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PHASE FIELD MODELS FOR THIN ELASTIC STRUCTURES WITH

TOPOLOGICAL CONSTRAINT

PATRICK W. DONDL, ANTOINE LEMENANT, AND STEPHAN WOJTOWYTSCH

ABSTRACT. This article is concerned with the problem of minimising the Willmore energy in the
class of connected surfaces with prescribed area which are confined to a container. We propose
a phase field approximation based on De Giorgi’s diffuse Willmore functional to this variational
problem. Our main contribution is a penalisation term which ensures connectedness in the sharp
interface limit.

For sequences of phase fields with bounded diffuse Willmore energy and bounded area term,
we prove uniform convergence in two ambient space dimensions and a certain weak mode of
convergence on curves in three dimensions. This enables us to show I'-convergence to a sharp
interface problem that only allows for connected structures. The topological contribution is based
on a geodesic distance chosen to be small between two points that lie on the same connected
component of the transition layer of the phase field.

We furthermore present numerical evidence of the effectiveness of our model. The implemen-
tation relies on a coupling of Dijkstra’s algorithm in order to compute the topological penalty
to a finite element approach for the Willmore term.
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1. INTRODUCTION

SIS EEEEEE =S E

In this article, we consider a diffuse interface approximation of a variational problem arising
the study of thin elastic structures. Our particular question is motivated by the problem of
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predicting the shape of certain biological objects, such as mitochondria, which consist of an elas-
tic lipid bilayer and are confined by an additional outer mitochondrial membrane of significantly
smaller surface area. When modelling such structures, in addition to the confinement and surface
area constraints, a challenging topological side condition naturally arises as the biological mem-
branes are typically connected and do not self-intersect. Incorporating this property into a diffuse
interface model will be the main concern of this article.

In order to describe the the locally optimal shape of thin elastic structures, we will rely on
suitable bending energies. A well-known example of such a variational characterisation of biomem-
branes is given by the Helfrich functional [Hel73| [Can70]

(1.1) SH(E):XO/Z(H7H0)2dH2+X1/ZKd’H2

where ¥ denotes the two-dimensional membrane surface in R? and H and K denote its mean and
Gaussian curvatures. The parameters xo, x1 and Hy are the bending moduli and the spontaneous
curvature of the membrane. Both integrals are performed with respect to the two-dimensional
Hausdorff measure #2. The special case when Hy, x1 = 0 is known as Willmore’s energy

W(E) = /EHQ dH>.

Extrema (in particular, local minimisers) of the Willmore functional are therefore of interest in
models for biological membranes, but they also arise naturally in pure differential geometry as the
stereographic projections of compact minimal surfaces in S3. An introduction from that point of
view is given in [PS87], along with a number of examples. From the point of view of the calculus
of variations, a natural approach to energies as the ones above is via varifolds [AIl72].

In the class of closed surfaces, the second term in the Helfrich functional is of topological nature.
If the minimisation problem is considered only among surfaces of prescribed topological type it
can be neglected due to the Gauss-Bonnet theorem. The spontaneous curvature is realistically
expected to be non-zero and can have tremendous influence. It should be noted that the full
Helfrich energy depends also on the orientation of a surfaces for Hy # 0 and not only on its
induced (unoriented) varifold. GroBe-Brauckmann [GB93] gives an example of surfaces Mj, of
constant mean curvature H = 1 converging to a doubly covered plane. This demonstrates that,
unlike the Willmore energy, the Helfrich energy need not be lower semi-continuous under varifold
convergence for some parameters.

Even for Willmore’s energy rigorous results are hard to obtain. The existence of smooth min-
imising Tori was proved by Simon [Sim93], and later generalised to surfaces of arbitrary genus in
[BK03]. The long-standing Willmore conjecture that W(T') > 42 for all Tori embedded in R?® was
recently established in [MN14], and the large limit genus of the minimal Willmore energy for closed
orientable surfaces in R? has been investigated in [KLS10]. The existence of smooth minimising
surfaces under isoperimetric constraints has been established in [Sch12]. A good account of the
Willmore functional in this context can be found in [KS12].

The case of surfaces constrained to the unit ball was studied in [MR14] and a scaling law for
the Willmore energy was found in the regimes of surface area just exceeding 47 and the large area
limit. While the above papers adopt an external approach in the language of varifold geometry, a
parametrised approach has been developed in [Riv14] and related papers.

Recently, existence of minimisers for certain Helfrich-type energies among axially symmetric
surfaces under an isoperimetric constraint was proved by Choksi [CV13]. Other avenues of research
consider Willmore surfaces in more general ambient spaces.

Results for the gradient flow of the Willmore functional are still few. Short time existence
for sufficiently smooth initial data and long time existence for small initial energy have been
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demonstrated in [KS01 [KST2] and it has been shown that Willmore flow can drive smooth initial
surfaces to self-intersections in finite time in [MS03]. A level set approach to Willmore flow is
discussed in [DRO4].

Studies of numerical implementations of Willmore flow are, for example, due to Garcke, Dziuk,
Elliott et al. in [BGNOS, [Dzi08, [DEQT7]. Particularly interesting here is also an implementation of
a two-step time-discretisation algorithm due to Rumpf and Balzani [BR12].

Phase-field approximations of the functional in , on the other hand, often provide a more
convenient approach to gradient flows or minimisation of the Willmore or Helfrich functionals. Such
phase-field models are generally based on a competition between a multi-well functional penalising
deviation of the phase field function from the minima (usually £1) and a gradient-penalising term
preventing an overly sharp transition. The prototype is the Modica-Mortola [MM77, Mod87]

functional
5w = o [ SIVuP + 2 W

which is also known as the Cahn-Hilliard energy. Here, W is a function with minimizers at 41,
usually taken to be W (s) = 1(s?—1)2. The normalising constant cy is taken such that S. converges
in the sense of I'-convergence to the perimeter functional of the jump-set of a function that is £+1
almost everywhere in the domain €. The reason is that a transition in u from +1 to —1 always
requires a certain minimal energy (per unit area of the transition), but this minimal energy can be
attained in the limit by an optimal transition (of tanh-shape orthogonal to the interface, in this
case). In particular if a coupling of the surface to a bulk term is desired, phase field models can
provide an excellent alternative to a parametric discretisation [Dul0].

The idea for applying this approach to Willmore’s energy goes back to De Giorgi [DG91]. For
a slight modification of De Giorgi’s functional, reading

2
% (u) = l/ ! (g Au — 1W’(u)> dz +AS.(u) =: W-(u) + X S-(u)
Co Jo € 3

I'-convergence to the sum of Willmore’s energy and the A-fold perimeter functional was finally
proved by Roger and Schéatzle [RS06] in n = 2,3 dimensions, providing the lower energy bound,
after Bellettini and Paolini [BP93|] had provided the recovery sequence over a decade earlier. First
analytic evidence had previously been presented in the form of asymptotic expansions in [DLRW05].
This and other phase field approximations of Willmore’s energy and their L2-gradient flows are
reviewed in [BMOI13]. A convergence result for a diffuse approximation of certain more general
Helfrich-type functionals has also been derived by Belletini and Mugnai [BM10].

Regarding implementation of phase-field models for Willmore’s and Helfrich’s energy, we refer
to the work by Misbah et al. in [BKMO05] and Du et ol. [DLRWO05, [DLWO05, [DLWO06, [DWO07,
DLRW07, [DLRW09, [Dul0, WD07]. In [FRW13]|, the two-step algorithm for surface evolution has
been extended to phase fields. A numerical implementation of the Helfrich functional can be found,
for example, in the work by Campelo and Hernandez-Machado [CHMOG].

Starting with the above given phase-field approximation of Willmore’s energy, the confinement
and the surface area condition are both easily incorporated. The confinement is simply given by
the domain of the phase field function with suitable boundary condition; the surface area of the
transition layer can for example be fixed by an energy term which penalises the deviation of S
from a given target value. This leaves the topological side condition as our main challenge.

An often cited advantage of phase fields is that they are capable of changing their topology;
in that sense our endeavour is non-standard. It should be noted that our phase fields may still
change their topology (at least in three dimensions), only connectedness is enforced. Additionally,
non-interpenetration and confinement constraints are equally difficult to enforce in sharp interface
evolutions. So for the moment we neglect the topological term in the Helfrich functional and focus



4 PATRICK W. DONDL, ANTOINE LEMENANT, AND STEPHAN WOJTOWYTSCH

on the more imminent topological property of connectedness. Still, we remark that our results can
be extended to the diffuse Helfrich functionals from [BMI0].

Approaches of regularising limit interfaces have been developed by Bellettini in [Bel97] and
investigated analytically and numerically in [ERRI4]. The approaches work by introducing non-
linear terms of the phase-field in order to control the Willmore energies of the level sets individually
and exclude transversal crossings (which phase fields for De Giorgi’s functional can develop). These
regularisations may prevent loss of connectedness along a gradient flow in practice, but do not lead
to a variational statement via I'-convergence.

Previous work in [DMRI1I] provides a first attempt at an implementation of a topological con-
straint in a phase-field model for elastic strings modelled by the one-dimensional version of the
Willmore energy, namely Euler’s elastica. This approach was complemented by a method put
forth in [DMR14], which relies on a second phase field subject to an auxiliary minimisation prob-
lem used to identify connected components of the transition layer. For this model, a I'-convergence
result was obtained, showing that limits of bounded-energy sequences must describe a connected
structure. Unfortunately, the complicated nested minimisation problem makes it unsuitable for
computation.

