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Abstract

Let Z be a unimodular real spherical space which is assumed of wave-front type.
Generalizing some ideas of Harish-Chandra [5, 6], we show the existence of the constant
term for smooth tempered functions on Z, while Harish-Chandra dealt with K-finite
functions on the group (see also the work of Wallach [16, Chapter 12|, dealing with
smooth functions on the group and using asymptotic expansions). By applying this
theory, we get a characterization of the relative discrete series for Z. Some features for
the constant term, namely transitivity and uniform estimates, are also established.
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Introduction

Let Z = G/H be a real unimodular wave-front real spherical space. In this introduction G
is the group of real points of a connected reductive algebraic group G defined over R, and
H is a connected subgroup of G with algebraic Lie algebra such that there exists a minimal
parabolic subgroup P with PH open in G.

The local structure theorem (cf. [10, Theorem 2.3]) associates a parabolic subgroup @,
said Z-adapted to P, with Levi decomposition ) = LU (one has P c Q).

We will say that A is a split torus of G if it is the identity component of A(R), where A
is a split R-torus of G.

Let Ap be a maximal split torus of L with Lie algebra a; and let Ay be the analytic
subgroup of Ay with Lie algebra a; n Lie H. We choose a maximal split torus A of P n L.

Then there exists a maximal compact subgroup K of G such that G = KAN (resp. L =
K ANp) is an Iwasawa decomposition of G (resp. L, where K, = K n L and N, = Nn L).
Let M be the centralizer of A in K.

Let Az = Ap/Ap. The (simple) spherical roots are defined in e.g. [11, Section 3.2]. They
are real characters of Az (or linear forms on ay = Lie Az). Let S be the set of spherical
roots. Let A, = {a€ Az : a® < 1,a € S}. The polar decomposition asserts that there are
two finite sets F and W of GG such that:

7 = FKAW - 2,

where QuwH is open for each w € W and zy denotes H in the quotient space Z. In this
paper, we make a certain choice of W (cf. Lemma 1.1). Let Q = FK.
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Let pg be the half sum of the roots of a;, in LieU. Actually pg € a7.
For f e C*(Z), we define:

qn(f) = sup a "1 + |logal) M| f(waw - z)|.
weQ,weW,ace Ay,

We define C75, ) (Z) as the space of f € C%(Z) such that, for all u in the enveloping algebra

U(g) of the complexification g¢ of g = Lie G,

qN,u(f) = qn(Luf)

is finite. We endow C7, n(Z) with the semi-norms ¢y,. Then G acts in a C” way on
Crompn(Z). Let (7, V) be a smooth Harish-Chandra G-representation. By this we mean the
smooth Fréchet globalization with moderate growth of a (g, K')-module of finite length (see
[2] or [16, Chapter 11]). Let Aysemp,n(Z) be the subspace of elements of Cyf, ) (Z) which gen-
erate under the left regular representation a smooth Harish-Chandra G-sub-representation:
this means that the closure of the linear span of their G-orbits is a Harish-Chandra G-
representation. It is endowed with the topology induced by the topology of Cy%, . v (Z).

There is another definition of Ay n(Z). Let 1 be a continuous H-fixed linear form on
a Harish-Chandra G-representation (m,V’). One says that n is Z-tempered if there exists
N e N such that, for all v € V, the generalized matrix coefficient m,, ,,, defined by:

myu(g) =<n,m(g " )v>, geG,

is in Cf,,, y(Z). Then one can show that f € Awemp n(Z) if and only if there exists such a
V and such an 7 and vy € V such that f = m,,,,.

Let I be a subset of S and let a; = () .;Kera. Let X ea;” ={X ea;: a(X) <0,a€e
S\I}. Let Hy be the analytic subgroup of G with Lie algebra

Lie H; = lim e'*XLie H,
t—-+00
where the limit is taken in the Grassmanian Gr(g) of g. Then (see [11, Proposition 3.2])
Z; = G/Hj is a real spherical space, PH; is open in G and @ is Zj-adapted to P. Let us
denote H; by zpr in the quotient space Z;. Let Wy be the set corresponding to W for Z;.
One can define similarly Cf5, v (Z7) and Asemp, v (Z7)-
The main result of this paper is the following (cf. Proposition 4.8 and Theorem 4.13).

Theorem. Let T be a finite codimensional ideal of the center Z(g) of U(g) and let
AtempN(Z + I) be the space of elements of Aiempn(Z) annihilated by Z. There exists
Nz € N such that, for all N € N, for each f € Awempn(Z : L), there exists a unique
f1 € Atemp ning (Z1 2 T) such that, for allge G, X € a;~

(i) limr_, o €777 (f(gexp(TX)) — fi(gexp(TX))) = 0.

(ii) T — e TreX) fi(gexp(T X)) is an exponential polynomial with unitary characters,
i.e. of the form Z?lej (T)e™iT, where the p;’s are polynomials and the v;’s are real
numbers.



Moreover the linear map f — f1 is a continuous G-morphism and, for each w; € Wy, there
exist w € W, my,, € M such that, for any compact subset C in a;~ and any compact subset
Q of G, there exists € > 0 and a continuous semi-norm p on Awemp n(Z) such that:

(aexpTX) 0 (f(waexp(TX)w - z0) — frlwmylaesp(TX)w; - z0.))|
<e“Tp(f)(1 + |logal)V, ae A, XeC,weQ,T>0.

This generalizes the work of Harish-Chandra in the group case (see [5, Sections 21 to 25],
also the work of Wallach [16, Chapter 12]) and the one of Carmona for symmetric spaces (see
[4]). A certain control of these estimates are established when Z is the kernel of a character
of Z(g) and varies in such a way that (in particular) the real part of the Harish-Chandra
parameter of this character is fixed (see Theorem 7.4 for more detail). This is related to
some results of Harish-Chandra (cf. [6, Section 10]).

While the work of Harish-Chandra is for K-finite functions, we deal with smooth tem-
pered functions, but without using asymptotic expansions as it is done in [16, Chapter 12].

For a Z-tempered continuous linear form 7 on a Harish-Chandra G-representation (7, V'),
one can define a constant term 7; which is a Z;-tempered continuous linear form on V' in
such a way that, for all v e V,

mm,v(zl) = (mmv)I(ZI)a 21 € 41

(cf. Proposition 4.14). Moreover we show that, if (7, V') is irreducible with unitary central
character, then (7, V,n) is a discrete series modulo the center of Z if and only if for all I & S,
n; = 0 (see Theorem 4.15). Again it is analogous to a result of Harish-Chandra. For this we
use in a crucial manner some results on discrete series from [11, Section 8]. More generally,
our work owes a lot to their work.

The proof of these results is quite parallel to the work of Harish-Chandra on the constant
term (cf. [5, 6]) by studying certain system of linear differential equations. In the case of one
variable, this reduces to show the following:

Let E be a finite dimensional complex vector space, A € End(E), ¢ €
C*([0, +0[, E) of exponential decay, i.e.

there exists B < 0 such that |p(t)| < e, t = 0.
Consider the linear differential equation on [0, +o0[ :
¢ = Ad + 1,

Then, if ¢ is a bounded solution, there exists an exponential polynomial ¢~5 with
unitary characters such that:

lim ¢(t) — ¢(t) = 0.

t—00



There are some variations, as we are allowed to work with vectors in a Harish-Chandra
G-representation, where Harish-Chandra was working only with K-finite functions. Some
important properties of Harish-Chandra G-representations are used (see e.g. [16, Chapter 11]
or [2]).

First one establishes the Theorem for w; = 1. The passage to general w; is delicate. One
has to give some more insight on the link between w and w; explained in [11, Lemma 3.10].
This is done in Proposition 5.1 which holds for general spherical spaces. It uses a reduction
to quasi-affine spherical spaces and properties of finite dimensional representations.

The motivation of our work is the determination of the Plancherel formula for Z along
the lines of the work of Sakellaridis and Venkatesh (cf. [13]). This requires several important
changes as it is quite unclear what could be the asymptotics for general C*, even K-finite,
functions. We hope that our results will allow to avoid these asymptotics.

1 Notation

In this paper, we will denote (real) Lie groups by upper case Latin letters and their Lie
algebras by lower case German letters. If R is a real Lie group, then Ry will denote its
identity component.

Let G be a connected reductive algebraic group defined over R and let G(R) be its group
of real points. Let G be an open subgroup of the real Lie group G(R).

If R is a closed subgroup of G, we will denote by Rc the connected analytic subgroup
of G(C) with Lie algebra vc. Then we set Ry = Rco n G. Note that:

if R is a Levi subgroup of G then R < R, (1.1)

as Rcy is a Levi subgroup of G(C) (remark that Levi subgroups of a complex group are
connected).

We will say that A is a split torus of G if it is of the form A(R)q, where A is an R-split
torus of G.

Let H be a closed connected subgroup of GG such that b is algebraic, and let us assume
that Z = G/H is real spherical. This means that there exists a minimal parabolic subgroup
P of G with PH open in G.

From the local structure theorem (cf. [10, Theorem 2.3]),

There exists a unique parabolic subgroup @) of G with a Levi de-
composition ) = LU such that:

(1) P'ZQZQ‘ZQ,

(ii) Lnc Qn H < L, 12)

where zg denotes H in Z and L, is the product of all non compact
non abelian factors in L.



Such a parabolic subgroup @ is called Z-adapted to P. Let Ay be a maximal split torus of
the center of L and Ay = (A n H)p. Let A be a maximal split torus of P n L. It contains
AL'

Let us prove that there exist a maximal compact subgroup K of G and an involution 6
of G such that its differential, denoted also by 6, restricted to [g, g], is equal to the Cartan
involution associated to € N [g,g], 0(X) = X if X € ¢ n €, where ¢ is the center of g, and
0(X)=-Xif X €a.

First one notices that A contains a maximal split torus Ag of the center of G. It is, in
the terminology of [5] or [14, p. 197], a split component of G. In fact, one can construct a
maximal split torus of G by starting with a maximal split torus of the derived group G; of
G, which has this property. But all maximal split tori of G are conjugate by an element of
G as it is the case for maximal R-split tori of G(R) (cf. [3, Theorem 20.9]). Hence A has
also the required property and one has a = a; ® ag, where a; = a n [g, g].

Now we can find (K’, 6, a’) with the above properties when replacing K by K’, 6 by ¢,
a by @ and such that @’ contains ag (cf. [14, Part II, Section 1, Theorem 3.13]), but we do
not require @’ to be the Lie algebra of a maximal split torus of G. Let j; (resp. j;) be a
Cartan subalgebra of Zg g (a1) (resp. Zgq(a}), where ai = o’ n [g,g]). Then j; and j; are
maximally split Cartan subalgebras of [g, g], hence there are conjugate by an element g of
G1. As ay (resp. a)) is equal to the space of X € j; (resp. j}) such that the eigenvalues of
ad[g X are real, the element g conjugates a; and af, i.e. Ad(g)a; = a}. Hence Ad(g)a = o'
Then K = gK'g™! and 0 = 0 o Ad(g™ ") satisfy the required properties and G = K AN is an
Iwasawa decomposition.

Moreover, as L = Zg(AL) and Ay < A is f-stable, L is 0-stable and L = K ANy, is an
Iwasawa decomposition, where K;, = K n L and N, = N n L.

Let Az = Ar/Ag. Let us notice, from the fact that L, ¢ L n H, that az = a/an b.

We choose a section s : Ay — Ap of the projection A, — Ay /Ay which is a
morphism of Lie groups. We will often use a instead of s(a).

(1.3)

Let B be a g, AdG and #-invariant bilinear form on g such that the quadratic form X —
|X|? = —B(X,0X) is positive definite. We will denote by (-, -) the corresponding scalar
product on g. It defines a quotient scalar product and a quotient norm on ay that we still
denote by | - |.

Let X be the set of roots of ain g. If a € X2, let g* be the corresponding weight space for
a. We write X, (resp. ¥,)c X for the set of a-roots in u (resp. n) and set u™ = > o g%,
i.e. the nilradical of the parabolic subalgebra q~ opposite to q with respect to a.

Let (Lnh)*t be the orthogonal of [ b in [ with respect to the scalar product (-, -). One
has:

g=hd(nh) " du

Let T be the restriction to u~ of minus the projection from g onto (I N h)** @ u parallel to
h. Let a € ¥, and X_, € g~ Then (cf. [11, equation (3.2)])

T(X_o)= Y. Xap. (1.4)
Bes, u{0}
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with X, 5 € g’ cuif e X, and X, € ([n bt
Let M < Ny[3,] be the monoid generated by:

{a+5: aeX,, e, u{0} such that there exists X_, € g~ with X, g # 0}.
The elements of M vanish on ay so M identifies to a subset of a7,. We define

a, ={Xeaz: a(X) <0, ae M}
and a, ={Xeaz: a(X)<0, ae M}.

Following e.g. [11], we define the set S of spherical roots as the set of irreducible elements
of M, i.e. those which cannot be expressed as a sum of two non-zero elements in M. We
define also

azp={Xe€az: o(X)=0,ae S},

which normalizes b.
We have the polar decomposition for Z. Namely (cf. [11, equation (3.16)] or [8, Theo-
rem 5.13)),

There exist two finite sets F” and W in G such that Z = F'KA, WV - 2, and

1.5
such that PwH is open and Ayw < wH for each w € W. (1.5)
Moreover

Any open (P, H)-orbit in G is of the form PwH for at least an
element w of W.

Let us recall some notation used in [11, Section 3.4]. Let

~

h:=b+aze,

let ﬁcc,o be the connected algebraic subgroup of G¢ with Lie algebra 6@, ﬁo = I?[QO NG and
Ty, := exp(iaz). Recall that b is an ideal in . Then Hc o = exp(iaz g)Az gHc .

1.1 Lemma. The set W can be chosen such that any w € VW can be written:
w = th, where t € exp(iaz) and h € Hcy. (1.6)
Moreover, if a € Ay, aw - 2y = w - zg.

Proof. Let us use the notation of [11, after equation (3.12)]. Any f € F can be written
f = th with h € }AICD = eXp(iaZ7E>zzZ,EH(C’O and t € Tz. Then write h = az gtz ghy with
hi € Heyp, azp € gZ,E; tzp € szE = exp(iazg). As azp € P, one is allowed to change w in
ay'pw in loc.cit. equation (3.12). Hence, elements of this chosen set F satisfies (1.6), i.e.

f=th, teexp(iaz),he Hcp. (1.7)



Now W = FF' (cf. loc.cit. after equation (3.15)) and F' is a finite subset of Hy = ITICVOmG c
N¢(H) (cf. loc.cit. equation (3.14)). More precisely, ' is a minimal set of representatives

A~

of H)/HAz . Let us first study elements f’ of /' < PAIO. These elements can be written
[ = aly gty phy with a, ;€ ﬁz,E, tyy € fZ,E, hi € Hcp. Hence, using (1.7), a’ijlEff’ =
tt'hihy, where hy(aly g) 'ty p) "' h(ty p)lay € Heyp, as Az and Ty p normalize He .
Then, by changing the element ff" into a’y =ff', we define a new choice W for which the
polar decomposition (1.5) is valid and its elements satisfy (1.6).

The elements of the original W satisfy aw - zg = w- 2o (cf. [11, Lemma 3.5 and its proof]).
As the elements of the new set VW are obtained by multiplying the elements of the old one
by elements of A z g which commute to Ay, one gets the last assertion of the Lemma. O

If w € W, one introduces H,, = wHw™! and Z,, = G/H,. Then (cf. [11, Corollary 3.7]),
PH, is open and @ is Z,-adapted to P. Moreover Az, = Az and A, = Aj. Let (2 denote
the compact set FK.

2 Z-tempered H-fixed continuous linear forms and the
space Aiepmp(2)

2.1 Harish-Chandra representations of ¢

Let us recall some definitions and results of [2].
A continuous representation (, E') of a Lie group G on a topological vector space E is a
representation such that the map:

G x E— E, (g,v) — 7(g)v, is continuous.

If R is a compact subgroup of G and v € E, we say that v is R-finite if 7(R)v generates a
finite dimensional subspace of E. Let V(g) denote the vector space of R-finite vectors in E.
Let 1 be a continuous linear form on £ and v € E. Let us define the generalized matrix
coefficient associated to n and v by:

Myo(9) i=<n,m(g v >, geG.

Let G be a real reductive group. Let | - | be a norm on G (cf. [15, Section 2.A.2] or [2,
Section 2.1.2]). We have the notion of a Fréchet representation with moderate growth. A
representation (7, F) of G is called a Fréchet representation with moderate growth if it is

continuous and if for any continuous semi-norm p on E, there exist a continuous semi-norm
qgon E and N € N such that:

p(r(g)v) < q)lgl™, veE.geG. (2.1)

This notion coincides with the notion of F-representations given in [2, Definition 2.6] for
the large scale structure corresponding to the norm | - ||. We will adopt the terminology of
F-representations.



Let (7, F) be an F-representation. A smooth vector in F is a vector such that g — 7(g)v
is smooth from G to E. The space V* of smooth vectors in V' is endowed with the Sobolev
semi-norms that we define now. Fix a basis Xi,..., X, of gand k € N. Let p be a continuous
semi-norm on E and set

1/2
pk@):( > p(w(xrl...xgn)v)2> , ve B~ (2.2)

mi+-+mp<k

We endow E* with the topology defined by the semi-norms py, k € N, when p varies in the set
of continuous semi-norms of E, and denote by (7, E*) the corresponding sub-representation
of (m, E).

