
HAL Id: hal-01468081
https://hal.science/hal-01468081

Submitted on 15 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient and simple generation of random simple
connected graphs with prescribed degree sequence

Fabien Viger, Matthieu Latapy

To cite this version:
Fabien Viger, Matthieu Latapy. Efficient and simple generation of random simple connected graphs
with prescribed degree sequence. Journal of Complex Networks, 2016, 4 (1), pp.15 - 37. �10.1093/com-
net/cnv013�. �hal-01468081�

https://hal.science/hal-01468081
https://hal.archives-ouvertes.fr

Efficient and simple generation of random simple connected graphs

with prescribed degree sequence

Fabien Viger and Matthieu Latapy

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
CNRS, UMR 7606, LIP6, F-75005, Paris, France

Matthieu.Latapy@lip6.fr

Abstract

We address here the problem of generating random graphs uniformly from the set of simple connected
graphs having a prescribed degree sequence. Our goal is to provide an algorithm designed for practical
use both because of its ability to generate very large graphs (efficiency) and because it is easy to
implement (simplicity).

We focus on a family of heuristics for which we introduce optimality conditions, and show how this
optimality can be reached in practice. We then propose a different approach, specifically designed for
real-world degree distributions, which outperforms the first one. Based on a conjecture which we argue
rigorously and which was confirmed by strong empirical evidence, we finally reduce the best asymptotic
complexity bond known so far.

1 Introduction

In the context of large complex networks, the generation of random1 graphs is intensively used for
simulations of various kinds. Until recently, the main model was the Erdös and Renyi [8, 5] one. Many
recent studies however gave evidence of the fact that most real-world networks have several properties in
common [21, 3, 6, 22] which make them very different from random graphs. Among those, it appeared
that the degree distribution of most real-world complex networks is well approximated by a power law,
and that this unexpected feature has a crucial impact on many phenomena of interest [1, 22, 21, 9].
Since then, many models have been introduced to capture this feature. In particular, the configuration
model [5, 4], on which we will focus, generates a random graph with prescribed degree sequence in
linear time. However, this model produces graphs that are neither simple2 nor connected. To bypass
this problem, one generally simply removes multiple edges and loops, and then keeps only the largest
connected component. Apart from the expected size of this component [20, 2], very little is known about
the impact of these removals on the obtained graphs, which is usually either neglected or even forgotten.
However, we gained confidence through numerous experiments that, in most cases corresponding to real-
world heterogeneous degree distributions, this process induces a significant skew on the degree sequence
itself. A quantitative insight into the consequences of such biases is provided in the appendix.

The problem we address here is the following: given a degree sequence, we want to generate a random
simple connected graph having exactly this degree sequence. Moreover, we want to be able to generate
very large such graphs, typically with more than one million vertices, as often needed in simulations.

Although it has been widely investigated, it is still an open problem to directly generate such a
random graph, or even to enumerate them in polynomial time, even without the connectivity requirement
[23, 17, 18].

In this paper, we will first present the best solution proposed so far [11, 18], discussing both theoretical
and practical considerations. We will then deepen the study of this algorithm, which will lead us to an
improvement that makes it optimal among its family. Furthermore, we will propose a new approach
solving the problem at much lower cost, and being very simple to implement.

1 In all the paper and unless otherwise specified, random means uniformly at random: each graph in the considered class
is sampled with the same probability.

2 A simple graph has neither multiple edges, i.e. several edges binding the same pair of vertices, nor loops, i.e. edges
binding a vertex to itself.

1

Matthieu.Latapy@lip6.fr

Preliminary

Conventions and Notations

Throughout this paper, we use the following conventions :

• Graphs are undirected. n denotes the number of vertices of a graph, and m denotes the number
of its edges.

• If a and b are vertices, (a− b) denotes the edge binding them.

• Given four vertices a, b, c, d such that both edges (a − b) and (c − d) exist, the edge swap (a −
b), (c− d)→ (a− d), (b− c) consists in replacing these edges by the edges (a− d) and (b− c) (see
Figure 1).

• Considering an edge swap (a− b), (c−d)→ (a−d), (b− c) , its dual edge swap is (b−a), (c−d)→
(b− d), (a− c) (see also Figure 1).

• Considering an edge swap (a−b), (c−d)→ (a−d), (b−c) , its reverse edge swap is (b−c), (d−a)→
(b−a), (c−d) . Applying one edge swap and its reverse subsequently leaves the graph unchanged.

Complexity requirements and implementation

We assume the implicit use of graphs implemented so that the following complexities are ensured:

1. The existence of an edge between any pair (a, b) of vertices must be determined in O(1) average
time.

2. Given any four vertices a, b, c, d, the edge swap (see Fig. 1) (a− b), (c− d)→ (a− d), (b− c) must
be done in O(1) average time.

3. For any vertex v, obtaining the set of the neighbors of v must be done in O(d(v)) time, where d(v)
is the number of such neighbors.

4. Picking a random edge (i.e. a pair (a,b) of vertices selected uniformly at random among all pairs
of linked vertices) must be done in O(1) average time.

5. The memory space required by the graph structure is linear in n+m.

B

A

C

D

B

A D

C B

A

C

D

B

A D

C

Figure 1: An edge swap and its dual

A sketch of such an implementation3 is described here. First, the vertices are identified by integers
from 0 to n−1, and their degrees are stored in a separate array Deg[·]. We assume that the architecture
we use needs O(1) time for elementary arithmetic operations on integers. For each vertex i, an adjacency
list Li is maintained, which is implemented as a hash table containing the Deg[i] neighbors of i. Its
address and memory space are respectively stored as Addr[i] and Size[i] in the separate arrays Addr[·]
and Size[·]. Natural hash table properties then ensure that the conditions 1 and 2 above are satisfied. We
also make sure that for some fixed k, all hash tables areK-linear, i.e. ∀i,Deg[i] ≤ Size[i] ≤ K ·Deg[i], so
that point 3 is simply achieved by scanning the full hash table Lv, and removing the O((K−1) ·Deg[i])
gaps.

Point 4 is more delicate. To pick a random edge, we proceed in two steps: first, we pick a random
vertex v so that the probability for each vertex to be elected is proportional to its degree. This can
be done in O(1) time if we list each vertex i exactly Deg[i] times in a giant array Prob[i] of total size
2m. Then, we pick a random element w uniformly among all elements of Lv, which can be done in

3The implementation we actually used and made available online is slightly different, as it was further optimized for both
time and memory issues. For more information, see the source code available at [28]

2

O(K) = O(1) average time thanks to the K-linearity of the hash tables. At this point, the edge v, w
has been picked uniformly at random among all edges.

Notice that all the structures that are needed to reach such complexities, i.e. the arrays Deg[·],
Prob[·], Addr[·] and Size[·] aren’t modified by any of the operations listed above. In particular, an
edge swap doesn’t change the degrees of the concerned vertices, and thus doesn’t change the size of the
concerned adjacency lists. They also meet the linear space requirement cited in point 5.

2 Context

2.1 The Markov chain Monte-Carlo algorithm

Several techniques have been proposed to solve the problem we address. We will focus here on the
Markov chain Monte-Carlo algorithm [11], pointed out recently by an extensive study [18] as the most
efficient one.
The generation process is composed of three main steps:

1. Realize the sequence: generate a simple graph that matches the degree sequence,

2. Connect this graph, without changing its degrees, and

3. Shuffle the edges to make it random, while keeping it connected and simple.

The Havel-Hakimi algorithm [13, 12] solves the first step in linear time and space. A result of Erdös
and Gallai [7] shows that this algorithm succeeds if the degree sequence is realizable, i.e. if there exists
a simple graph matching this degree sequence.