In this article, we propose a different topological penalty term in the energy functional, inspired
by [BLS15l [LS14], which uses a carefully constructed distance function to detect connected com-
ponents. The basic idea is that this geodesic distance between two points in the domain should
be small if and only if the points can be connected by a curve lying in the phase field transition
region. Connected components of the transition layer will now have a finite distance, and thus the
occurrence of more than one such component can be sensed by the functional.

Along our proof, we obtain a few useful technical results about the convergence of phase field
approximations to the limit problem which appear to be new in this context. Namely, for sequences
along which £4¢ remains bounded, we prove convergence of the transition layers to the limit curve
in the Hausdorff distance and uniform convergence of the phase field to &1 away from the limit
curve in two dimensions. This resembles a similar result for minimisers of the Modica-Mortola
functional among functions with prescribed integral from [CC95] and more generally stationary
states from [HTQO].

In three dimensions, we show that neither result is true, but prove weak analogues. We also
show that phase fields are uniformly L*°-bounded in terms of their Willmore energy, also in three
dimensions.

The paper is organised as follows. In section [2| we give a brief introduction to phase fields for
Willmore’s problem in general (sections and and to our approach to connectedness for the
transition layers (section [2.3). Our main results are subsequently listed in section

Section [3] is entirely dedicated to the proofs of our main results. We directly proceed to show
I'-convergence of our functionals (section . In sections and we produce all the auxiliary
estimates that will be needed in the later proofs. These are then used to show convergence of the
phase-fields, Hausdorff-convergence of the transition layers, and connectedness of the support of
the limit measure (section [3.4).

In section [4] we briefly show numerical evidence of the effectiveness of our approach. To that
end, we compare it to diffuse Willmore flow without a topological term and to the penalisation
proposed in [DMRII]. We have been unable to implement the functional developed in [DMRI4]
in practice, so a comparison with that could not be drawn. In section [5| we discuss a few easy
extensions of our main results and related open problems.

The numerical implementation of our functional will be discussed further in a forth-coming
article [DW15]. We use Dijkstra’s algorithm to compute the geodesic distance function used in
the topological term of our energy functional. The weight in the geodesic distance is chosen to be
exactly zero along connected components of the transition layer, which implies that it only needs
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to be computed once per detected connected component. This makes the functional extremely
efficient from an implementation point of view.

2. PHASE FIELDS

2.1. General Background. A phase-field approach is a method which lifts problems of (n — 1)-
dimensional manifolds which are the boundaries of sets to problems of scalar fields on n-dimensional
space. Namely, instead of looking at F, we study smooth approximations of xg — xge. Fix
Q € R", open. Then our model space is

X ={ue W2R") | u=—1 outside Q}.

loc

If 9Q € C?, this can be identified with X, = {u € W22(Q) | u = d,u = 0 on 90}, otherwise the
first formulation is technically easier to work with. The boundary conditions are chosen to model
sets which are totally contained in 2 and whose boundaries may only touch 902 tangentially. Then
(as well as in more general settings) it is known [Mod87] that the functionals

%fgg%WuP +1iW(u)dr uweX
oo else,

Se: LY(Q) = R, Se(u) = {

with W(u) = (u? — 1)?/4 and ¢y = f_ll V2W (u) du = 2v/2 /3, T-converge to
1 _
Solu) = 31 Dul(@)

with respect to strong L!-convergence for functions u € BV (R™,{—1,1}) (and +oo else). The
limit Sp(u) agrees with the perimeter functional Per({u = 1}). The double-well potential W
forces sequences of bounded energy S:(u.) to converge to a function of the above form as ¢ —
0, and the functional has originally been studied in the context of minimal surfaces, see e.g.
[Mod87,, [CC95|, [CCO6]. We will view them in a slightly different light. If u. is a finite energy
sequence, we denote the Radon measure given by the approximations of the area functional as

1

€ 1
wue(U) = . /U 3 |Vu|? + - W (ue) dz.

Taking the first variation of this measure, and integrating by parts, we get

duet0) = - [ (~eauct LW ) o

Co
If we take the integrand
1
Ve 1= —& Aug + - W' (u.),

we obtain a diffuse analogue of the mean curvature as the variation of surface area. A modified
version of a conjecture by De Giorgi then proposes that squaring v., integrating over {2 and dividing
by ¢ should be a I'-convergent approximation of W(OE) for C2-regular sets F, again with respect
to strong L'-convergence. Dividing by ¢ is needed to convert the volume integral into a diffuse
surface integral over the transition layer with width of order e. First analytic evidence for this
was provided via formal asymptotic expansions in [DLRW05] and the conjecture was proved for
n = 2,3 in [RS06]. From now on, we will restrict ourselves to these dimensions. We thus introduce
the diffuse Willmore functional

1 1 1 1177 2
WE(u):{cone(EAU—EW(U)) dr weX

+00 else
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and the Radon measures associated with a sequence u. with bounded energy S.(uc) + W-(uc)

1 € 1 1 1

(U)=— [ = |Vu| + - W(u.)da, Esz/f2d.

pe0) = o [ SIVuP 4 S W) e, 0@) = - [ Zitas

By Young’s inequality £a® + eb® > ab we can control the BV-norms of G(u.) = ffi V2W(s) ds
and invoking the compactness theorems for BV -functions and Radon measures to see that there are
u € BVjye(R™) and finite Radon measures u, @ with support in  such that, up to a subsequence,

ue — u strongly in LY(Q), pe > p, o —a, |Du|<2pu.

Clearly by construction u = x g —xg- for some E C €2, and from the above argument is not difficult
to see that E is a Caccioppoli set. In three dimensions, however, E may well be empty using the
construction of [MR14], where two converging spheres are connected by a catenoid with bounded
Willmore energy. A diagonal sequence shows that the same is possible with phase fields.

In [RS06] it has been shown that y is in fact the mass measure of an integral n — 1-varifold with
|0*E| < @ and Hﬁ - < « for generalised mean curvature H,, of p. Unlike p, o can still behave
wildly.

We aim to minimise the Willmore energy among connected surfaces with given area S. To

prescribe area p(§2) = .S, we include a penalisation term of
1
(8. - 57

in the energy functional.

2.2. Equipartition of Energy. The Cahn-Hilliard energy forces phase fields to be close to 1 in
phase and make transitions between the phases along layers of width proportional to €. So while it
make sense that the terms § |Vu.|? and 1 W (u.) should scale the same way to give us the surface
measure, it is by no means obvious that, for sequences u. of bounded W; energy, they make an
equal contribution to the measure p.. The difference of their contributions is controlled by the
discrepancy measures

_ L[ egup_t
&)= - [ 51Vl = ZW(us)aa.

their positive parts & 4 (U) = % Jo (5| Vu > -1 I/V(uE))Jr dz and their total variation measures

€ |(U) = é Jor 15 1Vue|> = L W(u.)| dz. We will see that for a suitable recovery sequence, ||
vanishes exponentially in ; more generally the discrepancy goes to zero in general sequences u.
along which . + p. stays bounded as shown in [RS06, Propositions 4.4, 4.9]. The result has
been improved along subsequences in [BM10, Theorem 4.6] to LP-convergence for p < 3/2 and
convergence of Radon measures for the gradients of the discrepancy densities.

The control of these measures is extremely important since they appear in the derivative of the
diffuse (n — 1)-densities =" u. (B, (z)).

2.3. Connectedness. In order to ensure that the support of the limiting measure p is connected
we include an auxiliary term C in the energy functional. To define it, we use an adapted geodesic
distance

dF (z,y) = inf { /K F(u)dH?

which is integrated against a suitable weight function. We thus take

C.tw) = 5 [ [ olula)) o(u)) " .y day,

K connected, z,y € K,H'(K) < w(a)} , w(e) > oc0ase—0,
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where ¢ € C.(—1,1) resembles a bump, i.e.,

1
620, {6>0}=(pr.p) € (~1,1), [1¢<u>du >0

and F € C%'(R) is chosen to be zero where ¢ does not vanish:
F>0, F =0 on [p1,p2], F(-1), F(1) > 0.

The heuristic idea of this is that if the support of the limiting measure spt(u) is connected, then
so should the set {p1 < us < p2}. These level sets away from +1 can be heuristically viewed as
approximations of spt(u), and in other situations, they can be seen to Hausdorff-converge against
it, see [CC95]. This is not quite true in our situation (at least in three dimensions where we can
get additional points in the Hausdorff limit), but the intuition still holds.

If {¢p(ue) > 0} = {p1 < ue < p2} is connected, we can connect any two points x,y € Q2 such that
B(uc () ¢(uc(y)) > 0 with a curve of length zero, hence d¥'(“<)(z,y) = 0 and both the integrand
and the double integral vanish.

If on the other hand spt(u) is disconnected, then we expect that df’ (u<) should be able to
separate different connected components such that liminf._,o C.(u.) > 0. The core part of our
proof is concerned with precisely that. We need to show that ¢ detects components of the interface
and that d¥(“<) separates them. For the first result, we need to understand the structure of the
interfaces converging to pu, for the second part, we need to exclude the possibility of phase fields
building tunnels between different connected components of spt(u) which collapse away in the mass
measure but keep the distance close to zero along a sequence. This is easy in two dimensions where
1 =n —1 but hard in three dimensions where curves have codimension two.

2.4. Main Results. We have the following new results for phase-fields with bounded Willmore
energy and perimeter.

Theorem 2.1. Let n =2 and u. € X a sequence such that
limsup (W: + Se) (ue) < 0.
e—0

Denote pn = lim_,q p1e for a subsequence along which the limit exists and take any Q' € R™\ spt(u).
Then |uc| — 1 uniformly on €Y.