An SF-representation is an F-representation (7, F') which is smooth, i.e. such that £ =
E* as topological vector spaces. Let us remark that if (7, E') is an F-representation, then
(7, E*) is an SF-representation (cf. [2, Corollary 2.16]). The topology on E® is also given
by the semi-norms:

& 1/2
Ap,, (V) = (Z(p(ﬂ(ﬁj)vw) , veE” (2.3)

§=0

where A = X? 4+ -+ 4+ X2 and p varies in the set of continuous semi-norms of F.

2.1 Lemma. Let G be a real reductive group and K be a mazimal compact subgroup of G.
Let (m, E) be a continuous Banach representation of G (i.e. a continuous representation in
a Banach space).

(i) Let'V be a (g, K)-module of finite length which is contained in E*. ThenV is contained
in the space E¥ of analytic vectors of E.

(ii) The closure of V in E*, V, is an SF-representation of G with underlying (g, KK )-module
equal to V. In fact V' is isomorphic to the canonical SF-globalization of V.

Proof. Let Cy be the Casimir element of U(g) and let C; be the Casimir element of U(£).
Then A := Cy — 2C¢ is a Laplacian for G. Since V' is of finite length, every element of V' is
a finite linear combination of v € V' satisfying the following;:

There exist Ay, Ay € C and n € N such that 7(Cy—A4)"v = 0 and 7(Ce—A¢)"v =
0.
This implies that, if A = Ay — 2A,,

(A — A)*™v = 0.

To show that V < E*, it is then enough to show that v € E“ for such v. Fix such av e V.
Let n be a continuous linear form on E. Then the generalized matrix coefficient m,,, is a
smooth function on G, as v € V < E®, and is annihilated by (A — A)**. Hence m,,, is
analytic. This shows that:

G —- FE

g — wlg is weakly analytic.



As FE is a Banach space, it follows from [17, Lemma 4.4.5.1] that the map is analytic. Hence
ve V¥ and (i) follows.

Let us show (ii). We first prove that V is G-invariant. It is clearly K-invariant as V is.
It is also invariant by the identity component of G due to [17, Corollary 4.4.5.5]. Hence it
is G-invariant. Then V is a closed G-submodule of E*, hence of moderate growth as F is
a continuous Banach representation of GG. It remains to check that V is equal to the space
of K-finite elements in V®. Let v be a K-finite element of V. Let us prove that v € V. By
linearity, one can assume that there exists a finite dimensional representation of K, §, with
normalized character yg, such that:

(xs)v = .

On the other hand, v is the limit of a sequence (v,,) of elements of V. Hence 7(xs)v, ——
n——+0o0

m(xs)v = v. But (m(xs)Un)nen lies in a finite dimensional subspace of V. Hence v belongs
to this finite dimensional subspace of V. In particular v € V. This achieves to prove the

Lemma. O

We define a Harish-Chandra representation of G as an SF-representation V' such that
the underlying (g, K')-module of K-finite vectors V' is of finite length.

2.2 The spaces CY ~(Z) and Asempn(2)

temp,N

In the remaining of Section 2, we will assume that Z is unimodular. Let pg be the half sum
of the roots of a in u. Let us show that:

pg is trivial on ag.

As [ n h-modules,
g/b =ud(/lnh).
But the action of ag = a;, nh on (I/[nh) is trivial. Since Z is unimodular, the action of ay

has to be unimodular. Our claim follows.
Hence pg can be defined as a linear form on ay.

We have the notion of weights on an homogeneous space X of a locally compact group G
(cf. [1, Section 3.1]). This is a function w : X — R** such that, for every ball B of G (i.e. a
compact symmetric neighborhood of 1 in G), there exists a constant ¢ = ¢(w, B) such that:

w(g-x) <cw(x), geB,xelX. (2.4)

One sees easily that if w is a weight, then w™?! is also a weight.

Let v (resp. w) be the weight function on Z defined in [8, Section 4] (resp. [8, Propo-
sition 3.4]). For any N € N, let Ey be the completion of C¥(Z) for the norm py defined
by:

pa(f) = sup ((1+w(2))Nv(2)"?|f(2)]), (2.5)

2€Z

10



i.e. Ey consists of the space of continuous functions f on Z such that py(f) < +oo0. From
the polar decomposition of Z (cf. (1.5)), one has:

pn(f) = sup ((1 + w(waw - Zo))fNV(Waw : 20)1/2|f(waw : Zo)|) .
weQ,ac A, ,weW
From the fact that v and w are weight functions on Z and from [8, Propositions 3.4(2)
and 4.3], one then sees that:

The norm py is equivalent to the norm:

froav(f)i= swp (a*e(1+ |logal) ™| f(waw)]). (2:6)

weQweW,ae Ay,

Moreover, due to the fact that v and w=! are weight functions on Z, one gets that G acts

by left translations on Ey, and, for any compact subset C' of GG, by changing z into 2’ = gz
in (2.5), one sees that:

There exists ¢ > 0 such that:

pn(Lyf) < cpn(f), ge€C,fe En.

But this action is not continuous. Let Vy be the space of continuous vectors of Ey, i.e. the
space of f € Ey such that the map G — Ey, g — L,f, is continuous. It is easy, using (2.7),
to prove that Vy is a closed G-invariant subspace of Ey and Vy is a continuous Banach
representation of G.

(2.7)

2.2 Lemma.
(i) The space V¥ is equal to
remp(Z) = {f € CF(Z) 2 pnu(f) < o0, ue Ulg)},
where pyu(f) = pn(Luf).

(i) The topology on V¥ is defined by the semi-norms py ., we U(g). It is also defined by
the semi-norms pnx, k€ N (cf. (2.2)), or Ay, k€N (cf. (2.3)).

(11i) The topology on V¥’ is defined by the semi-norms qn ., uw e U(g). It is also defined by
the semi-norms qn g, k € N, or Ay, k€ N.

Proof. Looking at the definition, it is easy to see that:
Vv < C*(Z)

and is contained in Cy,, v(Z). Reciprocally, let f e C, y(Z). It is an element of Ey.

Let us show that f € V. This is a consequence of the mean value theorem:

If X is in a compact neighborhood B of 0 in g, z € Z and t € [0, 1], then there
exists ¢ x . € [0, 1] such that:

(Lesprx f)(2) = f(2) = t(Lx f)(exp(erx - X) 7" - 2).
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Hence

PN (Lepix f = f) = tszlelg(l +w(2)) MV () |(Lx f)(explerx . X)7h - 2).

Changing z into exp(c¢; x . X) '+ 2 and using that v and w are weights (cf. (2.4)), one deduces
easily that f € V. To prove that f € VP, one can first show that the map g — L,f is
I-differentiable. It is clear that, if X € g and g € G, Lx(L,f) € C,, x(Z). Hence, by the
previous discussion, one has Lx (L, f) € V. One can proceed similarly as above by studying:

<L6Xth (Lgf) — Lgf
PN ;

- Lx(Laf)).

using the Taylor expansion in 0 at order 2 of the function ¢t — Lexyix(Lgf). It implies that
the map g — L, f has partial derivatives at order 1 given by Lx(L,f), X € g. Let us show
that these partial derivatives are continuous from G to Vy. First g — L, f is continuous by
definition of Viy. Let X1,..., X, be a basis of g. Then, using that Lx (L, f) = Lg(Laag-1)x f)
there exist real valued C*-functions on G, ¢;, i« = 1,...,n, such that

Lx(Lyf) = Zci(g)Lg(LXif)'
But, as f € Cf,,, nv(Z), Lx,f € C,,, n(Z) which has been seen to be contained in Vy. It
follows that g — Lx(L,f) is continuous from G to Viy. Thus, the map g — L, f is a C'-map
from G to Vy. Then, using induction on the order of the partial derivatives, one shows that
g — L, f has continuous partial derivatives at every order. Hence f € V. This achieves to
prove (i).
The point (ii) follows from [2, Proposition 3.5] and then (iii) follows from (2.6). O

Let us define the notion of Z-tempered continuous H-fixed linear forms on a Harish-
Chandra representation of GG, V*. If V denotes the subspace of K-finite vectors of V*°, then
a continuous H-fixed linear form 7 is called Z-tempered if it satisfies:

There exists N € N such that, for all v € V (resp. v e V®),

mn,v € toé)mp,N(Z)'

The first condition is the original definition of temperedness of [9, Definition 5.3 and Re-
mark 5.4]. That this condition implies the second is proved in [11, Theorems 7.1 and 6.13(2)].

Denote by (V’Oo)gmp the space of Z-tempered continuous H-fixed linear forms on V®.

2.3 Lemma. Let f € C*(Z). The following conditions are equivalent:

(i) There exist a Harish-Chandra G-representation V=, a Z-tempered contiuous linear
form n on V= and vy € V* such that m, ., = f;

12



(i)) There exist N € N and a Harish-Chandra sub-representation Vi* of Ci, N(Z) such
that f e V.

We define Aiemy(Z) as the set of f e CP(Z) satisfying (one of ) these equivalent conditions.
If NeN, Aiermpn(Z) is the set of f e CP(Z) satisfying (it) for this precise N.

Proof. Let f € C*(Z) satisfying (i). Then, from Lemma 2.2(i) and the definition of tem-
peredness, {m,, : v € V*} is a sub-representation of C,  n(Z) for some N € N. Let
V' be the underlying (g, K)-module of V* and let Vi be the closure in CF,, v(Z) of
{my,, : v eV} Itis an SF-representation of G (cf. Lemma 2.1(ii)). Let (V) be

the space of K-finite vectors in V/*. One has (cf. loc. cit.)
(Vi) k) = {mp : vEV} (2.8)

Hence (V) k) is of finite length and V* is a Harish-Chandra representation of G. It is the
SF-globalization of {m,,, : ve€ V}. Hence (cf. [16, Theorem 11.6.7]) there exists a surjective
(because of (2.8)) continuous linear intertwining operator 7" between V* and V/* such that:

T'(v) = my,, veV. (2.9)

We claim that 7"(v) = m,, for all v € V*. Let us show that, if a sequence (v,) in V®
converges to v, (my,,,) converges to m,, uniformly on compact sets. In fact, from (2.1), if
) is a compact set in G, there exist a continuous semi-norm ¢ on C*(Z) and N’ € N such
that
[ <n.7lg v > = <n,w(g™ v >| < Cqlvn —v), geQH,

for some C' > 0. Our claim follows.

From the fact that 7 is a continuous H-fixed linear form on the SF-representation V'*,
it is then easily seen that the map:

T:ve—my,

is a continuous map from V* into C(Z). On the other hand, the embedding of CF7,,, x(Z)
in C(Z) is obviously continuous and linear. Then, by composition, the map 7", given in
(2.9), defines a continuous linear map from V* into C'(Z). Hence (2.9) implies by density
that 7' = T". This implies that T is a continuous and surjective linear map from V* to V,*.
This shows that m,,,, € V/* and V| satisfies (ii).

Reciprocally, if f satisfies (ii), let 7 be the restriction to V/* of the Dirac measure at z.
Then (V*,n) satisfies (i) for vy = f. O

Let us remark that, for any Ny, Ny € N|
Ny < Ny implies Aiemp n, (Z) © Atemp.n, (Z2). (2.10)
Indeed, this follows from the property:

pNQ(f><pN1(f)7 fEC?(Z),
(Z) is a subspace of C}2 (Z). We endow Ayemp n(Z) with the

emp,Na

which implies that C°

temp,N1

topology induced by the topology of Cff, v (Z).
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2.4 Lemma. The space Aiemy(Z) is a vector subspace of C*(Z).

Proof. As Ayemp(Z) is the union |Jyoy Atempn(Z) and according to (2.10), it is enough to
prove that Agemp n(Z) is a vector subspace of C*(Z). It is clear that if f € Agempn(Z),
one has \f € Awermpn(Z) for A € C. Let fi, fo € Awempn(Z). For i = 1,2, let V, be a
Harish-Chandra sub-representation of Cff,,, y(Z) containing f;. Let V; be the underlying
(g, K)-module of V*. Let V' = V) + V5. It is a (g, K)-submodule of Cf%, v (Z)(x). Recall
from Lemma 2.2 that Cf5, ) v(Z) is the space of smooth vectors of a Banach representation.
Then, from Lemma 2.1(ii), one sees that the closure of V', V*  is a Harish-Chandra sub-

representation of Cyf, ~(Z) which contains fi1 + fo. Hence fi + fo € Atemp n(2). O

Recall that, if V* is a Harish-Chandra representation of G, then (V=) is a finite
dimensional vector space (cf. [12, Theorem 3.2]).

2.5 Lemma. Let V* be a Harish-Chandra representation of G. Then:
(i) The group Az g acts on the finite dimensional vector space (V~%)H.

(ii) If ne (V=2)E ~and ag € Az g, then agne (V)2

temp temp*

(iii) If n € (V=®)E ~~—n # 0, transforms by a character x under Azp, then one has

temp’
Ix(a)] =a”?, ae Azg.

(iv) If ne (V=) andveV®,

temp

ar—a e <an,v >

is an exponential polynomial on Az g with unitary characters and polynomials having
bounded degrees by the dimension of (V~%)H.

Proof. The assertion (i) follows from the fact that h is normalized by Az g (cf. [11, equa-
tion (3.2)]) Let us look at < wawagn,v >, where v € V¥, we Q, we W, ay € Azp and
a € Az. Then, from [11, Lemma 3.5, as n is H-fixed, this is equal to < waagwn,v >. Then,
by using (2.6) and |logaag| < ||loga| + ||logag|, one gets that agn is Z-tempered. This
shows (ii).

Let us now assume that 7 transforms by a character y under Az . As n is Z-tempered,

la™?? <an,v>|<C(1+|logal)", acAzg.

As < an,v >= x(a) < m,v >, one then gets, assuming v such that < n,v >% 0, that
Ix(a)a=*e| =1 for a € Az and hence (iii).

Let us prove (iv). As Az g acts on the finite dimensional vector space (V%) it follows
that, for all v € V*, the function on Az g, a —< an,v >, is an exponential polynomial
function follows from the fact that Az g acts on the finite dimensional vector space (V=) .
If a character y appears in the decomposition of this Az p-module, there is a non zero 7, €

(V=*) % ,p which transforms by x under Az . One concludes from (iii) that a — a™*?x/(a)

is unitary. Moreover the degrees of the polynomials are bounded by the dimension of the
Az g-module (V=2)fT O
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3 Differential equation for some functions on Z wave-
front and unimodular

3.1 Boundary degenerations of Z

Let I be a subset of S and set:

a; = {Xeaz: a(X)=0,acl},
a; = {Xea: aX) <0, aeS\I},
Ar = expa;c Ay,

A7 = exp(a; ).

Then there exists an algebraic Lie subalgebra h; of g such that, for all X € a; ™, one has:

by = lim e}
t—+00

in the Grassmanian of g (cf. [11, equation (3.6)]).
Let H; be the connected subgroup of G' corresponding to h; which is closed, as by is
algebraic. Let Z; = G/H;. Then Z; is a real spherical space for which:

(i) PH; is open,
(ii) @ is Z;-adapted to P,
(iii) az, =az and a; = {X €az: a(X) <0, a € I} contains ay

(cf. [11, Proposition 3.2]). Let A, = expajy . Similarly to Z, the real spherical space Z;
has a polar decomposition:
Zr = QrAZz; Wr - 201,

where zo; = Hy, Q; = FrK, and F; and W, are finite sets in G (cf. [11, Section 3.4.1]).
Using Lemma 1.1, we can make the same kind of choice for Wy as for W.
If X €a;~, we define
Br(X) = max a(X) <0 (3.1)
aeS\I

and, if a € A7~ with a = exp X, we set o’ = ePrX),

3.2 Some estimates

3.1 Lemma. Let Y € by and N € N. There exists a continuous semi-norm on CiZ, . y(Z),
p, such that

(Ly f)(@)] < p(f)a* P11+ | logal)™, ae A7, fe Cppn(2).
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Proof. If Y € In b,
(Lyf)(a) = 0, a e A[.

Hence the conclusion of the Lemma holds for Y € [ n h.

Let a be a root of a in u, i.e. a € 3, and let X_, € g=*. We have defined (cf. (1.4))
X,peglforaey, fe, and X,0€ (In b)), where ([ n )t is the orthogonal in [ of
[~ b for the scalar product on g (cf. Section 1) restricted to [. We set (cf. [11, beginning of
Section 3.3]):

XI . Xaﬂ, 1f05+66<1>7
B8 70, otherwise,

where (I') = Ny[S] is the monoid generated by I, and we define (cf. loc.cit. equation (3.7)):

T(X_o)= ), X,
BeXyu{0}

Then (cf. loc.cit. equation (3.9)):
Yoo =X a+Tr(X_a)eh;

and [ n b and the Y_,, when o and X_, vary, generate b;.
Let @ = s(a) (cf. (1.3) for the definition of s). Then let us show that:

Ad(@)Y_y = @Y.

One has Ad(a)X_, = a*X_, and Ad(a)Xnp = @° X, 3. But a+ 8 € I. Hence a**° = 1,
as a € Ar. Our claim follows.
Let us study (Ly  f)(a) for a € A7~ and f € Atemp n(Z). One has:

(Ly_ @) = (La—1(Ly_,f))(20)
_ a(Ly Lo f)(z0).

