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Block modelling in dynamic networks with non
homogeneous Poisson processes and exact ICL

Marco Cornelia, Pierre Latouchea, Fabrice Rossia

aUniversité Paris 1 Panthéon-Sorbonne - Laboratoire SAMM
90 rue de Tolbiac, F-75634 Paris Cedex 13 - France

Abstract

We develop a model in which interactions between nodes of a dynamic network are
counted by non homogeneous Poisson processes. In a block modelling perspective,
nodes belong to hidden clusters (whose number is unknown) and the intensity
functions of the counting processes only depend on the clusters of nodes. In
order to make inference tractable we move to discrete time by partitioning the
entire time horizon in which interactions are observed in fixed-length time sub-
intervals. First, we derive an exact integrated classification likelihood criterion
and maximize it relying on a greedy search approach. This allows to estimate
the memberships to clusters and the number of clusters simultaneously. Then
a maximum-likelihood estimator is developed to estimate non parametrically
the integrated intensities. We discuss the over-fitting problems of the model
and propose a regularized version solving these issues. Experiments on real and
simulated data are carried out in order to assess the proposed methodology.

Keywords: Dynamic network, Stochastic block model, exact ICL, Non

homogeneous Poisson Process.

1. Introduction

Graph clustering (Schaeffer, 2007) is probably one of the main exploratory
tools used in network analysis as it provides data analysts with a high level
summarized view of complex networks. One of the main paradigms for graph
clustering is community search (Fortunato, 2010): a community is a subset of5

nodes in a graph that are densely connected and have relatively few connections
to nodes outside of the community. While this paradigm is very successful in
many applications, it suffers from a main limitation: it cannot be used to detect
other important structures that arise in graphs, such as bipartite structures,
hubs, authorities, and other patterns.10

The alternative solution favoured in this paper is provided by block models
(Lorrain and White, 1971; White et al., 1976): in such a model, a cluster consists
of nodes that share the same connectivity patterns to other clusters, regardless of
the pattern itself (community, hub, bipartite, etc.). A popular probabilistic view
on block models is provided by the stochastic block model (SBM, Holland et al.,15
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1983; Wang and Wong, 1987). The main idea is to assume that a hidden random
variable is attached to each node. This variable contains the cluster membership
information while connection probabilities between clusters are handled by the
parameters of the model. The reader is send to Goldenberg et al. (2009) for a
survey of probabilistic models for graphs and to Wasserman and Faust (1994),20

Ch.16, for an overview of the stochastic block models
This paper focuses on dynamic graphs in the following sense: we assume that

nodes of the graph are fixed and that interactions between them are directed
and take place at a specific instant. In other words, we consider a directed
multi-graph (two nodes can be connected by more than one edge) in which each25

directed edge is labelled with an occurrence time. We are interested in extending
the SBM to this type of graphs. More precisely, the proposed model is based on
a counting process point of view of the interactions between nodes: we assume
that the number of interactions between two nodes follows a non homogeneous
Poisson counting process (NHPP). As in a standard SBM, nodes are assumed30

to belong to clusters that do not change over time, thus the temporal aspect is
handled only via the non homogeneity of the counting processes. Then the block
model hypothesis take the following form: the intensity of the NHPP that counts
interactions between two nodes depends only on the clusters of the nodes. In
order to obtain a tractable inference, a segmentation of the time interval under35

study is introduced and the interactions are aggregated over the sub-intervals of
the partition. Following Côme and Latouche (2015), the model is adjusted to
the data via the maximization of the integrated classification likelihood (ICL
Biernacki et al., 2000) in an exact form. As in Côme and Latouche (2015) (and
Wyse et al. (2014) for latent block models), the maximization is done via a40

greedy search. This allows us to chose automatically the number of clusters in
the block model.

When the number of sub-intervals is large, the model can suffer from a form
of over fitting as the ICL penalizes only a large number of clusters. Therefore,
we introduce a variant, based on the model developed in Corneli et al. (2015), in45

which sub-intervals are clustered into classes of homogeneous intensities. Those
clusters are accounted for in a new version of the ICL which prevents over fitting.

This paper is structured as follows: in Section 2 we mention works related to
the approach we propose, Section 3 presents the proposed temporal extension of
the SBM, Section 4 derives the exact ICL for this model and presents the greedy50

search algorithm used to maximize the ICL. Section 5 gathers experimental
results on simulated data and on real world data. Section 6 concludes the paper.

2. Related Works

Numerous extensions of the original SBM have already been proposed to deal
with dynamic graphs. In this context, both nodes memberships to a cluster and55

interactions between nodes can be seen as stochastic processes. In Yang et al.
(2011), for instance, authors introduce a Markov Chain to obtain the cluster
of node in t given its cluster at time t− 1. Xu and Hero III (2013) as well as
Xing et al. (2010) used a state space model to describe temporal changes at
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the level of the connectivity pattern. In the latter, the authors developed a60

method to retrieve overlapping clusters through time. In general, the proposed
temporal variations of the SBM share a similar approach: the data set consists
in a sequence of graphs rather than the more general structure we assume. Some
papers remove those assumptions by considering continuous time models in which
edges occur at specific instants (for instance when someone sends an email).65

This is the case of e.g. Dubois et al. (2013) and of Guigourès et al. (2012, 2015).
A temporal stochastic block model, related to the one presented in this paper is
independently developed by Matias et al. (2015). They assume that nodes in
a network belong to clusters whose composition do not change over time and
interactions are counted by a non-homogeneous Poisson process whose intensity70

only depends on the nodes clusters. In order to estimate (non-parametrically)
the instantaneous intensity functions of the Poisson processes, they develop a
variational EM algorithm to maximize an approximation of the likelihood.