For this and the following theorems, we take the continuous representative of u. which exists
since W22 «— C° in n = 2, 3 dimensions.
Theorem 2.2. Letn =2 and D € (—1,1). Then uZ'(D) — spt(u) in the Hausdorff distance. If

n =3, up to a subsequence, u-* (D) Hausdorff-converges to a set K which contains spt(u).

For our application to connectedness, we define the total energy of an e-phase field as
21 £.(u) {wg(u) e (Se(u)— S)2+eFCo(u) ueX
400 else

for o € (0,4),x > 1. Using our previous results, we can show the following.

Remark 2.3. Existence of mininimisers for the functional &£ is a simple exercise in the direct
method of the calculus of variations, since uniform convergence of a minimising sequence for fixed
€ guarantees convergence of the distance term.

Theorem 2.4. Let n = 2,3 and us € X a sequence such that liminf. o & (u:) < oo. Then the
diffuse mass measures . converge weakly* to a measure p with connected support spt(u) C Q and

area () = S.
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Using [RS06], 1 is also the mass measure of an integral varifold. The main result of [RS06] can
be applied to deduce I'-convergence of our functionals in the following sense:

Corollary 2.5. Letn = 2,3, S >0, Q € R and E € Q, with smooth boundary OE € C? with
area H""1(OE) = S. Then

W(OE) OF is connected

(L)) — gl_{r(l) E(XE — XE<) = { +oo  otherwise

Here we have adopted the notation of [RS06] where I'-convergence is said to hold at a point
if the liminf- and lim sup-inequalities hold at that point. This distinction is necessary since it is
not clear what I'-convergence properties hold at other points u € BV (,{—1,1}) since W, does
not converge to the L'-lower semi-continuous envelope of W at non-embedded sets even in two
dimensions.

This issue stems from the fact that the stationary Allen-Cahn equation —Awu + W'(u) = 0
admits global saddle-solutions which have zeros along the coordinate axes and are positive in the
first and third quadrants and negative in the second and fourth ones or even more degenerate
ones, see [IPKPW10]. These solutions can be used to approximate transversal crossings with zero
Willmore energy, while the lower semi-continuous envelope of Willmore’s energy /Euler’s elastica
energy becomes infinite at those points. Interestingly enough, the crossing has zero Willmore-
energy as a varifold, so that the energy can still be justified, despite the fact that it does not give
the sensible result in our situation.

While heuristic considerations suggest — and numerical simulations appear to confirm — that at
least in n = 2 dimensions and when 0 ¢ spt(¢), our additional term in the energy might prevent
saddles, we do not investigate convergence at non-embedded points further.

Remark 2.6. Uniform convergence does generally fail in three dimensions. This can be seen by
taking a sequence u® as the optimal interface approximation which will be given in the proof of
Corollary and adding to it a perturbation g((z — zo)/¢) for any g € C°(R™). It can easily
be verified that the energy will remain finite (at least if |g| < 1) but clearly the functions do not
converge uniformly.

Heuristic arguments show that for modifications u. = u 4+ g(¢~#.), the coefficients o = = 1
should be optimal in three dimensions and a = 1/2, 8 =1 if n = 2, so we expect a convergence
rate of /¢ in the two-dimensional case.

Remark 2.7. Since S.(uc) is uniformly bounded, standard Modica-Mortola arguments show that
u. — Xg — Xao\g in LP for p < 4/3. We are going to show in Lemma that the sequence
ue is uniformly bounded in L°°(R™) when additionally limsup,_,,W(u.) < oo, which implies
LP-convergence for all p < oco.

3. PROOFS

The proofs are organised in the following way. First, anticipating the results of section [3.4]
we show I'-convergence of & to W. We decided to move the proof to the beginning, since it is
virtually independent of all the other proofs in this article and can be isolated, but introduces the
optimal interface transitions which will be needed later. After that, we proceed chronologically

with technical Lemmata (sections[3.2]and [3.3)) and the proof of Theorems and [2.4]in section
3.4

3.1. Proof of I'-Convergence. We now proceed to prove Corollary

Proof of the liminf-inequality: It will follow from Theorem that & (u.) — oo if OF is discon-
nected. If OF is connected, the main part of this inequality is to show that if u. — xg — xE-
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in L'(Q) and p.(Q) < S + 1, then liminf. & (u:) > W(OE). Since & > W, and enforces the
surface area estimate, we obtain with [RS06] that

h?l}élf E(ue) > W(OE).
]

Proof of the lim sup-inequality: We may restrict our analysis to the case of connected boundaries
with area H""1(OE) = S. In this proof, we will construct a sequence ¢ € X such that

lim ||u® — (xEg — x&°)||l1,0 =0, lim & (u®) = W(OE).
e—0 e—0

The construction is standard and holds for arbitrary n € N. We take the solution of the one
dimensional problem and apply it to the signed distance function of OF, thus recreating the shape
of OF with an (approximate) optimal profile for the transition from —1 to 1. For § > 0 consider

Us := {z € R" | dist(z,0F) < §}.

Since E € Q, Us C Q for all sufficiently small §, and since 9E € C? is embedded, there is § > 0
such that

P 0E x (=4,0) = Us, ¢Y(z,t)=x+tv,
is a diffeomorphism. We denote the partial inverse to ¢ which projects onto dF by 7 and by

d(x) = sdist(x,0F) the signed distance of x from OF which is positive inside F and negative
outside E, C?-smooth on Us and satisfies (see e.g. [GTOI, Section 14.6])

Vd(2) = Vr(ry,  Ad(x) = Hr(y) + Cr(a) - d(z) + O(d(2)?).

Let us consider the optimal transition between —1 and 1 in one dimension. This optimal profile is
a stationary point of Sy, i.e. a solution of —¢” + W’(¢q) = 0 (and thus a zero energy point of W)
with the side conditions that lim; 4 ¢(t) = £1. Note that the optimal profile satisfies

q// — W/(q) = q// q/ — W’(q) q/ = % ((q/)Q _ W(q)) — O,
so we find that (¢’)2 — W (q) = c¢. We look for transitions where both (¢')? and W(q) are integrable
over the whole real line, and since lim;_,+, W (q(t)) = 0, we see that ¢ = 0 and (¢')? = W (q). This
gives us equipartition of energy already before integration. For simplicity, we focus on W(q) =
(¢*> — 1)?/4 which has the optimal interface ¢(t) = tanh(¢/v/2). Note that the functional rescales
appropriately under dilations of the parameter space so that we have equipartition of energy before
integration also in the e-problem. The disadvantage of the hyperbolic tangent is that it makes the
transition between the roots of W only in infinite space, so we choose to work with approximations
g € C*(R) such that
(1) ge(t) = q(2) for [t| < 6/(3¢),
(2) q-(t) =1 for t > §/(2¢),
(3) (=) = =gz (1),
(4) ¢ >0.
Then we set
u® () = ge(d(x)/e).
A direct calculation establishes that with this choice of u®, we have |S.(u®) — S| < 7 for all v < 2,
|€c| < e™ for all m € N and lim._,o W (u®) = W(IE). It remains to show that lim._,g e "C(u®) =
0. We will show that even C.(u®) = 0 along this sequence. Since JF is connected and ¢ is a
diffeomorphism, all the level sets

{u® = p} = ¥(OF, ¢ ' (p))
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are connected manifolds for p € (—1,1). We know that

{p(u®) >0} = {p1 <u® < p2}

and pick any p € (p1,p2). Now let z,y € Q, ¢(u®(z)), p(u(y)) > 0. We can construct a curve
from x to y by setting piecewise

71 [d(@),p) = @, 1(t) =7(x) +tVr(a),
v3: [pd(y)] = Q. 3(t) = 7(y) + tragy

and 7, any curve connecting v1(p) to v3(p) in {u® = p}. This curve exists since connected manifolds
are path-connected. The curve v = 3 ® 2 & 71 connects x and y and satisfies by construction
@(y(t)) > 0, so F(y(t)) = 0. Therefore we deduce

A" (z,y) =0

if p(u(x)), p(u®(y)) # 0, noting that the connecting curves have uniformly bounded length and
w(g) — oo. Thus in particular

1

= o(u® (2)) (u (y)) A" (z,y) dz dy = 0.
QxQ

O

3.2. Auxiliary Results I. A lot of our proofs will be inspired by [RS06] which again draws from
[HT00]. We will generally cite [RS06] because it treats the more relevant case for our study. In
this section, we will prove a number of auxiliary results which concern either general properties
of phase fields or properties away from the support of the limiting measure p which will enable
us to investigate their convergence later. Results concerning phase interfaces are postponed until
section We start with a partial regularity lemma which is a slight improvement upon [RS06,
Proposition 3.6].

Lemma 3.1. Let n = 2,3, Q € R” and u. € X such that & := limsup,_,o We(ue) < co. Then
there exists €9 > 0 such that for all € < &g

(1) ||te]|oorn < C where C is a constant depending only on & and n.
(2) ue is 1/2-Holder continuous on e-balls, i.e.

c s .
\us(x)fus(yﬂgﬁ\xfyP VzeR ) yGB(x,S)'

Again, the constant C depends only on @ and n.

