)) we get

E|u(t+ T )|2 −E|u(t)|2 = −2ν
∫ t+T

t

E‖u(s)‖21 + 2I1T.

Since there exists T0 such that for τ ≥ T0 we have E|u(τ)|2 ≤ C1, for T ≥

max(T0, C1I
−1
1 ) we get

1

T

∫ t+T

t

E‖u(s)‖21 ≥
(
I1 −

C1

2T

)
ν−1 ≥ I1

2
ν−1,

and we obtain a lower estimate which is uniform in T for large T .

In the multi-d case, there is an additional trilinear term

E

∫
Td

(∇f(u) · ∇)u · u

in the derivative in time of E|u|2. To estimate from below the expected value

of 1
T

∫ T+1

1
‖u(s)‖21, our strategy is to prove that with a positive probability, the

integral in time of the trilinear term in the right-hand side of (24) for m = 0 is

small compared to the energy supplied by the stochastic forcing.

The idea is to use a “partial Itô’s formula”, i.e. Itô’s formula applied only

to one component of the noise. This is where we use the diagonal assumption,

which tells us that the noises along the different Fourier modes are independent.

It is unclear whether we can drop this assumption in the general case.

Without loss of generality, in the results below until the proof of Theorem 54
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included, we assume that the coefficient ae1
of the noise is non-trivial, i.e. ae1

>

0, where e1 = (1, 0, . . . , 0). Indeed, the proof of all the results in this section

in the case be1
> 0 is word-to word the same. On the other hand, we can

reduce the general case ak > 0 (resp., bk > 0) to these cases by working in the

orthogonal basis (k1 = k, . . . ,kd): the result of Lemma 54 still holds when we

pass back to the canonical basis (e1, . . . , ed), since the corresponding H1 norms

are equivalent.

Consider the disintegration of (Ω,F ,P) into the probability spaces

(Ω1,F1,P1) and (Ω2,F2,P2), corresponding respectively to the Wiener process

we1
and to all the other Wiener processes wk, w̃k. An element ω ∈ Ω will be

decomposed as (ω1, ω2). For ω1 ∈ Ω1 (resp. ω2 ∈ Ω2), Pω1 (resp. Pω2) denotes

the disintegration P(·|ω1) (resp. P(·|ω2)). The notation E1, E2, Eω1 , Eω2 is

defined accordingly.

From now on and until the end of the proof of Lemma 54 we fix τ ≥ 1 and

we put

w(s) := w(s)− w(τ),

and similarly for we1
. The exact value of τ is unimportant, since all the estimates

in this section will hold uniformly in τ . Our modification for the definition of

the Wiener process does not change the white noise and thus has no effect on

the solutions u. It will considerably simplify the notation below.

Now consider the ω1-independent difference

w̃(s,x) = w(s,x)− ae1we1(s,x) cos(2πx1),

and for κ > 1, define the event Z = Z(κ) by

Z =

{
ω2 : max

t∈[τ,τ+2κ−1]
|w̃ω(t)|4,∞ ≤ κΛ

}
.
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The constant Λ > 2 will be chosen in the proof of Theorem 51. By the assumption

i) in Section 2.3, for any κ > 0 we have P2(Z) > 0.

The proof of the following result is similar to the proof of Theorem 42.

Theorem 51. For κ ∈ (0, 1), denote by Xi the r.v.

Xi = max
t∈[τ+κ−1, τ+2κ−1], x∈Td

ψii(t,x), 2 ≤ i ≤ d.

Then for every ω2 ∈ Z(κ) and k ≥ 1 we have

Eω2

(
max
2≤i≤d

Xi

)k k

. κk.

Proof. It suffices to prove the statement with (t − τ)ψii in place of ψii, the

interval
[
τ, τ + 2κ−1

]
in place of

[
τ + κ−1, τ + 2κ−1

]
and 1 in place of κk.

Without loss of generality, we can consider the case where the maximum of

(t − τ)ψii on S =
[
τ, τ + 2κ−1

]
× Td for i ∈ [2, d] is reached for i = 2. Denote

this maximum by N .

Now consider the equation (21). Differentiating twice in x2, we get

(ψ22 − w22)t +
∑

1≤i,j≤d

ψ2iψ2jfij(∇ψ) +
∑

1≤i≤d

(ψ22)ifi(∇ψ) = ν∆ψ22.

Putting v = ψ − w and using (7), we get

(v22)t + σ|∇ψ2|2 +
∑

1≤i≤d

(v22)ifi(∇ψ) +
∑

1≤i≤d

w22ifi(∇ψ)

≤ ν∆v22 + ν∆w22. (44)

Now multiply (44) by (t − τ)2 and consider the function ṽ = (t − τ)v22. By

assumption, the maximum of this function equals N . The function ṽ satisfies

(t− τ)ṽt − ṽ + σ(ṽ + (t− τ)w22)
2 + (t− τ)

∑
1≤i≤d

ṽifi(∇ψ)

+ (t− τ)2
∑

1≤i≤d

w22ifi(∇ψ) ≤ ν(t− τ)∆ṽ + ν(t− τ)2∆w22. (45)
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If the zero mean function ṽ does not vanish identically on the domain S =[
τ, τ + 2κ−1

]
× Td, then it attains its positive maximum N on S at a point

(t0,x0) such that t0 > τ . At such a point we have ṽt ≥ 0, ṽi = 0 for all i and

∆ṽ ≤ 0. By (45), at (t0,x0) we have the inequality

σ(ṽ + (t− τ)w22)
2 ≤ ν(t− τ)2∆w22 + ṽ − (t− τ)2

∑
1≤i≤d

w22ifi(∇ψ). (46)

Using (17) (we recall that δ is by definition 2−h(1)) and the definition of Z(κ),

we get ∣∣∣(t− τ)2 ∑
1≤i≤d

w22ifi(∇ψ)
∣∣∣ ≤ CκΛ(t− τ)2(1 + |∇ψ|)2−δ.

Now denote by K the r.v.

K = K(ω1) = max
t∈[τ,τ+2κ−1]

|we1
(t)|4,∞.

By the same arguments as in the proof of Theorem 42 (see (34)), we obtain that

if

Ñ ≥ 2κ−1(K + κΛ),

then the maximum Ñ of (t − τ)(ψii − wii) over all i (including i = 1) on S

satisfies

σ
(
Ñ − 2κ−1(K + κΛ)

)2
. κ−2(K + κΛ) + Ñ + κ−2(K + κΛ)(1 +K + κΛ + Ñ)2−δ.