3. The model

We consider a fixed set of N nodes, {1, . . . , N}, that can interact as frequently75

as wanted during the time interval [0, T ]. Interactions are directed from one node
to another and are assumed to be instantaneous1. A natural mathematical model
for this type of interactions is provided by counting processes on [0, T ]. Indeed
a counting process is a stochastic process with values that are non negative
integers increasing through time: the value at time t can be seen as the number80

of interactions that took place from 0 to t. Then the classical adjacency matrix
(Xij)1≤i,j≤N of static graphs is replaced by a N × N collection of counting
processes, (Xij(t))1≤i,j≤N , where Xij(t) is the counting process that gives the
number of interactions from node i to node j. We still call X = (Xij(t))1≤i,j≤N
the adjacency matrix of this dynamical graph.85

We introduce in this Section a generative model for adjacency matrices of
dynamical graphs that is inspired by the classical stochastic block model (SBM).

3.1. Non-homogeneous Poisson counting process

We first chose a simple form for Xij(t): we assume that this process is a
non-homogeneous Poisson counting process (NHPP) with instantaneous intensity
given by the function from [0, T ] to R, λij . For s ≤ t ≤ T , it then holds

p(Xij(t)−Xij(s)|λij) =
(
∫ t
s
λij(u)du)Xij(t)−Xij(s)

(Xij(t)−Xij(s))!
exp

(
−
∫ t

s

λij(u)du

)
, (1)

where Xij(t)−Xij(s) is the (non negative) number of interactions from i to j
that took place during [s, t]. (We assume that Xij(0) = 0.)90

1In practice, the starting time of an interaction with a duration will be considered.
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3.2. Block modelling

The main idea of the SBM (Holland et al., 1983; Wang and Wong, 1987) is to
assume that nodes have some (hidden) characteristics that solely explain their
interactions, in a stochastic sense. In our context this means that rather than
having pairwise intensity functions λij , those functions are shared by nodes that95

have the same characteristics.
In more technical terms, we assume the nodes are grouped in K clusters

(A1, . . . ,AK) and introduce a hidden cluster membership random vector z ∈
{1, . . .K}N such that

zi = k iff i ∈ Ak, k ≤ K.

The random component zi is assumed to follow a multinomial distribution with
parameter vector ω such that

P{zi = k} = ωk with
∑
k≤K

ωk = 1.

In addition, the (zi)1≤i≤N are assumed to be independent (knowing ω) and thus

p(z|ω,K) =
∏
k≤K

ω
|Ak|
k , (2)

where |Ak| denotes the cardinal of Ak. Notice that this part of the model is
exactly identical to what is done in the classical SBM.

In a second step, we assume that given z, the counting processes Xij(t) are
independent and in addition that the intensity function λij depends only on zi100

and zj . In order to keep notations tight we denote λzizj the common intensity
function and we will not use directly the pairwise intensity functions λij . We
denote λ the matrix valued intensity function λ = (λkg(t))1≤k,g≤K .

Combining all the assumptions, we have for s ≤ t ≤ T

p(X(t)−X(s)|z,λ) =
∏
i6=j

(
∫ t
s
λzizj (u)du)Xij(t)−Xij(s)

(Xij(t)−Xij(s))!
exp

(
−
∫ t

s

λzizj (u)du

)
.

(3)

3.3. Discrete time version

In order to make inference tractable, we move from the continuous time
model to a discrete time one. This is done via a partition of the interval [0, T ]
based on a set of U + 1 instants

0 = t0 ≤ t1 ≤ · · · ≤ tU−1 ≤ tU = T,

that defines U intervals Iu := [tu−1, tu[ (with arbitrary length ∆u). The purpose
of the partition is to aggregate the interaction. Let us denote

Y Iuij := Xij(tu)−Xij(tu−1), u ∈ {1, . . . , U}. (4)
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In words, Y Iuij measures the increment, over the time interval Iu, of the Poisson
process counting interactions from i to j. We denote by Yij the random vector

Yij := (Y I1ij , . . . , Y
IU
ij )T .

Thanks to the independence of the increments of a Poisson process, we get the
following joint density:

p(Yij |λij) =

U∏
u=1

 (
∫
Iu
λij(s)ds)

Y Iu
ij

Y Iuij !
exp

(
−
∫
Iu

λij(s)ds

) . (5)

The variations of λij inside an interval Iu have no effect on the distribution of
Yij . This allows us to use the integrated intensity function Λ defined on [0, T ] by

Λij(t) :=

∫ t

0

λij(s)ds.

In addition, we denote by πIuij the increment of the integrated intensity function
over Iu

πIuij := Λij(tu)− Λij(tu−1), ∀u ∈ {1, . . . , U}.

Then equation (5) becomes

p(Yij |πij) =

U∏
u=1

 (πIuij )Y
Iu
ij

Y Iuij !
exp

(
−πIuij

) , (6)

with πij := (πI1ij , . . . , π
IU
ij )T .105

Using the block model assumptions, we have in addition

p(Yij |πzizj , zi, zj) =

U∏
u=1

 (πIuzizj )Y
Iu
ij

Y Iuij !
exp

(
−πIuzizj

) , (7)

where we have used the fact that λij = λzizj (which leads to Λij = Λzizj , etc.).
Considering the network as a whole, we can introduce two tensors of order 3.

Y is a N ×N × U random tensor whose element (i, j, u) is the random variable
Y Iuij and π is the K×K×U tensor whose element (k, g, u) is πIukg. Y can be seen
as an aggregated (or discrete time version) of the adjacency process X while π110

can be seen as summary of the matrix valued intensity function λ.
The conditional independence assumption of the block model leads to

p(Y |π, z) =

N∏
i,j

p(Yij |πzizj , zi, zj). (8)
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To simplify the rest of the paper, we will use the following notations

∏
i,j

∏
k,g

∏
u

:=

N∏
i=1

N∏
j=1

K∏
k=1

K∏
g=1

U∏
u=1

∏
zi=k

∏
zj=g

 :=
∏
i:

zi=k

∏
j:

zj=g

 .