Let us notice that:

Y_a + Z Xa,ﬁ € b
BeTL U0}, a+ B¢

Hence one has:

(Ly_f)(a) = =0 Xiges, o0y, arpecry(LxapLa f)(20)
= - ZﬁeEuu{O}, a+pBeI) &a+ﬂ([f&—1 LXa,B f) (ZO)-

But a**¥ = a**? as a € A; © Az and o+ € S. Then, as (Lz1Lx, ,f)(20) = Lx, ,f(a),

one has:
(Ly . f)(a) = — > a**?(Lx, ,f)(a). (3.2)
BeXuu{0}, a+ BTy

If a+ 3¢ {I)asabove and Lx, ,f # 0, one has o + 8 € M\{I) and, from the definition of
Br (cf. (3.1)):

a®tB < CLBI, ae A;*
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Then
[(Ly . f)(a)] < a™ > [(Lx, 5 f)(a)l.

BeXy {0}, a+ BE(T)
Hence we get the inequality of the Lemma for Y = Y_, by taking

p= 2 Px,p,N-
BEEMU{O}y 04+ﬁ¢<1>

0
Let us recall (cf. e.g. [11, Section 5.1)) that Z is said wave-front if
a, =(a" +ay)/ag.
We will now make the following hypothesis on Z:
Let us assume from now, unless specified, that (H)

7 is wave-front and unimodular.

Let I < S. Let F be the subset of the set of simple roots II of a in n, such that @ is the
parabolic subgroup of G corresponding to the roots ¥,\(Fp). Let us recall some results of
[11, Corollary 5.6]. As Z is wave-front, there exists a minimal set F; < II which contains Fy
and such that:

(Fr) n No[S] = <{I).
Moreover, if (); denotes the parabolic subgroup of GG containing () and corresponding to the
roots YX,\(F7), and Q; = L U is its Levi decomposition with A < Ly, one has:

(LinH)oU; € Hr < Q7

where ()7 is the parabolic subgroup of G opposite to ); containing A. Let us denote by u;
the nilradical of the parabolic subalgebra q; .

3.2 Lemma. Let X € u; andu € U(g). There exists a continuous semi-norm on C5, . \(Z),
q, such that, for all f € C, (Z),

(LxLuf)(azar)] < q(f)(azar)@a]" (1 + [logaz|)™ (1 + [logar|)Y,
az € AE, afr € A[__

Proof. As L, is a continuous operator on Cf5, - y(Z), it is enough to prove the Lemma for
u = 1. By linearity, we can assume that X = X_, is a weight vector in a for the weight —a,
where « is a root of a in u;.

As X, € by, Tr(X_n) = 0and Y, = X_,. In particular, Ad(a)Y_, = a~“Y_, for
a € Az (recall that in the proof of Lemma 3.1, this is true only for a € A;). Hence (3.2) is
true for a € A, and:

(Ly_.f)(a) = > a*?(Lx,,f)(a), ae Ay

BeXy {0}, a+BEI)
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Let us assume a = aza; with az € Ay, a; € A;~. Then, as a?rﬁ < 1, and as a; € A] ",

at*? < d', by definition of f; (cf. (3.1)), one gets a®™? < a}’. Moreover, as elements of

U(g) act continuously on Cy, n(Z), there exists a continuous semi-norm p on CyF, . (Z)

such that, for all 5 € %, u {0},
[(Lx, ,f)(azar)| < p(f)(azar)*e (1 + |logaz|)¥ (1 + [loga;|)N, feCP.,n(2).
To get this inequality, we have used that:
| log(azar)| < ||logaz| + |logas.

The Lemma follows. O

3.3 Algebraic preliminaries

Let Ay, be the maximal vector subgroup of the center of the Levi subgroup L; of Q); contained
in A. Then (cf. [11])
ap,/arp, Nag ~a; C ag.

Let ¢;, be the center of [; and °l; = [I7, [;] + ¢, N €. One has:
[] = OII@GLI. (33)

Let pry be the projection of [; on az, parallel to Of;. Let pq, denote the half sum of the roots
in XT\(Fy), i.e. the roots of a in u;. From [11, equation (3.9)] and the fact that ar, < a, one
has az, nbh; = az, N b. Let us show that:

pg, is trivial on az, N by. (3.4)
From [11, Lemma 3.11], Z; is also unimodular and, as [; n h;-modules,

g/br =ur @ (I;/1; n by).

In fact, the action of ar, n by on [;/I; N by is trivial. Hence the action of ar, n by on u; has
to be unimodular. Our claim follows. Let us define a function dg, on L; by:

dg, (1) = (det(Ad 1)), lelLy,.

In particular
do,(a) =a”1, aeAg,.
Let us notice that, from (3.4),
dg, is trivial on Ay, n Ap. (3.5)

1

We define an automorphism of U([;):
oy . U([[) i U([])
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such that:
LO’](X) Zdé}OLXOdQI, X e [[,

e or(X) =X —po,(pri(X)), X €.
We define also a map p; : Z(g) — Z(I;) characterized by:
z—pi(z) eu U(g), z€Z(g)

Then 7, := oy0pur : Z(g) — Z(I;) is the so-called Harish-Chandra homomorphism and one
has:
Ly = dé} oLy zodg, zE€ Z(g).

One knows that Z([;) is a free module of finite rank over v;(Z(g)). Hence there exists a
finite dimensional vector subspace W of Z([;) containing 1 such that the map:

nu(Z@) W — Z(l)

URv +— uv

is a linear bijection.
Let Z be a finite codimensional ideal of Z(g) and let J = 7,(Z). Let V be a finite
dimensional vector subspace of v;(Z(g)) containing 1 such that v;(Z(g)) = J @ V. Hence:

Z(l) = (JeV)W
= JWeVW,

where JW (resp. VW) is the linear span of {uv : we J,ve W} (resp. {uv: ue V,ve W}).
We set W7 := VW. Let us notice that:

IW = Tu(Z(g)W = T Z(l).

We see that, if Z is the kernel of a character y of Z(g), one may and will take V' = C1, hence
Wz = W. One has:
Z(l;) =Wz @ ITW.

Let sz, resp. gz, be the linear map from Z(I;) to Wz, resp. JW, deduced from this direct
sum decomposition. The algebra Z([;) acts on W7z by a representation pr defined by:

pr(w)v = sr(wv), we Z(ly),ve Wr.

In fact:

The representation (pz, Wz) is isomorphic to the natural representation of Z(l;)

on Z([[)/Z([])j

We notice that:
w = pr(u)v + qz(uv). (3.6)
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Let (v;)i=1...n be a basis of W. Then:

-----

Z (zi(w,v,I))v;, (3.7)

where the z;(u,v,Z) are in Z. Let us recall that:

’YI(ZZ’(U? UaI)) = dc_gi © L/—LI(Zi(uava)) © dQI (3'8)
and that:
pr(zi(u,v,7)) € z(u,v,Z) + u;U(g).
Let us take a basis (u} ;);=1
a with weight ;. Then

p of uy. We may assume that each ur; is a weight vector for

.....

p
pr(zi(u,v, 7)) = zi(u,v,I) + Z up vij(u, v, ), (3.9)
j=1
where v; ;(u,v,T) € U(g).

Let jc be a complex Cartan subalgebra of g¢ of the form tc @ ac, where t is a maximal
abelian subalgebra of m, the centralizer of a in €. Let W (gc,jc) be the corresponding Weyl
group.

One has a = az, @ (a N °l;). Hence one has natural inclusions:

ay, < a” and ag < j¢. (3.10)

If A €j&, let xo = X3 be the character of Z(g) corresponding to A via the Harish-Chandra
isomorphism 7 from Z(g) onto S(jc)"@ic). More precisely,

xa(u) = (v(w))(A),  ue Z(g).
We define similarly the character x|{ of Z(I;).

When Z = 7, := Ker xa, we take, as we have already said, W7 = W and we write sy
instead of sz, ga instead of gz, pa instead of pz and (u,v,A) instead of (u,v,Z). Let us
show that, for u € Z(l;), sy(u) and gx(u) are polynomial in A. It is enough to prove this
for u = ~;(2)v where z € Z(g) and v € W. Then u = (y;(2) — xa(z))v + xa(2)v. Hence
gr(u) = (71(2) — xa(2))v € Z(1;)T and sp(u) = xa(2)v € W. Our claim follows. It implies
easily that:

zi(u,v,A) in (3.7) depends polynomially on A.
This implies, as p; is linear, that:
v; j(u,v,A) in (3.9) depends polynomially on A. (3.11)
Using Harish-Chandra isomorphisms, one sees that:

Each simple subquotient of the representation py of Z(Iy) is given

by some character of the form Xi{, where 1 varies in W(gc,jc)A. (3.12)
Let us notice that Xif = wa where w e W(lrc,jc).
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3.4 The function ¢; on L; and related differential equations

If 7 is a cofinite dimensional ideal in Z(g) and N € N* we denote by Awempn(Z : I)
(resp. Aiemp(Z : 1)) the space of f € Awempn(Z) (resp. Asemp(Z)) annihilated by Z.

Let f € Aempn(Z : I) that we might view as a function on G. We denote by ¢y the
function on L; with values in W} defined by:

< @p(l),v>= (Ly(dg} f)) (1), 1€ LpveWr (3.13)

This is a function on L;, not necessarily on L;/L; n H.
Let us study L,y for uwe Z(I). For v e Wr,

< Luyps(l),v >= Lyydg f(1), 1€ Ly
Using (3.6) and (3.7), we get:
< LUQDf(l), v >= LPZ(U)UdZQ}f(l) + 2 dé} (dQIL'YI(Zi('U‘vUvI))UidZ?}f) (l>7 le LI'
i=1

From (3.8) and (3.9), we then deduce:

n

< Lups(),v > = Lyl f(1) + . dg! (Leywwnydo, Ludgl f) (1)
nop i (3.14)
+Z Z dé} <LU;J Lviyj(uvvzz)dQILvidC_?}f> (l)7 l € LI'

One has

dg, o Ly, o dé} = L1

I

for an element v! of Z(I;). The operators L, (1) and L,r commute. Hence, as z;(u,v,Z) € T
and f € Aiempn(Z : I), one has:

Loy Lot | = 0. (3.15)

Let us define a function on L; with values in W7, vy, by:

< Wpall),v >= =Y dgr Ly Ly o (1), veWrleLy, (3.16)
Y]

where v} ;(u,v,T) = v;;(u,v,T)v]. From (3.14) and (3.15), we deduce:

Lups = "or(w)ps —pu,  ue Z(Iy). (3.17)

Let X € ar, nay. As f restricted to L; and dg, are left invariant by exp X (cf. (3.5) for
dg, ), one sees that:
LXgOf = 0.
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3.5 The function ®; on A; and related differential equations

Let us consider the natural projection p : a — az = ap/ag and let s be the section of p
introduced in (1.3). From [11, Corollary 5.6], we have that a; is equal to the projection of
ar, on az. Hence:

One may and will choose the section s such that s(a;) < ag,.

Recall that the map s is be also denoted by X — X or a — @ for the corresponding
morphism of Lie groups.
Recall that Ay = Az,. Let pr,~q be the half sum of the roots of a in [; nu. In particular

PQ = PLinQ T P@; ON O.
Let f € Aiempn(Z : I) and let us define a function @ : Ay — W3 by:

@f(dz) = &;lemQQOf(&Z), ayz € Az. (318)
Let us recall (cf. (3.13)) that, for v e Wr,
< gp(a),v >= Ly(dg, f)(a- 20) = dg, (Lo f)(a- 2), ae A,

where v’ = dg, ovo dé} € Z(I;). Hence, for az € Az and v e Wz,

< CI)f(az), vV >= d;pL’ﬁQdé}(dz)(vaf)(&Z : Zo).

One has: —PLA@ g1~ L —PLAQ~—PQ;
ay, dg,(az) ay Ay (3.19)

— G
= a, .

PQ _ —PQ

Moreover pg is trivial on ay (cf. (3.4)). Hence a, a, ”. But az -z = az. This leads to:

< ®slag),v >=a,"*(Lyf)(az), veWraze Ay (3.20)
This shows that ®; does not depend on the section s.

Let us study Lx®y for X € a;. It is equal to Li®y, where X e ap,. If ay € Ay,

a,""1"? =1 as a; € Ag, by our choice of the section s. Now we use (3.18) and (3.17) to get:

Lg®r(az) = 'pr(X)®p(az) — a, "%, ¢ (az), az € Ag. (3.21)
Let us study d;pLIﬁQ@/JﬁX(az) using (3.16):

< a;PLImeﬁX(&Z)’ v >= _&;PLjﬁQdé} (Cle) Z(Luﬂjvé,j(xﬂl)f) (az), ayz € Az, Ve WI-
]
Using (3.19), one has:

< a;pL[meﬁX(az),U >=< \I/f’X(az),U >, ay € Az,U € Wz, (322)
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where Wy x : Ay — W7 is defined by:

< \I/fyx(az),v >= — pQZ L“I]L ' sz)f>(az) veWz, X ear,aye Ag. (323)

Using (3.21) and (3.22), one gets:
LX(I)thpI(X)(I)f—\I/f’X, XGCI[.

One sets: )
I'7(X) = —th(X), X € aj. (3.24)

Hence, one has the important relation:
LX(Df = —FI(X)q)f — \Ijﬁx, Xe ar. (325)

We notice that I'z is a representation of the abelian Lie algebra a; on W7. For A € aj ¢, one
denotes by W7, the space of joint generalized eigenvectors of W7 by the endomorphisms
I'z(X), X € ay, for the eigenvalue A. Let Q7 be the (finite) subset of a} . such that W7, #
{0}. One has:
Wi = (‘D WI*,/\'
AeQ1

If A € Oz, let E)\ be the projector of W7 onto W7 , parallel to the sum of the other W7 ’s. We
endow W7 with a scalar product and if 7' € End(W75), we denote by |T'|| its Hilbert-Schmidt
norm. It is clear that E), commutes with the operators I'z(X), X € a;. We set

(I)f)\ = E)\(I)f.
The proofs of the following results (Lemma 3.3 up to Proposition 3.1/) follow closely the
work of Harish-Chandra (cf. [5, Section 22]). Here M is replaced by Ay and M, by Ay
3.3 Lemma. One has, for allaze Az, TeR, X;ea;, Ae Oz,

(i ]

@ j(az exp(TX1)) = T#X0 s (az) + f eTOPEX0Y ¢ (a7 exp(tX))) dt.
0

(it)
T
®f7A(aZ eXp(TX])) = BTFI(XI)@fj)\(CLz) + f E)\G(T_t)FI(XI)\I/ﬂXI (CLZ eXp(tX])) dt.
0

Proof. The equality (i) is an immediate consequence of (3.25). Indeed, we apply the el-
ementary result on first order linear differential equation to the function ¢ — F(t) =
P r(ay exp(tXy)), whose derivative is F'(t) = —Lx, Ps(az exp(tX;)) satisfies

F/(t) = FI(X[)F(t) + \ij,X[(aZ exp(tXI))

The equality (ii) follows by applying E) to both sides of the equality of (i). O
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Let
E\(X) := Eyexp(I'z(X) — MX))

for X € a;. Since F)\(I'z(X) — A(X)) is nilpotent, one has:
3.4 Lemma. We can choose ¢ = 0 such that:

|EA(O] < e+ XY, X eay,
where Nz is the dimension of Wr.

The function W x is a function on Ay and one is interested in its derivatives along
Y € az. On one hand, one has:

Lya;" = po(Y)a,".

One the other hand, one has:

ffu;j = [, ur ;] + uI_]f/ = aj(f/)u;j +up;Y.

Hence Ly Vs x and more generally L, Vs x, u € S(az), is a function of the same type than
U, x (see (3.23)).

3.5 Lemma. Fiz u e S(az).

(i) There exists a continuous semi-norm on Cg, .

(Z), pu, such that:

|Lu®s(azexp Xp)| < pu(f)(1+ [logaz])™ (1 + | Xi[)Y,
aze Ay, Xrea;, f e Aempn(Z :I).

(ii) There exists a continuous semi-norm on Cg, n(Z), qu, such that:

| L.V x(azexp Xp)| < qu(f)e” @01+ |logaz])N (1 + | X/])Y,
aze€ Ay, Xrea; , fe Aempn(Z:I).

Proof. Let us first prove (i). It is easy to see, using (3.20), that:
< LUQDf(aZ),v >= a}pQ (vaLu/f)(aZ), Ve WI,

for some v’ € S(az) with degw’ < degu. Then (i) follows from the continuity of the operator

LyrLy on CF, x(Z) and the definition of C5, ) y(Z) (cf. Lemma 2.2(i)). By definition of
Uy x (cf. (3.23)), one gets (ii) using Lemma 3.2. O

We say that an integral depending on a parameter converges uniformly if the absolute
value of the integrand is bounded by an integrable function independently of the parameter.
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3.6 Lemma. Let us fit ue S(az), A€ Qz, Xy € a; , and let us suppose that Re \(X;) >
SI(XI)' Then
(i) The integral

0
J E)\e_tFI(XI)Lu\I’ﬁXI (CLZI eXp(tX[)) dt
0

converges uniformly on any compact subset of Ay .
(i) The map
a0
Az, — j E)\e_tFI(XI)‘IfﬁXI (CLZI exp(tXI)) dt
0

is a well-defined map on Ay . Its derivatives along u € S(az) are given by derivation
under the integral sign.

Proof. One has

E/\e_tFI(XI) — e_tA(XI)EAet()‘(XI)_FI(XI)) — G—U\(XI)EA(*tX[)‘

Hence, from Lemma 3.4, one has:
||E,\e_tFI(X’)H <c(1+ HtXIH)NIe_tRe’\(XI). (3.26)

Using Lemma 3.5(ii) and (3.26), one can show that the integral in (i) converges uniformly for
az, € Ay. Let az, be in a compact subset C' of A, . There exists Ty > 0 such that, for all z €
C, zexp(TyX1) € A,. Writing S;OO = SOTO + S;OOC, az, exp(tXr) = az, exp Ty X exp(t — Ty) X7,
and, using the uniform convergence proved above, one gets (i).