The second step starts by checking that m ≥ n−1 and also that no vertex has degree zero, since the
graph cannot be connected otherwise. Then, we use edge swaps to merge all the connected components
into a single connected component. More precisely, given any two distinct connected components Cx and
Cy such that Cx is not a tree, we pick an edge (a−b) from Cx that can be removed without disconnecting
Cx, and we also pick any edge (c−d) from Cy. Now, the edge swap (a−b), (c−d)→ (a−d), (b−c) clearly
merges Cx and Cy into a single connected component, and does not create multiple edges since Cx and
Cy were not connected to each other. See Figure 2 for an example of such operation. Thus, we can
repeat this operation until the only components that are left are either a single connected component,
or several trees, the latter being impossible as it would imply m < n− 1. The linear complexity of this
algorithm is straightforward.

C
Cy

x

Figure 2: Using an edge swap to merging two separated components

The third step is achieved through random edge swaps. Given the graph Gt at some step t, we pick
two edges uniformly at random and we swap them,obtaining another graph G′ with the same degrees.
If G′ is simple and connected, we consider the swap as valid : Gt+1 = G′. Otherwise, we reject the swap:
Gt+1 = Gt

This algorithm is a Markov chain where the space SCS is the set of all simple connected graphs
with the given degree sequence, the initial state G0 is the graph obtained by the first two steps, and
the transition Gx → Gy has probability 1/m(m−1) if there exists an edge swap that transforms Gx in
Gy. If there are no such swap, this transition has probability 0. The latter comes from the two following
observations:

1. If there exist at least one valid edge swap transforming Gx into Gy, this edge swap is unique

3

2. There are exactly m · (m − 1) possible edge swaps (valid or invalid), since there are m(m − 1)/2
possible unordered pair of edges, each unordered pair corresponding to exactly two edge swaps
(see Fig. 1).

Moreover, for any graph Gx ∈ SCS , the probability of the self-transition Gx → Gx is given by the
number of invalid edge swaps on Gx, divided by m(m− 1). Now, let us assume in the rest of this paper
that n ≥ 3. Thus, Gx must contain at least one subgraph of the form a, b, c where both edges (a − b)
and (b− c) exist. It is easy to see that the edge swap (a− b), (b− c)→ (a− c), (b− b) is invalid, since it
creates the edge (b − b). Therefore, for every Gx ∈ SCS , the probability PGx→Gx

of the self-transition
is greater than 0. Actually, PGx→Gx

> 1/m(m− 1).

Theorem 1. This Markov chain is irreducible [26], symmetric, and aperiodic.

Corollary 2. The Markov chain converges to the uniform distribution on every states of its space, i.e.
all graphs having the wanted properties.

Proof. The corollary is a well-known consequence of the standard Markov chain theory.

• The irreducibility, i.e. the reachability of any state Gy ∈ SCS from any other state Gx ∈ SCS , has
been proved by Taylor [26].

• The aperiodicity comes from the fact that for any state Gx ∈ SCS , the self-transition G− x→ Gx

has a strictly positive probability. Standard Markov chain theory then ensures the aperiodicity.

• The symmetry comes from the reversibility of any edge swap: as discussed in the preliminary, if
the edge swap (a− b), (c− d)→ (a− d), (b− c) changes Gx into Gy, then the reverse edge swap
(a−d), (c−b)→ (a−b), (d−c) changes Gy into Gx. Therefore, ∀Gx, Gy ∈ SCS , PGx→Gy

= PGy→Gx

These results show that, in order to generate a random graph, it is sufficient to do enough transitions.
However, no formal result has yet proved the existence of polynomial bounds in n+m for the number of
transitions needed to reach the convergence, even though [16] indicates that a quadratic bound might be
established in the future and [10] shows the existence of polynomial theoretical bounds when the degree
sequence respects specific constraints. Since our contributions aims at reducing the average cost of the
shuffle, regardless of its duration in terms of number of required edge swaps, we left further discussion
about the convergence speed to future work, and used the following convention to evaluate the cost of
our algorithms:

Convention 1 (Algorithmic Cost). The cost of our shuffle algorithms is defined as the average cost
per edge swap. Edge swaps being canceled during the algorithm are not counted. In the rest of the paper,
we use the terms unit cost to avoid misunderstanding.

Nevertheless, to be able to display complexity measures concerning the global algorithm, we assumed
the following, based on thorough empirical studies and on our own experience:

Convention 2. [18, 11] The Markov chain converges after O(m) edge swaps.

This result was found in massive experiments [11, 18] where, even when using extremely biased initial
graphs, O(m) edge swaps were always sufficient to make the graph appear to be “really” random. More
precisely, the distributions of a large set of non-trivial metrics (such as the diameter, the flow, and so
on) over the sampled graphs were not different from the distributions obtained with random graphs.
Notice that we tried, unsuccessfully, to find a metric that would prove this assertion false. Notice also
that Ω(m) is a trivial lower bound for the convergence of the Markov chain, since every transition only
involves 2 edges among a total of m edges.

2.2 Equivalence between swaps and transitions

According to our definitions, a transition doesn’t always imply an edge swap: whenever the edge swap
attempt leads to an invalid graph, the transition has no effect, despite its computational cost. In
the past literature, the ratio of invalid edge swaps, though unknown, has either been considered as
negligible or simply forgotten. We provide here a short proof that this ratio is bounded in most cases,

4

and discuss the implications of such a fact. Let us consider a simple connected graph G, and two edges
(a − b), (c − d) ∈ G, as shown in Figure 1. Now, let us remove these two edges to obtain G∗. Since G
was connected, it is easy to see that either a or b is still connected to c or d in G∗. Now, if the edge
swap (a− b), (c− d)→ (a− d), (b− c) disconnects G, then in G∗ it is clear that a is not connected to c,
neither is b to d. Therefore, either a and d are connected or b and c are connected (in G∗), so that the
dual edge swap (b − a), (c − d) → (b − d), (a − c) does not disconnect G. Moreover, it doesn’t create
multiple edges, since a was not connected to c, nor b was to d. Therefore, it is straightforward that at
most 50% of the edge swaps disconnect the graph.

Unfortunately, the existence of worst-case graphs where any edge swap creates loops or multiple
edges (the star graphs, the clique graphs, · · ·) makes it impossible to bound the ratio of swaps that
create multiple edges. In order to assert such a bound, one has to assume some additional properties
on G. Among numerous solutions, we finally settled to the following, which seemed the most natural
for the class of graphs we work on.

Theorem 3. For any simple connected graph, let us denote by ρ the fraction of all possible pairs of
vertices which have distance greater than or equal to 3. The probability that a random edge swap is valid
is at least ρ

2z(z+1) , where z is the average degree.

Proof. If ρ = 0 the result is trivial. If ρ > 0, consider a pair (v, w) of vertices having distance d(v, w) ≥ 3
(i.e. there exist no path of length lower than 3 between v and w). Since the graph is connected, there
exists a path of length l ≥ 3 (v, v1, · · · , vl−1, w) connecting v and w. The edge swap (v, v1)(w, vl−1)→
(v, vl−1)(w, v1) is valid: it does not disconnect the graph, and since the edges it creates could not
pre-exist (else we would have d(v, w) ≤ 2), it keeps it simple.