Proof. We will argue using Sobolev embeddings for blow ups of u. onto the natural length scale.
In the first step, we show the set {Juc| > 1} to be small. In the second step, we estimate the
L?-norm of the blow ups, in the third we estimate the full W22-norm and use suitable embedding
theorems to conclude the proof of regularity.
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Step 1. First observe that
a:() > a({us > 1})

1 1 1 2

= — - <€Au5 - = W’(ug)> dz
Co {us>1} g g
-2

== W (us) Oyu. dH™ 1
€0 € Jo{u.>1}

1 2 1

+ = e (Aug)? + S W (ue) [Vue|® + = (W' (ue) )2 dx
Co {ue>1} 9 3

1 2 4 2, 1 / 2

> — € (Aue)” + = [Vue|” + — (W'(ue) )" da

Co {ue>1} 9 9

using that W”(t) > 2 for t > 1. The boundary integral vanishes since u. € W22 «— C01/2 is
continuous and W'(1) = 0 if {u. > 1} is of finite perimeter. If this is not the case, take 6 \ 1
converging from above such that {u. > 6} is of finite perimeter. This holds for almost all § € R.
The sign of the boundary integral can be determined since 9,u. < 0 on the boundary of {u. > 0}
and W’(0) > 0 for § > 1 so that the same inequality can still be established. By symmetry, the
same argument works for {u. < —1}.

Step 2. Let z. € (2 be an arbitrary sequence and define the blow up sequence u. : R® — R by

e (y) = ue(xe + ey).

Then we observe that

/ a'g’dx:/ (|ae] —141)* dy
B(0,2) B(0,2)

s/ ((fie] = 1)4 + 1) dy

B(0,2)

<2 [ (-1t 1y
B(0,2)

1
S 283—n - W/(UE)Z dy + 27L+1 Wn,
{luel>1y €°

<2 {2” Wy +co e a(Q) } )

As usual, w, denotes the volume of the n-dimensional unit ball. In exactly the same way with a
slightly simpler argument we obtain

/ (W' (@:))*dy < C(a,n).
B(0,2)

Step 3. Now a direct calculation shows that

Thus
|| Atic [|2,(0,2) < || Atie = W (i) [|2,B(0,2) + || W () ||2,8(0,2)
< Vet al(Q) +/C(a,n).

In total, we see that
@ |12,B(0,2) + || Atic [|2,B(0,2) < C(a,n)
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for all 0 < € < 1 so small that a.(Q2) < a(Q)+ 1. Using the elliptic estimate from [GT0I, Theorem
9.11], we see that

l|tel|2,2,B(0,1) < Cla,n),
where we absorbed the constant depending only on n and the radii into the big constant. Using
the Sobolev embeddings

W22(B(0,1)) — WH(B(0,1)) — C*V/*(B(0,1))
we deduce that
|tclo,1/2,B8001) < C(n,a),
again absorbing the embedding constants into the constant. In particular, this shows that
l|te]|os, B(0,1) < C(n, @).
But since this holds for all sequences z., we can deduce that
|| te [|oo,pn < C(n, @).
Furthermore, for z,z € R™ with |z — z|] < € < g9, we choose z. = x to deduce
C(n,a) 1
|z —yl>.
NG

e (2) — ue(y)] = [(0) — iie((y — )/2)| < C(n,a) | (y —2)/e|* =
O

Remark 3.2. Without prescribing boundary conditions as in our modified space X, the result
could still be salvaged on compactly contained subsets. Techniques for estimating quantities over
{Jue| > 1} in that case can be found in [RS06, Proposition 3.5], which we include below for the
readers’ convenience.

Proposition 3.3. [RS06, Proposition 3.5] Forn =2,3, Q CR", ¢ > 0, u. € C?(Q), v. € C°(Q),
1
—eAu, + gW'(uE) =v.
and Q' € Q, 0 <r < dist(Q,09), we have

/ W (u:)? < Cp(1 + T_QkEQk)EQ/ v? 4 C’kr_%s%/ W (u.)?
{Jue|>1}Ne Q {Juc|>1}NQ

for all k € Np.
A useful rescaling property is the following observation from the proof of [RS06, Theorem 5.1].
Lemma 3.4. Let u. : B(z,r) = R, A > 0 and 4. : B(0,r/\) = R with
ie(y) = ue(z + Ay).
Set =1\, E:=¢/\,
o= & (Gvape twn ) o ao= L (2o D)
Then
P (B(0,7) = " pe(B(x, 1)), PTG (B(0,7) = 7" ae(B(z,1)).

The discrepancy measures . + behave like p under rescaling.
Proof. This can be seen by a simple calculation similar to the one in the proof of (Il

For the reader’s convenience we include the following classical monotonicity result.
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Lemma 3.5. [RS06, Lemma 4.2] For x € R™ we have

Ce(Blwp) 1
pn co anrl

1
— / ve (y — x, Vue) dy
€0 P" JB(z,p)

/ ey —x, Vu )2 dH" (y)
0B(z,p)

In low dimensions n = 2,3, the second and third term in the monotonicity formula can easily
be estimated after integration. While the result is known, we fixed minor details in the proof of
[RS06l Proposition 4.5], so we include it here for completeness.

Lemma 3.6. [RS06, Proposition 4.5] Let 0 <r < R< oo ifn=3 and0<r < R<1ifn=2,
then

R
P (B ) < 3R (B R) +2 [ B,

p'fL
,r3—n
+ ﬁag(B(x,R)) + i e (Blar)
R2 Rl—n
(3.1) + (72_71)2 a:(B(z, R))

where Ry := min{R, Rq} and Rq is a radius such that Q C B(0, Rq/2)

Proof. Without loss of generality we may assume that 2 = 0 and write B, := B(0,p), f(p) =
p' " (B,). Observe that for any function g : B — R we have

R
[
T B

g(x)dwdp=/ g9(z) /R p "dpdx

Br max{|z|,r}

! / @) 1 1y,
S n—1 BRgx max{|z|,r}»~1  Rr—1 .

P

and

R
/ p~ D / g(z)dH" 1 dp = / g(ﬁl da.
r aB, Bgr\B. ||
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Using this to integrate the derivative we obtain using Young’s inequality

r)= /R f(p)dp

2
7/ —&(B )d +i 5<v'(is;iu> + L v <y7nYzLE> dy
r p" Bgr\B, |yl n—1 |y
1 1
+ — ve (y, Vue) d ——/ ve (Y, Vue) d
(n—1)¢orn—1 /Br {y ) dy (n=1)co Rt Jp, (v ) dy

E/R_£€,+(BP) dp
r p"
1 e (Vue, y)? 1 ( (y, Vue)? 1 2>
4+ — — n—1)e + v ] d
/BR\BT a1\ ey T e ) W

1 /A <y,w5>2+; i 2

corn1 2 \y|2 2A (n—1)%¢

1 2 2
COR” 1 2|y\2 2A (n — )25
— 1 1
LS I T
T 1017 S, 2
1 r? 02
Y I Ze q
1) = 5y e /Brs Y

1 R? v?
— )\f(R) — ﬁ 7(71 — 1)2 Rn—l /BR ?dy

where A\ € (0,1). Here we used that n = 2,3 to obtain that 2(n — 1) < n + 1, so that [y|**! <
ly[2(*=1) for all |y| if n = 3 and for |y| < 1 if n = 2. When we bring all the relevant terms to the
other side, this shows that

R
LX) fR) = (=2 £ = - [ gy Lo\ )

R3
oA (n—1)2Rn—1 "

ag(Br) — a:(BRr).

2 (n—1)2
Setting A = 1/2 and multiplying by two proves the Lemma. O
Remark 3.7. If n = 3, we may let R — oo and subsequently ¢ — 0, 7 — 0 and finally A — 0 that
we have

1 _
li I=n (B <—— o
i sup w(B(z,r)) < 12 a(Q2)

at every point € R3 such that a({z}) = 0 (i.e. when lim,_,o a(B,) = 0). Using the results of
[RS06], 1 is an integral varifold, so this yields a Li-Yau-type [LY82] inequality

. . w(B,r) _ 1 =
0 =1 < Q).
() = limsup == 5= < 7a(@)
This inequality is usually found with a 4 in place of the 16 which stems from a different normali-
sation of the mean curvature and W(u) in the place of «, see also the proof of [Top98| Lemma 1]
or [KST2, Proposition 2.1.1].
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In n = 2 dimensions, we cannot do this since we had to assume R < 1. Indeed, an inequality
of this type cannot hold since circles with large enough radii have arbitrarily small elastic energy.
Still, setting R = 1, a similar bound on the multiplicity in terms of & and S can still be obtained.

The version we will use of the above inequality is the simplified expression

R
B
o (B(x,r)) < 3R u.(B(x, R)) + 3a-(B(z, R)) + 2 / W dp.
This holds generally if n = 3, and when R < 1 if n = 2. Furthermore, we have the following
estimate for the positive part of the discrepancy measures.

Lemma 3.8. [RS06, Lemma 3.1] Let n = 2,3. Then there are 69 > 0, M € N such that for all
0<0<dp,0<e<pand
po :=max{2,1+6 Mc}p
we have
—n —n — —n 1
P (Bap)) < €O pe(Bla20) + CT M [ Datas
B(z,po)
1 Ceé
+C6 M2 plfn/ =W (ue)® da + =<2
B(z,p0)"{|uc|>1} €
The following lemma is the key ingredient in order to obtain our required convergence results.
In a slight abuse of notation, we will denote the functionals defined by the same formulas by W., S,
again, although they are given on spaces over B; := B(0,1), not .