The joint distribution of Y , given z and π, is

p(Y |z, π) =
∏
i,j

∏
u

 (πIuzizj )Y
Iu
ij

Y Iuij !
exp

(
−πIuzizj

)
=
∏
k,g

∏
u

(
(πIuk,g)

Skgu

Pkgu
exp

(
−|Ak||Ag|πIukg

))
, (9)

where
Skgu =

∑
zi=k

∑
zj=g

Y Iuij ,

is the total number of interactions from cluster k to cluster g (possibly equal to
k) and with

Pkgu =
∏
zi=k

∏
zj=g

Y Iuij !.

3.4. A constrained version

As will be shown in Section 4.4, the model presented thus far is prone to over
fitting when the number of sub-intervals U is large compared to N . Additional
constraints on the intensity functions {Λkg(t)}k,g≤K are needed in this situation.115

Let us consider a fixed pair of clusters (k, g). So far, the increments {πIukg}u≤U
are allowed to differ on each Iu over the considered partition. A constraint can
be introduced by assigning the time intervals (I1, . . . IU ) to different time clusters
and assuming that increments are identical for all the intervals belonging to the
same time cluster. Formally, we introduce D clusters (C1, . . . , CD) and a hidden
random vector y ∈ {0, 1}U , labelling memberships

yu = d iff Iu ∈ Cd.

Each yu is assume to follow a multinomial distribution depending on parameter
ρ

P{yu = d} = ρd with
∑
d≤D

ρd = 1,

and in addition the yu are assumed to be independent, leading to

p(y|ρ, D) =
∏
d≤D

ρ
|Cd|
d . (10)
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The random variable Y Iuij is now assumed to follow the conditional distribution

p(Y Iuij |z,y) =
(πyuzizj )Y

Iu
ij

Y Iuij !
exp (−πyuzizj ). (11)

Notice that the new Poisson parameter πyuzizj replaces πIuzizj in the unconstrained
version. The joint distribution of Y , given z and y, can easily be obtained

p(Y |z,y, π) =
∏
k,g

∏
d

(
(πdkg)

Skgd

Pkgd
exp

(
−|Ak||Ag||Cd|πdkg

))
, (12)

where
Skgd =

∑
zi=k

∑
zj=g

∑
yu=d

Y Iuij , Pkgd =
∏
zi=k

∏
zj=g

∏
yu=d

Y Iuij !.

Remark 1. The introduction of this hidden vector y is not the only way to
impose regularity constraints to the integrated function Λkg(t). For example, a
segmentation constraint could be imposed by forcing each temporal cluster to
contain only adjacent time intervals.

3.4.1. Summary120

We have defined two generative models:

Model A the model has two meta parameters, K the number of clusters and ω
the parameters of a multinomial distribution on {1, . . . ,K}. The hidden
variable z is generated by the multivariate multinomial distribution of
equation (2). Then the model has a K ×K × U tensor of parameters π.125

Given z and π, the model generates a tensor of interaction counts Y using
equation (9).

Model B is a constrained version of model A. In addition to the meta param-
eters K and ω of model A, it has two meta parameters, D the number
of clusters of time sub-intervals and ρ the parameters of a multinomial130

distribution on {1, . . . , D}. The hidden variable y is generated by the
multivariate multinomial distribution of equation (10). Model B has a
K×K×D tensor of parameters π. Given z, y and π, the model generates
a tensor of interaction counts Y using equation (12).

Unless specified otherwise “the model” is used for model A.135

4. Estimation

4.1. Non parametric estimation of integrated intensities

In this Section we assume that z is known. No hypothesis has been formulated
about the shape of the functions {Λkg(t)}{k,g≤K,t≤T} and the increments of these
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functions over the partition introduced can be estimated by maximum likelihood
(ML), thanks to equation (9)

logL(π|Y, z) =
∑
k,g

∑
u

[
Skgu log(πIukg)− |Ak||Ag|π

Iu
kg + c

]
,

where c denotes those terms not depending on π. It immediately follows

π̂Iukg =
Skgu
|Ak||Ag|

, ∀(k, g), (13)

where π̂Iukg denotes the ML estimator of πIukg. In words, Λkg(tu) − Λkg(tu−1)
can be estimated by ML as the total number of interactions on the sub-graph
corresponding to the connections from cluster Ak to cluster Ag, over the time
interval Iu, divided by the number of nodes on this sub-graph. Once the tensor
π has been estimated, we have a point-wise, non parametric estimator of Λkg(tu),
for every u ≤ U , defined by

Λ̂kg(tu) =

u∑
l=1

π̂Ilkg, ∀(k, g). (14)

Thanks to the properties of the ML estimator, together with the linearity of
(14), we know that Λ̂kg(tu) is an unbiased and convergent estimator of Λkg(tu).

Remark 2. Estimator (14) at times {tu}u≤U , can be viewed as an extension to140

random graphs and mixture models of the non parametric estimator proposed in
Leemis (1991). In that article, N-trajectories of independent NHPPs, sharing
the same intensity function, are observed and the proposed estimator is basically
obtained via method of moments.