Now, the ρ · n(n − 1) ordered pairs of vertices define at least ρ·n(n−1)
8 edges swaps, since an edge

swap corresponds to at most 8 ordered pairs. Therefore, a random edge swap is valid with probability

at least ρ·n(n−1)
8m(m−1) . The fact that m = n·z

2 ends the proof.

In practice, ρ > 0 (the connected graphs such that ρ = 0 are very particular, somewhere between a
clique and a star), and its value tends to grow with the size of the graph, for a fixed degree distribution.

This will allow us, in the rest of the paper, to assert that for a given degree sequence, the ratio of
valid edge swaps is greater than some positive constant, which is independent of the graph. In particular,
this result allows us to rephrase Convention 1 for the naive algorithm: the cost of our algorithms is
proportional to the average cost per transition.

2.3 Complexity

As we have already seen, the first two steps of the random generation (realization of the degree sequence
and connection of the graph) are done in O(m) time. We saw that the last step requires at least OΩ(m)
transitions. We will therefore naturally focus on the unit cost of the shuffle, i.e. the average cost of
the shuffle per validated edge swap. The discussion presented in Section 2.2 ensure that this definition
is equivalent to the average cost per transition. Now, in a first naive implementation of the shuffle
algorithm, each of them consists in an edge swap, a simplicity test, a connectivity test, and possibly
the cancellation of the swap (i.e. one more edge swap). Using the graph implementation described in
the preliminaries, the cost of an edge swap, a simplicity test, and a connectivity test are respectively
Cswaps = O(1), Csimp = O(1) and Cconn = O(m), which leads to a linear unit cost:

Cnaive = O(m)

One can however improve significantly this time complexity using the structures described in [14,
15, 27] to maintain connectivity in dynamic graphs. Each connectivity test can be performed in
time O(log n/ log log log n) and each simplicity test in O(log n) time. An edge swap then has cost
O(log n(log log n)3). Thus, the unit cost per transition becomes:

Cdynamic = O
(

log n(log log n)3
)

(1)

Notice however that these structures are quite intricate, and that the constants are large for both
time and space complexities (the latter being still linear, though). The naive algorithm, despite the fact

5

that it runs in O(m) time per transition, is therefore generally used in practice since it has the advantage
of being extremely easy to implement. Our contribution in this paper will be to show how it can be
significantly improved while keeping it very simple, and that it can even outperform the dynamical
algorithm.

2.4 Speed-up and the Gkantsidis et al. heuristic

Gkantsidis et al. proposed a simple way to speed-up the shuffle process [11] in the case of the naive
implementation: instead of running a connectivity test for each transition, they do it every T transitions,
for an integer T called the speed-up window. If the connectivity test fails, T transitions have to be
canceled, which will considerably slow down the shuffle process, but in case of a success, T−1 connectivity
tests will have been spared. The shuffle process can no longer be considered as a simple Markov chain;
however, it has been proved [24, 11] that Corollary 2 still holds, i.e. that this process converges to the
uniform distribution, although it is now composed of a concatenation of Markov chains [11], and even
if the graph may actually get disconnected and connected again between two connectivity test.

Thus, the unit cost of connectivity tests is reduced by a factor T , but at the same time the swaps
are more likely to get canceled: with T swaps in a row, the graph has more chances to get disconnected
than with a single one. Thus, we have to distinguish between post-validated edge swaps – that represent
a real step forward in the shuffle process – and the edge swaps that get canceled because the subsequent
connectivity test fails. In other words, the equivalence between transitions and validated edge swaps is
no longer valid.

Let us remind that the terms unit cost designate the average cost per post-validated edge swap. Thus,
the unit cost of some operation Q still represents the actual cost in regards to the global shuffle process.
We introduce the following quantity:

Definition 1 (Success ratio). The success ratio ri = r(Ti) at a given step is the probability that the
graph obtained from Gi after the Ti edge swap attempts is still connected.

Now, let us consider the unit cost of all operations: the speed-up divides the cost of the connectivity
tests by T and leaves the cost of the simplicity tests and the edge swaps unchanged, but in the end the
unit cost is multiplied by 1/r(T) because of the lower success ratio.

CGkan(T) =
Cattempt +

Cconn

T
r(T)

= a
b+

m

T
r(T)

(2)

where Cattempt represents the average cost of one edge swap attempt with its simplicity test and the
optional cancellation of the swap: Csimp +Cswaps ≤ Cattempt ≤ Csimp + 2Cswaps, and where a = Cconn

m

and b = m
Cattempt

Cconn
are constants depending on the implementation.

For T = 1, we obtain the unit cost of the naive algorithm:

CGkan(1) = O
(

(1 +m) · r(T)−1
)

= O

(

1 +m

1− p

)

= O (m) = Cnaive

Defining a good value for T is not easy, since the behavior of the success ratio r(T) is not known.
Intuitively, if T is too large, the graph will get disconnected too often, and r(T) will be too small. If
on the contrary T is too small, then r(T) will be large but the complexity improvement is reduced. To
bypass this problem, Gkantsidis et al. used the following heuristic (see Figure 3).

Heuristic 1 (Gkantsidis et al. heuristic).
IF the graph got disconnected after T swaps
THEN T ← T/2
ELSE T ← T + 1

They expect T to automatically adjust itself so that it reaches a compromise between a large window
T and good success ratio r(T). We proved clearly (see the Appendix) that the fact that T may change
during the shuffle still doesn’t harm the uniformity of the convergence, even though the variations of T
depend on the shuffle process itself.

Because the window T dynamically varies along the shuffle process, we had to arrange our notations.
We divide the shuffle process in steps :

6

the swaps
Cancelno

yes

Connected ?Do T transitions
T/2

T+1T

T

Figure 3: Heuristic 1 (Gkantsidis et al. heuristic)

Definition 2 (Steps of the shuffle process). In the shuffle process of Gkantsidis et al., a step is composed
of the following operations:

1. Make a backup copy of the graph

2. Perform T edge swap attempts (each of them consists in one edge swap, one simplicity test and
the reverse edge swap if the test failed)

3. Test the connectivity of the new graph, and restore the graph to its original state if the test fails

4. Modify T according to the specification of the heuristic

We will use the notation Gi to designate the graph at the beginning of step i. Thus, G0 is the graph
obtained right before the shuffle process starts. Similarly, we will respectively use Ti, Ci = CGkan(Ti)
and ri = r(Ti) instead of T , CGkan(T) and r(T), and so on for any quantity related to the graph.

3 More from the Gkantsidis et al. heuristic

The problem we address now is to estimate the efficiency of the Gkantsidis heuristic. First, we introduce a
framework to evaluate the ideal value for the window T . Then, we analyze the behavior of the Gkantsidis
et al. heuristic, and get an estimation of the difference between the speed-up factor they obtain and
the optimal speed-up factor. We finally propose an improvement of this heuristic which reaches the
optimal. We also give experimental evidences for the obtained performance.

3.1 The optimal window problem

We introduce the following quantity:

Definition 3 (Disconnection probability). Given a graph G, the disconnection probability p is the
probability that the graph gets disconnected after a random edge swap.

Now, let us assume the two following hypothesis:

Hypothesis 1. At any step i, the disconnection probability p remains constant for at least the duration
of the step, i.e. during the T consecutive transitions. This probability is designated by pi.

Hypothesis 2. The probability that a disconnected graph gets reconnected with a random swap, called
the reconnection probability, is equal to zero.