Lemma 3.9. Letn=2,3, 0 € (0,1), 0 <n < 1/2. Consider the subsets
Y%= {uec W?*(By) : |u(0)] <6}

for n =2 dimensions and

3 2,2 W' (u)?
Yo = qu e W%(By): [u(0)] <6 and ac(B ;) + s —dr <el).
B 0{|uc|>1} &

Define F. : W22(By) — [0,00) as
Fe(u) =We(u) + Sc(u).
Then 0y := liminf._,qinf,cy2 Fo(u) > 0 if n = 2 and

0o := liminf inf F.(u) >0

e—=0 wueY?
if n = 3. The same works if instead u(0) > 1/6.

Proof: By Hoélder continuity, the condition that |u(0)] < 6 leads to the creation of an infinitesimal
diffuse mass density 51’”%(35) > Cn,a,0- We will use the monotonicity formula to integrate this
up to show that if @ = 0, macroscopic mass is created as well. In three dimensions, there is an
additional technical complication which forces us to make two steps, one from the e-scale to the
length scale of 1/ and a second one to the original scale.

Step 1. In a first step we show that the diffuse mass densities are uniformly bounded on large
enough length scales. For x € Q, set f-(p) := p' " u.(B(x, p)). Without loss of generality, we may
assume that f.(1) <1 for small enough € > 0 and that . (Bs3/4) +fBg/4ﬂ{\uE|>1} LW/ (u)?de <1

due to [RS06| Proposition 3.5] (included here as Proposition [3.3).
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Take § = log(e)~2 in Lemma [3.8)to obtain from Lemma [3.6|that for 0 < r < R =1 we have

R
fo(r) §3fs(R)+3a5(BR)+2/ gsi,(fp)dp

1 f(2p) €
< O
_Ca’"+c/r og@? p | log(e)s?

/ 2
+ &% log(e)*Mp™ (aE(B,,) +/ Wlue)® da:) dp
Bpn{|ue[>1}

e3

c R f.(2p) Ce (1 1
< (- e
*Ca”log(sv/r o T g ( R)

C &2 log(e)?M
n—1
<o+ C 1 f.(p)
- log(e)2 ) b

(Tlfn _ len)

dp

for a uniform constant Cs,, for r > ¢ if n = 2 and for r > Ve if n = 3. We use Gronwall’s
inequality backwards in time to deduce that

c 2R
£ < a,mn 1. 7 \o 7d S o,
fe(r) < Ca,n exp <log(€)2/r p p) Ca,

on [g,00) if n =2 and on [/e,0) if n = 3.
Step 2. If n = 3 and additionally

1 2
OLE(B\/g)+/ degsﬂ’

3
B an{|u|>1} €

we can estimate the terms in the second line more sharply to obtain uniform boundedness of f.(r)
also fore <r < R=/c.

Step 3. Now we turn to the proof of the statement. For a contradiction, assume that (a. +
e )(B1) — 0 for a suitable sequence u.. The functions u. are C%1/2_Hglder continuous with Holder
constant C/+/¢ for a uniform C' > 0 on By /s, as can be obtained like in Lemma The only
difference is that we need to use [RS06, Proposition 3.5] (included here as Proposition to
estimate f{|u5|>1} £ W/ (us)? dz due to the lack of boundary values. It follows that u(z) < for
x € B(0,ce) for some uniform ¢ > 0, which implies

1 1+6
51_"u5(B5) > — w 10 dr =:cpa9 > 0.
n 2 )y
€" JB(0,ce)

In the following, we will assume n = 3. The two-dimensional case follows with an easier argument
of the same type. First we deduce that

fo(e) <3 f(Ve) + 3045(3\/5)

+c/ﬁ L 2leg(e)Mpnefd
c log(e)?p  log(e)? p? : P P
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Since the second line goes to zero as ¢ — 0 and «. — 0 by assumption, we deduce that f.(\/e) >
Cn,a,0/4 for all sufficiently small € > 0. Finally, we obtain

fs(\/g) <3 f:(1) +3a-(B1)

1

1 €

+ C/ + + &2 log(e)*M p~"dp.
vz log(e)?p  log(e)? p? ©)

Again, the terms in the second line vanish with ¢ — 0 and «.(B;) — 0 by assumption, thus

Cn,a,0
1) > —=
1) > o

for all sufficiently small ¢ > 0. But this contradicts the assumption that (e + pe)(B1) — 0,
so we are done. The case u(0) > 1/6 follows similarly in two dimensions and by an immediate
contradiction to the definition of Y in three dimensions. g

The estimate above is not sharp, but suffices for our purposes. After this Lemma, everything
is in place to show uniform convergence of phase fields in in two dimensions in section while
further results will be needed for Hausdorff convergence of the transition layers. In a very weak
phrasing, Lemma suffices, more precise versions (and the application to connectedness) need
the entire section [3.3] The reader mainly interested in the convergence of phase fields may skip
ahead now.

3.3. Auxiliary Results II. In this section, we will derive technical results concerning how phase
field approximations interact with the function ¢ as needed for the functional C. to impose con-
nectedness. While the previous section focused on estimates away from the interface, here we
investigate the structure of transition layers close to spt(u). The following Lemma is a special case
of [RS06, Proposition 3.4] with a closer attention to constants and the limit &€ — 0 already taken.

Lemma 3.10. Let x € R", 7,6 >0,0 <7 <1—1/y/2. Then
limsup pe ({ue > 1 =7} N B(z,7)) < 47p(B(z,r+0)).
e—0

For all x € R™, there are only countably many radii » > 0 such that u(0B(x,r)) > 0. This
follows from the fact that p is finite and that there are at most finitely many radii such that
w(0B(z,r)) > 1/k, so that the union of those sets is countable. Thus for any r > 0 there is
t € (0,7) such that p(0B(x,t)) = 0. Letting 6 — 0 at such a radius ¢ (and using that the
discrepancy measures go to zero) gives us the following result (compare also [DMRI14] Lemma 9]).

Corollary 3.11. For all x € spt(p), 7 > 0 and 7 < 1/8 we have
1
liminf — L™ ({Jus] <1 —7} N B(x,r)}) > 0.
e—=0 ¢

The following arguments rely more on the rectifiable structure of the measure p that we are
approximating. Specifically, we introduce the diffuse normal direction by
_ Vue

[Vu,|

Ve

when Vu. # 0 and 0 else. To work with varifolds, we introduce the Grassmannian G(n,n — 1)
of n — 1-dimensional subspaces of R”. We refer readers unfamiliar with varifolds or countably
rectifiable sets to the excellent source [Sim83]; an introduction with other focus which is easier to
find and covers most results relevant for us is [KP08]. Recall the following result.
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Lemma 3.12. [RS06], Propositions 4.1, 5.1] Define the n — 1-varifold V. := p. ® v. by
vin- [ Pl v ) due ¥ J € CUR x Glnn— 1),
R xG(n,n—1)

Then there is an integral varifold V' such that V. — V as Radon measures on R"™ x G(n,n — 1)
(varifold convergence). The limit satisfies

pv =p,  Hip<a

where uy s the mass measure of V and H, denotes the generalised mean curvature of p. In
particular, W(p) < a.

The following result is a suitably adapted version of [RS06, Proposition 5.5] for our purposes.
It shows that given small discrepancy measures and small oscillation of the gradient, a bounded
energy sequence looks very much like an optimal interface in small balls. Using our improved
bounds from Lemma [3.1} we can drop most of their technical assumptions.

Lemma 3.13. Let 6,7 > 0 and denote ve 5, = (Ve, €,). Then there exist 0 < L < oo depending on
0 and T only and v > 0 depending on &,0 and T such that the following holds for all x € R™. If
(1) Juc(z)| <1—7 and
(2) |6/ (B2, ALE)) + [0 4oy 1 — V2 dpie < 7 (4Le)"
then also
o the blow up i.(y) = uc(x + ey) is C%Y4-close to an optimal profile as introduced in the
construction of the lim sup-inequality:

| &t — q(yn — t1)l0,1/4,B(0,31) <6
holds, where t1 := g~ (uc(x)).
o |u(Z,xn +1)| >1—7/2 for all Le < |t| < 3Le, where & = (x1,...,Zn—1) and u changes
sign in between.

Proof. Without loss of generality, we may assume that = 0 and write B, := B(0,r). Recall that

q'(t) = +/2W(q(t)) and lim;, 4 q(t) = £1. Thus we can pick L > 0 such that |¢(t)] > 1 —7/4
for all ¢ > L.

Assume for a contradiction that there is no constant v > 0 such that the results of the Lemma
hold. Then for 7 — 0, there must be a sequence u? such that |uZ(0)] <1—7, W.(ul) < a+1 and

|€2|(Baze) +/ 1— ys’n dpe < 49 (4Le)"1,

Bare
but the conclusions of the Lemma do not hold. Considering the blow ups @’ : By, — R with
@ (y) = ul(ey) we obtain
||ﬂj||2,2,B3L < C&,7L,L
like in Lemma hence there is @ € W22(Bsy) such that

@ —a  in W*2(Bsp).
Since W22 embeds compactly into W2 and L*, we see that
/ ||Val/2 — W(i)| de = lim / ||V |2/2 — W (@) | da
Bsr J7° /B3y,
S hm 51_n§g(B4LE)
j—o0
< liminf (4L)" 147
j—oo

=0
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and when we set Vu = (O, ..., 0p_1u), we get

/ Vi|dz = lim / il | da
BgL =0 B3L
— 1 =12 19 i |2
Jan(;Lo /B3L \/|Vuj| |Op a7 |2 dz

. N 2
<liminf [ |Vai|(/1— (u,%) da
j*}OO B4L

< Timinf (wn (41)™)"/2 </B Va2 (1 (#)?) dx) )

J]—00

1
, 3
< liminf /8L w, (51"/ 1—(v)? d,us>
Bare

j—o0

< liminf /8L wy, 77
j—o00
=0.

