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The present work is devoted to the microbuckling analysis of long fiber composites. A multiscale finite element
method (FE2) is combined with the asymptotic numerical method (ANM) to study the elastoplastic instability
which may occur in structures at both macroscopic and microscopic scales. The fiber is described by a linear
material constitutive law, while the matrix phase is described by a nonlinear Ramberg—Osgood relationship. The
stress field is then obtained via the total mechanical strain without any history dependence. Large strains are
considered, which induce geometrical nonlinearities in both cases. The ANM framework allows obtaining
complex response curves involving limit points in loading and displacement to be obtained. In the present path
following procedure, adjustment of the step length is naturally automatic because the validity range of the
asymptotic solution is a posteriori estimated depending on the local nonlinearity of the response branches.
Numerical examples show the effectiveness of the proposed approach by investigating microscopic and

macroscopic instabilities of long fiber composite structures in compression.

KEY WORDS: asymptotic numerical method, nonlinear homogenization, multiscale finite element

method, long fiber composite, plastic microbuckling

1. INTRODUCTION

The development of numerical multiscale analysis has
made possible new studies about effective properties of
heterogeneous nonlinear materials containing dispersions
of multiple phases in the microstructure. Thus, one al-
ternative to meshing the whole structure, including het-
erogeneities, is to use a multiscale finite element proce-
dure, also called in the literature computational homoge-
nization, or nested finite element procedures (see, among
many others, Smit et al., 1998; Feyel and Chaboche,
2000). In this framework, a nonlinear finite element prob-
lem is introduced under each material point (for exam-
ple, integration points) to obtain the macroscopic stresss-
strain relationship, without restriction on the deforma-

tion level or the local nonlinear constitutive laws. Each
local nonlinear microscopic problem is associated to a
representative volume element (RVE). The macroscopic
stresses are then obtained by direct averaging of the mi-
croscopic stresses, found by solving the local problem
(Terada and Kikuchi, 2001; Ghosh et al., 2001; Feyel,
2003; Yvonnet and He, 2007).

Nevertheless, modeling multiscale buckling of hetero-
geneous materials remains a challenging task. The insta-
bility phenomena in the framework of multiscale homog-
enization analysis of heterogeneous materials are of struc-
tural and/or material types. These phenomena can occur
on both macroscopic as well as microscopic scales and
may influence each other. Abeyaratne and Triantafyllidis
(1984) have investigated for the first time the instability



phenomena in the heterogeneous materials. They studied
the overall behavior of porous elastic media where they
found that the homogenized material looses ellipticity, al-
though the matrix material remains elliptic. Afterward,
the instability of the heterogeneous materials originated
numerous papers. (e.g., Triantafyllidis and Maker, 1985;
Geymonat et al., 1993; Ohno et al., 2002; Okumura et
al., 2002; Miehe et al., 2002; Gong et al., 2005; Lopez-
Pamies and Ponte Castafieda, 2005; deBotton et al., 2006;
Michel et al., 2007; Yvonnet et al., 2007; Okumura et al.,
2008).

Fiber microbuckling is one of the most famous insta-
bility phenomena in heterogeneous materials. It is one of
the main mechanisms of long fiber composite compres-
sive failure. Rosen (1964) presented the first approach
of this type and showed that in an elastic context, mi-
crobuckling stress is approximately equal to the compos-
ite shear modulus. As established by Budiansky (1983),
matrix physical nonlinearity and fiber initial waviness
have to be considered to correctly predict the failure level.
One can find many finite element microbuckling studies
in the literature, for instance, Kyriakides et al. (1995)
and Lee and Waas (1999). In Drapier et al. (1998, 1999,
2001), a multiscale approach is considered, but the micro-
scopic model is solved analytically and the assumption of
periodicity along the fiber is a bit restrictive. However,
to our best knowledge, this paper represents the first at-
tempt to model microbuckling by a multiscale finite ele-
ment method, which is of fundamental interest for struc-
ture analysis of fiber composites. In the present paper,
we study the plastic microbuckling of long fiber compos-
ites using multiscale finite element analysis (FE?) com-
bined with an asymptotic numerical method (ANM). We
consider an initial fiber curvature and a nonlinear behav-
ior of the matrix by choosing a Ramberg—Osgood rela-
tion (Chen and Han, 1998). The ANM is based on the
expansion of nonlinear problems in the form of power
series that are truncated at rather large orders. This al-
lows one to obtain a series of linear problems. Conse-
quently, within the framework of homogenization, one
can construct the localization tensors using the superpo-
sition principal. These tensors are the same for all the
linear problems deduced from the perturbation procedure.
Hence, an explicit constitutive relation at the macroscopic
level is computed for each asymptotic step. Furthermore,
the length of steps is naturally adaptive and is estimated
a posteriori using the previously computed terms of the
series. This is not the case for the classical iterative al-
gorithms based on Newton—Raphson procedure. This ad-
vantage allows one to follow complex response curves.