Notice that these hypothesis are not true in general. They are however reasonable approximations in our
context and will actually be confirmed in the following. The first hypothesis is discussed more thoroughly
in Appendix B. Moreover, the second hypothesis is just a worst-case scenario, and we introduced it only
to simplify the computations. Empirically, we found it to be almost true (the reconnection probability
was lower, or of the order of 1/m) for all our scale-free networks topologies.

Assuming these hypothesis, the success ratio ri, which is the probability that the Gi stays connected
after Ti swaps, is given by:

ri = (1− p)Ti (3)

Now, let us eliminate a first trivial case where p is so small that CGkan can be as low as O(Cattempt):
if p is inferior or of the order of 1

m , one can simply set T = m and still obtain a good success ratio

7

0 50 100 150 200 250 300
10

2

10
3

10
4

T

C
G

ka
n

0 0.2 0.4 0.6 0.8 1
10

2

10
3

10
4

10
5

r(T)

C
G

ka
n

Figure 4: Evolution of the theoretical CGkan(T) as a function of either T (left) or
r(T) (right). We used a = b = 1, m = 104 and p = 10−2.

r(T) = (1 − p)m = Ω(1). Thus, Eq. 2 gives us CGkan = O(1), which is asymptotically optimal. In the
following, and for more simplicity, we will therefore eliminate this trivial case and assume that p≫ 1

m .
This will make the formulas much more understandable, without harming the nature of our arguments.

The optimal window T opt
i at step i is the one that minimizes CGkan(Ti). Using Eq.2 and after a bit

of algebra, we obtain:

T opt
i ·

(

b · T opt
i

m
+ 1

)

= −log(1− pi)
−1

which immediately implies T opt
i < −log(1− pi)

−1 < 1
pi
, and therefore T opt

i ≪ m and
bT opt

i

m +1 ≈ 1 from
the discussion stated above. This leads to:

T opt
i ≈ −log(1− pi)

−1 (4)

Since the window T and the success ratio r(T) are bijectively related, the optimality condition may also
be considered as depending on ri, which gives us an optimal success ratio at step i:

ropti ≈ e−1 (5)

The approximation actually neglects the cost Cattempt in regards to Cconn

T , and is legitimate as long as

p ≫ 1
m . Notice that when pi ≪ 1 we obtain the much simpler T opt

i ∼ 1
pi
. We picture in Fig. 4 the

evolution of CGkan(T) as a function of either T or r(T), for a graph having a disconnection probability
p = 1%.

3.2 Analysis of the heuristic

Knowing the optimality condition, we tried to estimate the performance of the Gkantsidis et al. heuristic.
Let us denote by EGkan[∆Ti] the expectation of ∆Ti = Ti+1−Ti. The evolution of the window T under
the Gkantsidis et al. heuristic leads to:

EGkan[∆Ti] = ri − (1− ri) ·
Ti

2
= ri

(

1 +
Ti

2

)

− Ti

2

where ri is still given by ri = (1 − pi)
Ti . Now, if we consider EGkan[∆Ti] as a function of Ti, a simple

study shows that this function is strictly decreasing with Ti, allowing us to introduce the following
quantity:

Definition 4 (Characteristic window). At some step i of the Gkantsidis heuristic, we consider the graph
Gi and its disconnection probability pi as given. The characteristic window T̂Gkan(pi) is the positive
real number that verifies:

Ti < T̂Gkan(pi) ⇐⇒ EGkan[∆Ti] > 0

8

Intuitively, during the Gkantsidis heuristic, if pi varies slowly enough, the window Ti will stay close
to T̂Gkan(pi). Suppose for example that the disconnection probability pi remains constant during the
shuffle, so that one can define a single characteristic window T̂Gkan. Then it is clear that during the
shuffle, when Ti is lower than T̂Gkan, it tends to increase : E[Ti+1] > Ti, and conversely when Ti is
greater than T̂Gkan it tends to decrease. Because of the stochastic nature of this heuristic, the variability
of pi during the shuffle, and the complexity of the dynamics ruling Ti, it appeared impossible for us to
provide a formal, rigorous argument showing that the windows Ti obtained by the Gkantsidis heuristics
remains close to the T̂Gkan(pi). However, all our experiments confirmed this fact, and the characteristic
window appeared to be a very good estimator of the expectation of the window during the shuffle.

Now, to evaluate the goodness of this heuristic, one can simply, for a supposedly constant discon-
nection probability p, compare T̂Gkan(p) with the optimal window T opt(p). The latter has already been
studied above, and for the former we obtain the following bound:

Theorem 4. The characteristic window of the Gkantsidis et al. heuristic is bounded by:

T̂Gkan(p) <

√

2

p
(6)

Proof. Recall that

EGkan[∆T] = r(T)

(

1 +
T

2

)

− T

2

Since r(T) = (1− p)T = eT log(1−p) and log(1− p) < −p, we have:

EGkan[∆T] < e−pT (1 +
T

2
)− T

2

The convexity of the exponential function gives:

e−pT (1 + pT) < 1

And finally, the fact that:
T/2 + 1

1 + pT
<

T

2
⇐⇒ T >

√

2

p

shows that T <
√

2
p ⇒ EGkan[∆T] < 0, which ends the proof

When p is small, the value
√

2
p is much smaller than the optimal T opt(p) ∼ 1

p . This shows that the

Gkantsidis et al. heuristic is too pessimistic: when the graph gets disconnected, the decrease of T is
too strong; conversely, when the graph stays connected, T grows too slowly. By doing so, one obtains a
very high success rate (asymptotically close to 1 when p is small), which is not the optimal (see Fig. 4).

3.3 An optimal dynamics

To improve the Gkantsidis et al. heuristic we propose the following one (with two parameters q− and
q+):

Heuristic 2. At the end of step i:
IF the graph got disconnected after the Ti edge swaps attempts
THEN Ti+1 ← Ti · (1− q−)
ELSE Ti+1 ← Ti · (1 + q+)
IF Ti+1 > Tlimit

THEN Ti+1 ← Tlimit

The constant Tlimit represents a limit value where T doesn’t need to be increased any further, even
if Topt > Tlimit. In practice, we used Tlimit = 10 Cconn

Cattempt
: at this point, using Eq. 2 and the fact that

r(T) is decreasing with T , we can show that the unit cost is at most 10% over the optimal unit cost.
Now, for the evolution of T , the main idea was to avoid the linear increase in T , which is too slow,

and to allow more flexibility thanks to the two factors 1− q− and 1 + q+.

9

If we restrict ourselves to the domain where the boundary condition T ≤ Tlimit doesn’t apply, the
expectation of ∆Ti becomes:

Enew[∆Ti] = q+ri − q−(1− ri) = ri(q
+ + q−)− q− (7)

Similarly as in Section 3.2, this new heuristic has a characteristic window T̂new(p). Since r(T) and T
are bijectively related, we may also use the term characteristic success ratio r̂new, which is the success
ratio where Enew[∆Ti] = 0. Eq. 7 gives:

r̂new =
1

1 + q+

q−

(8)

The discussion we developed about the Gkantsidis heuristic can be adapted here as well. Intuitively, the
characteristic success ratio is an estimator of the success ratio obtained by our new heuristic. From the
optimality condition found in Eq. 5, and still assuming that p≫ 1/m, we obtain the following result:

Theorem 5. Assuming that the disconnection probability p is constant during the shuffle, and that it
verifies p≫ 1/m, the characteristic window of the new heuristic is approximately optimal iff:

q+

q−
= e− 1 . (9)

The relative error between the characteristic window and the optimal window T opt(p) is given by
b·T opt

i

m .