Therefore, since κ < 1 and 0 < δ ≤ 1, we get

Ñ . (1 +K)1/δκ−2/δ. (47)

For every i and every x̃i, (t−τ)ψi(x̃i) is the zero mean primitive of (t−τ)ψii(x̃i)

and thus on S we have

(t− τ)ψi ≤ Ñ + 2κ−1(K + κΛ), 1 ≤ i ≤ d.
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Consequently, at (t0,x0), by (17) and (47), we get

∣∣∣(t− τ)2 ∑
1≤i≤d

w22ifi(∇ψ)
∣∣∣ ≤ CκΛ(t− τ)δ(κ−1Ñ + κ−2K + κΛ−2)2−δ

≤ CκΛ−δ(1 +K)2/δ−1κδ−4/δ

≤ CκΛ−4/δ(1 +K)(2−δ)/δ.

From now on, we assume that N ≥ 1. Since ν ∈ (0, 1], the relation (46) yields

that

σ(N − 2κ−1κΛ)2 ≤ Cκ−2κΛ +N + CκΛ−4/δ(1 +K)(2−δ)/δ.

Now we put

Λ =
8

δ
;

we recall that δ ≤ 1. Then we get

N ≤ C(1 +K(2−δ)/2δκ2/δ) ≤ C(1 +K1/δκ2/δ).

Since by (16) all moments of κ1/2K are bounded, for X2 and thus by assumption

for all Xi, 2 ≤ i ≤ d, we have

Eω2X
k
i

k

. 1, k ≥ 0.

The following result follows from Theorem 51 in the same way as Corollary 43

and Corollary 44 follow from Theorem 42.

Corollary 52. Fix κ > 0. Then for every i ∈ [2, d], ω2 ∈ Z(κ) and k ≥ 1, we

have respectively

Eω2
max

t∈[τ+κ−1, τ+2κ−1], x̃i∈Td
|ψi(t, x̃i)|kp

k

. κk, p ∈ [1,∞]

and

Eω2
max

t∈[τ+κ−1, τ+2κ−1], x̃i∈Td
|ψii(t, x̃i)|k1

k

. κk.
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The following result is proved in the same way as Corollary 46.

Lemma 53. Fix κ > 0. Then for every t ∈ [τ + κ−1, τ + 2κ−1 − 1] and k ≥ 1,

we have

Eω2 max
s∈[t,t+1]

|u(t)|k1,1
k

. 1.

Now we are ready to prove the following crucial estimate.

Lemma 54. There exists a constant κ ∈ (0, 1) such that we have

κ

∫ τ+2κ−1

τ+κ−1

E ‖u(s)‖21 & ν−1.

Proof. Since P2(Z(κ)) > 0, it suffices to prove this lower estimate for ω2 ∈ Z(κ)

and Eω2
in place of E. In the proof below, until the final steps we will not

indicate explicitly the dependence on

s ∈ [t+ κ−1, t+ 2κ−1].

Writing (18) as a stochastic PDE with ω2 fixed, we get

∂v

∂t
+ (∇f(u) · ∇)u− ν∆u = −2πae1

∂we1

∂t
sin(2πx1)e1,

where v denotes

v = u−∇ ˜̃w, ˜̃w(s) = w̃(s)− w̃(t+ κ−1).

Applying Itô’s formula and integrating by parts, we obtain that

1

2

∂(Eω2
|v|2)

∂t

= −Eω2

∫
Td

(
(∇f(u) · ∇)u · v

)
+ ν Eω2

〈∆u, v〉+ π2a2e1

= −Eω2

d∑
i,j=1

∫
Td

fi(u)ψijvj + ν Eω2
〈u, ∇∆ ˜̃w〉 − ν Eω2

‖u‖21 + π2a2e1

= A+B, (48)
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where

A = −Eω2

d∑
i,j=1

∫
Td

fi(u)ψijvj + ν Eω2
〈u, ∇∆ ˜̃w〉

and

B = −ν Eω2‖u‖21 + π2a2e1
.

The sum B is similar to the expression in 1d, since it is the sum of a dissipative

term due to the Laplacian and of a pumping term due to the forcing. Since we

want to use the same mechanism as in 1d, our goal is to prove that A is small.

We have

|A| ≤
∣∣∣Eω2

d∑
i,j=1

∫
Td

fi(u)ψijψj

∣∣∣+ ∣∣∣Eω2

d∑
i,j=1

∫
Td

fi(u)ψij ˜̃wj

∣∣∣
+ ν

∣∣∣Eω2〈u, ∇∆ ˜̃w〉
∣∣∣.

By the definition of Z(κ) we have | ˜̃w|4,∞ ≤ κΛ. Consequently, using Lemma 53

and (17), we obtain that the second and the third terms in the right-hand side

are uniformly bounded from above by CκΛ and CνκΛ, respectively. Thus, in-

tegrating by parts and then using Theorem 51, Lemma 53 and (17) we obtain

that

|A| ≤
∣∣∣Eω2

∫
Td

f1(u)ψ1ψ11

∣∣∣
+

1

2

∣∣∣Eω2

∑
i,j∈[1,d], (i,j)6=(1,1)

∫
Td

fii(u)ψiiψ
2
j

∣∣∣+ CκΛ

≤
∣∣∣Eω2

∫
Td

f1(u)ψ1ψ11

∣∣∣+ Cκ+ CκΛ. (49)

To prove that the first term in the right-hand side of (49) is small, we consider

the function g defined by

g(x) = f1(ψ1(x), ψ2(0, x̃1), . . . , ψd(0, x̃1)).
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We get

∣∣∣Eω2

∫
Td

f1(u)ψ1ψ11

∣∣∣
≤
∣∣∣Eω2

∫
Td

g(u)ψ1ψ11

∣∣∣
+
∣∣∣Eω2

∫
Td

(
f1((ψ1(x), ψ2(0, x̃1), . . . , ψd(0, x̃1)))

−f1((ψ1(x), ψ2(x), . . . , ψd(x)))
)
ψ1ψ11

∣∣∣
≤
∣∣∣Eω2

∫
Td−1

(∫
T1

g(u(x̃1))ψ1(x̃1)ψ11(x̃1)dx1

)
dx̃1

∣∣∣ (50)

+Eω2

(
|ψ1|∞|ψ11|1

× 2V (d− 1) max
x∈Td, a∈[0,1], 2≤i≤d

∣∣∣∣∣f1i(ψ1(x), ψ2(ax1, x̃1), . . . , ψd(ax1, x̃1))

∣∣∣∣∣
)
.

Here, V denotes

∑
2≤i≤d

max
x∈Td

|ψi(x)|.

The first term in (50) is equal to 0. Indeed, the integrand is a full derivative in

x1, for every x̃1. Then by Hölder’s inequality and (17) we get

∣∣∣Eω2

∫
Td

f1(u)ψ1ψ11

∣∣∣
≤ C(Eω2V

2)1/2
(
Eω2((1 + |u|1,1)2h(1)+2|u|2∞)

)1/2
.