The layout of this paper is as follows: In Section 2,
we present the variational formulations and the cou-
pling equations between the macroscopic and micro-
scopic problems. We also show how to adapt a nonlin-
ear constitutive law to the ANM framework. In Section 3
details of the perturbation procedure applied to the mul-
tiscale problem are given. Resolution and path-following
strategies are also presented. In Section 4 we present two
main numerical examples involving instability phenom-
ena in the long fiber-reinforced composites.

2. MACROSCOPIC AND MICROSCOPIC
VARIATIONAL FORMULATIONS

2.1 Equilibrium and Coupling Equations for
Micro and Macro Problems

We present in this section the variational equations
needed to model the macroscopic and the periodic mi-
croscopic problems. Similar formulations have been pre-
sented in a previous paper (Nezamabadi et al., 2009) in
which we considered a heterogeneous material involving
large displacement and an elastic and linear constitutive
law for the different phases. In the present paper we deal
with similar problems but taking into account the plastic-
ity behavior of the matrix at the microscopic level.

Let Q ba a domain in R¢, d being the space dimen-
sion associated with a macroscopic structure and OS2 its
external boundary, both in their reference configuration.
In the framework of a total Lagrangian formulation, the
weak form of the macroscopic equilibrium equation can
be written as follows:

Find @ € S(0) satisfying the essential boundary con-
ditions, i.e. @ = u on 0f),, with u being the pre-
scribed displacements and essential boundary, and S(2)
the space of sufficiently smooth functions, such that

/P:éF dQ = AT, (8 1) inQ, (1)
Q

where the notation (.) denotes the macroscopic quanti-
ties, P is the first Piola—Kirchhoff tensor associated with
a point X of the macroscopic structure in its initial con-
figuration, @ denotes the macroscopic displacement field,
F = V ¢u + I is the macroscopic deformation gradient
tensor, and I is the second-order identity tensor. The term
T..+(80) represents the virtual work of external load, A
is a loading parameter, and 8t € S°(Q), S°(2) being
the space of all displacement fields vanishing on 0€2,, and
sufficiently smooth on 2.



At this scale, the constitutive relationship between P
and F is unknown. In the context of multiscale finite el-
ement analysis, the macroscopic stresses are obtained by
solving a local nonlinear finite element problem related
with the periodic microstructure.

For the microscopic scale, the material is assumed to
be heterogeneous with a periodic microstructure, charac-
terized by a representative volume element (RVE) that oc-
cupies a domain w € R? in its reference configuration.
Let u(X) be a displacement at a microscopic point X in
the undeformed configuration. The weak form associated
with the microscopic problem is:

Find u € S(w) satisfying the microscopic boundary
conditions, i.e., Eq. (5), such that

/P:SFdw:Oinw, 2)
w
with su € S%(w), S(w), and S°(w) being defined as
previously. In (2), P and F denote, respectively, the first
Piola—Kirchhoff stress tensor and the deformation gradi-
ent tensor at a microscopic point X.

Problems (1) and (2) are coupled through two main re-
lations. First, as the constitutive relation is not explicitly
given at the macroscopic level, the effective stress tensor
P is obtained by considering an average value of the mi-
croscopic stress field over the RVE for a given point X of
the macroscopic structure. This relation is expressed as
follows:

P = (P(X) = [ PX)de

where |w| represents the volume of the considered RVE.
The second relation concerns the mean value of the
microscopic deformation gradient assumed in the form

(F(X)) = ﬁ/ F(X)daw .

3)

F= “

This relation is deduced from the boundary conditions
imposed on the RVE (Miehe, 2003). Generally, three
main boundary conditions can be considered for the RVE
as linear deformations, uniform tractions, or periodic con-
straints. In the proposed work, we consider periodic con-
ditions on the boundary of the RVE, which can be recast
into the following form:

ut —u =F-)(X" -=X") on dw, (5)

where u is the microscopic displacement, and the expo-
nents + and — are associated with node indices on oppo-
site sides of the RVE. Note that the boundary conditions
depend on the macroscopic deformation tensor F.