This result shows that our heuristic is optimal as long as p ≫ 1/m. For a deeper insight into the
goodness of our approximation, i.e. the value of the relative error, see Section 3.1. We hasten to note
that the cases where our approximation isn’t legitimate correspond to the domain where the graph
may be shuffled at asymptotic optimal cost without the use of any heuristic, as already discussed in
Section 3.1.

Notice that only the ratio q+

q− is constrained by the optimality condition. The magnitude
√

q+q−

can be adjusted freely. With a large magnitude, the window T becomes very unstable, and with a too
small magnitude, T evolves too slowly to follow the variations of p during the shuffle. Naturally, these
considerations need further investigations, which we conduced through the following empirical analysis.

3.4 Experimental evaluation of the new heuristics

To evaluate the relevance of our formal results, based on Hypothesis 1 and 2, (which is not the case,
since the graph continuously changes during the shuffle) we compared empirically the three following
algorithms for the adjustment of the window during the shuffle:

1. The Gkantsidis et al. heuristics (Fig. 3, Heuristics 1)

2. Our new heuristics (Heuristics 2), using the magnitude
√

q+q− = 1
10 (The choice of the magnitude

is difficult, but we found that
√

q+q− = 0.1 produced the best results overall, for a wide scope of
graph topologies.)

3. The optimal algorithm: at every step i, we compute the window Ti giving the minimal expectation
of the unit cost for step i. In practice, we try every possible value of Ti a certain number of times
and evaluate their respective performance.4

The third algorithm is really the optimal version of the speed-up, in the sense that the window T
couldn’t behave better, regardless of the liability of Hypothesis 1 and 2. We compared the average unit
costs obtained with these three heuristics (respectively CGkan, Cnew and Cmin) for the generation of
graphs with various heavy tailed5 degree sequences. For the third algorithm, we ignored the cost of the
computation of the optimal windows Ti during the shuffle. We used a wide set of parameters, and all
the results were consistent with our analysis. The average window TGkan obtained with the Gkantsidis
et al. heuristics behaved asymptotically like the square root of the optimal window, leading to a much

10

Binomial distribution

z CGkan Cnew Cmin

2.5 2606.12 1277.69 1272.13
3 1082.64 287.119 281.259
4 259.024 16.6066 17.6311
5 56.7544 2.21975 1.51243

Heavy-tailed distr. α = 2.1

z CGkan Cnew Cmin

2.1 16673.8 14787.7 14453.2
3 8587.56 5424.38 5271.7
6 4523.61 1143.4 1097.5
12 2576.22 242.293 239.42

Table 1: Average costs of the operations performed during the shuffle for one post-validated edge swap.
The benchmark is shown here for 8 graph topologies, 4 of them are homogeneous (left table) and the
others are heterogeneous (right table). From left to right: with the Gkantsidis et al. heuristic, with our
heuristic, and with the ideal heuristic. We limited ourselves to n = 104 because the computations are
quite expensive in some cases.

greater unit cost, especially for topologies with low disconnection probability. On the other hand, the
unit cost obtained with our heuristics always remained at most 10% above the optimal cost.

Some typical results on binomial (homogeneous) degree distributions and heavy-tailed distributions
with power-law shape of exponent α = 2.1 are shown in Table 1. These experiments show that our
new heuristics is very close to the optimal. Essentially, it proves that Hypothesis 1 and 2 are legitimate
in the scope of our formal analysis, or at least that their inaccuracies don’t harm the behavior of our
heuristics. Based on this, and from Equations 2,4,5,6, we may provide a good estimate of the unit costs
of the shuffle algorithms, for both the Gkantsidis heuristics and ours:

CGkan = O
(

1 +
√
< p > ·m

)

(10)

Cnew = O (1+ < p > ·m) (11)

(where < p > is the average value of p during the shuffle). Further empirical comparisons of the two
heuristics will be provided in the next section, see Table 2.

Our complexity Cnew, despite the fact that it is asymptotically still outperformed by the complexity
of the dynamic connectivity algorithm Cdynamic (see Eq. 1), may be smaller in practice if p is small
enough. For many graph topologies corresponding to real-world networks, especially graphs having a
quite high density (social relations, word co-occurrences, WWW), and therefore a low disconnection
probability, our algorithm represents an alternative that may behave faster, and which implementation
is much easier. For regular graph topologies where the low-degree vertices are rare, such as the Erdös-
Rényi model [8] with high average degree z, our experiences showed that the disconnection probability p
is often extremely small, sometimes even lower than 1/m. Still, this method doesn’t allow the generation
of very large graphs in reasonable time when p isn’t small, which is the case of many networks topologies
taken from the reality.

4 Detecting disconnections at logarithmic cost

We will now show a very simple way to detect the disconnection at low cost, thus reducing dramatically
the complexity of the connectivity tests. We first outline the main idea underlying our disconnection
test, then we present a modification of the naive shuffle algorithm seen in Section 2.1. We analyze the
complexity of this new algorithm, and provide empirical results for a large span of graph topologies.
Finally, to show that the unit cost we obtain is logarithmic, we introduce a conjecture, strongly supported
by both intuition and experiment.

4Note that the heavy cost of this operation prohibits its use as a heuristics, out of this context. It only serves as a reference.
5 To obtain heavy tailed distributions, we used power-law like distributions: P (X = k) = (k + µ)−α, where α represents

the “heavy tail” behavior, while µ can be tuned to obtain the desired average z.

11

4.1 Guiding principle

This paragraph has no intent to provide formal, rigorous argument, but outlines the intuitive idea that
gave birth to the forthcoming study.

In realistic graph topologies, trees are unlikely: the graphs often have a significant number of surplus
edges, i.e. edges that can be removed without disconnecting the graph. In other words, the ratio m

n
is often strictly greater than 1. Let us restrict ourselves to degree sequences satisfying m

n > 1 + µ, for
some positive constant µ.

We observed that, during the shuffle, disconnections were mostly caused when small components get
separated from the main connected component. This can be intuitively explained from our hypothesis
m
n > 1+µ. Let CK = v1, · · · , vK be a set of K connected vertices. Since m

n > 1+µ, each vertex has an
expected degree greater than 2+ 2µ. Now, if we suppose that the graph is random in the sense that an
outgoing arc from vertex v may be branched to any vertex, independently of the other neighbors of v,
and if we isolate K − 1 edges forming a tree core in CK , we can expect at least 2µK surplus outgoing
arcs from vertices in CK . If we suppose that the giant component of our graph has a size grater than
n/2, it seems natural to assume that each of the surplus arcs in CK have a probability at least 1/2
to branch to some vertex in the giant component. Therefore, the probability that CK does not belong
to the giant component is smaller than 2−2µK . In other words, a set of connected vertices of size K
is K-exponentially unlikely to be disconnected from the giant component. The greater K is, the more
likely a graph having no components of size lower than K is connected.

4.2 A new shuffle space

We introduce the following operation:

Definition 5. For any integer K ≤ n, a K-isolation test on vertex v succeeds if and only if the
connected component containing v has a size greater than or equal to K.