By Corollary 52 and Lemma 53, this quantity is bounded from above by Cκ.

Adding up the terms in (48) and (49), we get

1

2

∂(Eω2
|v|22)

∂t
= A+B ≥ −Cκ− ν Eω2

‖u‖21 + π2a2e1
. (51)
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Now integrate (51) in time over [τ + κ−1, τ + 2κ−1]. We get

1

κ−1

∫ τ+2κ−1

τ+κ−1

Eω2
‖u(s)‖21

≥ (2ν)−1
(
2π2a2e1

− 2Cκ+
Eω2

∣∣v(τ + κ−1)
∣∣2 −Eω2

∣∣v(τ + 2κ−1)
∣∣2

κ−1

)
≥ (2ν)−1

(
2π2a2e1

− 2Cκ−
Eω2

∣∣u(τ + 2κ−1)−∇ ˜̃w(τ + 2κ−1)
∣∣2

κ−1

)
.

By Lemma 53, there exists a constant C ′ > 0 such that we have

Eω2

∣∣u(τ + 2κ−1)
∣∣2 ≤ C ′.

On the other hand, since ω2 ∈ Z(κ), we have
∣∣∇ ˜̃w(τ + 2κ−1)

∣∣2 ≤ Cκ2Λ. Thus

we get

1

κ−1

∫ τ+2κ−1

τ+κ−1

Eω2
‖u(s)‖21

≥ (2ν)−1
(
2π2a2e1

− 2Cκ− C ′ − CκΛ

κ−1

)
.

Now it remains to choose κ small enough to prove the lemma’s statement.

From now on, we drop the assumption ae1
> 0. As observed above, Lemma 54

still holds without this assumption.

Corollary 55. There exists a constant κ ∈ (0, 1) and i ∈ [1, d] such that we have

κ

∫ τ+2κ−1

τ+κ−1

Eu2ii(s) & ν−1.

Proof. By definition of the H1 norm, it suffices to prove that we have

|uij | ≤ |uii|1/2|ujj |1/2, i, j ∈ [1, d], i 6= j.

This fact is proved integrating by parts and using the Cauchy-Schwarz inequality:

|uij |2 =

∫
u2ij = −

∫
uiijuj =

∫
uiiujj ≤ |uii||ujj |.



50 Alexandre Boritchev

From now on, we denote

T0 = κ−1.

To generalise the lower estimate proved above to averages over time intervals of

length T ≥ T0, it suffices to use the Markov property. The time-averaged lower

bound for the H1 norm obtained above yields similar bounds for Hm norms

with m ≥ 2. This is done almost in the same way as in 1d. The only additional

difficulty is that we apply (GN) to 1d restrictions of u: we proceed in the same

way as for the upper estimates, using the 1d (GN) trick.

Lemma 56. For m ≥ 1,

1

T

∫ t+T

t

E ‖u(s)‖2m
m

& ν−(2m−1), t, T ≥ T0.

Proof. In the proof below, until the final steps we will not indicate explicitly the

dependence on s ∈ [t, t+ T ].

Since the case m = 1 has been treated in the previous lemma, we may assume

that m ≥ 2. By (GN), for the 1d restrictions u(x̃i) we have

‖u(x̃i)‖21 . ‖u(x̃i)‖2/(2m−1)m |u(x̃i)|(4m−4)/(2m−1)1,1 .

Thus, in the same way as in the proof of Lemma 411, using Hölder’s inequality

and Lemma 45 we get

(E ‖u‖21)
2m−1

m

. E ‖u‖2m . (52)

Integrating (52) in time, we get

1

T

∫ t+T

t

E ‖u‖2m
m

&
1

T

∫ t+T

t

(E ‖u‖21)
2m−1

m

&
( 1

T

∫ t+T

t

E ‖u‖21
)2m−1

.

Now the lemma’s assertion follows from Lemma 54.
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The following results generalise Corollary 55 and Lemma 56: they are proved

using the 1d (GN) trick in the same way as in the previous section. We recall

that γ = max(0,m − 1/p). Note that Theorem 58 does not necessarily hold for

all i. For instance, consider the case when the initial condition ψ0 and the noise

w only depend on one coordinate. Lemma 59 is the only lower estimate in our

paper which holds without averaging in time.

Lemma 57. For m ≥ 1 and p ∈ [1,∞],

( 1

T

∫ t+T

t

E |u(s)|αm,p
)1/α m,p,α

& ν−γ , α > 0, t, T ≥ T0.

Theorem 58. There exists 1 ≤ i ≤ d such that we have

( 1

T

∫ t+T

t

∫
x̃i

E|ψi(s, x̃i)|αm,∞
)1/α m,α

& ν−m, m ≥ 0, α > 0, t, T ≥ T0. (53)

Lemma 59. For m = 0 and p ∈ [1,∞], or for m, p = 1, we have

E |u(t)|αm,p
α

& 1, t ≥ 2T0, α > 0.

6. Sobolev norms: main theorem

The following two theorems sum up the main results of Sections 4-5, with the

exception of the upper estimates on the second directional derivatives of ψ in

Section 4. We recall that γ = max(0,m− 1/p).

Theorem 61. For m = 0 and p ∈ [1,∞], m = 1 and p ∈ [1,∞), or m ≥ 2 and

p ∈ (1,∞),

( 1

T

∫ t+T

t

E |u(s)|αm,p
)1/α m,p,α∼ ν−γ , α > 0, t, T ≥ T0. (54)
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Moreover, the upper estimates hold with time-averaging replaced by maximising

over [t, t+ 1] for t ≥ 2, i.e.

(
E max
s∈[t,t+1]

|u(s)|αm,p
)1/α m,p,α

. ν−γ , α > 0, t ≥ 2.

The lower estimates still hold for m = 1 and p =∞, or for m ≥ 2 and p = 1,∞.

On the other hand, they hold without averaging in time for m = 0 and p ∈ [1,∞]

or m, p = 1, provided t ≥ 2T0. In other words, in this case (corresponding to

γ = 0) we have (
E |u(t)|αm,p

)1/α α∼ 1, α > 0.

Theorem 62. There exists 1 ≤ i ≤ d such that for m ≥ 1, we have

( 1

T

∫ t+T

t

∫
x̃i

E|ψi(s, x̃i)|αm,∞
)1/α m,α∼ ν−m, α > 0, t, T ≥ T0. (55)

The corresponding upper estimate holds with time-averaging replaced by max-

imising over [t, t+ 1] for t ≥ 2, and for all i.

We recall that these two theorems still hold if we replace the Sobolev norms

with their suprema over all smooth initial conditions.