2.2 Microscopic Constitutive Relations

At the microscopic scale, we assume that the constitutive
relations are known in each phase of the RVE. For the
applications that we target in the present work, a linear
constitutive relation is considered for the fiber microcon-
stituent and a nonlinear constitutive law is assumed for the
matrix. In fact, we consider plastic behavior for the matrix
without taking into account elastic unloading. Deforma-
tion theory of plasticity is used, which is convenient for
problems where the physical nonlinearity is more impor-
tant than the effect of irreversible process and the history
of the loading (Hencky, 1924). Let us remark that Eq. (2)
can be expressed in terms of the second Piola—Kirchhoff
stress field S and the Green—Lagrange strain y as follows:

/S:éydw:O.
w

The stress tensors S and P are related through P =
F'S and the Green—Lagrange strain is given by

(6)

1 1
y=_(FTF - 1)=_ (qu + vxu?

2 2 ™
+-V7xlfr‘7);u).

The linear constitutive relation for the fiber can be ex-
pressed as
S=C:v, (3)

where C refers to the classical fourth-order elastic tensor.
Concerning the matrix, we choose an elastoplastic consti-
tutive law based on the Ramberg—Osgood relation (Chen
and Han, 1998; Abaqus Theory Manual, 2008; Zahrouni
et al., 1998), which is written in the 3D case in the fol-
lowing form:

Seq

Oy

n—1
Ey:(1+v)Sd—(1—2v)PI+goc [ } S (9)
where I, v, , n, and o, denote, respectively, the Young
modulus, Poisson’s ratio, yield offset, hardening compo-
nent, and yield stress. P = —1/3S : I is the equiva-
lent hydrostatic stress, S? is the stress deviator defined by
S¢ =S+ PI S, is the von-Mises equivalent stress

defined as follows:
3
1/ =S4 .84,
2

As Eq. (9) is highly nonlinear, it is convenient to set
it into a regular and quadratic form which is well de-
sired in the framework of ANM (Potier-Ferry et al., 1997;

Seq = (10)



Zahrouni et al., 1998; Abichou et al., 2002; Zahrouni et
al., 2004). As the hardening exponent n is not an inte-
ger, this law is not analytic for null stress. This is why
a regularization procedure and a differential relation are
introduced in this model, allowing expansions into power
series (Zahrouni et al., 1998). For this purpose, the von-
Mises equivalent stress is slightly modified and recast in
the following form:
2 3 qd . ad 2 2

Seq=§S:S +n°0,%, (11)
where 1 is a regularization parameter. For 1 = 0, the
initial constitutive law (9) is recovered. Furthermore, two
additional variables k and ( are introduced to transform
the power law into a differential equation:

3 Seq n—1
<(Sea) = 2 x [O-y}
aoi (12)
_3 d . qd 2
—20{2”28.8 +1 ,
S2 3
== s?:8% 412, (13)
o2 20,7
These two variables are linked as follows:
3
K = 50( oL (14)

If we carry out a differentiation of Eq. (14), one obtains
a relation which is more convenient for the asymptotic
expansions:

Cdk = (n—1) kdC. (15)
In this way we obtain a general problem with a quadratic
nonlinearity with respect to the new variables. Moreover,
to keep the same initial slope as for nonregularized law,
the first member of Eq. (9) is multiplied by (1 + an™)
(Zahrouni et al., 1998). The nonlinear constitutive law
leads then to the five following equations:

E(1+on™)y=(1+v)S%—(1—-2v)PI+«S?,

3
2 _ d.Qd 2
¢ _—2%28 : 8% 4+ 12,
{dx = (n—1)kdg, (16)
S!=S+PI,
1
P=—-—-S:1
3

3. ASYMPTOTIC NUMERICAL ALGORITHM

The micro and macro formulations are described by the
nonlinear system of Egs. (1, 5-8, 16). The regulariza-
tion procedure and the differential form introduced in
the nonlinear constitutive law have allowed a regular and
quadratic framework to be obtained, which is preferred
using ANM algorithms. The present section gives some
details about the path following procedure within ANM.
We show that the perturbation procedure allows one to
transform the nonlinear problem into a sequence of linear
ones. Because of coupling equations, at each asymptotic
order, the solution of the resulting linear problems is ob-
tained by using the superposition principal. Details of this
procedure are given in Nezamabadi et al. (2009) and will
be explained once more in what follows.