In all the experiments, we consider the following step-wise linear estimator
of Λkg(t)

Λ̂kg(t) =

U∑
u=1

[
Λ̂kg(tu−1) +

Λ̂kg(tu)− Λ̂kg(tu−1)

tu − tu−1
(t− tu−1)

]
1[tu−1,tu[(t), (15)

which is a linear combination of estimators in equation (14) on the interval [0, T ].145

This is a consistent and unbiased estimator of Λkg(t) at times {tu}u≤U only.
When considering model B, equations (13) and (14) are replaced by

π̂dkg =
Skgd

|Ak||Ag||Cd|
(16)

Λ̂kg(tu) =

u∑
l=1

π̂ylkg. (17)

Equation (15) remains unchanged, but an important difference between the
constrained model and the unconstrained one should be understood: in the
former, each interval Iu corresponds to a different slope for the function Λ̂kg(t)
whereas in the latter we only have D different slopes, one for each time cluster.150
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4.2. ICL

Since the vector z, as well as the number of clusters K are unknown, estimator
(13) cannot be used directly. Hence we propose a two step procedure consisting
in

1. providing estimates of z and K,155

2. using these estimates to implement (13) and (14).

To accomplish the first task, the same approach followed in Côme and Latouche
(2015) is adopted: we directly maximize the the joint integrated log-likelihood of
complete data (ICL), relying on a greedy search over the labels and number of
clusters. To perform such a maximization, we need the ICL to have an explicit
form. This can be achieved by introducing conjugated prior distributions on the
model parameters. The ICL can be written as

ICL(z,K) := log(p(Y, z|K)) = log(p(Y |z,K)) + log(p(z|K)). (18)

This exact quantity is approximated by the well known ICL criterion (Biernacki
et al., 2000). This criterion, obtained through Laplace and Stirling approxima-
tions of the joint density on the left hand side of equation (18), is used as a
model selection tool, since it penalizes models with a high number of parameters.160

In the following, we refer to the joint log-density in equation (18) as to the exact
ICL to differentiate it from the ICL criterion.

We are now going to study in detail the two quantities on the r.h.s. of the
above equation. The first probability density is obtained by integrating out the
parameter π

p(Y |z,K) =

∫
p(Y, π|z,K)dπ.

In order to have an explicit formula for this term, we impose the following
Gamma prior conjugated density over the tensor π:

p(π|a, b) =
∏
k,g,u

ba

Γ(a)
πa−1kgu e

−bπkgu ,

where the hyper-parameters of the Gamma prior distribution have been set
constant to a and b for simplicity.2 By using the Bayes rule

p(Y, π|z) = p(Y |π, z)p(π|a, b),

we get:

p(Y, π|z) =
∏
k,g,u

ba

Γ(a)Pkgu
π
Skgu+a−1
kgu

× exp (−πkgu [|Ak||Ag|+ b]) ,

2The model can easily be extended to the more general framework:

p(πkgu|akgu, bkgu) = Gamma(πkgu|akgu, bkgu).
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which can be integrated with respect to π to obtain

p(Y |z,K) =
∏
k,g,u

[
ba

Γ(a)Pkgu

Γ[Skgu + a]

[|Ak||Ag|+ b]
(Skgu+a)

]
. (19)

We now focus on the second density on the right hand side

p(z|K) =

∫
p(z,ω|K)dω.

A Dirichlet prior distribution can be attached to w in order to get an explicit
formula, in a similar fashion of what we did with π:

ν(ω|K) =DirK(ω;α, . . . , α).

The integrated density p(z|K) can be proven to reduce to

p(z|K) =
Γ(αK)

Γ(α)K

∏
k≤K Γ(|Ak|+ α)

Γ(N + αK)
(20)

4.3. Model B

When considering the constrained framework described at the end of the
previous section, the ICL is defined

ICL(z,y,K,D) := log(p(Y, z,y|K,D))

= log(p(Y |z,y)) + log(p(z|K)) + log(p(y|D))

and it is maximized to provide estimates of z,y,K and D. The first density on
the right hand side is obtained by integrating out the hyper-parameter π. This
integration can be done explicitly by attaching to π the following prior density
function

ν(π|a, b) =
∏
k,g

∏
d

ba

Γ(a)
πa−1kgd e

−bπkgd .

The second integrated density on the right hand side can be read in (20) and
the third is obtained by integrating out the parameter ρ, whose prior density165

density function is assumed to be

ν(ρ|D) = DirD(ρ;β, . . . , β).

The exact ICL is finally obtained by taking the logarithm of

p(Y, z,y|K,D) =
∏
k,g,d

ba

Γ(a)Pkgd

Γ[Skgd + a]

[|Ak||Ag||Cd|+ b]
(Skgd+a)

× Γ(αK)

Γ(α)K

∏
k≤K Γ(|Ak|+ α)

Γ(N + αK)

× Γ(βD)

Γ(β)D

∏
d≤D Γ(|Cd|+ β)

Γ(U + βD)
. (21)
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4.4. Greedy search

By setting conjugated prior distributions over the model parameters, we
obtained an ICL (equation (18)) in an explicit form. Nonetheless explicit formulas
to maximize it, with respect to z and K, do not exist. We then rely on a greedy170

search algorithm, that has been used to maximize the exact ICL, in the context
of a standard SBM, by Côme and Latouche (2015). This algorithm basically
works as follows:

1. An initial configuration for both z and K is set (standard clustering
algorithms like k-means or hierarchical clustering can be used).175

2. Labels switches leading to the highest increase in the exact ICL are repeat-
edly made. A label switch consists in a merge of two clusters or in a node
switch from one cluster to another.

Remark 3. The greedy algorithm described in this section, makes the best choice
locally. A convergence toward the global optimum in not guaranteed and often this180

optimum can only be approximated by a local optimum reached by the algorithm.

Remark 4. The exact ICL (as well as the ICL criterion) penalizes the number
of parameters. Since the tensor π has dimension K ×K × U , when U , which is
fixed, is very hight, the ICL will take its maximum for K = 1. In other words
the only way the ICL has to make the model more parsimonious is to reduce K185

up to one. By doing so, any community (or other) structure will not be detected.
This over-fitting problem has nothing to see with the possible limitations of the
greedy search algorithm and it can be solved by switching to model B.