Theorem 61 yields, for integers m ≥ 1, the relation

{‖u‖2m}
m∼ ν−(2m−1). (56)

By a standard interpolation argument (see (10)) the upper bound in (56) also

holds for non-integer numbers s > 1. Actually, the same is true for the lower

bound, since for any integer n > s we have

{‖u‖2s} ≥ {‖u‖2n}n−s+1{‖u‖2n+1}−(n−s)
s

& ν−(2s−1).
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7. Estimates for small-scale quantities

In this section, we estimate the small-scale quantities which characterise Burgu-

lence in the physical space (increments) as well as in the Fourier space (energy

spectrum). The notation is given in Section 2.6. Note that in this section, we use

the results in Sections 4-6 as a "black box". In other words, we do not directly

use the fact that u solves (18).

7.1. Results in physical space. We begin by proving the upper estimates for the

structure functions.

Lemma 71. For |r| = `, 1 ≤ i ≤ d,

Sp,α,i(r)
p,α

.


`αp, 0 ≤ p ≤ 1.

`αpν−α(p−1), p ≥ 1.

(57)

Proof. The case p < 1 follows from the case p = 1 by Hölder’s inequality: thus

it suffices to consider p ≥ 1. For simplicity, we only consider the case r = `ej ,

which yields the general case by the triangle inequality. We observe that we have

Sp,α,i(`ej) =
{(∫

x∈Td

|ψi(x+ `ej)− ψi(x)|pdx
)α}

p,α

.
{(∫

x∈Td

∣∣∣ ∫ `

0

ψij(x+ yej)dy
∣∣∣pdx)α}.

Then, Hölder’s inequality yields that

Sp,α,i(`ej)
p,α

.
{(
`p−1

∫
x∈Td

(∫ `

0

|ψij(x+ yej)|pdy

)
dx
)α}

= `αp
{
|ψij |αpp

} p,α

. `αpν−α(p−1),

where the last step follows from Theorem 61.
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The following upper bound gives a better estimate for ` ∈ J2 ∪ J3.

Lemma 72. For |r| = `, 1 ≤ i ≤ d,

Sp,α,i(r)
p,α

.


`αp, 0 ≤ p ≤ 1.

`α, p ≥ 1.

(58)

Proof. As above, it suffices to consider the case p ≥ 1, r = `ej . We get

Sp,α,i(`ej) =
{(∫

x∈Td

|ψi(x+ `ej)− ψi(x)|pdx
)α}

≤
{(

(2|ψi|∞)p−1
∫
x∈Td

|ψi(x+ `ej)− ψi(x)|dx
)α}

p,α

.
{
|ψi|2α(p−1)∞

}1/2{(∫
x∈Td

|ψi(x+ `ej)− ψi(x)|dx
)2α}1/2

p,α

.
{(∫

x∈Td

|ψi(x+ `ej)− ψi(x)|dx
)2α}1/2

(59)

=
(
S1,2α,i(`ej)

)1/2 α

. `α, (60)

where (59) follows from Theorem 61, and (60) follows from Lemma 71.

Remark 73. Note that the upper estimates in the formulation of Lemma 72 hold

without averaging in time in the definition of Sp,α,i, i.e. for the quantities

E
(∫

x∈Td

|ψi(t,x+ r)− ψi(t,x)|pdx
)α
, t ≥ T0.

Moreover, we may replace averaging in time with maximising over

[t, t+ 1].

Now we prove lower estimates for longitudinal increments. Generally speak-

ing, we do not have any lower estimates for the transverse increments such as

for instance Sp,α,i(`ej), i 6= j. Indeed, these quantities vanish identically if we

have an initial condition and noise which only depend on one coordinate.

The main idea of the proofs below is that for some i, the 1d restrictions of
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ψi with fixed x̃i exhibit, in average, the same behaviour for Sobolev norms as

the 1d solutions. The value of i is the same as in Theorem 62: without loss of

generality, we may suppose that i = 1.

Loosely speaking, the following lemma states that with a probability which

is not too small, for an amount of time which is not too small and for x̃1 in a

subset of T1 which is not too small, several Sobolev norms of the corresponding

1d restrictions ψ̃1 := ψ1(x̃1) are of the same order as their average values.

The only difference with the 1d case is that in addition to taking the expected

value and averaging in time, we have to average the norms for restrictions ψ̃1

over x̃1: thus, the meaning of the term "in average" is different. Eventhough we

do not have good upper estimates for the norms |u|m,∞, we can nevertheless

estimate the small-scale quantities in exactly the same way as in 1d using The-

orem 62. Thus, the proofs for Lemma 75, Corollary 76 and Lemmas 77-78 will

be word-to-word the same as in 1d, the only difference being that we average

over x̃1 and not only in time and in probability. We will refer to this argument

as the “1d restriction argument”.

In the following definition, (61-62) contain lower and upper estimates, while

(63) only contains an upper estimate. The inequality |ψ̃1(s)|∞ ≤ max ψ̃1(s) in

(61) always holds, since the restriction ψ̃1(s) has zero mean and the length of

T1 is 1.

Definition 74. For a given solution u(s) = uω(s) and K > 1, we denote by

LK the set of all (s, x̃1, ω) ∈ [t, t + T0] × Td−1 × Ω such that the corresponding
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restrictions ψ̃1 satisfy

K−1 ≤ |ψ̃1(s)|∞ ≤ max ψ̃11(s) ≤ K (61)

K−1ν−1 ≤ |ψ̃1(s)|1,∞ ≤ Kν−1 (62)

|ψ̃1(s)|2,∞ ≤ Kν−2. (63)

Lemma 75. There exist constants C,K1 > 0 such that for K ≥ K1, ρ(LK) ≥ C.

Here, ρ denotes the product measure of the Lebesgue measures in time and space

and P on [t, t+ T0]× Td−1 ×Ω.

Let us denote by OK ⊂ [T1, T2] the set defined as LK , but with relation (62)

replaced by

K−1ν−1 ≤ − min
x∈Td

ψ̃11(s,x) ≤ Kν−1. (64)

Corollary 76. For K ≥ K1 and ν < K−21 , we have ρ(OK) ≥ C. Here, C and

K1 are the same as in the formulation of Lemma 75.

Now we fix

K = K1, (65)

and we choose

ν0 =
1

6
K−2; C1 =

1

4
K−2; C2 =

1

20
K−4. (66)

In particular, we have 0 < C1ν0 < C2 < 1: thus, the intervals Ji are non-empty

and non-intersecting for all ν ∈ (0, ν0].

The following results are also proved using the 1d restriction argument. Note

that in the corresponding proofs in 1d, we use an argument in [2] (cf. [11]).

Lemma 77. For α ≥ 0 and ` ∈ J1,

S‖p,α(`e1)
p,α

&


`αp, 0 ≤ p ≤ 1.