Thus we can see that
Va2 = 2W (a), Vi = (0,...,0,0,).

Clearly, this means that 4(y) = p(y,) for a function p with p’ = +£1/2W (p). Using that |a(0)] <
1 — 7 and the Picard-Lindel6ff theorem on the uniqueness of the solutions to ODEs, we see that
P(Yn) = £q(yn — y) for some § € R which can easily be fixed by the initial condition for p(0).
Since weak W?22-convergence implies strong C*'/4-convergence in n = 2,3 dimensions, we see
that there is j € N such that the claim of the Lemma holds for u! contradicting our assumption.
Thus the Lemma is proven. O

To deal with the rectifiable sets in the next section more easily we prove a structure result for
rectifiable sets. The result seems standard, but we have been unable to find a reference for it. As
usual, we call a function on a closed set differentiable if it admits a differentiable extension to a
larger open set.

Lemma 3.14. Let M be a countably k-rectifiable set in R™. Denote by B the closed unit ball in k
dimensions. Then there exist injective C*-functions f; : B — R™ with Vf; # 0 on B such that

H* (M\ U ﬁ-(B)) =0
i=1
and such that f;(B) N f;(B) =0 for all i # j.

Proof. According to [KP08, Lemma 5.4.2] or [Sim83, Lemma 11.1] there is a countable collection
of C'-maps g; : R¥ — R™ such that

McNU| g (RY)
i=1
where H*(N) = 0. Without loss of generality, N is assumed to be disjoint from the other sets.

First we need to make the individual maps ¢; one-to-one. To do that, we define the set where
injectivity fails in a bad way:

A; = {z eR"|Vr>03ye B(z,r) such that g;(z) = g;(y) } .
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Due to the failure of local injectivity, we see that the Jacobian Jg, (x) vanishes on A;. Since g; is
a C'-function, the set D; := J;'(0) is closed and by the Morse-Sard Lemma [Fed69, 3.4.3] then

H" (g:(D;)) = 0.
Set U; := R*¥\ D;. Now as in [EG92, Chapter 1.5, Corollary 2] we can use Vitali’s covering theorem

[EG92, Chapter 1.5, Theorem 1] to obtain a countable selection of closed balls Bg such that f; is
injective with non-vanishing gradient on B for all j € N and

o0
ctlu\ B =0
j=1
Since the boundary of a k-ball has Hausdorff dimension k& — 1, we could equally well take open
balls. Since C'-functions map sets of £¥-measure zero to sets of H*-measure zero, we have shown
that we can write

(oo}
McNul]Ja(B)
j=1
where Hk(N ) =0, g; : B — R" is one-to-one, C!, and has a non-vanishing gradient everywhere

on the closed ball B. The functions g,, are obtained by rescaling suitable restrictions of g; from
B] to the unit ball. Finally, we have to cut out the sets that get hit by more than one function

Jm- Inductively, we define
m—1
UMFWJ<U@@O~
=1

Finally, we use Vitali’s Lemma again to pick collections of closed balls Bfn such that

w(m\GEJ:o
=1

Rescaling the restricted functions from these balls and translating to the unit ball gives us the
result. ]

The proof of the following Lemma strongly resembles that of the integrality of 1 in [RS06L Lemma
4.2]. Tt is technically easier because we do not need the multi-layeredness of the approximating
interfaces, but entails different complications because blow up to the tangent space is not possible
here. Instead we use the preceding Lemma for a similar result on local C'-flatness.

Lemma 3.15. Let ¢ € C°(R) such that ¢ > 0 and fil d(u)du > 0. If x € spt(p), then

1
lim inf — / d(ue)dz >0
=20 € JB@r)

for all v > 0.

Proof. Step 1. As usual, we assume that = 0, u(0B(z,7/2)) = 0 and denote B = B(z,r/2).
This means that all the e-balls of positive integral we are going to find will actually lie in B(z,r)
and is a purely technical condition. Let ¢ be a small constant to be specified later. For further
use, denote by B the closed unit ball in R"~.

As p is an integral varifold, we know that spt(u) is rectifiable. This means that there are
countably many C'-functions f; : B — R" like in Lemma such that

spt(u) C MU | fi(B), H"'(Mo) =0  fi(B)N f;(B) =10

i=1
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for i # j. Since u has second integrable mean curvature MLHz < «, we can further use the Li-Yau
inequality from Remark [3.7] to bound the maximum multiplicity of y uniformly by

max = ]_67'(',

at least H" !-almost everywhere. Now since H" ! (spt(u)) < +o0o we can find N € N such that

-t <(spt(u) "B\ fiué)) <<

emax
Since f; is injective and has non-vanishing tangent maps everywhere, M := Uf\;l fi (EO) is a
C'-manifold. We observe that
H" H(spt(u) N B\ M) < <
amax

and hence
1(B\ M) <.

Since the maps in question are smooth and the unit discs are orientable, for every i we can pick
a continuous unit normal field to fl(B) (e.g. using cross products). Since the discs are compact
and disjoint (thus a positive distance apart), the fields defined on each disc separately induce a
continuous unit vector field on the union of their closures.

Now we use the Tietze-Urysohn extension theorem to obtain a vector field X on B such that
X = vpr on M and projecting on the unit ball we ensure | X| < 1. After an easy modification, we
may assume that |X| =1 on a neighbourhood of M. We then define

G:R"xG(n,n—1) =R, G(x,8) = (X,,vg)?

where vg is one of the unit normals to S. Note that G is continuous since X is. Using the non-
negativity of G and the fact that T,u = T, M for H" -almost every € M Nspt(u) we interpret
p as dual to C°(R™ x G(n,n — 1)) and observe

(1, G) :/ 0(z) G(x, Top) dH" 1
spt(p)
> / 0(z) G(z, Tpp) dH" 1
spt(p)NM

> / 0(z) G(x, T, M) dH"
spt(p)NM

= / O(x) dH"
spt(p)NM

= pu(M)
> u(B) —¢.

Step 2. By varifold convergence, we know that lim._,o{u., G) = (1, G) > pu(B)—¢, and | X|, || <
1 so

limsup/ |1—<VE,X>2’du6:hmsup/ 1 — (v, X)?dp.
B B

e—0 e—0

< limsup (pe(B) — {pie, G))

e—0

<¢.
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For v,e, L > 0 we define the set

1
U. ={zeB|—— 1— (e, X)? |dpe > ~/4 5.
&L {x ’ (4Le)n—1 /B(az,4Ls)‘ (ve, X) ’ pe >/ }

Let 1,...,2x be points in U, 1 being maximal for the property that the balls B(z;,4Le) are
disjoint. Then by definition

K
¢> / 11— (v, X)?| dpe > Z/ |1 = (e, X)?| dpe > K (4Le)" ' v /4.
B i—1 Y B(zi,4Le)

At the same time, we know that the balls B(z;,8Le) cover Ue ~,1 because otherwise we could bring
in more disjoint balls, therefore

L£"Uey.1)
€

< g Yn (8Le)

E
_ 4¢ wy, (8Le)™
~ y(4Le)nt €
="t L( /.

For a given ~, we choose ¢ = () such that this is < p(B)/4.
Step 3. Knowing that [£|(B) — 0, we can use the same argument as in the second step to
show for

the estimate

for all sufficiently small € > 0.
Step 4. Now choose U such that U is a neighbourhood of M on which |X| =1 and 7 > 0 like

in Corollary satisfying

3u(B)
-

This is easily achieved when p(M) > 3 u(B)/4. Furthermore we take ¢ < 1 suitably small for
small deviations of the optimal interface to behave similarly enough, L and v as in Lemma [3.13
and ¢ = (). Using steps one through three, we see that

L7 {lue| 1=} NUN\ (Uey,L UVen1))

. “q_ S
hgl)%lf,ue(Uﬁ{\us\fl T}) >

lim inf
e—0 £
n <1-— n n
> limint S Al 1=730U) L Ueyr) £ (Ver,r)
e—0 £ c c
> 3u(B) /4 —wu(B)/4—n(B)/4
= u(B)/4.

Using the argument of step 2, but this time in reverse, we can see that there are at least K points
z1,..., ok in {Jus| <1 —7}NU\ (Ue,y,z UVZ 4 1) such that the balls B(z;,4Le) are disjoint with

1(B)
K Z 8n+1 L En—l .
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Step 5. To apply Lemma we must “freeze” the coefficients of the vector field X to a single
unit vector. We compute

1
(ALeyT /B( o (1= (ve, X)?) — (1= (ve, X4)?) dpe
T, €
1 / 2 2
= T T N1 Vsti - I/EaX d €
(4Leg)n—t B(g,-,i,4La)< ;A ) du
=il
= T T N1 VeyXi_X VE7Xi+X dlu/s
(4L€)n71 B(xi,4Ls)< > < >

1
<X + X|eo(B(as,aLe)) - |1 Xi — X|CO(B(17;,4L6))W : /B( o dpie
Ty €

<2Cq,.n | Xi — X|co(B(ai,aLe))

for all X; such that |X;| < 1. When we set X; = X(x;), the last term converges to zero - so
eventually it is smaller than /4 and

1 / 9
AT \n—1 1- Ve, Xz dué‘ <7 2.
(4Le)n—t B(x;,4Le) < ) /

Since z; € U, we finally see that | X;| = 1 and Lemma can be applied.