3.1 Perturbation Technique

Solution of the nonlinear multiscale problem [Egs. (1, 5—
8, 16)] is sought using the asymptotic numerical method.
This consists of expanding the main macroscopic and mi-
croscopic variables of this problem into a power series
with respect to a path parameter. In this way, the nonlin-
ear problem is transformed into a sequence of linear ones
having the same tangent operator. If these variables are
represented by a mixed vector A = (i, P,u, P, ...), the
perturbation technique applied to A and to the load pa-
rameter A leads to

N
Ala) = Ao+ ) a’A,, (17)
p=1
N
AMa) =Ao+ > a’h, (18)
p=1

where a is a path parameter to be defined, NV is the trun-
cation order of the series, and Ag and Ay denote a known
initial solution.

By substituting Egs. (17), (18) into (1, 5-8, 16), one
obtains a sequence of linear problems. For example, for
order p, Eq. (1) is written as:

/ P, : 8F dQ =\, T (50) . (19)
Q

Concerning the microscopic variables, if we set the

Green—Lagrange strain 7y into the following form:

1

Y (qu + quT) + % (quTVXu)

T2 (20)
= Yl(u) + Ynl(u’ u)v



and

oy = Yl(éu) + Y?Ll(5u7 u) + Yo (u7 611)

. (21)
=v,(8u) + v, (u, du).
Equation (6) can then be written for order p as
S,: Su) +v;,;(up, Su
[0 e v sy

+So : vy (0, Su))dw = 0.

Boundary conditions at the microscopic level are ex-
pressed at order p by
uf —u, =F,(XT—X") on dw . (23)
Constitutive law is defined for each phase of the micro-
scopic structure. In the case of the linear law (8), order p
leads to the following relation:
S, =C:v,, (24)
and in the case of the nonlinear constitutive law (16), or-
der p gives

S, =Cy:v,+S, 25)
where
p—1
Yo =Yi(w) + v (0, w) + > vpu(wi,u, ), (26)
=1

and C; and S}°* are defined in Appendix A.

3.2 Resolution Strategy

We have presented in Section 3.1 the perturbation tech-
nique which transforms the nonlinear problem to be
solved into a sequence of linear ones. The aim of the
present section is to give some details on how the resulting
linear problems are solved in the context of a multiscale
framework. Because of the coupling conditions between
macroscopic and microscopic problems, we start by solv-
ing partly the linear problems at the microscopic level for
each order. The obtained solution allows one to construct
the localization tensor numerically and then to obtain the
macroscopic tangent modulus. At this stage, one can
solve the linear problem of the macroscopic equilibrium
to obtain the displacement field @,. This displacement
is used to compute the macroscopic deformation gradient
F, and then to finish the computation of the variables at
the microscopic level.

The linear problems at order p of the microscopic level
(5, 6, 16) can be set in a generic form as follows:

L(up, du) = f;‘l(éu) in w,

27
uf —u, =F,(X"-X7) on dw. (28)
The operator £ corresponds to the tangent stiffness of
the microscopic structure. It is the same for all the linear
problems resulting from the perturbation procedure. The
right-hand side operator ]—'{}l is given and depends only on
the solutions of the previous linear problems i (1 < i <
p). Details about £ and ]—';}l are given in Appendix B.
Note that the boundary conditions (28) depend on the
local macroscopic deformation gradient, F,, which is un-
known. As the problems (27) are linear, we can use the
superposition principle. Therefore, u, can be expressed
as a linear combination of the solution modes obtained by
imposing independently homogeneous deformation fields
(see Appendix C). The solution u,, can be then expressed
in the form

u,(X) = AX) : F, + up(X), (29)

where A is a third-order tensor deduced from solutions
of the linear problems obtained by the superposition prin-
ciple, and ug’ is a vector associated with the right-hand
term of Eq. (27).

Deriving (29) with respect to X and using Vxu, =

F,, we obtain

F,=Ax:F,+uly, (30)

where A x is a fourth-order tensor, which is identified as
a localization tensor, and u”’y is a second-order tensor.