`αpν−α(p−1), p ≥ 1.
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Lemma 78. For α ≥ 0 and ` ∈ J2,

S‖p,α(`e1)
p,α

&


`αp, 0 ≤ p ≤ 1.

`α, p ≥ 1.

We will need the following Young-type inequality. It seems to be a well-known

fact, at least in the case p = 2. However, we were unable to find its proof in the

literature.

Lemma 79. For all p, δ > 0 there exists a constant K(p, δ) such that we have

|A+B|p ≤ (1 + δ)|A|p +K|B|p, A,B ∈ Rd. (67)

Proof. Without loss of generality, we can assume that A and B are colinear

vectors, and thus reduce ourselves to the case where A and B are positive scalars.

Case 0 < p ≤ 1. In this case, inequality (67) holds with K = 1 for all δ, since

by Minkowski’s inequality applied to Ap and Bp we have

((Ap)1/p + (Bp)1/p)p ≤ Ap +Bp.

Case p > 1. We consider

C = ζ−1A; D = (1− ζ)−1B,

where by definition

ζ = (1 + δ)−1/(p−1).

Since

A+B = ζC + (1− ζ)D

and the function x 7→ xp is convex, we get

(A+B)p ≤ ζCp + (1− ζ)Dp

≤ ζ−(p−1)Ap + (1− ζ)−(p−1)Bp

≤ (1 + δ)Ap + (1− ζ)−(p−1)Bp,
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which proves the lemma with K(p, δ) = (1− ζ)−(p−1).

Corollary 710. For all α, p, ε > 0 there exists a constant K(p, α, ε) such that

we have

Sp,α(v + ṽ) ≤ (1 + ε)Sp,α(v) +KSp,α(ṽ), v ∈ Rd, ṽ ∈ Rd,

Proof. For every x, Lemma 79 yields that

|u(x+ v + ṽ)− u(x)|p

≤ (1 + ε)1/2α|u(x+ v)− u(x)|p

+ C(p, α, ε)|u(x+ v + ṽ)− u(x+ v)|p.

After averaging in x we get∫
x∈Td

|u(x+ v + ṽ)− u(x)|pdx

≤ (1 + ε)1/2α
∫
x∈Td

|u(x+ v)− u(x)|pdx

+ C(p, α, ε)

∫
x∈Td

|u(x+ ṽ)− u(x)|pdx.

Applying again Lemma 79, we obtain that

(∫
x∈Td

|u(x+ v + ṽ)− u(x)|pdx
)α

≤ (1 + ε)1/2
(
(1 + ε)1/2α

∫
x∈Td

|u(x+ v)− u(x)|pdx
)α

+ C(α, ε)
(
C(p, α, ε)

∫
x∈Td

|u(x+ ṽ)− u(x)|pdx
)α
.

To prove the lemma’s statement, it remains to take the expected value and to

average in time in the inequality above.

By Corollary 710 for v = `e1 and ±ṽ, for ` ∈ [0, 1], ṽ ∈ Rd we have

|Sp,α(`e1 + ṽ)− Sp,α(`e1)| ≤ εSp,α(`e1) +K(p, α, ε)Sp,α(ṽ). (68)
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Now consider r ∈ Rd, |r| = ` and denote by θ the angle between r and e1. Using

(68), as well as respectively Lemma 71 and Lemma 77 for (69) and Lemma 72

and Lemma 78 for (70), we get the following result.

Corollary 711. There exists a constant C̃ such that for α ≥ 0 and |r| = ` ∈ J1,

|θ| ≤ C̃,

Sp,α(r)
p,α

&


`αp, 0 ≤ p ≤ 1.

`αpν−α(p−1), p ≥ 1,

(69)

and for α ≥ 0 and |r| = ` ∈ J2, |θ| ≤ C̃,

Sp,α(r)
p,α

&


`αp, 0 ≤ p ≤ 1.

`α, p ≥ 1.

(70)

Summing up the results above, averaging in r and using the definition of

Sp,α(`), we obtain the following theorem.

Theorem 712. For α ≥ 0 and ` ∈ J1,

Sp,α(`)
p,α∼


`αp, 0 ≤ p ≤ 1.

`αpν−α(p−1), p ≥ 1.

On the other hand, for α ≥ 0 and ` ∈ J2,

Sp,α(`)
p,α∼


`αp, 0 ≤ p ≤ 1.

`α, p ≥ 1.

The following result follows immediately from the definition (28).

Corollary 713. For ` ∈ J2, the flatness satisfies F (`) ∼ `−1.
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7.2. Results in Fourier space. By (56), for all m ≥ 1 we have

{|û(n)|2} ≤ (2π|n|)−2m{‖u‖2m}
m∼ (ν|n|)−2mν. (71)

Thus, for |n| � ν−1, {|û(n)|2} decreases super-algebraically.

To estimate the Hs norms of u for s ∈ (0, 1), we proceed in the same way

as in [10]. Namely, we use the formula (11) and Theorem 712 to transform

information about increments into information about Sobolev norms. For the

sake of completeness, we give here the proof in the case s = 1/2.

Lemma 714. For s ∈ (0, 1/2),

{(‖u‖
′

s)
2} s∼ 1.

On the other hand,

{(‖u‖
′

1/2)
2} ∼ | log ν|.

Finally, for s ∈ (1/2, 1),

{(‖u‖
′

s)
2} s∼ ν−(2s−1).

Proof. By (11) we have

‖u‖′1/2 ∼

(∫
x∈Td, |r|≤1

|u(x+ r)− u(x)|2

|r|1+d
dxdr

)1/2

∼

(∫ 1

0

1

`2

(∫
x∈Td, y∈Sd−1

|u(x+ `y)− u(x)|2dxdy
)
d`

)1/2

.

Consequently, by Fubini’s theorem, we get

{(‖u‖
′

1/2)
2} ∼

∫ 1

0

S2(`)

`2
d` =

∫
J1

S2(`)

`2
d`+

∫
J2

S2(`)

`2
d`+

∫
J3

S2(`)

`2
d`.

By Theorem 712 we get∫
J1

S2(`)

`2
d` ∼

∫ C1ν

0

`2ν−1

`2
d` ∼ 1
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and ∫
J2

S2(`)

`2
d` ∼

∫ C2

C1ν

`

`2
d` ∼ | log ν|,

respectively. Finally, by Lemma 72 we get

∫
J3

S2(`)

`2
d` ≤ CC−22 ≤ C.

Thus,

({‖u‖
′

1/2)
2} ∼ | log ν|.

The results above and the relation (56) tell us that {|û(n)|2} decreases very fast

for |n| & ν−1 and that for s ≥ 0 the sums

∑
|n|2s{|û(n)|2}

have exactly the same behaviour as the partial sums

∑
|n|≤ν−1

|n|2s+(1−d)|n|−2

in the limit ν → 0+. Therefore we can conjecture that for |n| . ν−1, we have∑
|n|∼k {|û(n)|2} ∼ k−2.