Step 6. Since u. is C%'/“-close to a one-dimensional optimal profile on B(z;,3Le) which
transitions from —1 to 1, we see that for each s € (—(1 — 7),(1 — 7)) there must be a point
y; € B(x;,3Le) such that u.(y;) = s. By Holder continuity, we deduce that

/ d(us) dr > 0™
B(z;,3Le)

for a constant § depending on the support of ¢ and on @, n for the Holder constant. Since the balls
are disjoint by construction, we can add this up to

1 1
— | ¢ue) de > — / o(ue) dx
6/]3 (te) € ; B(z:,3Le) (ue)
21M§5”
€

n(B)o
— 877,+1 Ln
> 0.

This concludes the proof. O

We need one final result from geometric measure theory before we move on to our main results.
The Lemma is standard knowledge for smooth manifolds with a vastly different proof.

Lemma 3.16. There is a universal constant C > 0 such that for all integral varifolds V' with finite
Willmore energy and compact connected support we have

WWV)>Cifn=3 and W) >

C )

Proof. For a contradiction, assume that there is a sequence of varifolds V; in R™ for n = 2,3 such
that |[V;|(R™) = 1 and W(V;) < 1/i. We observe that connectedness already implies diam(V;) <
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[V;[R™) =1 for n = 2. If n = 3, we can use techniques from [Sim93] to bound the diameter of
spt(V) in terms of its Willmore energy by

diam(V) < % W(V) - [VI(R?),

see also [Top98, Lemma 1] for a derivation of this inequality and the Li-Yau inequality. The
arguments are presented in the context of immersions but can easily be applied to integral varifolds
with connected support. Thus we know that up to translation we can assume spt(V;) C B(0,1),
at least for large enough ¢. Then we may invoke Allard’s compactness theorem to find that there
is an integral varifold V' such that V; — V and

e spt(V) C B(0,1),

o |[V|(R") =1, and

s W(V)=0.
But this contradicts the result of [MR14, Theorem 1] which shows that

W) > ¢, |[V|(R") > 0.

The proof is presented there for n = 3, but can easily be adapted n = 2 as well. (|

For n = 3, another approach would be to use the Li-Yau inequality, which would give us an
explicit constant C' = 16w. We chose this proof instead because it works for both n =2 and n = 3
the same way.

3.4. Proof of the Main Results. Having dealt with the necessary auxiliary results, we can
proceed to prove our main results. We use the terminology of Lemma [3.9]

Proof of Theorem[2.1] Let ' € R™ \ spt(u) and 7 > 0. Assume there is a sequence z. in {2’ such
that |uec(ze)] <1 —17 or |ug(z:)] > 1+ 7. By definition, z. € Q and using compactness, there is
r € Q' NQ such that z, — .

Let r > 0 such that B(z,3r) C R™ \ spt(u). Due to convergence, B(x.,r) C B(x,2r) for all
sufficiently small € > 0. If we use the rescaling property from Lemma |3.4] and the minimisation
property of Lemma, for n = 2, we see that

a(B(z,2r)) > h?l_)%lf (T ac(B(ze,r)) + 17! 'us(B(xs,T)))

S| =S|

> — liminf inf Fs(u)

£€—0 wueYy?
> Oo/r

with é = ¢/r as in Lemma Letting r — 0, we obtain a contradiction. ]

If n = 3, neither the rescaling property of Lemma [3.4 nor the minimisation property of Lemma
hold in as strong formulations. As we sketched in Remark uniform convergence is, in fact,
false. It is still an open question in which sense phase fields converge away from the interface in
three dimensions.

Proof of Theorem[2.3: We assume that u. — u strongly in L*(Q) and that . — u for our sequence
or a suitable subsequence (not relabelled). Let D € (—1,1), then uZ'(D) € Q. We can consider
uz'(D) instead without changing the Hausdorff limit to conform with standard approaches. By
the usual compactness results (see e.g. [KP08, Theorem 1.6.6]), there is a compact set K such that
a further subsequence of u_ (D) converges to K in Hausdorff distance. K can be computed as the
Kuratowski lower limit

K ={r € R" |3 z. € uZ*(D) such that z. — z}.
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Step 1. We first show that K C spt(u) if n = 2. Assume 2 € K \ spt(u). Then there exists
r > 0 such that B(z,r) € R?\ spt(u). This means already that |u.| — 1 uniformly on B(z,r)
showing that uZ1(D) N B(z,r) = () for small enough &, contradicting our assumption.

Step 2. Now we prove that spt(u) C K in n = 2,3 dimensions. It suffices to show that for
x € spt(u), s € D and 7 > 0 we have uZ!(s) N B(z,r) # 0 for all sufficiently small e, which implies
Hausdorff convergence.

This is an easier version of the proof of Lemma[3.15] Again, we use Corollary to show that
we have a point y € B(z,r/2) to use Lemma [3.13]on and then use Lemma [3.13] to see that we get
points in the pre-image of s close to y since u. is C%-close to an optimal interface in B(y,3Le).

If n = 2, the uniqueness of the limit also shows convergence for the whole sequence. O

Finally, we show that C. enforces connectedness.

Proof of Theorem[2.4) Let u. be a sequence such that & (u.) is bounded. Then in particular
e () — S| < €772, 50 pe(R™) = () is bounded and g — p for some Radon measure p — for
this and other properties see [EG92, Chapter 1]. Clearly

(€2) = limsup pe () = S
e—0

and on the other hand

p(Q) < p(R") < liminf pc (R") = S
e—
sou(Q) =S. If U =R"\ , we have
<l _
p(U) < liminf p. (U) = 0,

50 spt(K) = Ny open,pu(try=o US C Q. It remains to show that spt(u) is connected. For a contra-
diction, assume that spt(u) has at least two components. Since components are relatively closed,
they are also compact. As spt(u) is closed and contained in €, it is also compact. Since every
connected component of spt(u) by itself induces an integral varifold, Lemma shows that there
are only finitely many connected components of spt(x). This means that also the complement of
a component is relatively closed, hence compact.

Let Cy be a connected component of spt(u) and set Cy := spt(p)\ C1. Since C1, Csy are compact
and disjoint, we see that

0 :=dist(Cy,Cs) = ecr‘niynec |z —y| > 0.
T 1, 2

We define the disjoint open sets
Uy :={z e R" | dist(z,C1) < §/3}, Usz:={x e R"|dist(z,Cs) < §/3}.

Then we can consider two cases.
Case 1. We assume that there is § < x such that liminf._,q sfﬁdistF(“s)(Ul, Us) > 0. Then

liminf e #C. (u.) > lim inf/ ¢(ue(x)) dx - lim inf/ d(ue(y)) dy
U, e—0 Us

e—0 e—0
Jiminf e 2 dist™ ) (U, Us)
e—0
>0
by our assumption and Lemma Thus
liminfe™" C¢(ue) = oo,
e—0

which clearly contradicts our original assumption.
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Case 2. We assume that 1 < 8 < x and that liminf._,q 5_5distF(“5)(U1,U2) = 0. Then at
least for a suitable subsequence of ¢ — 0 (not relabeled) we have points z. € 9Uy, y. € OUs and
connected sets K, such that

Te,ye € Ko, E‘ﬂ/ F(us)dH' < 1.
Ks

Clearly
Hl({F(us) > 1} mKs) < ef.

Without loss of generality we may assume that K. N (U; U Us) = (), otherwise take a connected
component of K. \ (U; UUs;) meeting both sets. For the purpose of this proof we will make a few
simplifying assumptions, namely that

{6 >0} =(p1,p2), —1<61<pr<pa<bs<1, F >2 outside (61,62).

This allows us to neglect at least some constants and obviously has no effect on the structure of
the functional. Now assume that there is z. € K, such that u.(z.) does not lie in [f7, 65]. Since F
is continuous and wu. is Holder continuous on e-balls, there is a constant ¢ > 0 such that

Fus(z)) > 1 V z € B(z.,ce).

But since K is connected and not contained in B(z.,€), it must contain a point w. € 9Bz, ce),
otherwise we directly reach a contradiction. Furthermore, the connected component L. of K. N
B(ze,€) containing z. and w. projects to f(Lc) = [0,ce) under the one-Lipschitz map f(z) =
|z — z¢|. Thus

H'(Lo) > H' (f(Le)) > ce.
On the other hand, by construction L. C K. N {F(u.) > 1}), so

ce < Hl(Ls) < &P,

For all sufficiently small € > 0, this is a contradiction (as 8 > 1), and we see that u. € [61,02] on
K.. If n = 2, this contradicts uniform convergence and the proof is finished. If n = 3, we need a
further argument.