Implementing an isolation test of width K is straightforward; its cost is O(K).
Now, recall the naive shuffle algorithm, which was a Markov chain on the set SCS of the simple

connected graphs having the prescribed degree sequence. The transitions of this Markov chain were
algorithmically described as follows:

1. Perform a random edge swap chosen uniformly among the m(m− 1) possible edge swaps

2. Test: is the graph simple?

3. Test: is the graph connected?

4. If any of the two tests fails, cancel the edge swap

Now, we propose a simple modification, where we replace the full connectivity test by two K-isolation
tests on the vertices concerned by the edge swap, for some integer K. For instance, if the edge swap was
(a − b), (c − d) → (a − d), (b − c) , one K-isolation test will be run on either a or d (since they belong
to the same component) and an other on either b or c. It is easy to see that the graphs obtained with
this algorithm never have components smaller than K. In other words this algorithm is – like the naive
algorithm – a Markov chain, but the space has changed from SCS to the set SK of simple graphs with
the prescribed degrees and having no components of size lower than K. Note that the graph obtained
at the end has no guarantee to be connected, since SK (SCS . To solve this problem, we propose a
simple accept/reject approach: if the graph obtained at the end is not connected, we start over with a
larger value of K, in the hope that the greater K is, the more likely the graph obtained at the the end
of the shuffle will be connected. The global algorithm is sketched in Figure 5. The Markov chain on SK

is still symmetric and aperiodic, and from the reducibility of its restriction to SCS , it is clear that every
state in SCS is reachable (since the initial state is also in SCS). Thus, the distribution of the graphs
obtained at the end of the algorithm is still uniform on SCS .

We can show that this algorithm ends. When K > n
2 , it is easy to see that a graph having no

components of size lower than K cannot have more than one component, which means that it is con-
nected. Therefore, the algorithm must stop when K becomes greater than n

2 , which happens after at
most ⌊log2 n⌋ iterations of the main REPEAT loop. Note that this is the most pessimistic case: since the
SK ,K ∈ N form a decreasing sequence that converges to SCS , i.e. S0 = S1 ⊃ S2 ⊃ · · · ⊃ S⌊n/2⌋+1, we

12

may hope that for a sufficiently large K, SK becomes close enough to SCS to ensure a short number
of iterations. In other words, we hope that K won’t reach such high values as n/2. The study of the
expected number of iterations is made in the next section.

4.3 Complexity

We will try here to analyze the complexity of the algorithm described above. The initial operations
(steps 1,2,3,4) have a linear cost O(m) (see Section 2.1). At each iteration of the main REPEAT loop
(step 5), a connectivity test and a copy of the initial graph are made: these operations also have a linear
cost O(m). The cost of the edge swaps, simplicity tests and K-isolation tests is O((K + 1)Ntransitions)
per loop.

Let X be the total number of iterations of the main loop. The isolation test width follows the
simple geometric sequence 1, 2, 4, · · · , 2X . The total cost of the algorithm is the sum of the costs of all
iterations, which is:

O(m) +X ·O(m) +

X
∑

x=1

O ((2x + 1)Ntransitions) = O
(

m(X + 1) + 2X+1Ntransitions

)

We saw in Section 2.1 that the number Ntransitions of transitions to perform must be at least linear:
Ntransitions = Ω(m). Moreover, as discussed in Section 2.2, the expected number of validated edge
swaps will be Ω(Ntransitions), which leads to the global unit cost:

Cfinal = O(2X)

We will now study the expected number X of iterations of our algorithm. Recall that the set SK

is decreasing with K, with a limit SCS reached for K > n/2. For a given degree sequence and a given
isolation test width K, let us define ǫ(K) as the proportion of graphs in SK that are not connected:

ǫ(K) =
|SK − SCS |
|SK |

It is clear that ǫ(K) is decreasing with K. Now, let us consider the main algorithm at the end of the xth

iteration, when the Ntransitions transitions have been performed with the isolation test width K = 2x,

1. Create a simple connected graph according to the prescribed degree sequence

2. Make a backup copy of the initial graph G0

3. Set K ← 1

4. Set Ntransitions to the desired number of transitions to perform.

5. REPEAT

. Restore the graph to its original state G0

. DO Ntransitions times:

. Perform a random edge swap chosen uniformly
among the m(m− 1) possible edge swaps

. Run a simplicity test

. Run a K-isolation test

. IF at least one of the test failed THEN cancel the edge swap

. Set K ← 2K

UNTIL the graph is connected

Figure 5: Final shuffle algorithm

13

leading to a graph G ∈ S2x . If we assume that Ntransitions is large enough to ensure that G is a random
element of S2x , then the probability that G is disconnected is simply P (G /∈ SCS), which is exactly
ǫ(2x).

Now, let us define an isolation test width that ensures a significant success ratio for the main iteration,
i.e. a sufficiently low ǫ(K):

Definition 6. The characteristic isolation test width K̄ of a degree sequence is the lowest integer
K such that ǫ(K) < 1

3

The value 1
3 is somewhat arbitrary: any real number lower than 1

2 could have been chosen. Now, let
Pend(x) be the probability that our algorithm ends after exactly x iterations of the main REPEAT loop.
Since ǫ(K) is decreasing with K and 1 − ǫ(2x) represents the probability that the xth iteration of the
main loop ends the algorithm, we obtain:

∀x | 2x ≥ K̄, Pend(x+ 1) <
1

3
Pend(x)

Let us call x̄ the lowest integer x such that 2x ≥ K̄. Considering the expected unit cost E[Cfinal] of
our algorithm, since Cfinal = O(2X), we obtain:

E[Cfinal] =

∞
∑

x=1

2x · Pend(x) ≤
∞
∑

x=x̄

2x
(

1

3

)x−x̄

which gives:
E[Cfinal] ≤ 3 · 2x̄ ≤ 6K̄ = O(K̄)

4.4 Characteristic isolation test width

The only bounds we obtained so far for K̄ are 1 ≤ K̄ ≤ 1 + ⌊n/2⌋. Following the ideas described in
Section 4.1, and based on empirical evidence, we have strong reasons to believe that K̄ is actually much
lower than n

2 , at least for non-tree topologies like the ones described in Section 4.1 that verify m
n > 1+µ.

Nevertheless, providing a good upper bound is not easy: we observed that K̄ depends strongly on the
degree sequence, and that among graphs having similar degree distributions, the larger graphs have
larger K̄.

Empirical results are presented in Figure 6, for a set of different graph topologies. On the left, we
used regular degree distributions where degrees are sampled from binomial distribution with various
averages z. A random graph generated with such a degree distribution mimics the classical Erdös-Renyi
topology [8] which generates random graph with a given size N and average degree z by choosing z N

2
edges among the N(N − 1)/2 pairs of vertices. On the right, we used heavy-tailed degree distributions,
as described before, that have an asymptotic power-law-like behavior, with various average degrees as
well. We actually found this topology to be the worst topology for our algorithm: for a fixed average
degree, we couldn’t find other degree sequences that led to larger characteristic isolation test width,
even among ill-posed topologies that were designed to this particular purpose.

The coherence of the empirical results we obtained, combined with the intuition described in Sec-
tion 4.1, led us to the following conjecture:

Conjecture 1. There exists a real function η such that, for any degree sequence of size n and mean z,
the characteristic isolation width K̄ verifies:

K̄ ≤ η(z) log n

According to this conjecture, and if we restrict ourselves – as discussed before – to graph topologies
verifying the hypothesis m

n > 1 + µ, our algorithm has a logarithmic unit cost O(log n). It outperforms
the shuffle based on the best dynamic connectivity algorithms known so far (see Eq. 1).