To achieve the homogeniied relationship, we consider
the asymptotic expansion of P = FS. After some ele-
mentary operations, one obtains at order p the following
relation:

P,=L:F,+P}, (31
where expressions of operators I and Pgl are detailed in
Appendix D. The effective stresses can be then obtained
at each order p by averaging Eq. (31):

P,=L:F,+P}. (32)
By introducing (32) into Eq. (19), we obtain the final

form of the linear problems at order p at the macroscopic
level:

/ F,:L:8FdQ=M\,T...(50)— / Pyl SFdQ. (33)
Q Q
Solution u,, of Eqgs. (33) and (29) are used to finish the

computation of the variables at the microscopic level for
each integration point of the macroscopic structure.



3.3 Path-Following Strategy

The path-following strategy is of critical importance,
mainly in the presence of instability phenomena. This is
the case of the present work where instability may occur
in both macroscopic and microscopic levels.

Nonlinear problems involving instability behavior are
generally solved by using Newton—Raphson iterative al-
gorithms associated with arc-length techniques to follow
complex branches involving limit points in loading and
displacement responses. To optimize the computation
time, one has to use step-size adjustments. Indeed, for
a fixed step size, a very small step length can lead to a
high number of steps; however, a large step length allows
reduction of the number of steps but can lead to diver-
gence or to a very large number of iterations. Further-
more, the linear iterative algorithms converge sometimes
to an unwanted path in the case of problems involving
strong nonlinear solution response (Eriksson and Kouhia,
1995). The best strategy must use large step lengths in the
regions with very smooth response and small step lengths
in the regions with strong nonlinearity, as for limit points
or quasi-bifurcation situations. In the general case, the
best strategy is not obvious (Ramm, 1981; Riks, 1984;
Wriggers et al., 1988; Eriksson, 1991; Crisfield, 1991;
Battini, 2007; Kouhia, 2008).

In the framework of ANM, the power series allows one
to obtain a large part of the solution branch by decompos-
ing only one tangent stiffness matrix. This procedure can
be considered as a high-order predictor which generally
does not need any correction phase. As the series has
convergence radius, a continuation procedure can be eas-
ily implemented, considering that the relative difference
between the solutions of two consecutive orders N and
N — 1 must remain small enough as compared to a crit-
ical value 6. If we consider the discretized form of the
displacement field, one can determine a validity range of
the truncated series using the following approximation:

1
a N-T
Omax = (6 H — ! H > ) (34)
| an |l
where b is the accuracy parameter and || . || refers to the

norm of the vector.

In this way, the whole solution is obtained in a step-
by-step manner considering each end step as the starting
point for the next one. Furthermore, the step length is nat-
urally adaptive, depending upon the local nonlinearity of
the response curve, since it is a posteriori computed us-
ing the terms of the series. Details of these procedures
are given in many references (Cochelin, 1994; Zahrouni

et al., 1999; Cochelin et al., 2007). This technique to
compute the validity range is not unique; Assidi et al.
(2009) proposed a procedure which consists in comput-
ing the validity range for all the variables expanded into
power series and keeps the smallest value of apyax. This
ensures that all the equations of the considered problem
are solved with a high accuracy. To improve the valid-
ity range of the asymptotic solution, we propose that the
power series representation be replaced by rational frac-
tions named Padé¢ approximants. Experience shows that
this technique allows one to reduce the computation time
by about 50%. Details of this technique are not given in
this work. Readers can refer to the following references:
Najah et al., 1998; Elhage-Hussein et al., 2000; Lahmam
et al., 2002; Boutyour et al., 2004; Aggoune et al., 2004;
and Aggoune et al., 2006.

At last, to solve the resulting linear problems (33)
and (27), we need to define a constraint equation as for
the path-following technique proposed with the classical
Newton—Raphson algorithms. The computation can be
managed by imposing a force, a displacement, or a com-
bination of both [i.e., Riks technique (Riks, 1984)]. In the
present work, a simple procedure is chosen by consider-
ing the projection of the macroscopic displacement field
onto its tangent:

a = (a(a) —ap) .. (3%5)

Note that Eq. (35), which uses the macroscopic vari-
able 4, can be replaced by anyone using local variables
as the displacement vector of the discretized RVE consid-
ered at an integration point of the structure. We can also
combine many variables which do not exhibit the same
behavior during the macroscopic loading.