Once Kmax has been fixed, together with an initial value of z, a shuffled
sequence of all the nodes in the graph is created. Each node in the sequence190

is moved to the cluster leading to the highest increase in the ICL, if any.
This procedure is repeated until no further increase in the ICL is still possible.
Henceforth, we refer to this step as to Greedy-Exchange (GE). When maximizing
the modularity score to detect communities, the GE usually is a final refinement
step to be adopted after repeatedly merging clusters of nodes. In that context,195

moreover, the number of clusters is initialized to U and each node is alone in
its own cluster. See for example Noack and Rotta (2008). Here, we follow a
different approach, proposed by Côme and Latouche (2015) and Blondel et al.
(2008): after running the GE , we try to merge the remaining clusters of nodes
in the attempt to increase the ICL. In this final step (henceforth GM), all the200

possible merges are tested and the best one is retained.
The ICL does not have to be computed before and after each swap/merge:

possible increases can be assessed directly. When switching one node (say i)
from cluster Ak′ to Al, with k′ 6= l, the change in the ICL is given by3

∆k′→l = ICL(z∗,K)− ICL(z,K).

3Hereafter, the “*” notation refers to the statistics after switching/merging.
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The only statistics not simplifying, are those involving k′ and l, hence the
equation above can be read as follows

∆k′→l := log

(
Γ(|Ak′ | − 1 + α)Γ(|Al|+ 1 + α)

Γ(|Ak′ |+ α)Γ(|Al|+ α)

)
+
∑
g≤K

∑
u≤U

log(L∗k′gu) +
∑
g≤K

∑
u≤U

log(L∗lgu)

+
∑
k≤K

∑
u≤U

log(L∗kk′u) +
∑
k≤K

∑
u≤U

log(L∗klu)

−
∑
u

(log(L∗k′k′u) + log(L∗k′lu) + log(L∗lk′u) + log(L∗llu))

−
∑
g≤K

∑
u≤U

log(Lk′gu)−
∑
g≤K

∑
u≤U

log(Llgu)

−
∑
k≤K

∑
u≤U

log(Lkk′u)−
∑
k≤K

∑
u≤U

log(Lklu)

+
∑
u

(log(Lk′k′u) + log(Lk′lu) + log(Llk′u) + log(Lllu)),

(22)

where Lkgu is the term inside the product on the right hand side of equation
(19) and z∗ and L∗kdu refer to new configuration where the node i in in Al.

When merging clusters Ak′ and Al into the cluster Al, the change in the ICL
can be expressed as follows:

∆k′→l :=ICL(z∗,K − 1)− ICL(z,K) =

= log

(
p(z∗|K − 1)

p(z|K)

)
+

+
∑
g≤K

∑
u≤U

(log(L∗lgu) + log(L∗klu))−
∑
u

log(L∗llu)

−
∑
g≤K

∑
u≤U

log(Lk′gu)−
∑
g≤K

∑
u≤U

log(Llgu)

−
∑
k≤K

∑
u≤U

log(Lkk′u)−
∑
k≤K

∑
u≤U

log(Lklu)

+
∑
u

(log(Lk′k′u) + log(Lk′lu) + log(Llk′u) + log(Lllu)).

(23)

When working with model B, we need to initialize Dmax and y. Then a
shuffled sequence of time intervals I1, . . . , IU is considered and each interval is205

swapped to the time cluster leading to the highest increase in the ICL (GE
for time intervals). When no further increase in the ICL is possible, we look
for possible merges between time clusters in the attempt to increase the ICL
(GM for time intervals). Formulas to directly assess the increase in the ICL can
be obtained, similar to those for nodes swaps and merges. In case of model B,210

different strategies are possible to optimize the ICL:

1. GE + GM for nodes at first and then for times (we will call this strategy
TN, henceforth).

2. GE + GM for time intervals at first and then for nodes (NT strategy).
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3. An hybrid strategy, involving alternate switching of nodes and time intervals215

(M strategy).

We will provide details about the chosen strategy case by case in the following.

5. Experiments

In this section, experiments on both synthetic and real data are provided.
All running times are measured on a twelve cores Intel Xeon server with 92 GB220

of main memory running a GNU Linux operating system, the greedy algorithm
described in Section 4.4 being implemented in C++. A Euclidean hierarchical
clustering algorithm was used to initialize the labels and Kmax was set to N/2.

In the following, we call TSBM the temporal SBM we propose and we refer
to the optimization algorithm described in the previous section as greedy ICL.225

5.1. Simulated Data

5.1.1. First Scenario

We start by investigating how the proposed approach can be used to efficiently
estimate the vector z of labels in situations where the standard SBM fails. Thus,
we simulate interactions between 50 (N) nodes, grouped in two hidden clusters
A1 and A2, over 100 (U) time intervals of unitary length. The generative model
considered for the simulations depends on two time clusters C1 and C2 containing
a certain number of time intervals I1, . . . IU . If Iu is in C1 then Y Iuij is drawn

from a Poisson distribution P(Pzizj ). Otherwise, Y Iuij is drawn from a Poisson
distribution P(Qzizj ). The matrices P and Q are given by

P =

(
ψ 1
1 ψ

)
and Q =

(
1 ψ
ψ 1

)
,

where ψ is a free parameter in [1,∞). When this parameter is equal to 1,
we are in a degenerate case and there is not any structure to detect: all the
nodes are placed in the same, unique cluster. The higher ψ, the stronger the
contrast between the interactions pattern inside and outside the cluster. In this
paragraph, ψ is set equal to 2 and the proportions of the clusters are set equal
(ω = (1/2, 1/2)). The number of time intervals assigned to each time cluster is
assumed to be equal to U/2. In the following, we consider

C1 :={I1, . . . , I25} ∪ {I51, . . . , I75},
C2 :={I26, . . . , I50} ∪ {I76, . . . , I100}.