14

 2

 4

 6

 8

 10

 12

 14

 16

 100 1000 10000 100000

K
 (

C
ha

r.
 is

ol
at

io
n

te
st

 w
id

th
)

N (size of the graph)

z=2.1
z=3
z=6

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 100 1000 10000 100000

K
 (

C
ha

r.
 is

ol
at

io
n

te
st

 w
id

th
)

N (size of the graph)

z=2.1
z=2.4

z=3
z=6

Figure 6: Characteristic isolation test width for various degree sequences. Left: Binomial degree distribu-
tions. Right: Heavy-tailed degree distribution with power-law asymptotic behavior of exponent α = 2.5

Binomial distributions

z CGkan Cnew Cfinal

2.5 2606.12 1277.69 16.4915
3 1082.64 287.119 10.3997
4 259.024 16.6066 5.81104
5 56.7544 2.21975 4.23551

Heavy-tailed distr. α = 2.1

z CGkan Cnew Cfinal

2.1 16673.8 14787.7 87.7122
3 8587.56 5424.38 19.837
6 4523.61 1143.4 14.185
12 2576.22 242.293 12.1312

Table 2: Empirical costs of the methods presented in this paper, for homogeneous and heterogeneous
degree distributions. In each table, from left to right: the Gkantsidis et al. heuristic, our new heuristic,
and the final algorithm. We used the following conventions: an edge swap has cost 1, a connectivity test
has cost m and an isolation test of width K has cost K. We limited ourselves to the size N = 104 because
of the long computation times concerning CGkan.

5 Conclusion

Focusing on the speed-up method introduced by Gkantsidis et al. for the Markov chain Monte Carlo
algorithm, we introduced a formal background allowing us to show that this heuristic is not optimal in
its own family. We improved it in order to reach the optimal, and empirically confirmed the results.
Our heuristic may also be used for other problems based on Markov chain Monte Carlo algorithms, such
as the generalized graph generation approach proposed in [25], without losing its optimal properties.

Going further, and focusing on the generation of random connected graphs, we then introduced an
original method allowing to shuffle non-tree connected graphs (i.e. connected graphs having an average
degree strictly greater than 2) in logarithmic time per edge swaps, or per transition. It outperforms the
previous best known methods, and has the advantage of being extremely easy to implement. Moreover,
the asymptotic complexity constants remain extremely low on most graph topologies. Note however
that the last result relies on a conjecture that we were unable to prove, but for which we provided strong
empirical evidence. We provide an implementation of this last algorithm [28], which made possible the
generation of graphs with several millions of vertices in a couple of minutes on any standard workstation,
instead of the months that were necessary for such an operation with previous algorithms.

References

[1] D. Achlioptas, A. Clauset, D. Kempe, and C. Moore. On the bias of traceroute sampling or,
powerlaw degree distributions in regular graphs. Proc. of the 37th ACM STOC, 2005.

15

http://www.liafa.jussieu.fr/~fabien/generation

[2] W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs. Proc. of the 32nd
ACM STOC, pages 171–180, 2000.

[3] R. Albert and A. Barabási. Statistical mechanics of complex networks. Reviews of Modern Physics,
74:47, 2002.

[4] E.A. Bender and E.R. Canfield. The asymptotic number of labeled graphs with given degree
sequences. J. Combin. Theory Ser. A, 24:296–307, 1978.

[5] B. Bollobas. Random Graphs. Academic Press, London - New York, 1985.

[6] S.N. Dorogovtsev and J.F.F. Mendes. Evolution of networks. Adv. Phys., 51:1079, 2002.

[7] P. Erdos and T. Gallai. Graphs with prescribed degree of vertices. Mat. Lapok, 11:264–274, 1960.

[8] P. Erdös and A. Rényi. On random graphs. Publ. Math. Debrecen, 6:290–291, 1959.

[9] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet topology.
Proc. ACM SIGCOMM, 29:251–262, 1999.

[10] Tomás Feder, Adam Guetz, Milena Mihail, and Amin Saberi. A local switch markov chain on given
degree graphs with application in connectivity of peer-to-peer networks. In FOCS, pages 69–76.
IEEE Computer Society, 2006.

[11] C. Gkantsidis, M. Mihail, and E. Zegura. The markov chain simulation method for generating
connected power law random graphs. Proc. of ALENEX’03, LNCS, pages 16–25, 2003.

[12] S. L. Hakimi. On the realizability of a set of integers as degrees of the vertices of a linear graph.
SIAM Journal, 10(3):496–506, 1962.

[13] V. Havel. A remark on the existence of finite graphs. Caposis Pest. Mat., 80:496–506, 1955.

[14] M. R. Henzinger and V. King. Randomized fully dynamic graph algorithms with polylogarithmic
time per operation. Journal of the ACM, 46(4):502–516, 1999.

[15] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic algo-
rithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Proc. of the 30th ACM
STOC, pages 79–89, 1998.

[16] M. Jerrum and A. Sinclair. Approximating the permanent. SIAM J. Comput, 18(6):1149–1178,
1989.

[17] J. M. Roberts Jr. Simple methods for simulating sociomatrices with given marginal totals. Social
Networks, 22:273–283, 2000.

[18] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon. Uniform generation of random
graphs with arbitrary degree sequences. arxiv:cond-mat/0312028, 2003.

[19] M. Molloy and B. Reed. A critical point for random graphs with a given degree sequence. Random
Structures and Algorithms, pages 161–179, 1995.

[20] M. Molloy and B. Reed. The size of the giant component of a random graph with a given degree
sequence. Combinatorics, Probability and Computing, 7:295, 1998.

[21] M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45(2):167–256,
2003.

[22] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree distri-
butions and their applications. Phys. Rev. E, 64(026118), 2001.

[23] A. R. Rao, R. Jana, and S. Bandyopadhyay. A markov chain monte carlo method for generating
random (0,1)-matrices with given marginals. Indian Journal of Statistics, 58(A):225–242, 1996.

[24] Alexandre O. Stauffer and Valmir C. Barbosa. A study of the edge-switching markov-chain method
for the generation of random graphs. arxiv:cs.DM/0512105, 2006.

[25] Lionel Tabourier, Camille Roth, and Jean-Philippe Cointet. Generating constrained random graphs
using multiple edge switches. Journal of Experimental Algorithmics (JEA), 16:1–7, 2011.

[26] R. Taylor. Constrained switchings in graphs. Combinatorial Mathematics, 8:314–336, 1980.

[27] Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. Proc. of the 32nd ACM STOC,
pages 343–350, 2000.

[28] www.liafa.jussieu.fr/∼fabien/generation.

16

http://www.liafa.jussieu.fr/~fabien/generation

A Evaluation of the bias of the common method

The “common method” to generate random simple connected graphs with a prescribed degree sequence
is the following :

1. Generate a graph G with the Molloy and Reed model [19].

2. Remove the multiple edges and loops, obtaining a simple graph GS .

3. Keep only the largest connected component, obtaining a simple connected subgraph GCS

In the following, we also call GC the subgraph obtained by step 3 without step 2 (GC is the non-simple
giant connected component of G). It is clear that GS , GC and GCS are different from G. We provide
here experimental evidences that this difference is significant. Since our model doesn’t suffer of any such
bias, as it is simple and connected from the beginning, we recommend its use for anyone who needs to
generate random simple connected graphs with a prescribed degree sequence.

Notations

We call N the number of vertices in G, M the number of edges and Z the average degree. Likewise,
NC , NS , NCS , MC , MS , MCS , ZC , ZS and ZCS refer respectively to GC , GS and GCS .