A result of this type actually holds for the layer-averaged Fourier coefficients

as long as |n| is not too small, i.e. in the inertial range J2. The proof is a little bit

more delicate than in 1d, since the upper estimate does not follow directly from

the bound in W 1,1. We use a version of the Wiener-Khinchin theorem, which

states that for any function v ∈ L2 and any y ∈ Rd, one has

|v(·+ y)− v(·)|2 = 4
∑
n∈Zd

sin2(πn · y)|v̂(n)|2. (72)

Theorem 715. There exists M ≥ 2 such that for k−1 ∈ J2, we have E(k) ∼

k−2.
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Proof. We recall that by the definition (26),

E(k) = k−1
∑

|n|∈[M−1k,Mk]

{
|û(n)|2

}
.

Thus, it suffices to prove that

E′(k) =
∑

|n|∈[M−1k,Mk]

|n|2{|û(n)|2} ∼ k. (73)

In the following, dependence on M will always be explicit. We begin by proving

the upper estimate. First, we note that we have

|v|2 ∼
∫
y∈Sd−1

sin2(πv · y),

uniformly for |v| ≤ 1/2. Thus, we get

∑
|n|∈[k/2,2k]

{|û(n)|2}

∼ kd−1
∫
y∈k−1Sd−1

∑
|n|∈[k/2,2k]

sin2(πn · y/4){|û(n)|2}dy

. kd−1
∫
y∈k−1Sd−1

∑
n∈Zd

sin2(πn · y/4){|û(n)|2}dy.

Then by (72) and Lemma 72 we get

∑
|n|∈[k/2,2k]

{|û(n)|2} . S2(k
−1/4) . k−1.

Consequently, we obtain the upper bound

E′(k) .Mk.

On the other hand, we get

∑
|n|<M−1k

|n|2{|û(n)|2} ≤ CM−1k (74)

and (summing over layers of the form [M2N−1k, M2N+1k]):

∑
|n|>Mk

{|û(n)|2} ≤ CM−1k−1. (75)
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The lower bound for E′(k) is then obtained in exactly the same way as in 1d.

Namely, we note that for y ∈ k−1Sd−1 and n ∈ Zd, we have

|n|2 ≥ k2π−2 sin2(πn · y).

Consequently,

∑
|n|≤Mk

|n|2{|û(n)|2}

≥ c−1d kd−1
∫
y∈k−1Sd−1

∑
|n|≤Mk

k2π−2 sin2(πn · y){|û(n)|2}dy

≥ k2π−2
(
c−1d kd−1

∫
y∈k−1Sd−1

∑
n∈Zd

sin2(πn · y){|û(n)|2}dy

−
∑
|n|>Mk

{|û(n)|2}
)
,

where cd is the surface of Sd−1. Using (72), (75) and the definition of S2 we get

∑
|n|≤Mk

|n|2{|û(n)|2} ≥ k2π−2(S2(k
−1)/4− CM−1k−1).

Finally, Theorem 712 yields that

∑
|n|≤Mk

|n|2{|û(n)|2} ≥ (C − CM−1)k.

Now we use (74) and we choose M ≥ 1 large enough to obtain (73).

Remark 716. We actually have

{(
k−1

∑
|n|∈[M−1k,Mk]

|û(n)|2
)α}

α∼ k−2α, α > 0.

The upper bound is proved in the same way as previously and then the lower

bound follows from Hölder’s inequality and the lower bound in Theorem 715.
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8. Stationary measure and related issues

Here we very briefly discuss the stationary measure for the equation (18). The

scheme of the proofs is similar to the one in the 1d setting [10], and therefore we

will not give the details. The only major difference is that the contraction argu-

ment for u in L1 should be replaced by a contraction argument for the potential

ψ in L∞.

We begin by studying the equation (19). Its solutions ψ form a Markov pro-

cess: this is proved using a simplified version of the coupling argument for the

2D Navier-Stokes equations [42].

For a given value of ω ∈ Ω, we denote by Sωt the semigroup acting on Hs0+1

(see (13) for the definition of s0) defined by

ψ0 7→ ψ(t).

Now consider the dual semigroup S∗t acting on the space of probability measures

on Hs0+1. A stationary measure is a probability measure on Hs0+1 invariant by

S∗t for every t. A stationary solution is a solution ψ(t, x) of (19) such that the

law of ψ(t) does not depend on t for t ≥ 0 and thus is a stationary measure for

(19).

Existence of a stationary measure for (19) follows from the estimates in Sec-

tion 4 by the Bogolyubov-Krylov argument. Now we define the Lipschitz-dual

metric with respect to Lp, 1 ≤ p ≤ ∞.

Definition 81. For a continuous real-valued function g on Lp,

1 ≤ p ≤ ∞, we define its Lipschitz norm as

|g|L(p) := sup
Lp

|g|+ |g|Lip,
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where

sup
Lp

|g| = sup
x∈Lp

|g(x)|

and |g|Lip is the Lipschitz constant of g, i.e.

|g|Lip = sup
x,y∈Lp, x 6=y

|g(x)− g(y)|
|x− y|p

.

The set of continous functions with finite Lipschitz norm will be denoted by

L(p) = L(Lp).

Definition 82. For two Borel probability measures µ1, µ2 on Lp,

1 ≤ p ≤ ∞, we denote by ‖µ1 − µ2‖∗L(p) the Lipschitz-dual distance

‖µ1 − µ2‖∗L(p) := sup
g∈L(p), |g|L(p)≤1

∣∣∣ ∫
S1

g(v)µ1(dv)−
∫
S1

g(v)µ2(dv)
∣∣∣.

Now we prove a standard contraction property for ψ in L∞. This property

can be proved using a Lagrangian formulation for the solution to (19) (see for

instance [31]); here we give a more elementary proof.

Lemma 83. Let us take two different C∞-smooth initial conditions ψ0
1 and ψ0

2.

Consider a fixed ω ∈ Ω. We have

|Sωt ψ0
1 − Sωt ψ0

2 |∞ ≤ |ψ0
1 − ψ0

2 |∞, t ≥ 0.

Proof. Denote by φ the difference Sωt ψ0
2 − Sωt ψ0

1 . Substracting the equation sat-

isfied by Sωt ψ0
2 from the one satisfied by Sωt ψ0

1 , we get

φt = (Sωt ψ
0
2 − Sωt ψ0

1)t

= −
(
f(∇(Sωt ψ0

2))− f(∇(Sωt ψ0
1))
)
+ ν∆(Sωt ψ

0
2 − Sωt ψ0

1).