The assertion (ii) follows from (i) and the theorem on derivatives of integrals depending
of a parameter. O

Fix f € Atempn(Z : Z) and A € Qz and put, for X; as in Lemma 3.6, i.e. Re \(X[) >
Br(Xr):

o = @
q)/\ = (I)f)\7
K 3-27
Uy, = VYpx, (3.27)
(I))\,oo(aZI;XI) = limT_,Jrooe_TFI(XI)(I)f,)\(aZIexp(TX])), CLZIEAEI.

It follows from Lemmas 3.3(ii) and 3.6 that this limit exists and is C*° on A . Moreover

o0
Lo®y o (az,, X;1) = L,®x(az,) + f Eye DL Wy (ay exp(tX))) dt,

0 (3.28)

ue Saz),az, € Ay,.
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3.7 Lemma. For X;e€ a;  such that Re \(X) > 0, one has:
Proolaz,, X1) =0, az €Ay,
Proof. One has
e "Xy (az, exp(TX)))| < e TN By (T X)) || @(az, exp(TX))|

and, from Lemmas 3.4 and 3.5(i), the right hand side of the inequality tends to zero as
T — +o0. Hence the Lemma follows from the definition (3.27) of @, (az,, X;). O

3.8 Lemma. Let Xy, X5 € a;~ and suppose that

Then
(I))\,oo(aZle) = ®)\,OO(G'ZI’ XQ)’ az, € AEI

Proof. Same as the proof of [5, Lemma 22.8]. We give it for sake of completeness. Let
az, € Az,. Applying Lemma 3.3(ii) to X, instead of X; and T instead of T', one gets:

e*FI(Tle +T2X2)(I))\(QZ[ eXp(Tle) eXp(TQXQ))

e (X)), (ay, exp(T1 X))

Ts
+J E,\e_FZ(Tlxl_tQXQ)\I/XQ(aZI exp(T1 X1 + t2 Xy)) dis,
0

for T\, T > 0. From Lemmas 3.4 and 3.5(ii) applied to T1.X; + £2 X5 instead of X7, one sees
that:

0
J | Exe 250X Wy (az, exp(Ty Xy + X)) diy
0

tends to 0 when 7T} — +o0. Hence:

limTI7T2H+OO G_FI(TlXH_TQXQ)(I))\((ZZI eXp(T1X1 + TQXQ))
limp, 400 e‘FI(Tle)(ID,\(aZI exp(T1 X1))
= q)A,OO(aZ[7X1)'

Since the left side is symmetrical in X; and X5, one then deduces that:

q)/\,oo(aZIaXl) = q))\,oo(aZpXZ)-
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We decompose Q7 into three disjoints subsets Q}r, Q% and Q7 as follows:
(1) Me QF if ReA(X) > 0 for some X € a; ™,
(2) Ae Q% if ReA(X) =0 for all X € a; ",

(3) Ne Q7 if A ¢ QF U QY ie. forall X € a;~, ReA(X) < 0 and there exists
X € a; such that Re A(X) < 0.

3.9 Lemma. Fiz A\ € QF and suppose that X € a;~ is such that Re \(X) > 5;(X). Then,
for any az, € Ay,
(I))\,oo(aZUX) = 0

and, for any u e S(az),

Q0
L,®x(az, exp(TX)) = — f Eye T2 L Wy (ay, exp(tX))dt, T eR.

T
Proof. Since XA € QF, there exists Xy € a; ~ such that Re \(Xy) > 0. Then, from Lemma 3.7,
Q) »(az,, Xo) = 0, and, from Lemma 3.8, as Re \(Xy) > 0 > ;(Xy), one has @) (az,, X) =
Q) (az,, Xo) for any X € a;~ such that Re A(X) > S;(X). This proves the first part of the
Lemma. The second part follows from (3.28) by change of variables and when we replace
az, by az, exp(TX). O

3.10 Corollary. Let A € QF. Suppose X € a; ™ is such that Re \(X) = ;(X)/2. Then, for
ue S(az), az, € Ay, and T > 0,

o0

| Lu®x(az, exp(TX))] < eT’BI(‘X)/zJ e ORI B\((T = ) X)LV x (az, exp(tX))] dt.
T

Proof. Since B;(X) < 0 and ReA(X) > £;(X)/2, one has in particular Re A(X) > £;(X).
Then one can see from Lemmas 3.9 and 3.6 that:

0

| Lu®r(az, exp(TX))| < JT e TIRAN By (T = 1) X) [ Lu U x (az, exp(tX))] dt.

Our assertion follows, since Re \(X) > [;(X)/2 implies that —(t — T)Re \(X) < —(t —
T)B1(X)/2 fort =T. O

3.11 Lemma. Suppose A € Qr, and X € a;~ is such that Re \(X) < 8(X)/2. Then

| Lu®x(az, exp(TX))[ < eT‘”(X’/Q(HEA(TX)HI\Lufb(azf)\l

Q0
b | e ORIE(T X)Lz exple)) ).
0

T>0,ueS(az),az € Ay,
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Proof. We use Lemma 3.3(ii) and the inequality (7' —t)Re A(X) < (T —t)5;(X)/2 for t <T
in order to get an analogue of the inequality of the Lemma where SSO is replaced by Sg The
Lemma follows. O

Like in [5, after the proof of Lemma 22.8], one sees that one can choose 0 < § < 1/2
such that:
ReA(X) <06(X), Xea; ,\e Q7. (3.29)

3.12 Lemma. Let A€ Q7 and X € a; . Then, forue S(az), az, € Ay, T >0,
|Lu®a(az, exp(TX))| < e (HEA(TX)HHLu@(GZI)H
Q0
b | e ORI E(1 - 0X) LWz exple)) ).
0

Proof. This is proved like Lemma 3.11, using that Re \(X) < 06,(X) and 0 <6 < 1/2. O

Let A € QY. Tt follows from Lemma 3.8 and the definition of 37 (cf. (3.1)) that:
For az, € A, , ®\wn(az, X) is independent of X € a; ™.
We will denote it by @, »(az,).
3.13 Lemma. Let A € QF and X € a;~. Then one has, forue S(az),T = 0 and az, € Ay,
L@z, XD(TX)) ~ L oraz, exp(TX))|

< eTﬁI(X)/QJ e PTORIEN(T = )X)]| LuVx (az, exp(tX))| dt.
0

Proof. From (3.28), one deduces

o0
L,®) (az, exp(TX)) = L,Py(az, exp(TX)) + J Eye DML Wy (ay, exp(tX)) dt.
T
The Lemma now follows from the fact that (T'—¢)8;(X) = 0ift > T. O
We define now:
By oolaz,) =0, az €Ay NeQf Qs (3.30)

3.14 Proposition. Let A€ Q7, X € a;” and u e S(az). Then, foraz, € Ay, T >0,
|ILu®x(az, exp(TX)) — Lu®x0(az, exp(TX))]
< (| B\(TX) || L@ (az,)|
o0
+ f e PRI E\(T — ) X)|| Ly x (az, exp(tX))] dt)-
0

Proof. It X € Q%L Q7 our assertion follows from Lemmas 3.12 and 3.13. On the other hand,
if A e QF, we can apply Lemmas 3.9 and 3.11, and Corollary 3.10. O
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4 Definition of the constant term and its properties

Let us recall that I is a subset of S and Z a finite codimensional ideal in Z(g).

4.1 Some estimates

In this Subsection, we establish some estimates analogous to the ones given in [5, Section 23].

4.1 Lemma. We fiz a compact set C in a;~ and choose g9 > 0 such that f1(X) < —2¢q for
all X € C. We put € = deg, where § is given by (3.29). Let u € S(ayz). Then there ezists a
continuous Semi-norm q on C’fecmnN(Z) such that, for all A e Qz, T >0, X € C, az € A}
and f € Arempn(Z : 1T),

|Lu®a(az exp(TX)) = Lu®pac(az exp(TX))]| < e q(f)(1 + | logaz])™.

Proof. As A7 is contained in A7 , this follows from Proposition 3.14, Lemmas 3.5(ii) and 3.4.
0

4.2 Lemma. Let A € Q7. One has:
Qrroolaz expX) = eFI(X)(I)ﬁ,\m(CLZI), Xearaz €Ay, f € Aempn(Z:T).

Proof. One may assume A\ € QY. From Lemma 3.3(ii) applied with 7" = 1, one has, for
Ay € Az, X € ar,

1

B_FI(X)(I))\(CLZ eXpX) _ (I),\(a,z) _‘_J E}\e—tFI(X)\IjX(aZ exp(tX)) dt.
0

Let Y € a; . Replacing az by az, exp(TY), with az, € Az, and multiplying by e~ 7Tz()

one gets:

e—FI(X—l-TY)(I))\(aZI exp(X + TY)) = €_FZ(TY)@/\(GZI exp(TY))

1
—i—f Ere TG (0, exp(tX + TY)) dt.
0

One can choose Ty > 0 such that az, exp(ToY) € A,. If T is sufficiently large, tX + (T —
To)Y € a;~ for all t € [0,1]. Recalling that A € Q2, it follows from Lemma 3.5(ii) applied to
az = az, exp(TyY) and X; = tX + (T —Tp)Y that, if az, € A, , the integral in this equality
tends to 0 as T — +o0. Recalling the definition of @ o (cf. (3.27)), one gets

e_FZ(X)@f,AﬁoO(aZI expX) = Prrnlaz,), Xearay e Ay,
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(Z : I) such

4.3 Lemma. Let A € Q7. There exists a continuous semi-norm p on Cpp, .y
that, for all f € Aiempn(Z : 1),

| aco(az,)| < p(f)(1 + [logaz, M™M=, az, € Ay,

Proof. We fix X € a; 7. Let az, € A, . If t is large enough, az exp(tX) € A,. More
precisely, if az, = expY with Y € az,, t has to be such that a(Y +tX) <0 for all a € S\I.

For this, it is enough that ¢ > ]%] for all « € S\I. But ]zgf()ﬂ is bounded above by C|Y||

for some constant C' > 0. We will take:

T=C|Y]| (4.1)
and write az, = az exp(—7TX) with az = az, exp(T'X) € A,. One has, from Lemma 4.2,
Drrm(azexp(—TX)) = e T2 Ed,, L (az). (4.2)

As A e QY, |Exe ™) is bounded by a constant times (1 4+ T||X|))"Z, where N7 is the
dimension of Wz (cf. Lemma 3.4). Using (4.1) and as X is fixed, one concludes that there
exists C > 0 such that:

|Bre M| < C1(L + | log az, ).

We remark that ||logaz| < |logag,| + |7X| is bounded by some constant times || logaz, |
because T' = C||Y| and ||X| is fixed. Then, using (4.2), the Lemma follows from Lemma 4.1
for T'= 0 and Lemma 3.5(i) for X; = 0. O

Let 7 be a finite codimensional ideal in Z(g), I < S, N € N* and f € Awpmpn(Z : I).
Let us define

filaz,) = Y < @pawlaz,), 1>, az €Ay, (4.3)
AeQY

From Lemma 4.2 and as the eigenvalues, for any X € ay, of E)\(I'z(X)) are pure imaginary
if A e QY one has that:

The map T — f;(exp(TX)) is an exponential polynomial with (4.4)
unitary characters. '

4.4 Lemma. For any f € Awempn(Z : I),
(La;1f);(az) = a'})Qf[(a[az), ar € A[, az € Az.
Proof. Using (3.20), one sees that, for any ay € Az, a; € Ay,

<@ _slaz),v>= a;pQ(vaLaflf)(az).
I
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But, as vf € Z(I;), La;1 commutes with L, . Hence:

<@La71f(az),7j> = CL;pQ(LaflLva)(az)7
I
ay®a;"a," (L f)(araz),
ai? < ®s(araz),v >,
al® < (La;1¢f)(az),v > .

Hence &, ;= a?QLa;1¢f. Going to the defintition to @ 4 (cf. (3.27) and (3.30)) and of
fr (cf. (4.3)), one gets the equality of the Lemma. O

Let C be as in Lemma 4.1. According to this Lemma and the fact that ® ), = 0 for
Ae QF U Q7 (cf. (3.30)) and C is a compact subset of a; ~, one has:

|y (az exp(TX)) = po0(az exp(TX))| < ce™"q(f)(1 + [ logaz])”,

T>0,az,eA,,XeC, (4.5)

where ¢ is the cardinal of Q7. By the property (3.20) of ®; applied with v = 1, one sees
that:
< ®s(a, exp(TX)), 1 >=a," e P2 f(a, exp(TX)).

Using the equation above and the definition (4.3) of f;, one deduces from (4.5) the following
Lemma.

4.5 Lemma. Let C be as in Lemma 4.1. There exist ¢ > 0, € > 0 and a continuous
semi-norm q on Aiemp n(Z) such that, for f € Awempn(Z 1), X€C, az€ A, and T >0,

[(az exp(T X))~ f(az exp(TX)) = fraz exp(TX))| < ce Tq(f)(1 + [ log az|)™.

Let us show that, for any X € a; ",
Tim ((az, exp(TX)) "2 f(az, exp(TX)) — fr(az, exp(TX))) —0, azgedy. (46)

If az, € Ay, it follows from Lemma 4.5. 1If az, € Ay, one writes az exp(TX) =
az, exp(ToX) exp((T' — Tp)X), where Ty > 0 is such that az, exp(7pX) € A,. Then one
uses Lemma 4.5 and obtains (4.6).

4.2 Definition of the constant term of elements of Ay, (Z : I)
Let us first start by the following general remark:

If an exponential polynomial function of one variable, P(t), with unitary char-

acters, satisfies:
lim P(t) = 0, (4.7)

t—+00

then P = 0.
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We define some linear forms 1 and 7y on Aiep,y(Z : Z) by:

<77>f> = f(zo),

<ni f> = fr(21), f€Aemp(Z:1).

Let us remark that 7 is a continuous linear form on Asepp n(Z : Z).

4.6 Lemma. With f as above, one has:
My, £(a) = a” fi(a), ae Ay

Proof. This follows from the definition of n; and Lemma 4.4 for a; = a and az = 1. O

4.7 Lemma. The linear form n; is the unique linear form on Aiepmp n(Z : L) such that:

(i) limg—oo (exp(T'X)) 772 (11 1 (exp(T X)) = my, p(exp(TX))) = 0, f € Aempn(Z
I),Xea; .

(1) For any X € aj, T — (exp(T X)) *2m,, s(exp(TX)) is an exponential polynomial with
unitary characters.

Moreover n; is continuous and Hy-invariant.

Proof. The assertion (i) follows from Lemma 4.6 and (4.6). From Lemma 4.6 and (4.4), one

gets (ii).
To prove the unicity of such an n; satisfying (i) and (ii), we use (4.7). If 7} is another
linear form satisfying (i) and (ii), then, for any f e Ajmpn(Z : Z),

My, £ (exp(TX)) —my s(exp(TX)) =0, Xea; ,TeR

This equality applied to 7" = 0 implies that n; = 7.
Let us show the continuity of n;. By taking 7' = 0 and az = 1 in the inequality of
Lemma 4.5, one gets:

f(z0) = fr(z0.0)] < Cq(f), ie. | <n, f>—<mn, f>|<Cqlf)

Moreover 7 is a continuous map on Ayemp n(Z @ Z). This implies that n; is continuous on
Atemp,N(Z . I)
It remains to get that n; is Hy-invariant. From (4.6), for any X € a;

lim ((exp(TX))™ f(exp(TX)) — fi(exp(TX))) = 0.

T—o0

One applies this to Ly f, Y € b, and gets:

lim (exp(TX) "Ly f(exp(TX)) — (Ly f);(exp(TX))) = 0. (4.8)

T—oo
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On the other hand, from Lemma 3.1, one has:

lim exp(TX) 72 Ly f(exp(TX)) = 0. (4.9)

T—o0

Hence, one gets from (4.8) and (4.9) that:
lim (Ly f);(exp(TX)) = 0.
T—0

But 7 — (Ly f);(exp(T X)) is an exponential polynomial with unitary characters (cf. (4.4)).
Hence, from (4.7), it is identically equal to 0. This means that:

ni(Ly f) = 0.

Then 7y is continuous and h-invariant, and hence Hj-invariant. O

For f e Aiempn(Z : I), let fr be the function on Z; defined by:

fr(g - zo0r) = my, 1(9), g€G. (4.10)

As n; is an Hj-invariant continuous linear form on Ay n(Z @ Z) (cf. Lemma 4.7), fr is
well-defined. Moreover,

(Lgf)r = Lofr, ge@. (4.11)

4.8 Proposition. Let f € Awmpn(Z : I). One has that fr is the unique C* function on Z;
such that, for all ge G:

(1) For X € a;™, limgo(exp(TX)) 77 (f(g exp(TX)) — fi(gexp(TX))) = 0,

(i1) For X € a;, T — (exp(TX)) "2 fi(gexp(T X)) is an exponential polynomial with uni-
tary characters.

Proof. The Proposition follows immediately from Lemma 4.7 applied to L,-1f, (4.11) and
the definition (4.10) of f;. Unicity follows from (4.7). O

4.9 Lemma. For any f as above:
frlaz,) = af fr(az,), az € Ag,. (4.12)

Proof. This follows from Proposition 4.8 and (4.6). O

4.10 Lemma. Let p be as in Lemma 4.3. For any az, € Ay and f € Atermpn(Z 1),

[fr(az,)| < az;"p(f)(1 + [log az, ).
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Proof. The Lemma follows from Lemma 4.3, (4.3) and (4.12). O

Let w; € Wy (the set analogous to W for Z;). Let w be the element of W associated to
wy by [11, Lemma 3.10].