Take some ,n > 0 to be fixed later. For fixed ¢ > 0, without loss of generality, we may assume
that 2. = 0 and y. = r.e; for r. > §/3. Denote by m; the projection on the x'-coordinate. Since
K. is connected, we observe that [0,6/3] C m1(K.). Thus by construction, there are N, > 6/(6¢7)
points 2t € K. N7y '(2i - 7) such that the balls B(z%,&) are disjoint. Assume that there are
M. > 0 balls among these such that

au(Blate) + [ ;
Baten)n{luc[>1} €
Since the balls are disjoint and referring back to the first step in the proof of Lemma this
implies
20.(R™) > M. €",
so M, <2(a+1)/e" for all small e. We deduce that
M. < 2(@+1)/e"  12(a+1)
N. = §/(6e7) 5
When we fix y =1/2, and 0 < < v we see that M./N. — 0 so eventually for
M.
1- N ~ N
(%)

€

e,
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balls we have o (B(z¢, 57))+fB(Ii ) W’sz dz < . Denote by A, the collection of the centres of

these balls. As 2z’ € K. C R"\(U;UUs), for every 0 < r < §/6 we know that B(z%,2r) C R™\spt(u)
and

a.(B(zk,€7)) +/ de < el

B(zi,e7)N{luc|>1} €

When we consider the rescaling . : B(0,1) — R, 4.(y) = us (2 + ry) for some sequence z¢ € A,
and denote € = ¢/r we obtain (in n = 3 dimensions) that

G (B(0,87r771)) +/

B(0,&7 ry—1)n{|a.|>1}

W (i)

53

do < rén.
Without loss of generality, we can take r < 1 and since we fixed v € (0,1), this implies

G:(B(0,€7)) +/

B(0.&)N{lac|>1} €
Also, by construction fi. — 0 weakly as a Radon measure on B(0, 1). With the same argument that
gave us the lower bound on N, for any s € (0,§) we can obtain a sequence of points 7. = xis € A,
such that . — x for some z € R™ with m (z) = s. In particular, this gives us infinitely many such
limit points. We will show that each of them is an atom of a with a certain minimal size, which
obviously gives us a contradiction. By the weak convergence of Radon measures,

a(B(x,2r)) > limsup a.(B(z,2r)) > limsup a.(B(Z., 7))
e—0 e—=0

since for small enough ¢ > 0 we have B(Z.,r) C B(x,2r). But since ji. — 0 we have

lim sup o (B(Ze, r)) = limsup(d&e + fie)(B(0,1)) > 05.1.0,.0
e—=0 €0

using Lemma Letting r — 0 shows that in fact a({z}) > 0an.6, 6, for uncountably many

points, leading to the contradiction we were looking for. O

4. COMPUTER IMPLEMENTATION

In a computer simulation, we try to find local minimisers of the e-problem in n = 2 dimensions
by following a finite element implementation of the time-normalised L2?-gradient flow of & with
e =1.5-1072, k = 1, 0 = 2. The pictures below are obtained using roughly 250.000 H2-conforming
basis functions and a time-step of € - 107°. The distance function d¥(“<) and its gradient are
implemented via Dijkstra’s algorithm in a fashion similar to the one of [BCPS10]. We note that
w(e) can be chosen so large that it does not pose a restriction for the algorithm computing the
distance on our grid. The initial condition is the same for all simulations and can be seen in figure
on the left; the domain is the disc of radius 1. There was no penalisation of the discrepancy measure
in our simulations.

Note that the phase field in this figure is already relaxed by running the gradient flow approx-
imately up to time ¢t = 7.5 - 107°, so that a smooth transition layer could form from the simple
sharp “true” initial condition.

For practical purposes, we use two functions ¢1, ¢ with support close to 1 and —1, respectively,
rather than just one ¢. Quite obviously, our proofs easily extend to that situation. By keeping
level sets close to the edges connected, we create barriers that prevent the interface from splitting
apart early in the process. The implementation will be described in greater detail in a forth-coming
article [DW15].

We see in figure [1| that without the inclusion of the topological term, the transition layer disin-
tegrates into several connected components along the gradient flow of W. + 77 (S. — 9)2.
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FIGURE 1. Gradient flow of W, +&77 (S. — S)2. From left to right: phase field u
for approximately t = 7.5-107%,t =3-10"%,t=7.5-10"% and t = 1.8 - 1073,

To compare implementations of topological side conditions, we include the topological term
suggested in [DMRI11], which penalises a deviation of a diffuse signed curvature integral from 27
in the simulation. This term prevents the initial pinch-off, but at a later time, the interface will
pinch off in a more complicated way which keeps the diffuse winding number close to 2w. The
trick is to pinch off simultaneously at several points as seen in figure The far right plot in
figure [2| illustrates the diffuse curvature density as distributed along the curve at pinch off time.
We can observe the formation of a circle with negative total curvature &~ —27 (due to the phase
field switching in the other direction from +1 to —1), and two components with total curvature
~ 21 so that the total curvature of the whole interface stays close to 2.

.
e Is
M J 80
- .
p J - -80
- I-160

-210

FIGURE 2. Gradient flow with penalty on a diffuse winding number as suggested
in [DMRI1]. From left to right: phase field u for approximately ¢ = 3 - 1074,

t=75-10"%and t = 1.8-1073, then a plot of the diffuse winding number density
denoted T at time t = 1.8 - 1073,

In figure 3] a flow for & with the additional term of C. on the other hand can be seen to
stably flow past those singular situations. The three left plots both here and in [2] correspond
approximately to the same times in the simulation.

Comparing the three scenarios above, we observe that there is virtually no difference in the
plots at time 3 - 10~% and that the plots for both modified (penalised using either the old or the
new method) functionals at time 7.5 - 10~ still look very similar. It can thus be argued that the
topological condition does not affect the shape of the curve in a major way except when it has to
in order to prevent loss of connectedness.

In figure [d] we see non-trivial geometric changes along the gradient flow for later times. This
demonstrates the necessity of continuing the flow beyond the critical times.
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Ficure 3. Evolution including our new topological penalty term C.. From left to
right: phase field u for approximately ¢t = 3-107%, ¢t = 7.5-10"* and ¢ = 1.8-1073,
then a plot of the diffuse Willmore energy density (denoted W here) of the initial
condition.

2 3

FiGURE 4. Evolution including our new topological penalty term C. for long
times. From left to right: phase field u and diffuse Willmore energy density

(denoted W here) first for approximately t = 6.6-10~2 and then for approximately
t=3.6-10"2.
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It should be emphasised that our focus is not on implementing an approximate Willmore flow
using phase fields but on finding minimisers of the diffuse interface problem using a gradient flow.

Existence of Willmore flow for long time and topological changes along it are still an open field of
research.

5. CONCLUSIONS

In this paper, we have developed a strategy to enforce connectedness of diffuse interfaces. The
strategy fares well in applications and can efficiently be implemented and seems to be more generally

applicable to a wider class of problems. We claim that our results can be extended to the following
situations.

e We can include a hard volume constraint, for example

2
1 /1
(/ug—i-lda:—V)
e \2Jq

for 0 <V < min{£"(Q), ¢,, S/ (™=D1 or a soft volume constraint like

F(l/ue—l—ldx)
2 Jg



30

PATRICK W. DONDL, ANTOINE LEMENANT, AND STEPHAN WOJTOWYTSCH

for continuous functions F' > 0. Here ¢, is the constant from the iso-perimetric inequality
in n dimensions.

Another popular constraint compatible with our functional and results is minimising a
distance from a given configuration as

Aw) = [ fu=glax

where ) is a finite Radon measure on 2 and g € L'(Q). This functional originates in
problems in image segmentation, but in our context it can be understood as prescribing
certain points to lie inside or outside the membrane according to experimental data; a
computationally stable choice would be for example

1 o
g=20 Q, A=L"|
10

This urges the functional to have Q; C F and Q3 C E°¢ without preference on {29; the
energetic drive to form transitions on )5 is compensated by the volume constraint and
disappears as € — 0. As for the volume contribution, the constraint can be included in a
hard or soft penalisation.

In a soft penalisation, it suffices to have Q; N Q3 = () for the existence of minimisers.
In a hard penalisation, a sharp interface competitor of area S must be constructed or the
hard area constraint should be dropped in favour of a soft term like S. or (S. — S)2.
Using [BM10, Theorem 4.1], we could take Bellettini’s approximation of the Helfrich energy

/ 2
EMel(y) = /Q 2;_;( vz,s - % eViu — WT(U) Uy @ vy| do

for x € (—2,0) in place of the diffuse Willmore energy W.. Here v, ¢ is the usual Willmore
density associated with u and v, = Vu/|Vu| is the diffuse normal like in Lemma [3.12]
We can use the same modelling techniques for a finite collection of membranes inside
an elastic container. The outer container is modelled by a phase field U, and the inner
membranes by phase fields u?, ..., uY. The governing energy is composed by a sum of the
individual elastic energies £ modified by bending moduli x; > 0, interaction energies I,
preventing interpenetration and confinement energies 7T:

N
Fo(Ueyul, . ulY) = E.(U.) + Z;X E(ul) + = ZTE(ug, U.)

1 X o
+ Eigzzje(uéaug)
i=1 j#i

for some B > 0 where for example
I (u,v) = / (u+1)2(v+1)%dz
Q

and T.(u,U) = I.(u,2 — U). These energies prevent u,v from being close to +1 at the
same time preventing penetrations between different membranes and u being close to 1
where U =~ —1 enforcing the confinement of u to the elastic container. Surface area can be
prescribed for each phase field individually and other modifications can be included. The
domain §2 can be chosen as a ball large enough to have no influence on the problem. This
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appears to be an interesting way to treat the mitochondria-shape problem mentioned in
the introduction.

An interesting open question is whether it is possible to develop to a finer control of the topology
of limit interfaces in three dimensions. While in two dimensions, the only closed connected 1-
manifold is the circle, orientable closed surfaces in R? are fully classified by their genus g € N.
This is linked to Gaussian curvature K by the Gauss-Bonnet theorem

/Kd’H,2:47r(1—g).
b

Although there are diffuse approximations x. of this invariant [DLW05, [DLRW0Q7], investigations
into their use in prescribing a topology in Willmore problems have not been conducted, neither
analytically nor numerically.
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