Now consider the function b(t, x) such that for 1 ≤ i ≤ d, its i-th component is

given by

(f(∇(Sωt ψ0
2))− f(∇(Sωt ψ0

1)))φi
|∇φ|2

.
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Note that this function is well-defined at points where ∇φ = 0 since by definition

∇φ = ∇(Sωt ψ0
2)−∇(Sωt ψ0

1), and f is C∞-smooth.

We see that φ satisfies the linear parabolic equation

φt = −(b(t, x) · ∇)φ+ ν∆φ.

Consequently, by the maximum principle [44] we get the lemma’s statement.

Since C∞ is dense in L∞, we can extend the notion of solutions to (19) to

solutions with initial conditions in L∞ . The definitions of St and S∗t can be

extended accordingly. Note that the parabolic smoothing effect due to the viscous

term yields that these solutions instantaneously become smooth solutions to (19).

Now we use a coupling argument and a "small-noise zone" argument to prove

the following crucial lemma. The proof is almost word-to-word the same as in

1d. The only difference is that now when the noise is small, the gradient of the

solution to (19) is small. Therefore we consider the space L(∞)/R of Lipschitz

functions on the space L∞/R with a norm defined in the same way as the L(∞)-

norm.

Lemma 84. There exist positive constants C ′, δ such that for u01, u02 ∈ L∞ we

have

‖S∗t δu0
1
− S∗t δu0

2
‖∗L(∞)/R ≤ C

′t−δ, t ≥ 1. (76)

Now we look at the equation (18). In the same way as above for (19), we

can define the semigroups S̃ωt and S̃∗t , acting respectively on L(1) and on the

space of probability measures on L(1). We consider two solutions ψ1, ψ2 to (19)

with the same noise and different initial conditions, as well as the corresponding
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solutions u1,u2 to (18). By (GN) we get

|u1 − u2|1 . |ψ1 − ψ2 −
∫
Td

(ψ1 − ψ2)|1|∇(ψ1 − ψ2)|1,1

. |ψ1 − ψ2 −
∫
Td

(ψ1 − ψ2)|∞|u1 − u2|1,1.

This inequality allows us to obtain the following result.

Theorem 85. There exist positive constants C ′, δ′ such that we have

‖S̃∗t µ1 − S̃∗t µ2‖∗L(1) ≤ C
′t−δ

′
, t ≥ 1, (77)

for any probability measures µ1, µ2 on L(1).

The estimates for Sobolev norms and small-scale quantities proved in the pre-

vious sections still hold for a stationary solution of (18). Indeed, it suffices to

consider a random initial condition u0 with distribution µ. It follows that those

estimates still hold when averaging in time and in ensemble (denoted by {·})

is replaced by averaging solely in ensemble, i.e. by integrating with respect to

µ. Namely, we get the following results, which follow from Theorem 61, Theo-

rem 712 and Remark 716, respectively.

Theorem 86. For m = 0 and p ∈ [1,∞], m = 1 and p ∈ [1,∞), or m ≥ 2 and

p ∈ (1,∞), (∫
|u(s)|αm,p dµ

)1/α m,p,α∼ ν−γ , α > 0. (78)

Theorem 87. For α ≥ 0 and ` ∈ J1,

∫
Sp,α(`)dµ

p,α∼


`αp, 0 ≤ p ≤ 1.

`αpν−α(p−1), p ≥ 1.

On the other hand, for α ≥ 0 and ` ∈ J2,

∫
Sp,α(`)dµ

p,α∼


`αp, 0 ≤ p ≤ 1.

`α, p ≥ 1.
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Theorem 88. For k such that k−1 ∈ J2, we have∫ (
k−1

∑
|n|∈[M−1k,Mk]

|û(n)|2
)α

dµ
α∼ k−2α, α > 0.

Appendix 1: well-posedness of (19)

In this appendix, we consider the well-posedness of the Cauchy problem given by

(19), a.s. An analogous problem has been considered by Da Prato and Zabczyk

in [18, Chapter 14]; however, their results are weaker than ours since they con-

sider a white noise which is not smooth in space.

Here, the functions whose Sobolev norms we consider do not necessarily have

zero mean value in space. The only thing that changes is that now in the ex-

pressions for the Sobolev norms Wm,p (resp. Hs) we have to add the norm

in Lp (resp. L2) to the formulas in Section 2.2. We use the standard notation

C(I,Wm,p) for the space of continuous (in time) functions defined on the inter-

val I with values in Wm,p with the corresponding supremum norm. The space

C(I, C∞) will denote the intersection

∩m≥0C(I,Hm).

We begin by considering mild solutions in Hs0+1, in the spirit of [17, 18]. We

recall that s0 is the integer given by (13). Then, by a bootstrap argument, we

prove that for strictly positive times these solutions are actually smooth. Then

upper estimates (cf. Section 4) allow us to prove that such mild solutions are

global.

We recall that there exists an event Ω1 such that P(Ω1) = 1 and for ω ∈ Ω1,

the Wiener process w(t) belongs to C([0,+∞), C∞). We also recall the notation

L = −∆, and the fact that the initial condition ψ0 and the function f in the



Multidimensional potential Burgers turbulence 69

nonlinearity are C∞-smooth.

By a scaling argument, we can restrict ourselves to the equation (18) with

ν = 1. We will denote by SL(t) the heat semigroup e−tL. We recall that for

v ∈ L2 the function SL(t)v(x) is given by:

SL(t)v(x) =
∑
k∈Zd

e−4π
2|k|2tv̂ke

2πik·x. (79)

Finally, we denote by wL the stochastic convolution

wL(t) =

∫ t

0

SL(t− τ)dw(τ).

For ω ∈ Ω2, P(Ω2) = 1, this quantity belongs to C([0,+∞), C∞). From now

on, we suppose that ω belongs to Ω1 ∩Ω2.

Following Da Prato and Zabczyk [18, Chapter 14], we consider a mild form

of (19) for Y (t) = ψ(t)− wL(t):

Y (t) = SL(t)ψ0 +

∫ t

0

SL(t− τ)(f(∇Y (τ) +∇wL(τ)))dτ. (80)

The heat semigroup defines a contraction in each Sobolev space Hs. On the

other hand, we have the following lemma.

Lemma 89. The mapping

Z 7→ f(Z) : Hs0 → Hs0

is locally Lipschitz on bounded subsets of Hs0 .

Proof: It suffices to develop (f(Z1)− f(Z2))
(s0) using Leibniz’s formula (s0

being an integer) and then to use the Sobolev injection (12).

Lemma 810. For any s ≥ 0, the operator

Z 7→
(
t 7→

∫ t

0

SL(t− τ)Z(τ)dτ
)
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maps bounded subsets of C([0, T ), Hs) into bounded subsets of

C([0, T ), H(s+3/2)).