Set Hy ., = wIHIwI_I and H, = wHw™'. Consider the real spherical spaces Z,, = G/H,,
and Zj ., = G/Hjw,, and put 2§ = H, € Z,, and 257 = Hrw;, € Z1w, = G/Hpw,. Then (cf.
[11, Corollary 3.7]) Q is Z,-adapted to P and a is the compression cone for Z,,.

For f e C*(Z), let us define f* by:

fg-2) = flgw-20), geG.
In the same way, one defines ¢"7 for ¢ € C*(Z;). Then f* e C*(Z,) and ¢*' € CP(Z1 ;).

Let I < S. Let us choose X; € a;~, i.e. X; € a; and a(X;) < 0 for all « € S\I. For
seR, let
as = exp(sXy). (4.13)

Let wy € W;. From Lemma 1.1 applied to the real spherical space Z;, one has:
wy = trhy, for some t; € exp(iay) and hy € Hycy, (4.14)
One has PwH open (cf. (1.5)) and there exists so > 0 with
Pwra,H = PwH, s> sg.
One has (cf. Lemma 1.1):
w =th for some t € exp(iay) and h € He . (4.15)

For any s > sqg, let us € U, by € Az, ms € M and hy, € H be given by loc.cit. Lemma 3.10.
In particular:

wras = usmsbSthy 5 = S0,
. -1 .

Do) =L 16
lim uy, = 1, (4.16)
$—+00
lim my, = m,,, for some m,,, € M.

§——+00

Let us notice that (4.16) is valid without assuming Z wave-front or unimodular.
Let us remark that:

If w; = 1, one can take w = 1 and then one has m,,, = 1. (4.17)
The proof of the following Proposition will be postponed to the next Section.

4.11 Proposition. Let w; € Wy, w € W be as above and f € Awempn(Z : ). Then
f* e Aempn(Zy : L) and

(L, f1)""(az) = (f*)1(az), aze Az
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Here fw S Atemp(Zw : I), (fw)[ € CKX)(ZQIJ’[)7 f[ € COO(Z[), (melf])wl € COO<Z[7wI), and,
from [11, Proposition 3.2(5) and Corollary 3.7], one has:

AZw’[ = AZw = AZ;
Az, = Az, = Az

Hence both sides of the equality are well-defined on A.
Before stating the next Theorem, we recall, from Proposition 4.8, that, for f € Aiemp(2),
fr is the unique C'* function on Z; such that, for all X € a;~ and g € G,

lim (exp(TX)) ™ (f(gexp(TX)) — fi(gexp(TX))) = 0 (4.18)

T—0

and
T — (expTX) 72 fr(gexp(T'X)) is an exponential polynomial

with unitary characters. (4.19)

We see that, using Lemma 4.2 for A € Q%, one can replace (4.19) by the stronger condition:

X — (exp X) 7?2 fr(gexp X) is an exponential polynomial on a;
with unitary characters.

Let f € Aiemp(Z). Then f € Aempn(Z : I) for some N as above and some finite codimen-
sional ideal Z in Z(g). Hence we can define f; as above.

4.12 Proposition. With f € Ayepnp(Z) as above, one has that f; does not depend on N and
7.

Proof. This follows from the characterization of f; above (see (4.18) and (4.19)). O

From this Proposition, we can define a linear form, still denoted 7;, on Asemp(Z), by

[ fr(zo01).
4.13 Theorem.

(i) With Nz = dim Wz as in Lemma 4.10, for all N € N, the map f — fr is a continuous
linear map from Aiemp n(Z 1 T) to Aremp ning (212 T).

(i) Let N € N, C be a compact subset of a;~ and Q' be a compact subset of G. Let wy € Wi
and (w,my,,) € Wx M be as above. Then there exist € > 0 and a continuous semi-norm
p on CF,, n(Z) such that, for all f € Ajempn(Z : T),

[(az exp(TX)) P2 (f(wazexp(TX)w - 20) — fr(w'mytaz exp(TX)ws - z0,1)) |

< e Ip(N)(1+[logaz|)¥,  aze Ay XeCuw e, T=0.
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Proof. In view of (2.6), to get (i), it is enough to prove that, for any w; € W, and any
compact subset €2 of G, there exists a continuous semi-norm p on A, v(Z : Z) such that:

sup  Ja#2(1 + log al) YN0 fr (waw)| < p(f)  f € Asempn(Z 2 D).

weQ,aeAZI

Using (2.7), one is reduced to prove this for 2 reduced to 1. For w; = 1, one can take w = 1
(cf. (4.17)) and our claim follows from Lemma 4.10. For general w;, one uses Proposition 4.11
to get (Lm,, fr)(az,wr) = (f*)1(az,) and the above inequality for H*. This shows (i).

One reduces easily to prove (ii) for Q@ = {1}, by using (2.7). Then, using Proposition 4.11,
one is reduced to prove (ii) with Q@ = {1} and w; = w = m,,, = 1 by changing H into H,,.
In that case, (ii) follows from Lemma 4.1. O

4.3 Constant term of tempered H-fixed linear forms

Let I be a subset of S.

4.14 Proposition. Let (m,V*) be a Harish-Chandra G-representation. If € is a Z-tempered
continuous linear form on V', then there exists a unique Zr-tempered continuous linear form
& on V' such that:

(1) limyp_,o(exp(TX)) ™72 (mg(exp(T X)) — mg, »(exp(TX))) =0, ve V® X ea; .

it) For any v € V®° and X € ar, T — (exp(T X)) P2my, ,(exp(T X)) is an exponential
&1,
polynomial with unitary characters.

Proof. Let
<&r,v>= (mey)i(z01), veV™.

Then
m{[,v(g) = <£1,7r(g_1)?}>
= (Men(g-1)0)1(Z0,1)
= (Lg-1mey)i(20,1)-

As f— fris a G-morphism (cf. Theorem 4.13), one then obtains that:

Me; (9 200) = (Mew)1(9 - 20,1)-

From the properties of (mg,)r, one sees that (ii) is satisfied. Furthermore, from Theo-
rem 4.13, one sees that (me,); € Aiemp,n(Z;) for some integer N. Hence &; satisfies the
required properties. Unicity is clear using (4.7). O
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4.4 Application to the relative discrete series for Z

As Z is wave-front and pq € az, one has pg Qlay S 0. Hence pgay , = 0.

Let x be a unitary character of Az . We recall that,ifa e Azp and we W, awH = wa
(cf. [11, Lemma 3.5]). As Az g normalizes H, there is a right action (a,z) — z-a of Az g
on Z. Let C*(Z, x) be the space of C* functions on Z such that:

f(z-a) =x(a)f(z), a€Azp,z€Z.
If feC®(Z,x),ueU(g) and N €N, let

ryu(f) = sup la™*2(1 + [[log a| )™ (L f)(waw)|,
weQ,acA, /Az g,weW

and we define:
C(Z,x) ={feC?(Zx): rvulf) <0,NeN,ueU(g)}

Let us recall that H = HAyz g and 7 = G/PAI If x is a character of Az g, we extend it trivially
to H on a character of H still denoted y. Let us define L?(Z; ) as in [11, Section 8.1], by
replacing y by x L.

4.15 Theorem. Let (m,V®) be a Harish-Chandra G-representation and n be a Z-tempered
continuous linear form on V* which transforms under a character x of Azg. Then the
following assertions are equivalent:

(i) For allve (V®) ), My € LA(Z; x).
(ii) For all proper subset I of S, nr = 0.
(i1i) For allveV®, m,,ecC(Z, x).

4.16 Remark. Note that we use x~! instead of y in [11] as we use that the linear form 7
transforms by x under the natural action of Az g on the dual of V*.

Proof. Let us assume (i). Let S = {01,...,04} and wy,...,ws € az be such that:

Ui(wj') :51',]', Z,j = 1,...,8
wiJ_ClZE, 1=1,...,s

Here we use the scalar product on az defined before (1.4). From [11, Theorem 8.5], the linear
form Ay, on agz, defined in loc.cit. (6.10), satisfies

(Avy = p)(w;) >0, j=1,....s (4.20)

Then it follows from loc.cit. Theorem 7.6 used for a fixed X € a, of norm 1, Q = {exp(—X)},
w=1and t = 1, that there exists a d € N and a continuous semi-norm p on V* such that:

[myo(@)] < pu)a®(1+ [logal)?, aeAzveV, (4.21)
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where V' = (V*)x). Let I be a proper subset of S and X; = =%, o ,wi € a; .
From (4.20), one deduces that one can choose > 0 such that:

(Aviy = p@)(X1) < =0.
Hence, one deduces from (4.21) that, for each v e V|
[0 (exp(tXr))] < p(v)e™ 0 (1 + ¢ X7 ]) e, t=>0.
As [ > 0, this implies that:

tE{POO(GXP(tXI))_mew(eXP(tXI)) = 0.
From the definition of the constant term 7n; of n (cf. Proposition 4.14) and from (4.7), one
deduces n;(v) = 0 for any v € V. As 5 is continuous on V* and V is dense in V®, one
concludes 1y = 0. This achieves to prove that (i) implies (ii).

Let us assume that (ii) holds. Let Z be an ideal of Z(g) which annihilates V or V. It
is of finite codimension. Let us assume that, for all v € V=, m, , € Awemp,n(Z : I). Then
one can apply Theorem 4.13. Let v € V* and set f = m,,. Let I & S. Let C be a compact
subset of a; ~, {21 be a compact subset of G and u € U(g). Hence there exists a continuous
semi-norm p on Aemp n(Z), € > 0 such that:

|(az exp(TX))™72 (Ly.f)(waz exp(TX)w - z)]

< e~ Tp(f)(1+ |logaz|)V, aze A App X eCwewew,T>0. (422

From this, we will deduce that f € C(Z, x). Let S; be the unit sphere on az/az g and let
Xo e Sinay/aze. Let Qp be an open neighborhood of X in S; n a,/az g such that, for
all X € Qp, a(X) < a(Xy)/2, a € S. Let I be the set of @ € S such that a(Xy) = 0. One
has I # S. Then one has Xg e a; . Let Y € Q and ¢t > 0. Then t(Y — X(/2) € a, and
exp(tY) = expt(Y — Xo/2) exp(tXo/2). Using (4.22) for X/2 instead of X, expt(Y — X,/2)
instead of azy and T' = ¢, one gets:

[(exp(tY')) ™72 (Lo f)(w exp(tY Jw - 2o)]
< e p(f)A+t]Y — Xo/2])Y, Y eQywe,weW,t=>0.

One deduces easily from this that:

sup a="2(1 4 | log a|)™|(Lyf)(waw - 2)| < +o0.
weq,weW, acexp(R+ Qo)

Using a finite covering of the compact set S1na,/az g, one deduces from this that f € C(Z, x).
This achieves to prove that (ii) implies (iii).

To prove that (iii) implies (i), one proceeds as in the proof that (ii) implies (i) in [11,
Theorem 8.5]. O
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5 Proof of Proposition 4.11

We refer to Section B for the definition and properties of rapid convergence. The main goal
of this Section is to prove:

5.1 Proposition. Here we only assume Z real spherical (not necessarily wave-front or uni-
modular). The families (asb; ') and (us) converge rapidly to 1 and one can choose the family
(ms) such that (ms) converges rapidly to mu,, .

Let w; € Wy and w € W corresponding to wy as in [11, Lemma 3.10]. In particular, there
exists sqg > 0 with Pw;a,H = PwH, s > sg. Then one introduces us, € U, by € Az, mgs e M
and hs € H as in loc.cit. Lemma 3.10 (cf. (4.16)).

5.1 Reduction of the proof of Proposition 5.1 to the case where Z
is quasi-affine

First we will reduce the proof to the case where Z is quasi-affine.

Let H be the connected algebraic group defined over R with Lie algebra . Let us recall
that Z = G/H is quasi-affine if Z = G/H is quasi-affine (this is equivalent to suppose that
there is an embedding of G/H in an affine space V' defined over R).

Hence let us assume that the Proposition has been proved when Z is quasi-affine. We
want to prove it for a general Z.

Given a real spherical space G/H, we want to associate a quasi-affine real spherical space
Z7'=G'/H'.

From [3, Theorem 11.2], there exists a rational representation of G, (w,V’), which is
immersive, defined over R and such that there is a line ¢ = Cv, defined over R, such that:

H(C) = {weG(C): (@)l < 1},
b, = {Xege: n(X)lc i}

We denote by ¢! the algebraic character of H defined over R by which H(C) acts on wv.

Now we let, for F = R or C,

Then the map
(9,2)H'(C) = zm(g)v

is an embedding of Z'(C) := G'(C)/H'(C) in V defined over R. Then, with our convention,
Z' = G'/H' is a quasi-affine real spherical space, where H' = {(h,%(h)) : h € H} and
G' =G x R*.

If P/ = P x R*, then it is easily seen that P'H’ is open in GG. Let us prove the following
Lemma.

We thank R. Beuzard-Plessis for his help for the proof of the following Lemma.
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5.2 Lemma.
(i) The parabolic Q' = Q x R* of G’ is Z'-adapted to P'.
(i) There is a canonical exact sequence 0 — {0} x R — az — az — 0.

(11i) The set ay, is invariant by translation by the image of {0} x R in az and projects onto
a.

() If Z is wave-front, the spherical space Z' is also wave-front.

(v) The exact sequence of (ii) induces the following exact sequence

0— {O} XRHGZ/,EHGZE—)O.

Proof. To get (i), one has to check the conditions (1) to (5) in [10, Theorem 2.3]. Let
L' := L x R*. First, let us consider the map:

Q xy (U'/L'nH) — Z
(q/’ l/L/ A H/) —> q/l/}]'/7

and let us show that it is a diffeomorphism. This reduces easily to prove the injectivity which
is equivalent to Q' n H' = L' n H'. But (¢,s) € H with g € @ and s € R* is equivalent to
g€ @Qn H and s = 1(q). But then, by the local structure theorem for Z, one has ¢ € L n H.
Hence (¢, s) = ({,%(1)) with [ € L n H, and hence (q,s) € L' n H'. Hence Q' " H' < L' n H’
and the reverse inclusion is clear. This proves (1) and (2) of loc.cit. Theorem 2.3.

Let us notice that L), = L, x {1}. Indeed, as L, is a product of connected semisimple
Lie groups, ¢, = 1. Hence, as L,, ¢ H, L!, ¢ H' which proves condition (3) of loc.cit. The-
orem 2.3.

Let us look at (L' n P')(L' n H'). One has {1} x R* < L' n P'. Hence

(LanP)x{1H)((Ln H) x {1H({1} x R*) < (L' n P")(L' n H").
But, by the local structure theorem for Z,
(LnP)(LnH)=L.

Hence, as wanted, we get:
(L'nPYL'nH) =1L,

i.e. condition (4) of loc. cit. Theorem 2.3.

Similarly we get condition (5) of loc.cit. Theorem 2.3, i.e. Q"H' = P'H’. This finishes to
prove (i).

Let us prove (ii). The space az is the quotient of a;, = ay x R by:

ap b ={(X,¥(X)): X €a,n b},
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where U denotes the differential of . It is clear that the projection of a;, on the first factor
of ar, x R followed by the projection from aj, to az goes through the quotient in a surjective
map from az to az. Its kernel is clearly {0} x R. This proves (ii).

Let us prove (iii). Let a,~ (resp. a, ) be the interior of a, (resp. a,). Let by, =
(hnl)@u and b, = (b’ nl')®u". Then, from [8, Lemma 5.9], one has:

For X € ay (resp. X' € az), X € a;~ (resp X' € ay7) if and only if

. . 5.1
limy_, 4o 24V () = by (vesp. limy_ 4o 24X () = Bim)- (5.1)

It is clear from (5.1) that a,,~ is invariant by translation by the image of {0} x R in ay.

Let X’ € a,, and X its projection on az. Let us look at ') (h). Tt is the projection of
X (") on the first factor of g x R. Let O be the open subset of the Grassmanian Gr(g’)
of g/, consisting of the subspaces of g’ which do not contain {0} x R. The map from O to
the Grassmanian Gr(g) of g which associates to W € O its image by the projection onto g
is continuous. Then the second condition of (5.1) implies that X € a, .

Now let X € a, and X € a; which projects onto X € az. Let X’ be the projection of
(X,0) in az. Hence X’ projects onto X.