2 10 100
0.6

0.7

0.8

0.9

1

Z

N
C

=N
CS

2 10 100

0.75

0.8

0.85

0.9

0.95

1

Z

M
S

M
C

M
CS

2 10 100

0.8

0.9

1

1.1

1.2

1.3

Z

Z
S

Z
C

Z
CS

2 10 100

0.6

0.7

0.8

0.9

1

Z

N
C

=N
CS

2 10 100

0.75

0.8

0.85

0.9

0.95

1

Z

M
S

M
C

M
CS

2 10 100

0.8

0.9

1

1.1

1.2

1.3

Z

Z
S

Z
C

Z
CS

2 10 100
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Z

N
C

=N
CS

2 10 100
0.8

0.85

0.9

0.95

1

Z

M
S

M
C

M
CS

2 10 100
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Z

Z
S

Z
C

Z
CS

Figure 7: Comparison of the number of vertices (left), the number of edges (center)
and the average degree (right) in the graphs GS , GC and GCS , for various
values of the average degree Z of the original graph G. We used heavy-
tailed degree distributions with N = 104, α = 2.1 (top), N = 105, α = 2.1
(middle) and N = 104, α = 2.5 (bottom).

17

Plots

To quantify the modifications caused by the removal of multiple edges and/or the restriction to the giant
connected component, we plotted the number of vertices, the number of edges and the average degrees
of the concerned subgraphs GC , GS and GCS against the average degree of G. In each plot, the three
curves refer to GC (red circles), GS (green plus) and GCS(blue stars). The quantities are normalized

so that a value of 1 represents the value of the concerned quantity in G.
Notice that, since NS is always equal to N (the removal of edges by itself does not change the number

of vertices), we only plotted NC , which is also equal to NCS .

Discussion

Many things can be observed from those plots. In particular :

• The left and middle plots show clearly that one loses a significant part of the graph when performing
multiple edge removal, restricting to the giant component, or both.

• The similarity between the plots at the top and in the middle show that the size N has very little,
if any, influence on this loss. The only noticeable difference comes from the fact that the top plots,
due to their lower computation costs, were averaged on more instances than the middle ones.

• The bottom plots are closer to 1, meaning that the bias is less significant. This is due to the
greater exponent α, causing the heavy-tailed degree distribution to be less heterogeneous. Thus,
less vertices have very low degree (these ones get more likely removed in GC) or very high degree
(these ones are more likely to get many edges removed in GS).

• The left part of the plots (low average degree Z) show a significant loss of vertices in GC . This is
of course because the more edges we have, the bigger the giant connected component is. On the
other hand, the right part of the plots (high average degree Z) show an increasing loss of edges
due to the removal of more multiple edges.

• The plots on the right-hand side show that two opposite biases act on the average degree ZCS of
GCS : the multiple edges removals tends to lower it, while the removal of vertices that don’t belong
to the giant component tends to raise it (since these vertices more likely have a low degree).

Conclusions

We showed that the bias caused by the two last steps of the “common method” is significant, not only
on the size of the graph but also on its properties, like the average degree. These biases should therefore
cause the deviation of many other properties. Our model, which respect exactly the degree sequence
given at the beginning, represents a reference that may be used to better quantify these deviations.
Its simplicity and efficiency should also convince users to implement it (or to use our implementation,
available at [28]). Notably, it provides an easy way to separate the properties of the known models, like
the Barabàsi-Albert one, in two groups: the ones that come from the degree distribution only, and the
ones that come from the model itself.

18

http://www.liafa.jussieu.fr/~fabien/generation

B Disconnection probability

For a given connected graph G, the disconnection probability pG is the probability, that a random edge
swap separates G in two components. One key hypothesis for the formal study of the optimal window
problem is that p remains constant during the shuffle. We will show here that this hypothesis is only an
approximation, but that the error induced by the variations of p have a small impact on the performance
of our heuristics.

To estimate pG, we used a brute force method: we perform a random edge swap on G, test whether
G is still connected, and start over until our estimation of pG converges. A recent paper [24] proposed
an original way to directly measure p in linear time, thus reducing dramatically the cost of measuring
p; however, the simulations we made so far seemed accurate enough for our purpose.

0 2000 4000 6000 8000 10000
0.01

0.02

0.03

0.05

0.1

Number of edge swaps performed

D
is

co
nn

ec
tio

n
pr

ob
ab

ili
ty

1 1.5 2 2.5 3 3.5 4

x 10
4

0.01

0.02

0.03

0.05

0.1

Number of edge swaps performed

D
is

co
nn

ec
tio

n
pr

ob
ab

ili
ty

Figure 8: Evolution of the disconnection probability during the shuffle

We measured p during the whole shuffle process. Some typical results are shown in Figure 8, the
graph used here had n = 1000 vertices, an average degree z = 6, and a heavy-tail degree distribution of
exponent α = 2.5. We observe two different phenomenons:

1. At the beginning of the shuffle, we observe a slow decrease of the p (in average) until it reaches
its average value, here pavg ≈ 0.02. This is because of the second step of the generation process
(see Section 2), where we connect the graph by joining each of its component to the giant one.
These components, being attached to the rest of the graph with only one edge, are likely to get
disconnected. Thus, the initial state of the graph is strongly biased, and the shuffle slowly decreases
p as G becomes more and more random.

2. After this initial decrease (which lasts during roughly m edge swaps), the disconnection probability
doesn’t converge, but oscillate around its average value pavg. The amplitude of these oscillations
are not negligible, but they stay within a factor 2 from the average value.

Now, let us estimate the impact of the variability of the disconnection probability on the efficiency
of our heuristics. Let us place at some step of the shuffle process. Say the graph G has a disconnection
probability p, and say that our estimate of p is pest. Let C(pest) be the theoretical unit cost of the
shuffle when the window is set to the estimated optimal T opt(pest) = − log(1 − pest)

−1, as given in
Eq. 4. From our discussion about the optimal window in Section 3.1, it is clear that C(p) is minimal
when the estimate is perfect: pest = p. We plotted in Figure 9 the ratio between the cost obtained with
a perfect estimate and the cost obtained with a bad estimate, as a function of the deviation pest/p of the
estimate. We also plotted two vertical lines that correspond to two worst-case deviations, inspired by the
empirical evolution of p we showed above: say that pmin and pmax are respectively the all-time minimum
and maximum of p during the shuffle, the vertical lines correspond to pest

p = pmin

pmax
and to pest

p = pmax

pmin
.

Even in those very pessimistic cases, the efficiency loss is less than 20%. This explains the good results
we obtained with our heuristics, although many formal analysis were based on approximations. Let us

19

add that the case shown here is representative of the general case: we observed a similar – if not better
– behavior when working on other graph topologies.

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
est

 / p

E
ffi

ci
en

cy
 (

1
is

 o
pt

im
al

)

p=0.1
p=0.001

Figure 9: Relation between efficiency loss and error made when estimating p

20

	Introduction
	Context
	The Markov chain Monte-Carlo algorithm
	Equivalence between swaps and transitions
	Complexity
	Speed-up and the Gkantsidis et al. heuristic

	More from the Gkantsidis et al. heuristic
	The optimal window problem
	Analysis of the heuristic
	An optimal dynamics
	Experimental evaluation of the new heuristics

	Detecting disconnections at logarithmic cost
	Guiding principle
	A new shuffle space
	Complexity
	Characteristic isolation test width

	Conclusion
	Evaluation of the bias of the common method
	Disconnection probability