Proof: Fix s ≥ 0. By (10) and (79), for τ ∈ [0, t) we have

‖SL(t− τ)Z(τ)‖2s+3/2

∼ |(Ẑ(τ))0|2 +
∑
k∈Zd

|k|2s+3e−4π
2|k|2(t−τ)|(Ẑ(τ))k|2

. |(Ẑ(τ))0|2 +
(
max
k′∈Zd

|k′|3e−4π
2|k′|2(t−τ)

) ∑
k∈Zd

|k|2s|(Ẑ(τ))k|2

.
(
1 + max

k′∈Zd
|k′|3e−4π

2|k′|2(t−τ)
)
‖Z(τ)‖2s.

. C
[
1 + (t− τ)−3/2

]
‖Z(τ)‖2s.

To prove the lemma’s statement, it remains to observe that

∫ t

0

(1 + (t− τ)−3/2)1/2dτ < +∞.

Lemma 89, Lemma 810 for s = s0 and the Cauchy-Lipschitz theorem imply

that the equation (80) has a unique local solution in Hs0+1.

Now consider such a solution Y . We want to prove that this solution belongs

to C∞ for all t > 0. For this, it suffices to prove that for s ≥ s0 + 1, a solution

Y ∈ Hs lies in the space H(s+1/2). We will need the following result:

Lemma 811. For s ≥ s0, the mapping

Z 7→ f(Z) : Hs → Hs

is bounded on bounded subsets of Hs.
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Proof: An analogous lemma is proved in a more general setting for Sobolev

spaces on Rn in [12]. We use some arguments from this paper.

For the case when s is integer, we proceed in the same way as in the proof of

Lemma 89, using Leibniz’s formula and then (12).

Now consider the case when s is non-integer. For simplicity, we will only

consider the case s0 < s < s0+1; the general case follows from Leibniz’s formula.

Denote by s̃ the quantity s− s0.

Consider Z such that ‖Z‖s ≤ N . In this case, by the definition (11) we have:

‖f(Z)‖2s ∼ |f(Z)|2+∫
x∈Td, |r|≤1

|(f(Z))(s0)(x+ r)− (f(Z))(s0)(x)|2

|r|2s̃+d
dx dr (81)

The least regular term in Leibniz’s formula for (f(Z))(s0) corresponds to

f ′(Z)Z(s0). Therefore it suffices to bound the corresponding term in (81) by

C(N).∫
x∈Td, |r|≤1

|f ′(Z)(x+ r)Z(s0)(x+ r)− f ′(Z)(x)Z(s0)(x)|2

|r|2s̃+d
dx dr

.
∫
x∈Td, |r|≤1

|f ′(Z)(x+ r)Z(s0)(x+ r)− f ′(Z)(x+ r)Z(s0)(x)|2

|r|2s̃+d
dx dr

+

∫
x∈Td, |r|≤1

|f ′(Z)(x+ r)Z(s0)(x)− f ′(Z)(x)Z(s0)(x)|2

|r|2s̃+d
dx dr

. |f ′(Z)|2∞
∫
x∈Td, |r|≤1

|Z(s0)(x+ r)− Z(s0)(x)|2

|r|2s̃+d
dx dr

+

∫
x∈Td, |r|≤1

|f ′(Z)(x+ r)− f ′(Z)(x)|2

|r|2s̃+d
|Z(s0)(x)|2 dx dr (82)

.C(|Z|∞)‖Z‖2s +
∫
x∈Td, |r|≤1

|r|2−2s̃−d|Z(s0)(x)|2 dx dr

.C(N) + C(N)‖Z‖2s0 . C(N).

Indeed, the rest of the right-hand side in (81) is more regular and can be bounded

by C(N) in the same way as the term in (82).
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Theorem 812. Consider a local solution Y of (80) in Hs0+1 defined on an

interval [0, T ). If for some s ≥ s0+1, Y belongs to C([0, T ), Hs), then Y actually

belongs to C([0, T ), H(s+1/2)).

Proof: By Lemma 811 we have

∇(f(Y (τ) + wL(τ))) ∈ C([0, T ), Hs−1),

and thus by Lemma 810 we get∫ t

0

SL(t− τ)∇(f(Y (τ) + wL(τ)))dτ ∈ C([0, T ), H(s+1/2)).

Since Y is a solution of (80) and the semigroup SL is smoothing,

Y (t) = SL(t)ψ0 +

∫ t

0

SL(t− τ)∇(f(Y (τ) + wL(τ)))dτ

belongs to the space C([0, T ), Hs+1/2).

Thus, we have proved existence and uniqueness of a local solution to (18),

which is C∞-smooth in space for t > 0. To see that this solution is necessarily

global, it suffices to observe that for any τ, τ ′ > 0 it satisfies estimates which

hold uniformly in time for t ∈ [τ, τ + τ ′]: see Remark 41.

Appendix 2: proof of Lemma 49

We recall the statement of the lemma.

For every m, d ≥ 1, there exists a finite set Πd
m of homogeneous polynomials

of degree 1 in d variables X1, . . . , Xd with integer coefficients, such that their

m-th powers form a basis for the vector space of homogeneous polynomials of

degree m in d variables.
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Proof. The case d = 1 is trivial. In the case d = 2, we consider the matrix of

the mth powers of X1, X1 + X2, . . . , X1 + mX2 written in the canonical basis

(Xm
1 , X

m−1
1 X2, . . . , X1X

m−1
2 , Xm

2 ). We get

1 0 0 0 . . .

1 m
(
m
2

) (
m
3

)
. . .

1 2m 22
(
m
2

)
23
(
m
3

)
. . .

...
...

...
...

. . .


Dividing the n-th column by

(
m
n

)
for every n, we obtain Vandermonde’s matrix

V (0, . . . ,m), which is invertible [45, Chap. 7, §3, ex.5]. Thus, we may choose

Π2
m =

{
X1, X1 +X2, . . . , X1 +mX2

}
.

Finally, the case d ≥ 3 follows by induction on d. Indeed, all monomials of degree

m can be written as

Xm−n
1 Pn(X2, . . . , Xd), 0 ≤ n ≤ m,

where degPn = n. To deal with the case n = 0, it suffices to add X1 to the

set Πd
m. For n ≥ 1, the statement for d− 1 tells us that Pn(X2, . . . , Xd) can be

written as a finite linear combination

I(n)∑
i=1

(Li(X2, . . . , Xd))
n,

where the Li are homogeneous polynomials of degree 1.

Now, for every n, 1 ≤ n ≤ m and every i, 1 ≤ i ≤ I(n), consider Li and X1

as the new independent variables, apply the lemma’s statement for d = 2 and
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add the resulting polynomials to the set Πd
m. At the end of the procedure we

get a generating family, and then a basis for Πd
m.
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