4. NUMERICAL EXAMPLES

The accuracy and the efficiency of the proposed tech-
nique were studied in the elastic framework in Nezam-
abadi et al. (2009). The influence of microbuckling of
the fiber with the initial imperfection on the macrostruc-
ture is assessed here. For this purpose, first, the plas-
tic microbuckling mechanism is described briefly. Af-
terward, the compression of a fiber-reinforced composite
material with the elastoplastic nonlinear constitutive law
in the matrix is considered. The proposed problem has
been discretized using a two-dimensional finite element in
the plane stress framework. The macrostructure has been
meshed with four node quadrangular elements, whereas
the microstructure has been meshed with nine node quad-
rangular elements.



In the context of ANM, the truncation order N of the
series and the accuracy parameter §, which allows limit-
ing the length of each asymptotic step in a continuation
procedure, are important. In all the tests presented here,
we have solved the nonlinear problems using ANM with
Padé approximants and N = 15, but &6 = 10~° for the
first test and 5 = 10~2 for the second one.

4.1 Plastic Microbuckling Mechanism

In this part we focus on the plastic microbuckling mech-
anism of the long fiber-laminated composite. A bidimen-
sional representation of a laminate is used (see Fig. 1),
where es is the 90° direction corresponding to the load-
ing direction. The imperfection magnitude (vg) is con-
stant through the thickness. This mechanism was studied
in several papers (Kyriakides et al., 1995; Drapier et al.,
1998, 1999, 2001). Here we wish to revisit this mecha-
nism by considering a microstructure with one fiber using
the periodic boundary conditions at microscopic scale un-
der plane stress conditions. The imperfection wavelength
of a fiber is equal to 200.7 pwm. The mechanical proper-
ties employed are shown in Table 1 which corresponds
to a T300/914 composite. The parameters of the non-
linear behavior of the matrix are deduced from the work
presented in Wisnom (1991). The microstructure is de-

%%

FIG. 1: The microstructure of long fiber composite with
the imperfection magnitude.

€

TABLE 1: Mechanical characteristics for the T300/914
composite.

Fiber T300 Matrix 914
(isotropic) (isotropic)
E; = 240 Gpa E,, =4.5Gpa
vy=03 Vo, = 0.4
Fiber volume fraction: f=0.6 n==6
Fiber diameter: dy = 10um 0, =115 MPa

formation driven by a macroscopic compression mode;
F—I = [FH — 1; Flg; Fgl; FQQ — 1] = [0, 0; O; —1] [see
Eq. (9)].

Figure 2 shows the responses under compression mode
for different imperfection magnitudes. These results are
similar to ones obtained by Kyriakides et al. (1995). The
stable and unstable responses toward prescribed strain can
be distinguished. In the microstructure, the path follow-
ing is well adopted and we can follow the response curve
with a reasonable number of steps, despite the abrupt
change of curvature at maximum stress.

4.2 Interaction between Micro- and Macro-
Instabilities

To show the influence of plastic microbuckling on the
macrostructure response, we consider the macrostruc-
ture shown in Fig. 3 which presents a rectangular plate
clamped on three edges and submitted to a force distri-
bution AP on the top edge. Because of the symmetry of
the problem, only half of the structure is discretized. We
use the same microstructure as for the previous example.
The imperfection magnitude of fiber is 3 um. We use our
multiscale procedure to solve this micro-macro problem.

In Fig. 5, the displacement of a point located on the
top of a macroscopic element shown in Fig. 4 versus the
loading parameter is presented. This figure shows the
influence of microscopic instability on the macroscopic
one: initially, in the portion of the curve preceding point
A, the macroscopic behavior is mainly linear. However,
we can observe an abrupt change in the portion of the
curve between point A and point B. Note also the same
phenomenon between the points B, C, D, and E. This is
mainly caused by the occurrence of microscopic instabili-
ties at different points. It is worth noting that thanks to the
high order predictor of ANM, we can detect these instabil-
ities. The deformed shapes of the microstructure at the in-
tegration point I P I shown in Fig. 4 at points A, B, C, D,
and E (see Fig. 5) are presented in Fig. 6. There is a sig-
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FIG. 2: Macroscopic stress—strain diagrams for the different imperfection magnitudes.
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FIG. 3: Geometry and boundary conditions of the rectangular plate made of the fiber reinforced composites, P =1
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nificant difference between these deformed microstruc-
tural shapes despite the small variation of macroscopic
load, which illustrates the relationship between local and
global instabilities. Furthermore, we observe that the mi-
croscopic buckling modes are the same for all points after
the buckling of macrostructure (B, C, D, and E) which
shows that we follow the same bifurcation branch.