This generative model defines two integrated intensity functions (IIFs), say Λ1(t)
and Λ2(t). The former is the IIF of the Poisson processes counting interactions
between nodes sharing the same cluster, the latter is the IIF of the Poisson230

processes counting interactions between vertices in different clusters. These IIFs
can be observed in Figure 1a.

A tensor Y , with dimensions N ×N ×U , is drawn. Its (i, j, u) component is
the sampled number of interactions from node i to node j over the time interval

13
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Figure 1: Real 1a and estimated 1b integrated intensity functions (IIFs) according to the
considered generative model (ψ = 2). In blue we have Λ1(t), for ψ = 4, in red Λ2(t).

Iu. Moreover, sampled interactions are aggregated over the whole time horizon235

to obtain an adjacency matrix. In other words, each tensor is integrated over
its third dimension. We compared the greedy ICL algorithm with the Gibbs
sampling approach introduced by Nouedoui and Latouche (2013). The former
was run on the tensor Y (providing estimates in 11.86 seconds on average) the
latter on the corresponding adjacency matrix. This experiment was repeated 50240

times and estimates of random vector z were provided at each iteration. Each
estimate ẑ is compared with the true z and an adjusted rand index (ARI Rand,
1971) is computed. This index takes values between zero and one, where one
corresponds to the perfect clustering (up to label switching).

Remark 5. the true structure is always recovered by the TSBM: 50 unitary245

values of the ARI are obtained. Conversely, the standard SBM never succeeds in
recovering any hidden structures present in the data (50 null ARIs are obtained).
This can easily be explained since the time clusters have opposite interaction
patterns, making them hard to uncover when aggregating over time.

Relying on an efficient estimate of z, the two integrated intensity functions250

can be estimated through the estimator in equation (15). Results can be observed
in Figure 1b, where the estimated functions (coloured dots) overlap the real
functions 1a.

Over fitting. We now illustrate how the model discussed so far fails in recovering
the true vector z when the number of time intervals (and hence of free parameters)
grows. We consider the same generative model of the previous paragraph, with
a lower ψ:

P =

(
1.4 1
1 1.4

)
and Q =

(
1 1.4

1.4 1

)
.

Despite the lower contrast (from 2 to 1.4 in P and Q), with U = 100 and time
sub-intervals of unitary length, the TSBM model still always recovers the true

14



vector z. Now we consider a finer partition of [0, 100] by setting U = 1000 and
∆u = 0.1 as well as scaling the intensity matrices as follows

P̃ :=

(
0.14 0.1
0.1 0.14

)
and Q̃ =

(
0.1 0.14
0.14 0.1

)
.

Moreover, we set

C1 := {I1, . . . , I250} ∪ {I501, . . . , I750}

and C2 is the complement of C1, as previously. Finally, we sampled 50 dynamic
graphs over the interval [0, 100] from the corresponding generative model. Thus,255

each graph is characterized by a sampled tensor Y .
Unfortunately, the model is not robust to such changes. Indeed, when running

the greedy ICL algorithm on each sampled tensor Y , the algorithm does not
see any community structure and all nodes are placed in the same cluster. This
leads to a null ARI, for each estimation. As mentioned in paragraph 4.4, the260

ICL penalizes the number of parameters and since the tensor π has dimension
K×K×U , for a fixed K, when moving from the larger decomposition (U = 100)
to the finer one (U = 1000), the number of free parameters in the model is
approximatively4 multiplied by 10. The increase we observe in the likelihood,
when increasing the number of clusters of nodes from K = 1 to K = 2, is not265

sufficient to compensate the penalty due to the high number of parameters and
hence the ICL decreases. Therefore, the maximum is taken for K = 1 and a
single cluster is detected.

Model B allows to tackle this issue. When allowing the integrated intensity
functions Λ1(t) and Λ2(t) to grow at the same rate on each interval Iu belonging270

to the same time cluster Cd, we basically reduce the third dimension of the tensor
π from U to D.

The greedy ICL algorithm for Model B was run on each sampled tensor
Y , providing estimates of z and y in 2.38 minutes, on average. A hierarchical
clustering algorithm was used to initialize the time labels y, and the initial275

number of time clusters was set to Dmax =
√
U . In an attempt to avoid

convergence to local maxima, ten estimates are built for each tensor and the
estimate leading to the best ICL is finally retained. The adjusted rand index is
used to evaluate the clustering, as previously, and the results are presented as box
plots in Figure 2. Note that the results were obtained through the optimization280

strategy TN. The other two strategies described in section 4.4, namely the NT
strategy and the M strategy, led to similar results in terms of final ICL and
ARIs.

5.1.2. Second Scenario

Since the node clusters are fixed over time, the TSBM model can be seen as285

an alternative to a standard SBM to estimate the label vector z. The previous

4The dimension of the vector ω does not change.
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Figure 2: Box plots for both clusterings of nodes and time intervals: 50 dynamic graphs were
sampled according to the considered generative model, estimates of z and y are provided by
the greedy ICL (model B).

scenario shows that the TSBM can recover the true vector z in situations where
the SBM fails. In this paragraph we show how the TSBM and the SBM can
sometimes have similar performances.

We considered dynamic graphs with 50 (N) nodes and 50 (U) time intervals

I1, . . . , I50.

These time intervals are grouped in two time clusters C1 and C2, the former
containing the first 25 time intervals, the latter the last 25 time intervals. If Iu
is in C1 then Y Iuij is drawn from a Poisson distribution P(Pzizj ). Otherwise, Y Iuij
is drawn from a Poisson distribution P(2Pzizj ). The P matrix is given by

P =

(
ψ 2
2 ψ

)
and ψ is a free parameter in [2,+∞). Hence, we have two different integrated290

intensity functions, say Λ1(t) and Λ2(t) with the same roles as in the previous
section. These two functions are plotted in Figure 3a, for a value of ψ = 4.