We study e®X (RH’) for H' element of a basis of . For this, we take a basis of ' and
elements of the form H, = (X_, + T(X_,), VY(H,)) (cf. (1.4) for the definition of T'), where
H, ebisequal to X_, +T(X_,) and X_, describes a basis of g=®. If H' is an elements of
Unb, e XRH =RH < b, . If H = H/, then

etadXH(/X _ ( —t@(X)X + Z Xa57\I/(H )) (52)
BeX,u{0}

Multiplying by e® ) one gets:

Dy (X 4 Y @y, @), (5.3)
BeX, u{0}

If Xo # 0, (@ +B)(X) = (a+B)(X) <0,as 0+ fe Mcayand X ca; .
If a(X) < 0, then e/*X)W(H,) —— 0 and (5.3) imply

t—+00

:><x

lim etadX]RH’ R(X _4,0) < b,
t—+o0
Let us assume o(X) > 0. Then, if X, 5 # 0, one has (o + 8)(X) < 0 and a(X) > 0. Hence
B(X) < 0. Using (5.2), one sees that lim,_, .o X H! = (0, U(H,)).
Let p be the space of Y in g such that lim,_, 24Xy oxists. Then py is a parabolic
subalgebra of g with Levi subalgebra [ equal to the centralizer of X in g. The nilradical

ug of pg is equal to the set of Y e g such that lim; Xy — (. Hence H, € ug which
implies that H, is nilpotent. As W is the differential of a rational character of H, one has

U(H,) = 0.
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If a(X) = 0, again, as X € a,, if Xap # 0, one has S(X) < 0. From (5.2), one
deduces that lim; ,, e™XH, = X . This shows that H, € py and X_,, € [y. Moreover
H, = X_,+ X with X! eug. As X_, is nilpotent, this implies that H, is also nilpotent.
Hence V(H,) = 0 and, as above, we deduce from (5.3) that:

lim etadXRH’ =R(X_4,0) < b,

t—+00
This shows that lim;, o e®Xh’ = b}, and X’ € a, as wanted. This proves that a
projects onto a,~. We get (iii) by taking the closure. Remark that (iii) also follows from [7,
Corollary 6.10].

To prove (iv), let us assume that Z is wave-front. Let X’ € a,, and let X be its projection
on az. As Z is wave-front, there exists X € a, which projects onto X. Hence there exists
r € R such that (X,r) € a; x R = aj, projects on X' € az. Hence Z' is wave-front.

The last assertion (v) of the Lemma follows from the equalities az 5 = a; N —a; and
az g = a, N —a,. This achieves to prove the Lemma. O

We define § = b’ + az g = h x R. Then I:f(’] = ﬁo x R*, where ﬁo = ﬁ(c’g N G and
fAI(’) = ﬁ[{c,o N G'. The (P, ﬁ(’))—orbits have representatives in G' as P’ contains {1} x R*.
Then, if w’ e G, P’w’ﬁ(’) = (ow]o) x R* for some w € G and P’w’ﬁl(’) is open in G’ if and
only if PwHy is open in G. Let us consider the set F given in the proof of Lemma 1.1. It
follows from the previous discussion that the corresponding set for Z’ can be taken equal to
F.

We come to the set F* defined in [11, equation (3.15)], i.e. 7" is a set of representatives
of the finite group HO/HAZE Then HO = AzpF'H. As H, = HO x R* (see above) and
Az g = Azp xR one has H(') = Ay p(F' x{£1})H'. Hence the set F’ for Z’ can be taken
to be contained in F’ x {+1}. Looking at the end of the proof of Lemma 1.1, one sees that
one can arrange the set YW given for Z’ by this Lemma in such a way that W is contained
in W'.

Let us recall that we have chosen a section s : ay — az < a;. We may and will choose
a section s’ : ay — ap such that, if e; € az is the image of (0,1) € {0} x R in az, then
s'(e1) = (0,1). Then it follows easily from Lemma 5.2(v) that ITI(’QO contains C* and is equal
to ]TIC,O x C*.

Let I ¢ S and X € a;~ < ay. Let X’ € a,, which projects to X. It follows from [11,
Section 3.1.2] that there exists lim,_, ., e1X")(h’) that we will denote by b’. Let us show that
b, = limy .o €?9X(f). In fact, if (X,7) € a, x R projects on X', "X’ () = ed(Xn) (),
As {0} x R is central in g’, one gets X' (f') = X (/) = 24X (/).

Let Hj be the analytic subgroup of G’ with Lie algebra h’. Then (cf. loc.cit.) Z; = G'/Hj
is a real spherical space and az = az.

5.3 Lemma. Using the notation of (iii) of the previous Lemma, one has that ugé 1S tnvariant

by the image of {0} x R in az and projects onto ay .
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Proof. The invariance of ag} by the image of {0} x R in az is proved in the same way than
the invariance of a, (or ay, ) in the proof of Lemma 5.2(iii).

Let us recall that e; is the image of (0,1) in az. For simplicity, we will identify (not
canonically) az to az xR by choosing a section o of the projection of az to az and defining a
linear bijection az x R — az by (X,r) — re; +0(X). Then Lemma 5.2(iii) can be rewritten
as ay = az x R. Let C < az (resp. C' < ayz) be the closed convex cone generated by the
set S (resp. S’) of spherical roots of Z (resp. Z’). One has S < a} and also S’ < a}, as
Re; c az g.

To finish the proof of Lemma 5.3, we will need the following simple Lemma.

5.4 Lemma. Let C' be a convex cone generated in a real vector space E by a finite family =
of linearly independent vectors. If S is a finite set of generators o this cone, then S contains
a family Sy with a bijection & — «(§) from = onto Sy such that, for all £ € Z, a(&) is a
non-zero and proportional to =. One says that the elements of = and Sy are proportional.

Proof. Let = ={&,...,§} and S = {ay,...,a,}. We can assume that i, ..., generate E.
Let f; be a linear form on F such that:

fil6) = 0,
fil§) > 0if j#i.

Hence f; > 0 on C. Let &, € 2. As ¢, € C and S generates C, one can write:

n

&io = Z CjQj.

j=1

Then f;,(&,) = 0 implies that, for all j such that ¢; # 0, one has f; (o;) = 0. Let j €
{1,...,n} be such that ¢; # 0. Let us show that «; is proportional to ;. In fact, one can
write a; = Zizl d;& with d; = 0. Then f; (a;) = 0 implies that, for i # iy, d; = 0, as
fio (&) > 0 for i # iy. The set of such «;’s, when iy varies, is denoted by Sp. Such a Sy has
the required properties. O

End of proof of Lemma 5.5. From [7, Corollary 12.5], C' is the cone generated by Zg(Z7)
whose elements are linearly independent (cf. loc.cit., Corollary 10.9), and similarly for C”.
Let Sp (resp. S;)) be the subset of S (resp. S’) defined by Lemma 5.4 which forms a set of
linear independent generators of C' (resp. C").

Note that C' (resp. C”) is the dual cone of a, (resp. a,,) because a, (resp. a,,) is the dual
cone of C' (resp. C') and C (resp. C') is closed. From Lemma 5.2(iii), one sees that C' = C".
Hence, by Lemma 5.4, the elements of Sy and S|, are proportional.

Now ay ={Y eaz: a(X) <0,a eI} Let Iy = In Sy Let us prove that a, =
{Yeaz: a(X) <0,a € Iy}. Let us recall that, as X € a;~ < a,, one has a(X) < 0 for
all o e S;and I = {a € S: a(X) =0}. Let « € I. Then a € C and hence is a linear
combination of elements of Sy with coefficients greater or equal to zero, as Sy generates
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the convex cone C. Evaluating at X, one sees that the only elements of Sy which actually
contribute to this linear combination are elements of I;. Our claim follows. Similarly, one
has I' = {a e 8" : a(X') =0} and I = I' n S.

We have identified the elements of S’ with elements of a} and one has a(X’) is equal to
a(X) for this identification. Then I = {a € S, : a(X) = 0}. As the elments Sy and ), are
proportional, the elements of Iy and Ij are proportional. But, as above, ag} ={Yea,:

a(Y) < 0,a € Ij}. Hence one gets the equality:

ClZ} == ClZI X R.

This implies that az g = az, g X R. As for Z, one sees that this implies that one can
choose Wy (for Z7) which contains W;.

Starting with w; € Wy < W, one first find with [11, Lemma 3.9] an element w’ of G’ such
that P'wra,H' = P'w'H' for any s > sy and such that P'w’H’ is open. One can take w' € G,
as P’ contains {1} x R*, and even in W, as WV contains a set of representatives of all open
(P, H)-double cosets (cf. [11, just after equation (3.15)]). Then the elements b, ms, hs € G
given by (4.16) for G can be obtained via the natural projection G’ — G from the elements
b, ml, h’ € G' given by equation (4.16) for G’. Hence, if the Proposition 5.1 is true for Z’,
it is true for Z.

5.2 Preliminaries to the proof of Proposition 5.1 when 7 is quasi-
affine

A finite dimensional representation of G is said H-spherical (resp. K-spherical) if it has a
non zero H-fixed (resp. K-fixed) vector. A finite dimensional representation of G is said
H-semispherical if it has a real line fixed by H. Let I" (resp. ['s, I'x) be the set of (equiva-
lence classes of) finite dimensional H-spherical (resp. H-semispherical, H and K-spherical)
irreducible representations of G. If (m, V) € Iy, let A, € a* be the highest weight of 7* with
respect to a and n. Let us show that any non zero v € V', which transforms under a character
of H, is not orthogonal to the space of weight A in V*, V¥ . If it was not the case, denoting
by Pco the analytic subgroup of G(C) with Lie algebra pc, one would conclude:

<m(h)v,7*(p)vy >=0, he Hco,pe Pep,ve VH,UL eVy.

But HcoPcp is Zariski open in G(C), hence dense in G(C). One would then deduce from
the above equality that v = 0. This proves that for any v as above, there exists v} € Vi
such that:

<w,vy >#0.

If (m,V) el and a € A m H, on one hand < 7r( a)v,vy >=< v,v5 >, and on the other
hand < 7(a)v,v} >=a* <wv,v} >. Thus a* =1 for any a € An H. This implies that
Ar € 0.
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5.5 Lemma. Let (7,V) € I's. Let v be a non zero vector of V. which transforms under a
character 1 of H. Let X be the highest weight of ©* with respect to a and n. Let us decompose
v under the weight a-subspaces of V. Then:

v = Z V_X+pu)

peNY,

where v_x4, 18 non zero and of weight —\ + u, € al,. Moreover, if X € a,” and j is non
zero, then p(X) < 0.

Proof. On one hand, as one notices, < v, vy ># 0 for some element v§ of V)*. On the other
hand, as m(a)v = ¥ (a)v for a € Ay, one has a™ < v,vf >= (a) < v,v} > for a € Ap.
Thus a=* = v(a) for all a € Ay. Then all x in the sum are trivial on ay and hence p € af.

Let X € a;” and a; = exp(tX). Let Y € n= < byy,. Then, from (5.1), there exists a
sequence (t,) which tends to +00 and a sequence (X,,) in b such that Y,, = Ad(a, )X, tends
to Y. By extracting a subsequence, and using the conjugacy of the unit sphere, one can find
a sequence (¢,) of non zero real numbers such that (v,) = (¢,7(as,)v) converges to a non
zero limit w. Then 7(Y,,)v, tends to 7(Y)w. But

7(Yo)vn = cpml(ay,)m(Xn)vy,
= \I](Xn)vna

where U is the differential of v). Hence 7(Y)w is proportional to w. As n~ acts by nilpotent
operators in V', this implies

TY)w=0, Yen .
Then w is a lowest weight vector. Projecting onto the weight spaces, one sees that, up to
a scalar factor, w = v_, and that (c¢,) is equivalent to a; . Hence we may take ¢, = a; .
As v, = a) m(ay,)v, one sees that, for all  # 0 occuring in the sum, et X) tends to zero.
Hence our claim follows. O

5.6 Proposition. Let F' be a non identically zero regular function on G which is left-N -
wmwvariant, transforms on the left by a character x of A and on the right by a real character
Y of H. Let A € a* be the differential of x at the identity. Let X; € a;~ and X, € a; which
projects onto Xr. Let a, = exp(sf(;). Then

(i) limy_, o a}R(a,)F exists in C[G] and is non zero, where R is the right reqular repre-
sentation of G in C[G], the space of complex valued regular functions on G. We denote

(ii) The function Fy is left-N-invariant and transforms by the character x of A on the left
and by a real character 1; of Hy on the right. Moreover, if ¥ is trivial, then 1 is
trivial too.

(iii) One has Fir., = Fiirc,-
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Proof. Let W be the differential of ¢ at the identity. Let Vi or V' be the linear span in C[G]
of the right translates of F' by elements of G. Let v* be the linear form on V given by the
evaluation at 1. Let m be the right regular representation of G in V. Then one has

F(g) =<v*,7(9)F >, g¢geQG.

Our hypothesis on F' implies that (7,V') € I'; and v* is of weight A under a for the contra-
gredient representation 7* of 7, and is left- N-invariant. Obviously v* is cyclic for 7*. The
decomposition U(g) = U(n")U(a)U(m)U (n) implies that the a-weights of V* are of the form
A plus a sum of roots of a in n~. Then the weights of V' are of the form —\ plus a sum of
roots of a in n. One writes F' € V as a sum

F = Z UV \tps

pneACNY,

where v_y4, is a vector of weight —A + pin V. From Lemma 5.5, one sees that, if v_;, # 0,
one has p(X;) < 0. Then one sees easily that F; exists and satlsﬁes

F] = Z V- \+p- (54)

peAu(Xy)=0

Let us show that v_, # 0. In fact, as PcoHc, is Zariski dense in G(C), F is not identically
zero on ProHcyp. Let g = namh € PeoHcp with F((g) # 0. Then < v*,m(m)F ># 0. But
<v*,m(m)F >=<v* m(m)v_, >, as weight spaces of V for a are M-invariant and v* is of
weight A and thus orthogonal to m(m)v_y,, for g # 0. Hence v_) is non zero.

From its definition as a limit, one sees that Fj transforms on the left by x under the
action of A and is left- N-invariant. It remains to prove that F; transforms on the right by
a real character of H;. It is enough to prove that RF7} is right invariant by the action of
hr. It is clear, from the definition of F; as a limit and from the fact that [ n b centralizes a
and RF is right h-invariant that RF7 is right invariant by [ n . Let X € h; be of the form
X =Y +T;(Y), where Y € g7* with v € £,,. One has X' =Y +T(Y) € h and

X = lim afAd(as) X' (5.5)

S$—+00

Hence
aA+a ( )7T

s F =9 (X")ag (agm(as) F). (5.6)

(X
As a)tern(a)m(X)F = a®m(Ad(as) X")adw(as)F, (5.5) and the definition of F; imply that
the left hand side of (5.6) tends to w(X)F;. The r1ght hand side has the same limit and, as
(a}m(as)F) tends to Fy and as WU(X’)a® is real, this limit is a real multiple of F;. Hence we
get

W(X)F[ERF[.

Thus we have proved that RF7 is invariant by 7(h;). Hence F transforms by a real character
¢] of H I-
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The proof above shows that, if ¢ is trivial, ¢/; is also trivial which gives the last statement
of (ii).
Let us prove (iii). It is clear that, if [ € L¢, as as € Ay,

R(a,)F(l) = F(las) = a; F(l).
Hence a}(R(a,)F)(l) = F(I). This implies (iii). O

We come back to the notation of (4.14), (4.15) and (4.16). Let F' be as in Proposition 5.6,
i.e. F'is a regular function on G which transforms on the left trivially under N, by a character
x of A, and which transforms on the right by a real character ¢) of H. Let A be the differential
of x. Then one has, with the notation of the proof of Proposition 5.6,

w(trhras)F = ¥(he)m(usmsbsw)F. (5.7)

We define N B
F, =a)r(a,)F, F,=a)r(b,)F,
Ys = Usml.

(5.8)

Then, as { and by commute as elements of Apco, (5.7) can be rewritten as follows

m (i) Fy = o (hy)b(h)m(y,) F. (5.9)
Let P(VE) (resp. Pr(VE)) be the complex projective (resp. real projective) space of V.

5.7 Lemma. One has

(1)
F rapid F
s §—+00 !

(ii) |
[ (R (ys) BS] —2% [y (hy)w (1) Fr]  in Pa(Vi).

s—>+00
(iii) Moreover, if v is trivial, then m(y,)F, % 7(t;)Fy.
Proof. One has with the notation of (5.4),

|Fs = Fil| = Jagm(a)F — Fi|

=1 ) @l

peA,u(Xr)#0

But, as X; € a; , one has, from Lemma 5.5, u(X;) < 0 if u(X;) # 0. This implies that
(Fs) tends rapidly to F; when s goes to +00. Then, together with (5.9), this implies that

~

[7(ys)Fs] = [¢(h)7(ys) Fs] converges rapidly to [7(trh1)Fr] = [Wr(h)7(t;)Fy] in Pr(Ve). If
1 is trivial, one even has 7(y,)F, LZT» m(t;)Fy. O
§——+00
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5.8 Lemma. Let us recall that Z is quasi-affine. Then

(i) For all (w,V) e 'k,
(asbgl)Aﬂ rapid 1.
§—+00

(11) The family (asb;') converges rapidly to 1 when s — +o0.

Proof. Let (m,V) € 'k, vy be a non zero H-fixed vector and let v* € V* be a non zero
highest weight vector with weight \,. Let F'(g) =< v*,7(g)vyg >, g € G. Then F satisfies
the hypothesis of Proposition 5.6 and is even left-M-invariant. From Lemma 5.7(iii), one
sees in particular that

(R(ys) E3) (1) =25 (R(E1) Fy)(1). (5.10)

But ys = usmst. From the definition of ﬁ’s, one gets

~

Fi(ys) = EL)‘"F(uSmSﬁ)S)

S

and from the covariance properties of F', one sees that
ﬁ’S(ys) = (asbs_l)AWE_AWF(l)-
Then, from (5.10), one deduces that:

(a7 )M E M F(1) L% Fy(f)).

From Proposition 5.6(iii), one has Fy(f;) = F(t;). But ; € exp(iar), and hence F({;) =
(t/)™F(1). Moreover F(1) # 0 (see above). This proves that there exist € > 0 and C' > 0
such that, for s large enough,

\(asbs’l)A’r — (ff}l)’\”\ < Ce™°%,

But (a,b;1) M is a positive real number as A, € a* and a,b;! € Ay, and (t; ')~ is of modulus
one. This implies that (ftNI_l)’\" is a real number of modulus one, greater or equal than zero,
as it is the limit of positive numbers. Then this implies (i).