In Fig. 7, the macroscopic stress—strain diagrams are
presented for the different integration points shown in
Fig. 4. The points A, B, C, D, and E in this figure are
the same as in Fig. 5. Note that for the same magni-
tude of global load, the stresses at the integration points
do not reach the same level. Hence, under compression
mode, the different integration points do not pass the max-
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FIG. 5: The load-displacement diagram of the plastic microbuckling of fiber-reinforced composite problem.
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FIG. 6: Deformed shapes of microstructure at the in-
tegration point I PI shown in Fig. 4 at different points
presented in Fig. 5, deformation scale = 10.

imum stress at the same time, which explains the shape
of the load-displacement curve near the maximum load
(see Fig. 7). This phenomenon consequentially induces a
reduction of asymptotic step length. Nevertheless, ANM
allows this type of response curves to be obtained, despite
the appearance of successive instabilities.

5. CONCLUSION

The present paper has been devoted to study the in-
teraction between microscopic instabilities and macro-
scopic ones in the framework of long fiber composites.
We have considered an elastic linear behavior for the
fiber and a nonlinear constitutive relation for the ma-
trix based on the total deformation theory. To this end,
a Ramberg—Osgood relationship was implemented. Ini-
tial curvatures were taken into account to model geomet-
ric imperfections of the fiber. Nonlinear problems were
solved using an efficient numerical technique, in the con-
text of heterogeneous materials, combining multiscale fi-
nite element analysis (FE?) and an asymptotic numeri-
cal method (ANM). Using ANM permits one to construct
only once the localization and homogenization tensors for
each asymptotic step. Consequently, the tangent stiffness
matrix is also the same for each step. The length of each
step is a posteriori estimated from the computed terms of
the series. This leads to a naturally adaptive step length
algorithm which allows investigations of instabilities phe-
nomena with high accuracy and efficiency.

As numerical examples, we have shown first the plastic
microbuckling mechanism by considering the compres-
sion mode of a microstructure in which we have consid-
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FIG. 7: The macroscopic stress-strain diagram for the integration points (I, II, and IIT) shown in Fig. 4.
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ered only one fiber with initial imperfection. We have
then studied the compression of a fiber-reinforced com-
posite with the microstructure defined above to assess the
influence of the plastic microbuckling on the macrostruc-
ture behavior. The obtained results illustrate the capa-
bility of the proposed algorithm to deal with instabilities
in the context of heterogeneous materials involving non-
linear constitutive relations. To our knowledge, a simi-
lar micro—macro analysis had never been proposed to ac-
count for the compressive failure of long fiber composites.
Most of the numerical studies in the literature concern mi-
croscopic modeling that is more or less similar to that in
Section 4.1 [see Kyriakides et al. (1995), and Lee and
Waas (1999)]. In Drapier et al. (2001), the material prop-
erties were homogenized only transversally and not in the
fiber direction, which permitted to account for structural
effects across the thickness of a plate, but this analysis
could not be coupled to any macro-structural problem,
contrary to the one proposed in this paper.

However, accumulation of asymptotic steps is often
observed which may be explained by the multiple insta-
bilities and the loss of ellipticity close to the maximum
load. To overcome this issue, one possible way of ex-
tension of the method is the use of second-order compu-
tational homogenization which allows obtaining in this
context a well posed problem at the macroscopic level
(Michel et al., 2007; Kouznetsova et al., 2004).
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APPENDIX A.

In the preceding sections, we have developed the asymp-
totic numerical algorithm for problems involving nonlin-
ear constitutive laws. By comparison with the elastic case,
we have replaced the elastic stiffness tensor C by the tan-
gent modulus one C; to compute the tangent stiffness ma-
trix. Furthermore, because of this nonlinear law, stress
field involves, at order p, residual vector S;es. This lat-
ter leads to additional terms in the right hand side FZZ.
Hence, at order 1, we can write the constitutive relation in
the following form:

Sl = (Ct Y- (Al)

One can show easily that this equation is provided
from the expression detailed below:

S1=Crvi+Ca (vy : 1) I+Cs (v1: S7) S5, (A2)

S1=[C13+CoIRI+C581 @8] 17, =Cy vy, (A3)

where S is the fourth-order identity tensor and C'y, C's and
('3 are constants defined as follows:
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At order p, the constitutive relation is expressed as