We investigated six values for the parameter ψ

{2.1, 2.2, 2.3, 2.4, 2.5, 2.6}.

For each value of ψ, we sampled 50 tensors Y , of dimension (50 × 50 × 50),
according to the generative model considered. Interactions are aggregated over
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Figure 3: Real 3a and estimated 3b integrated intensity functions (IIFs) according to the
considered generative model. In blue we have Λ1(t), for ψ = 4, in red Λ2(t).

the time interval [0, 50] to obtain adjacency matrices. We ran the greedy ICL295

algorithm on each tensor and the Gibbs sampling (SBM) algorithm on each
adjacency matrix. For the greedy ICL algorithm, estimates of vector z were
obtained in a mean running time of 5.52 seconds. As previously, to avoid
convergence to local maxima, ten different estimates are built for each tensor,
the one leading to the highest ICL being retained. The results are presented300

as box plots in Figure 4. Although the SBM leads to slightly better clustering
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(a) ARIs obtained by greedy ICL.
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(b) ARIs obtained with the Gibbs sampling
procedure for SBM.

Figure 4: Box plots of ARIs for different levels of contrast (ψ). We compare the proposed
model with a standard SBM.

results for small values of ψ (2.2, 2.3) and the TSBM for higher values of ψ (2.5,
2.6), we observe that the two models have quite similar performances (in terms
of accuracy) in this scenario.
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To provide some intuitions about the scalability (see next paragraph) of
the proposed approach we repeated the previous experiment by setting K = 3
clusters, corresponding to the following connectivity matrix:

P =

ψ 2 2
2 ψ 2
2 2 ψ

 .

The assignment of the time intervals to the time clusters is unchanged as well305

as the connectivity pattern on each time cluster are unchanged. The contrast
parameter ψ takes values in the set {2, 2.5, 2.10, . . . , 2.8} and 50 dynamic graphs
were sampled, according to the described settings, for each value of ψ. We ran
the TSBM on each dynamic graph obtaining 50 estimates of the labels vector z
(one for each ψ) and box and whiskers plots for each group of ARIs can be seen310

in Figure 5. By comparing this figure with Figure 4a, we can see that the model
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Figure 5: Box plots of ARIs for different levels of contrast (ψ). Data have been sampled by
non-homogeneous Poisson processes counting interactions in a dynamic graph whose nodes are
grouped in three clusters and interactivity patterns vary across two time clusters.

needs a slight higher contrast to fully recover the true structure. Actually, when
increasing the number of clusters without increasing the number of nodes, the
size of each cluster decreases (on average) and since the estimator of z we are
using is related to the ML estimator, we can imagine a slower convergence to315

the true value of z.

18



5.1.3. Scalability

A full scalability analysis of the proposed algorithm as well as the conver-
gence properties of the proposed estimators are outside the scope of this paper.
Nonetheless, in appendix we provide details about the computational complex-320

ity of the greedy-ICL algorithm. Future works could certainly be devoted to
improve both the algorithm efficiency and scalability through the use of more
sophisticated data structures.

5.2. Real data

The dataset used in this section was collected during the ACM Hypertext325

conference held in Turin, June 29th - July 1st 2009. We focus on the first
conference day (24 hours) and consider a dynamic network with 113 (N) nodes
(conference attendees) and 96 (U) time intervals (the consecutive quarter-hours
in the period: 8am of June 29th - 7.59am of June 30th). The network edges are
the proximity face to face interactions between the conference attendees. An330

interaction is monitored when two attendees are face to face, nearer than 1.5
meters for a time period of at least 20 seconds5. The data set we considered
consists of several lines similar to the following one

ID1 ID2 Time Interval (15m) Number of interactions

52 26 5 16

It means that conference attendees 52 and 26, between 9am and 9.15am, have335

spoken for 16× 20s ≈ 5m30s.
We set Kmax = 20 and the vector z was initialized randomly: each node

was assigned to a cluster following a multinomial distribution. The greedy
algorithm was run ten times on the considered dataset, each time with a different
initialization and estimates of z and K were provided in 13.81 seconds, on average.340

The final values of the ICL can be observed as box plots in Figure 6 .
The estimates associated to the highest ICL correspond to 5 node clusters.

In Figure 7, we focus on the cluster A4, containing 48 nodes. In Figure 7a we
plotted the time cumulated interactions inside the cluster. As it can be seen the
connectivity pattern for this cluster is very representative of the entire graph:345

between 13pm and 14pm and 18pm and 19.30pm there are significant increases
in the interactions intensity. The estimated integrated intensity function (IIF)
for interactions inside this cluster can be observed in Figure 7b. The function
has a higher slope on those time intervals where attendees in the cluster are
more likely to have interactions. The vertical red lines delimit two important350

times of social gathering6:

• 13.00-15.00 - lunch break.

5More informations about the way the data were collected can be found in
Isella et al. (2011) or visiting the website http://www.sociopatterns.org/datasets/

hypertext-2009-dynamic-contact-network/.
6More informations at http://www.ht2009.org/program.php.
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Figure 6: Box plot of the ten final values of the ICL produced by the greedy ICL algorithm for
different initializations.

• 18.00-19.00 - wine and cheese reception.