The assertion (ii) is a consequence of (i) and of the fact that {\; : 7 € 'k} generates a3,
as Z is quasi-affine (cf. [10, Lemma 3.4]). O

5.9 Lemma. With the notation of Lemma 5.7, one has

(i) [(h)m(ys) Fr] —2% [y (hy)n(ir) Fr) in Pr(Ve);

§——+00

(ii) [7(ys)Fr] —2% [x(ir) Fy) in P(Ve).

§—+00
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Proof. Clearly the assertion (ii) follows from (i). Let us prove (i).
For s > sg, asb;' € Az and azb;! = exp X, for X, € az. Hence, as €Xpjq, Is a diffeomor-

phism, X mpj ', 0 and, as the section defined in (1.3) is linear, one has:
—+00
X, e, (5.11)
§—+00

We use the notation of (5.7) and (5.8). Then

|F, — Fi| |7 (exp(~X,))Eys — Fi

|7 (exp(=X))(Fy = )| + | (m(exp(=X,)) — 1d) .

Nl

Let us show that | (7(exp(—X,)) — Id)F;| tends rapidly to zero. It suffices to decompose F;
into eigenvectors for Ay and to use that, if A € af, then, for s large enough, (e “AXL) 1) is
equivalent to —A(X;). Then, from Lemma 5.7(i) and (5.11), it follows that

1’_7‘, rapid F
s S§——+00 I
One knows that (us) converges to 1 and (m;) converges t0 m.y, - Then (ys) lies in a compact

set. Hence ﬂ(ys)(F F) converges rapidly to zero as F, converges rapidly to Fy. But, from
Lemma 5.7(ii),

[ ()7 (y) FL] 2% [y (h)w(Er) Fi] in P (V).

As (ys) converges, 7(ys)F; has a non zero limit and one can apply Lemma B.7 to vy =
W(h)m(ys)Fr and ws = ¥(h)m(ys)Fs. One concludes that:

[w(h)ﬂ-(ys)Fl] Tor, [wl(hl) (ZI)FI] in Pr(Vr).

5.3 End of proof of Proposition 5.1 when Z is quasi-affine

We will now refine our choice of L in Section 1. We will use some results of [8].

With the notation of Definition 3.5 of loc.cit., one can find a real regular function on
G, f € Pyy, such that Hf = J (cf. Lemma 3.11 in loc.cit. for the notation). In particular
(cf. loc.cit. equation (3.1)), f transforms on the left (resp. the right) by a real character x
of P (resp. ¢ of H). Moreover, from the definition, one has H < H".

Let V} be the linear span of the right translates R(g) f of f by the elements g € G and let 7
be the right regular representation of G'on V. Let 7 # be the closure of span{[R(g)f] : g € G}
in the complex projective space P (V).

With loc.cit., Proposition 3.18, we get a parabolic subgroup @ which is G/H fx—adapted
to P and a Levi subgroup L of @ such that L n H; = Q n Hy. As H < H, one also has
L H=(n H. This is our choice of L.
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With the notation of this proposition, its proof shows that Sy is closed in 20, as Sy =
pH{u(2)}. We consider, with the notation of Proposition 5.6, [f7], which is obtained as a
limit in Pg(V7) of right translates of | f] by elements of L. As Sy is L-invariant, one deduces
that this limit is in Sy. It follows from [8, Proposition 3.18(2)], that the stabilizer Q} of
[fr] in @ is contained in L. Let us denote it by L%, As fisreal on G, fr is also real and the
Lie algebra of the stabilizer (Qco);, of [fr] in Qcp is equal to the complexified Lie algebra
of Qf, = Lj,. Hence

[(Qco)f,Jo = (L},)co- (5.12)
We apply Lemma 5.9(ii) to F' = f. The convergence in Lemma 5.9(ii) is a convergence in
[7(Qco)fi] = Qco/(Qco)},- Hence, by Lemma B.6, one also has that y;[(Qc,)7,]o converges
rapidly in Qc,o/[(Qco)7,lo- But (cf. (5.12))

Qco/[(Qco)fJo =U x (Leo/(Lf,)co)-

Hence, as y, = t(t 'ust)m,, one sees that (t~lut, ms(L},)co) converges rapidly in U x
(Leo/ (L}, )co) to (1,mu, (L}, )co). It follows in particular that (t7'u,t) converges rapidly to
1. Hence
rapid
us — 1.
§—+00

One also gets that

id
ms <L}<I )C,O — Moy, <L}<I )(C,O-

§—+00

5.10 Lemma. Let f be a real regular function on U x (L/L n H), that we identify with an
open subset of Z, which is left-U-invariant and which transforms on the left by a character
Xy of A.

Then there exists a real reqular function hy on Z, positive valued, which is not identically
zero on L/L n H, left-N-invariant, which transforms under a character xn, by the left action
of A, and such that Fy = hyf is reqular on Z.

Proof. This is similar to the proof of [10, Lemma 3.4]. We give it for sake of completeness.

From the definition of the rational function (cf. [3, AG.8.1]), f is a rational function on
Z. As Z is quasi-affine, Z is an open set in an affine set Z. Then the field of rational
functions on Z, C(Z), is equal to the field of rational functions on Z, C(Z), which is the
field of fractions of C[Z].

Hence there are regular functions hy, he on 7 with f = hi/hs.

Let [ = {heC[Z]: hf e C[Z]}. Then I # {0} as hpe I, and I = I as f is real. Recall
that N = U(L, n N) and L, is normal in L n H. As f is left-U-invariant, right-L n H-
invariant and transforms by a character of A on the left, f transforms by a character of AN
on the left. Hence [ is left-AN-invariant. The action of AN on C[Z] is algebraic, hence

locally finite. Thus we can find an element 0 # h € I which is an eigenvector for AN. One

takes hy = hh.
As N is unipotent, h is N-invariant. Moreover U(L/L n H) is Zariski dense in Z. Then
one sees that h is not identically zero on L/L n H. O
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Diagonalizing the action of A on R[L/L n H], one gets a basis (fi)kex of R[L/L n H],
made of functions f; which transform under a (real) character of A by the left regular
representation. We extend f;, to a left-U-invariant function on U x L/L n H, still denoted
fr

We set, with the notation of Lemma 5.10, hy = hy, and Fy, = F}, := hyfi. As the real
characters of a connected compact Lie group are trivial and as Fj, is real, one has

(M n L;k Joc= M n Lg,,,

I

where Lp, , is the stabilizer for the right action of Fj, ;jz in L.

For reason of dimension, there exists a finite set £ < I such that the intersection of the
Lie algebras of the groups (M N L, ;)o, k € K, is equal to the intersection of the Lie algebras
of M nLp,, ke L.

5.11 Lemma. Let My = ()., M n Lg, ,. Then Mg is contained in M ~ H.

Proof of Lemma 5.11. The group M is a connected compact Lie group which is generated
by its compact one parameter subgroups. Let S be such a one parameter subgroup. Then,
by definition of K and L, one has S < Lp, , for all k € K. Hence in particular, for all [ € L,
ke and se€ S, as F; = Fj, on L (see Proposition 5.6(iii)),

Fk(lS) = Fk(l),

- ha15) fulls) = hi(1) (D).

5.12 Lemma. Let p,p’ be two non identically zero trigonometric polynomials such that pp’
is constant. If p is real, then p and p’ are constant.

Proof. Write p = €™ (ag + - - + aze™®) with k = 0, ag # 0, a, # 0, and p’ = ™?(al + --- +
a,e®?) with k' = 0, ay # 0, a) # 0. Then the (n + n’)-th Fourier coefficient of pp’ is aga.
Moreover its (n + n' + k + k')-th Fourier coefficient is non zero. Hence, as pp’ is constant,
n+n =0, n+n +k+k =0 and thus k = ¥ = 0 which implies that p = age™?. As p is
real, one has n = 0 and hence n’ = 0 and p’ is also constant. O

Applying this Lemma, one sees that, for k fixed, if hx(l) # 0 and fx(I) # 0, then
fr(ls) = fr(l) for all s € S. But the set of [ € L such that fi(I) # 0 and hy(l) # 0 is dense

in L, as fr and hy are not identically zero on L (cf. Lemma 5.10). By continuity, we get for
all ke IC,

fu(ls) = fu(), leL,seS.

In particular fi(s) = fx(1). But the fi’s separate the points of L/L n H. Indeed, as G/H
is quasi-affine, the regular functions on G/H separate the points of G/H (by restriction of
functions on the affine subset in which G/H is open). Then, again by restriction, we get our
claim.
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Hence one has s € L n H. This proves that S ©¢ M n H which achieves the proof of the
Lemma. O

Now we consider Vj, = Vp,, i.e. the complex linear span of the right translates of F} by
elements of G (cf. notation of the proof of Proposition 5.6) and let m; be the right regular
representation of G on Vj. One uses Lemma 5.9(i), with ¢ trivial, for the Fy’s, k € £, and
gets

[ (ys) Frt) —2% [m(i1) Fy. 1] in Pr(V4).

S§—+00

As (ug) converges rapidly to 1, one gets:

[ (m)m () Fror] —2% [mi(r) Fir] in Pr(Va),

s—+00

and the same is true if one restricts functions to L. But # and #; are elements of exp(iay) <
Ac, which is central in Lc¢, and F7 transforms on the left by a character x; of A. Hence
Wk(f)Fk,I = Xk(E)Fk,I and Wk(t~I>Fk,I = Xk(gl)Fk,I'

But, if a family of vectors (v,) in a finite dimensional complex vector space F is such
that ([vs]) converges rapidly to [v] in Pr(E) and z € C*, then ([zv4]) converges rapidly to
[zv] in Pg(FE). Thus

[ (M) Fie.11] converges rapidly in Pr(Vi, 1),

where Vj,|; denotes the space of restrictions to L of elements of V. As (mg) converges to
My, , one then has
rapid .
[Wk(ms)Fk,[|L] j [Wk(me)Fk,HL] mn PR(Vk,\L)' (513)
Set V' = ®per Vi, F' = ®recFry F1 = ®recFr,r and let m be the direct sum of the right regular
representations 7, of G in the Vi’s. Then one gets from (5.13) that
rapid .
[ (ms) F1i] —>s_ioo [ (M, ) Frin] in e, Pr(Vi 1)
Here, if v = (vg)rec € V, then [v] = ([vk])ker € HrerPr(Vi).
For any k € L, recall that the stabilizer for the right action of Fj, ;7 in L has been denoted
L, ;. Hence, from Lemma B.5, one sees that:
rapid

msMg > My, ME.
§—+00

Thus, as M, is compact and hence M;/M;  is finite, one deduces from Lemma B.6 that:



But Mo c M n H. Hence

It follows from this that, for s large enough,
m;}ms = (exp Ys)m’,

where Yj is an element of a supplementary subspace t of m n b in m such that (Y;) converges
rapidly to 0, and m/ € (M n H),. Note that Y; is unique and that (m’) converges to 1.
Let us show that one can change (my) into (mgm/ 1) in (4.16). One has (M n H)y =
(M ~ Hy,)o as the Lie algebra of these groups are the same. In fact [ n b, = [ nb (cf. [11,
Lemma 3.7]) which implies easily that m n b, = m n h. Hence m,, € M n H,. Then:

mswhs = mam’s lww™tmlwh,
and A, =w 'mlwe H, asm/ € H,.

Hence, from (4.16), one gets:
Wiy = ugmem, ‘whlhg.

This proves our claim. One then deduces that one can choose (my) such that (ms) converges
rapidly to m,,. This achieves the proof of Proposition 5.1. O

5.4 End of proof of Proposition 4.11

Let us continue the preparation of the proof of Proposition 4.11

5.13 Lemma. Let (¢.) be a family in G which converges rapidly to g € G. Let f €
Atempn(Z). Then there exist C > 0 and € > 0 such that:

(L1 f)(@) — (L (@) < Cafoe ™, ae Ay,s > s

Proof. As (g.) converges rapidly to g when s tends to +o0, there exists s, C', € strictly
positive and (X;) < g such that, for all s > s,

g, = gexp X, and | X,| < C'e". (5.14)

As L1 preserves Ayemp n(Z), one is reduced to prove that, for all f € Ayeppn(Z), there
exist C e, s9 > 0 such that:

|f(exp(Xs)as) — f(as)| < CalRe .
But, by the mean value Theorem, if a € A and X € g,

|[f(exp(X)a) — f(a)| < sup (Lx f(exp(tX)a))|X].

te[0,1]
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From (5.14), one then sees that it is enough to prove that, if | X is bounded by a constant
C"” > 0, there exists a constant C"” > 0 such that:

sup | Lx f(exp(tX)a)| < C"a’2(1 + |logal)Y, ae A}. (5.15)
te[0,1]

Decomposing X in a basis (X;) of g and using the continuity of the endomorphisms Ly, of
Atemp.n(Z), one sees that there exists a continuous semi-norm such that:

(Lx f)(a)] < q(f)a (1 + |logal)™, ae Az

But f — supxj<cr q(Lexp(—1x)f) is a continuous semi-norm on Ayemp n(Z). Hence, as Ly
and Lexp(—tx) commute, (5.15) follows. This achieves to prove the Lemma. O

Proof of Proposition 4.11. If a € A, one has:

((Laf)*)r = (La(f*))1 as (Laf)" = Laf"
and (me, (Laf)1)"T = (LameIfI)wI = La(meIfI)wI'

Hence it is enough to prove the identity of the Proposition for az = z;. Using (4.7) and
Proposition 4.8, it is enough to prove that, for some family (a;) as in (4.13), that s —
(Lo, N )¥I(as) is an exponential polynomial with unitary characters satisfying:

lim a;”? (f*(as) — (melfl)“”(as)) =0. (5.16)

s—-+00
But from (4.16),
AW - 29 = (Ezsi)s’lms’lu;l)(usmsgsw) 20 = gsWids - 2o
for s > so, where g, = asb;'m; u;"'. Then one has:
F(05) = Ly ().

On the other hand, from [11, Lemma 3.4] for Z = Z;, as Az, g = A (cf. loc.cit. equa-
tion (3.10)), one has:
AWy * 20,1 = Wids * 20,1, (5.17)

which implies that:
(ijlmwlfl)(ds - 201) = (mez fr)“(as). (5.18)

Now, as (gsw;) converges rapidly to mylw;, we can apply Lemma 5.13 with g, = gsw; and
find C’,¢’, s; > 0 such that:

as_pQ|(Lw;1g;1f)<a5) — (walmwl las)] < 0’6_6'57 s = 86. (5.19)
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Using Lemmas 4.5 and 4.9, one has, for some C”, &’ > 0,
479 (Lt £(05) = Dy, frlan)) | < O, s = 5
Hence from (5.18) and (5.19), one deduces (5.16). It remains to prove that:

§ > (L, ) 1" (exp(sX1)) = fi(my,; exp(sX)wy - zo1)

is an exponential polynomial with unitary characters. But, from [11, Lemma 3.4] applied to
ZI?
(L., f1)"* (exp(sX7)) = fr(my, wrexp(sX7)).

Hence our claim follows from(5.17). This achieves the proof of the Proposition. O

6 Transitivity of the constant term

Let us notice that if Z is wave-front, then, for J < S, Z; is not necessarily wave-front. Let
us see that it is possible to define the constant term f; for I < J and f € Aiepp(Zy).

In particular, the characterization of f; will be given by the analogue of Proposition 4.8,
say Proposition 4.8, with Z changed in Z; and a;~ changed in a; ; = {X € a; : a(X) <
0, € J\I}. One has also an analogue of Theorem 4.13 (say Theorem 4.13"). To see this,
one gets the analogues of Lemmas 3.1 and 3.5 where Z is changed in Z;, a;~ in a;; and 5;
is changed in 3 ; with:

Brs(X)=maxa(X), Xea;.
ae\I ’

In the proof one changes a + ¢ {I) by a + B € {(J),a + ¢ {I). The rest of the proof is
then entirely similar to the proof of Proposition 4.8 and Theorem 4.13. Let us notice that
here we use Proposition 5.1 for a non wave-front spherical space.

6.1 Proposition. Let I < J be two subsets of S. Then, if f € Awemp(Z),

fr=(fnr.

Proof. By G-equivariance of the maps:

Atemp(Z) - Atemp(ZI) and Atemp(ZJ) - Atemp(ZI)
I = I [ = 1 ’

it is enough to show that, if f € Asermp(Z), f1(201) = (f7)1(20,1). Recall that az, = az and
a;  ={Xear:aX)<0,aeS\I}, a;;={Xear: a(X)<0,aeJ\I}.
Asa;={Xeaz: a(X)=0,ael}and a; ={Xeay: o(X)=0,ac J}, one has:

ay<cap, G Sdagz, ap; < day.
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One remaks that a;~ < a7 ;. Let X €a;” and Y €a;”. Then X +Y € a; ™.

Using Theorem 4.13(ii) applied successively to (Z, I, f, X+Y, 1) and (Z, J, f, X, exp(TY))
instead of (Z, 1, f, X, az), and finally the analogue Theorem 4.13’(ii) of Theorem 4.13(ii) for
(Z1,1, f7,Y,exp(T X)), one gets that there exist C' > 0 and ¢ > 0 such that, for all T" > 0,

ar||f(exp(T(X +Y))) — frlexp(T(X + Y)))| < Ce~<T
ar| flexp(TY) exp(TX)) — fr(exp(TY) exp(TX))| < Ce~*"
ar| f5(exp(TX) exp(TY)) — (f1)1(exp(TX) exp(TY))|| < Ce~<7,

—Tpq(X+Y)

where ar =€ . Hence one concludes from the three inequalities above that:

ar|fr(exp(T(X +Y))) = (f)r(exp(T(X +Y)))| <3Ce™™", T =0.