S, =Ci1vy, +8°. (A4)

Matrix C; is the same at each order; however, residual
stresses are expressed at order p as follows:

res 1 d . gd
S, = 1+’V+K0{C5 B85 S
p—1
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APPENDIX B.
Expansion of (6) gives
N N
/(&wZa”S;) : <5YO+Zap6yI> dw=0, (B.1)
w p=1 p=1

The tensors 8y, and &y, are given by expressing &y
[Eq. 2D)]:

_ 1 T T
SYO—Z(Vxéu+Vxéu +quOVX6u (B.2)

+ VxéuTVXllo) =B: VXSu,

(Vxu/Vxdu+Vxsu'Vxu,), (B3)
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where B is a fourth order tensor depending on the initial
solution ug.

Now let us express S,, from equation (24) for the linear
law and equation (25) for the nonlinear constitutive law.
In these equations, we need to identifify y,. Hence, we
expand the Green-Lagrange strain (20) that gives at order
p:

1
Y, = 5{VXup + VXuZ; + VXuOTVXup

(B.4)
+ quZquo} + Y}le
where
yi' =0,
152
vl = 3 > VxulVxu,; Yp=2,...,N. (BS)

i=1

As 7y, is linear with respect to V xu,,, equation (B.4)
can be rewritten in the form:

nl

Y, =B:Vxyu,+y)'=B:F,+v).  (B.6)
Then S, is expressed by:
S,=C":B:F,+8, (B.7)

where C(") is equal to C for the linear constitutive law
and C; for the nonlinear relation, and the residual stress
vector, Sgl, is defined in the case of the linear law as:

I _ . ynl
SZ =C: yg , (B.8)
and in the case of the nonlinear constitutive law as:
S S - A (B.9)

By substituting Eq. (B.7) in (B.1), we obtain Eq. (27).
The explicit forms of the operators involved in the reso-
lution of the sequence of linear problems in equation (27)
are given by:

£(up,éu):/{Sozéyp—}—Fp:]B%:(C(T):Syo}dQ, (B.10)
Q

and

p—1
fgl(éu):—/Z{Si:éyp_i—i—S;”:éyO}dQ. (B.11)
o =1

14

APPENDIX C.

As each problem at order p is linear, its solution u,(X)
can be decomposed into modes associated with different
boundary condition responses. Here we give an illustra-
tion in the 2D case, though the methodology can be read-
ily extended to three dimensions. We can write

u,(X)

(C.1)

u,(X) + w'(X) inw,

u,(X) = Fath(X) + Fr2at?(X) ©2)
+ F§11~1(21)(X) + F521~1(22)(X)7 .

where @("/)(X) are the solutions of the following prob-
lems:

L@ su) =0 in w,
. iy - - (C.3)
al@+ — gl - =X+ X~ on dw,
with
X+ _xn-_ [ 1 0] (Xt —-X")
|0 0| '
X2+ _ x(12)~ _ [0 1] (Xt —X")
0 0 ’
- . : (C4)
e+ _ x(@)- _ +_ -
X X o (XT —X7),
e+ _xe-_ [0 0] g+ x-
X X 01 (X —X7),
and ugl (X) is the solution of the problem:
L@, su) = F7'(su) in w. (C.5)
The solution u,(X) can thus be expressed by:
u,(X) = AX) : Fp + up(X), (C.6)

where A(X) is a third-order tensor defined by A =
~(jk)
(T

APPENDIX D.

We expand P = F'S which leads to:
N
Fo+ ) a'F,

[ros e = (o )

N
X (so + Zaf’sp> .
p=1

N
Po+ Y d'P,

p=1

(D.1)



‘We obtain: which can be rewritten in the form:

P, =F(S; + F1So, P,=H" :F,+F,S!'+P;"". (D4
p—l1 Using (30), we obtain:
P, :FOSP+FPSO+Z F;S, i, VYp>1. (D2)
=1 Pp:H(T) :A,X :FP+H(T) . UZ}X +Fos;l +P;nl (DS)

By using Eq. (B.7) and setting 7" F;S,,_; = Pl we

can express P, as: By setting P;‘l =H" . ugfx + FOS;}Z + P;”l and L =

H(X) : A x(X), we finally obtain:

P :FO{(C(”:IB%:F +S"l}+F So+P, (D.3) _
b P r P P,=L:F,+P. (D.6)
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