We conclude this section by illustrating how Model B can be used to assign
time intervals on which interactions have similar intensity to the same time355

cluster. We run the greedy ICL algorithm for Model B on the dataset by using
the optimization strategy M described at the end of Section 4.4 (other strategies
lead in this case to similar results) and Dmax was set equal to 20. The time
clustering provided by the greedy ICL algorithm can be observed in Figure 8.
On the left hand side, the aggregated interactions for each quarter-hour during360

the first day are reported. On the right hand side, interactions taking place into
those time intervals assigned to the same time cluster have the same form/color.
Two important things should be noticed:

1. The obtained clustering seems meaningful: the three time intervals with
the highest interactions level are placed in the same cluster (blue), apart365

from all the others. More in general, each cluster is associated to a certain
intensity level, so time intervals in the same cluster, not necessarily adjacent,
share the same global interactivity pattern.

2. There are not constraints on the number of abruptly changes connected
with these five time clusters. In other words, time clusters do not need to370

be adjacent and this is the real difference between the approach considered
in this paper (time clustering) and a pure segmentation one.
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Figure 7: in Figure 7a, cumulated aggregated connections for each time interval for
cluster A4 . In Figure 7b the estimated IIF for interactions inside cluster A4. Vertical
red lines delimit the lunch break and the wine and cheese reception.

6. Conclusion

We proposed a non-stationary extension of the stochastic block model (SBM)
allowing us to cluster nodes of a network is situations where the classical SBM375

fails. The approach we chose consists in partitioning the time interval over
which interactions are studied into sub-intervals of fixed length. Those intervals
provide aggregated interaction counts that are increments of non homogeneous
Poisson processes (NHPPs). In a SBM inspired perspective, nodes are clustered
in such a way that aggregated interaction counts are homogeneous over clusters.380

We derived an exact integrated classification likelihood (ICL) for such a model
and proposed to maximize it through a greedy search strategy. Finally, a
non parametric maximum likelihood estimator was developed to estimate the
integrated intensity functions of the NHPPs counting interactions between nodes.
The experiments we carried out on artificial and real world networks highlight the385

capacity of the model to capture non-stationary structures in dynamic graphs.
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Figure 8: in Figure 8a, aggregated connections for each time interval for the whole
network. In Figure 8b interactions of the same form/color take place on time intervals
assigned to the same cluster (model B).

Appendix A. Computational complexity

In this section we provide details about the computational complexity of the
main model presented in this paper, namely the model A. Assuming that the
gamma function can be computed in constant time (see Press et al., 2007), we390

focus on the three statistics appearing in equation (9), namely

1. Skgu :=
∑
zi=k

∑
zj=g

Y Iuij ,

2. Pkgu :=
∏
zi=k

∏
zj=g

Y Iuij !,

3. Rkg := |Ak||Ag|.
The whole computation task consists in evaluating the increase in ICL induced
by nodes exchanges and merges. Those computations involves the tree quantities
listed above. The tensor {Skgu}k,g≤K,u≤U is stored in a three dimensional array,
never resized, occupying a O(K2

maxU) memory space. Hence, at any time during
the algorithm its elements can be accessed and modified in constant time. The
tensor {Pkgu}k,g≤K,u≤U is handled similarly and clusters sizes (we recall that
|Ak| corresponds to the size of cluster Ak) are also stored in arrays. In order
to evaluate the ICL changes, induced by an operation, we need to maintain
aggregated interaction counts for each node: for a node i we have, e.g.

Sigu :=
∑
zj=g

Y Iuij ,

the number of interactions from node i to cluster Ag inside the time interval Iu.
Similarly

S′igu :=
∑
zj=g

Y Iuji

denotes the number of interactions from cluster Ag to node i inside the time395

interval Iu. Other related quantities are considered. These structures occupy a
memory space of O(N2U).
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Exchanges. In order to evaluate the ICL increase induced by the switch of a
node (say i) from cluster Ak′ to cluster Al, we perform the following operations:

• Sk′gu (respectively Sgk′u) is reduced by Sigu (S′igu) and Slgu (Sglu) is400

increased by the same amount;

• Pk′gu (respectively Pg′ku) is reduced by Pigu (P ′igu) and Plgu (Pglu) is
increased by the same amount;

• Ak′ (Al) is reduced (increased) by one.

Although these operations are in constant time, they are involved in a sum with405

(KU) elements (this can be seen in equation (22)), so that the total cost of the
test is O(KU). Since node i can be switched to K − 1 remaining clusters and
the graph has N nodes, the cost of a full exchange routine is O(NK2U).

Remark 6. When a node is actually switched from its cluster to another one,
all data structures are updated but the update cost is dominated by the cost of410

the testing phase described above.

Notice that we have evaluated the total cost of one full exchange routine, i.e.,
in the case where all nodes are considered once. Reductions in the number of
clusters (very likely to be induced by exchanges in case Kmax is high) are not
taken into account.415

Merges. The entire merge routine, consisting in a test phase and an actual
merge, has a computational cost that is dominated by the cost of exchanges.
Consider a cluster Ak′ . We first look for the cluster (say Al) leading to the
best merge (highest increase in the ICL) with Ak′ . This operation has a cost of
O(K2U): for each Al the evaluation of the increase in ICL has a cost of O(KU)420

(see equation (23)) and l can take K − 1 possible values. Since we look for the
best merge for all k′ ∈ {1, . . . ,K} the computational cost for a merge of two
nodes clusters is O(K3U), where we recall that D ≤ N .

Total cost. The worst case complexity for one iteration of the algorithm, with
each node considered once, is O(NK2U). However, it is difficult to evaluate the425

actual complexity of the whole algorithm for two reasons. Firstly, we have no way
to estimate the number of exchanges needed in the exchange phase. Secondly,
nodes exchanges are very likely to reduce the number of clusters, especially at the
beginning of the algorithm, when Kmax is relatively high. Thus the individual
cost of an exchange reduces very quickly leading to a vast overestimation of430

its cost using the proposed bounds. A detailed evaluation of the behaviour of
the proposed algorithm, although outside the scope of the this paper, would be
necessary to assess its use on large data sets.
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