Hence arfr(exp(T(X +Y))) —ar(fs)(exp(T'(X +Y))) tends to zero when T' goes to +o0.
But each term of this difference is an exponential polynomial in 7" with unitary characters.
Hence, according to (4.7), the difference of the two occurring exponential polynomials is
identically zero. It implies, taking 7' = 0, that fr(zo1) = (f7)1(20.1)- O

7 Uniform estimates

Let L' be a Levi subgroup of G which contains A. Let A be a maximal vector subgroup
of the center of L’ contained in A. Recall that t is a maximal abelian subalgebra of m. Let
j = 1t@a so that jc is a complex Cartan subalgebra of gc. Let us notice that the Weyl group
W (gc, tc) preserves j. One has

j=VeU=Viael,

where V =ar,, Vi =ap, U=it®(an’;) and U; = it® (a n ') (cf. (3.3) for the definition
of 0[], 0[,).

In the following, we will apply Lemma A.1 to the map:

it xay, — End(W)
(W7X> = _tpw(X)v

where the notation has been defined after (3.10) and in (3.24).

From (3.12), one sees that the eigenvalues of I',(X) are of the form —ww(X) for w €
W(gc,ic)-

Let A e t: ® (an )% fixed. Let v €iaf, and A\ € af. Weset A, = A+ v ejk. Let us
look to the sum of the joint spectral projections of the I'y (X)), X € ay, for a joint eigenvalue
with real part equal to A.

Let Z,, be the kernel of the character x,, of Z(g) given by the composition of the
Harish-Chandra isomorphism from Z(g) onto S(jc)"®cic) with the evaluation at A,. Let
us recall the notation introduced at Sections 3.1 and 3.5. Write Atemy(Z : A,) instead of
.Atemp(Z . IAV>-
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We want to make Lemma 3.3(ii) more precise in this case. To do so, it is better to group
spectral projections. We denote this sum by E} ,.
Let Qp = {—RewA o sj3, : we W(ge,ic)}. Identifying aj and aj by s, from (3.12), one
sees that:
EA,V # 0 implies A € Q.

7.1 Lemma. Let A€ Q,.
(i) There exists € > 0 such that v — E,, extends to a holomorphic function on
ap, . ={veapc: |[Rev|| <e}.
(i) There exists C > 0 and q € N such that:

|Ey, | < C(+|v]))?, veiaj,.
(i1i) There exists C > 0 and r € N such that:
|Ey, e < XA+ |v)) (1 + | X)), veiak, X €ay.

Proof. As py, is a representation of the abelian Lie algebra ay,, hence of a;, the spectral
projection E, , is equal (following the notation of Appendix A) to the product:

k
H PA(Xj),Xj(—iV)7
j=1

where X7, ..., Xy is a basis of a;. Then the assertions (i) and (ii) follow immediately from
Lemma A.1.
Let us show (iii). One remarks that:

E\ VGFA"(X) — eErTu(X)

The norm of E) , has a bound given by (i) and the norm of 'y (X) is bounded by a constant
times (1 + |v[)!(1 + | X])), as T's,(X) is polynomial in v and linear in X. Then (iii) follows
from [16, Lemma 12.A.2.4]. O

For A e Q,,, set
By (X) = e RAXOE, (X)) X eay.

One has the analogue of Lemma 3.3(ii).
7.2 Lemma. Let N € N. If, for any v e iaj,, A€ Qp, and f € Awempn(Z : A,), one sets:
Qs = B, Py,
then one has:
Oy (azexp(TXy)) = eTFAv(XI)CDfA7V(aZ)
—I—JT By, e T 000 XD . (ay exp(tX)) dt,

0
az € AZHXI e ay.
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7.3 Lemma. Let X € a;. There exist a continuous semi-norm q on C-

rempn(Z) and m € N
such that, for all v € iaj, and f € Awempn(Z 1 A\y),

|9 sx(azexp X1)| < q(f)(1 + [logaz|)¥ (1 + [ XY (X + [v)™, aze Az, Xiea;™.

Proof. The proof is the same than the proof of Lemma 3.5(ii), the factor (1 + ||v|)™ coming
from (3.11). O

One has an analogue of Lemma 3.6, where f € Awmpn(Z : A)), A € Qp and E) is
replaced by E) ,. The proof is the same using Lemma 7.1(iii) instead of (3.26).

One introduces @y, as in (3.27) by replacing ®; 5 by ®;,, (and A € Q, instead of
Q7). Similarly one has an analogue of Lemma 3.8.

We also define a partition of Q, into three disjoint sets Q;, Q% and Q). Then one has
analogue of Lemma 3.9, Corollary 3.10, Lemmas 3.11 and 3.12, and Proposition 3.14, which
are valid for all v € iaf and all f € Aemp n(Z : A), by replacing @y by ®yy,, Ex by Ey,
and (I)/\,oo by (I)f,)\,u,oo-

7.4 Theorem. Let L' be a Levi subgroup of G containing A, C be a compact subset of a;~
and 21 be a compact subset of G. Let N € N.

(Z) such that, for

(i) There exist ¢ > 0, m € N and a continuous semi-norm p on CZ,
all v eial, and all f € Ajempn(Z : A), one has:

(az exp(TX))7"2|f(waz exp(TX)) — fi(waz exp(TX))]

< e TN+ [logaz)V(1+ V)", aze Ay X eCuwe, T >0

. : : "
(i1) Let q be a continuous semi-norm on C{f, v gin

(Z) such that

o) (Z1). Then there exists a continuous

semi-norm p on Cig o

q(fr) <p(NA+[v])™, veiap, fe Aempn(Z: A).

Proof. To get (i), one needs an analogue of Lemma 4.1. Due to the occurrence of powers of
(1+ |v||) in Lemmas 7.3, 7.1(ii) and (iii), one gets:

7.5 Lemma. We fix a compact set C in a;~ and choose g9 > 0 such that 5;(X) < —2¢¢ for
X ea; . We put e = dgg, with § given by (3.29). Then there exist m € N and a continuous

semi-norm p on C, . n(Z) such that, for all v € iaj, and all f € Awempn(Z : A,), one has:

|@aw(az exp(TX)) = @ olaz exp(TX))| < e p(f)(1+ [ logag])™ (1 +[v])™,
azeA,, XeC,T=0.

Then, using Lemma 7.5 instead of Lemma 4.1, the proof of Theorem 7.4(i) is similar to
the proof of Theorem 4.13(ii).
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The proof of (ii) is analogous to the proof of Theorem 4.13(i), keeping track on the
dependence on v. The cornerstone is Lemma 4.10 relying on Lemma 4.3. Looking to the proof
of the later, it is based on Lemmas 3.5(i) and 4.1. But the dependence of Lemma 4.1 with
the parameter v is given by (i) above. Moreover, as W = Wz for Z = Z,,, in Lemma 3.5(i),
the proof shows that the semi-norm p,, does not depend on Z = 7,, if v € ¢aj,. This leads
to our claim. O

A Variation of a Lemma due to N. Wallach

We will need a mild variation of Lemma 12.A.2.9 in [16].

Let E be a finite dimensional vector space over R and assume that U, V', U; and V; are
real vector subspaces such that £ =V @ U = Vi@ U;. If v e Ug or v e U (resp. V¢ or
Vi'e) we extend v to B by v(V)) = 0 or v(V1) =0 (resp. v(U) = 0 or v(U;) = 0). If A e E¢
and A = Ay + iAy with A, Ay € E*, we set Ay = Re A, Ay = ImA.

Let B : Ef x V. — M,,(C) be a map which is polynomial in the first variable and linear

in the second. We assume that there exist sq,...,s, € GL(E{) such that the eigenvalues of
B(A,v), veV, are of the form s;A(v).
We fix A; € Uf (and not in U* as in loc.cit.). We fix linear coordinates {x1,...,2,} on

V' and we will use the multi-index notation for partial derivatives.
If peR, ve Vi andv eV, let P,,(v) be the projection onto the sum of generalized
eigenspaces for B(A; + iv,v) with eigenvalues having real part equal to p.

A.1 Lemma. LetveV and p e R.

(1) The map v — P, ,(v) is real analytic on Vi*. Even more, there exists e1 > 0 such that

P, extends to an holomorphic function on Vi*, = {v e Vi’c: [Imv| <&}

(ii) There exists q € N such that, for any I € N™, there exists ¢; > 0 such that:

[0" PuoW)] < ex (1 + |w])P, v e V.

Proof. We give a complete proof in order to take care of the change and repair small misprints
in the proof of [16, Lemma 12.A.2.9].

If ResjAq(v) # p for all j, then P,, = 0 and there is nothing to prove.

Otherwise, after we reorder the s;’s, we may assume that there exists some 0 < m < r
such that:

ResiAq(v) = -+ = Resy,Ai(v) = ppand Res;Aq(v) # p for j > m.

Let 0 < & < 1/2minj.,, [Res;A1(v) — p| and let 15 € Vi* be fixed. There exists R(») > 0
such that the interior O of the rectangle O in C of center u, width 2¢ and height 2R(1p) is
such that v satisfies the property (P,), for v = vy, given by:

sj(Ay +iv)(v) € O if and only if j < m and in that case s;(A + iv)(v) € O. (P)
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One can take R(vy) = max;<, |s;(Im (A1) + 1vp)(v)| + 1. The reason to add 1 is to ensure
R(vp) > 0. Let us notice that there is a constant ¢; > 0 such that:

R(n) < er(1 + [wol))-

Let Q1) = {vr € V' : max;<, |s;(Im (A1) + v)(v)] < R(v)}. Then Q(1p) is open and
contains rq.

Let we :== {v e Vj* : |s;(v)(v)| < €/2,7 <} and let Q:(vp) := {11 +ive : 1y € w1 €
Q(vo)}. Then, if v € Q. (1),

Res;j(Ar +v)(v) —pl<e, j=1,...,m,
Resj(A +v)(v) —p|>e, j=m+1,...,r

This implies that, if v € Q.(1g), then (P,) is satisfied.
Let C' be the boundary of O and v € .(1). Let

Qv) = L (B(Ay +iv,v) — 2Id) " dz, ve Q ().
2 Jo
Then, if v € Q(vy), P.»(v) = Q(v). Moreover v — Q(v) is holomorphic on 2. (vy). Varying
Vg, it implies that Q(v) is holomorphic on (1) by €' 1= {v1 +ivy € Vi'e 1 v € we, v € V')
But it is clear that Q' contains V}*, for some 1 > 0, as w. is a neighborhood of 0 in V/*.
This proves (i).

Let us fix v € Q.(vy). We can write B(A; + iv,v) = U(D + N)U' (cf. [16,
Lemma 12.A.2.2]), where D, N,U € M, (C) are such that D is diagonal, N is upper tri-
angular with zeros on the main diagonal and U is unitary.

As the eigenvalues of D are of the form s (A; +iv)(v) and as we use the Hilbert-Schmidt
norm on M, (C) as all norms on M, (C) are equivalent, hence |B(A; + iv,v)|| = |D + N|.
For the purpose of our estimate, we may assume B(A; + iv,v) = D + N.

Let z € C'. As one can write:

(D+ N —z2I)=(D—20)(I+ (D—=2I)"'N)

and N is nilpotent, one can obtain:

(D+ N —zI)' = (S(—l)k((D — ZI)_lN)k> (D —2I)~"
k=0

If ze C, for all £,
lsk(Ay +iv)(v) — 2| = €/2.

Then, as we use the Hilbert-Schmidt norm,

(D — 217 < 2n*?/e.
From the equality B(A; + iv,v) = D + N, one gets:

INI < [B(Ay + iv,v)].
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From the polynomial behavior of B in the first variable, there exists ¢, > 0 and ¢ € N such
that:
|B(Ar +iv,v)| < (1 + v])?, vely.

There exists c3 > 0 such that, for all x > 0,
T+ 42" ) <eg(1+2"h).

Hence
1/2

2
[(D+ N = 207! < s=—(1 + ea(1 + )2 0).

Now we want to have a bound of |@(v)|. It remains to bound the length of the contour C.
This is bounded by 4R(vy) + 4e and |R(vp)| < c1(1 4 |vo])(1 + [Jv]]). Hence one sees easily
that there exists ¢4 > 0 such that:

Q)| < ea(L + DL+ )Y, v e Q).
Applying this inequality for v = vy, one gets:
|Qwo)|| < eall + [wp])? D+

To deal with arbitrary derivative ¢!, one has to use the Cauchy integral formula. O

B Rapid convergence

B.1 Definition. Let a = 0 and (xs) be a family of elements of a normed vector space with
s € [a, +o[. One says that (z5) converges rapidly to [ if

there exist e > 0,C > 0, 59 € [a, +00[ such that, for any s = sg
|xs — 1| < Ce®s.

. . rapid
To shorten, we will write x5 —— .
§—00

B.2 Lemma. Let a > 0, E and F be two Euclidean spaces, | € E. Let ¢ be an F-valued
map which is of class C' on a neighborhood U of | and such that the differential ¢/ (1) of @

at 1 is injective, if (Ts)se[a,+0[ b @ family of elements of E such that ¢(x,) Topid, o(l) and
5§—00

(xs) converges to | when s tends to +0o. Then

rapid
s — L.
§—00

Proof. Let G be a supplementary of the image of ¢/(1) in F' and consider the map:

:ExG — F
(z,2) — oz)+ 2
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As ¢/(x) is injective, ®'(I, z) is injective and dim(FE x G) = dim(F). Hence ®'(l, z) is invertible
for any z € G. From the local inversion theorem, ® is then bijective on its image and of class
Cl' on a neighborhood V' x W of (I, z) contained in U x G. Consider the restriction o of o
to V x W. Then & is well-defined and of class C. Applying the Taylor expansion of P!

®(1,0) = ¢(l), one has for s large enough such that z, € V:

o =1 = [} (g(xs)) — (1))
< @Y (sD)] [ ¢(xs) — 6O + ol B(s) — S(D)])-

Our claim follows from the rapid convergence of (¢(x;)). O

B.3 Definition. Leta > 0, X be a d-dimensional smooth manifold and (2s)[e, 10 be a family
of elements of X. One says that (x) converges rapidly in X if there exist | € X and a chart
(U, ¢) around | such that

(p(x5)) converges rapidly to ¢(1).

B.J Remark. This notion is independent of the choice of the chart (U, ¢). Indeed, let (U, ¢)
be another chart around [. Then, from Lemma B.2, ((¢ 0 )~ (¢(x,))) converges rapidly to
¢(1) over F which means that ((;5( s)) converges rapldly to ¢(l) over F. Also U : X — Y
is a differentiable map between C'* manifolds and (z4) converges rapidly to x in X, then
U((z4)) converges rapidly to W(x) in Y.

B.5 Lemma. Let X and Y be two smooth manifolds, | € X and ¢ be an Y -valued smooth
map on a neighborhood U of 1 in X such that ¢'(1) is injective.

If (%5) sefa, +oo[ 15 @ family of elements of U converging to I when s tends to +0 and such that
(p(xs)) converges rapidly to (1), then (xs) converges rapidly to l.

Proof. By taking charts in a neighborhood of [ and (1), one is reduced to the case where X
and Y are Euclidean spaces. Then the lemma follows from Lemma B.2 and Definition B.3.
J

B.6 Lemma. Leta > 0. Let G be a Lie group and R a closed subgroup of G such that R/Rq
is finite. Let (gs)sefa,+o0[ b€ @ family in G and g € G such that g, 9 and
5§—+00

gsR rapid gR

S§—00

Then one has:
rapid

gsRO — gRo

Proof. By multiplying on the left by ¢~!, on can reduce to the case where g = 1. Let q be

a supplementary of t in g and b > a such that, for any b > a, g, R = e** R where (X,) is a
family in q which converges rapidly to 0. Hence, for any s > b, g, = e**r,, where (r,) is a
family in R. As (gs) converges to 1, one has also that (ry) converges to 1. Hence, as Ry is
open, 1, € Ry for s large enough. This proves the Lemma. O
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B.7 Lemma. Let V be a finite dimensional vector space over R and Pgr(V') be its real
projective space. Let so = 0 and let (Vs)sssy, (Ws)s=s, b€ two families of vectors in V' such
that, when s — +00:

(i) (vs) converges to a non zero element v;
(i1) (vs — ws) converges rapidly to zero;
(1i) ([ws]) tends rapidly to [w] in Pr(V).

Then |vs] ropid [w].

§—+00

Proof. By dividing v, and w, by |vs|, one can reduce to the case where |vs] = 1. Then
ws = vg+&s with |gs] < Ce™* for some C' > 0 and € > 0. As |vs| —|les| < |Jws| < |vsl|+ s,

Jws]| =1+ &} with || <[] Then g2 — v, = “==220+%) implies for s large enough,
S
les| + lei]
Ws S
Iy ol < =54
< 20

for s large enough. Hence ”fj—zu — v, tends rapidly to zero. Thus one can reduce also to the
case where (vs) and (wg) are of norm 1. Then, as (vs) converges to v # 0, (ws) converges
to v. One can take w = v. Let us look at the canonical map ¢ of the unit sphere of V,
S, to Pr(V). Applying Lemma B.5, one sees that (w;) converges rapidly to w. Hence (vy)
converges also rapidly to w. This implies easily that ([vs]) converges rapidly to [w] (cf. end

of Remark B.4). O
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