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spherical space

Patrick Delorme∗ Bernhard Krötz Sofiane Souaifi
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Abstract
Let Z be a unimodular real spherical space which is assumed of wave-front type.

Generalizing some ideas of Harish-Chandra [5, 6], we show the existence of the constant
term for smooth tempered functions on Z, while Harish-Chandra dealt with K-finite
functions on the group (see also the work of Wallach [16, Chapter 12], dealing with
smooth functions on the group and using asymptotic expansions). By applying this
theory, we get a characterization of the relative discrete series for Z. Some features for
the constant term, namely transitivity and uniform estimates, are also established.

Contents

Introduction 1

1 Notation 5

2 Z-tempered H-fixed continuous linear forms and the space AtemppZq 8
2.1 Harish-Chandra representations of G . . . . . . . . . . . . . . . . . . . . . . 8
2.2 The spaces C8temp,NpZq and Atemp,NpZq . . . . . . . . . . . . . . . . . . . . . 10

3 Differential equation for some functions on Z wave-front and unimodular 15
3.1 Boundary degenerations of Z . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Some estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Algebraic preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 The function ϕf on LI and related differential equations . . . . . . . . . . . 21
3.5 The function Φf on AZ and related differential equations . . . . . . . . . . . 22

∗The first author was supported by a grant of Agence Nationale de la Recherche with reference ANR-13-
BS01-0012 FERPLAY.

1



4 Definition of the constant term and its properties 29
4.1 Some estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Definition of the constant term of elements of AtemppZ : Iq . . . . . . . . . . 31
4.3 Constant term of tempered H-fixed linear forms . . . . . . . . . . . . . . . . 36
4.4 Application to the relative discrete series for Z . . . . . . . . . . . . . . . . . 37

5 Proof of Proposition 4.11 39
5.1 Reduction of the proof of Proposition 5.1 to the case where Z is quasi-affine 39
5.2 Preliminaries to the proof of Proposition 5.1 when Z is quasi-affine . . . . . 44
5.3 End of proof of Proposition 5.1 when Z is quasi-affine . . . . . . . . . . . . . 49
5.4 End of proof of Proposition 4.11 . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Transitivity of the constant term 55

7 Uniform estimates 56

A Variation of a Lemma due to N. Wallach 59

B Rapid convergence 61

Introduction

Let Z “ G{H be a real unimodular wave-front real spherical space. In this introduction G
is the group of real points of a connected reductive algebraic group G defined over R, and
H is a connected subgroup of G with algebraic Lie algebra such that there exists a minimal
parabolic subgroup P with PH open in G.

The local structure theorem (cf. [10, Theorem 2.3]) associates a parabolic subgroup Q,
said Z-adapted to P , with Levi decomposition Q “ LU (one has P Ă Q).

We will say that A is a split torus of G if it is the identity component of ApRq, where A
is a split R-torus of G.

Let AL be a maximal split torus of L with Lie algebra aL and let AH be the analytic
subgroup of AL with Lie algebra aL X LieH. We choose a maximal split torus A of P X L.

Then there exists a maximal compact subgroup K of G such that G “ KAN (resp. L “
KLANL) is an Iwasawa decomposition of G (resp. L, where KL “ K XL and NL “ N XL).
Let M be the centralizer of A in K.

Let AZ “ AL{AH . The (simple) spherical roots are defined in e.g. [11, Section 3.2]. They
are real characters of AZ (or linear forms on aZ “ LieAZ). Let S be the set of spherical
roots. Let A´Z “ ta P AZ : aα ď 1, α P Su. The polar decomposition asserts that there are
two finite sets F and W of G such that:

Z “ FKA´ZW ¨ z0,

where QwH is open for each w P W and z0 denotes H in the quotient space Z. In this
paper, we make a certain choice of W (cf. Lemma 1.1). Let Ω “ FK.
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Let ρQ be the half sum of the roots of aL in LieU . Actually ρQ P a
˚
Z .

For f P C8pZq, we define:

qNpfq “ sup
ωPΩ,wPW,aPA´Z

a´ρQp1` } log a}q´N |fpωaw ¨ z0q|.

We define C8temp,NpZq as the space of f P C8pZq such that, for all u in the enveloping algebra
Upgq of the complexification gC of g “ LieG,

qN,upfq :“ qNpLufq

is finite. We endow C8temp,NpZq with the semi-norms qN,u. Then G acts in a C8 way on
C8temp,NpZq. Let pπ, V q be a smooth Harish-Chandra G-representation. By this we mean the
smooth Fréchet globalization with moderate growth of a pg, Kq-module of finite length (see
[2] or [16, Chapter 11]). Let Atemp,NpZq be the subspace of elements of C8temp,NpZq which gen-
erate under the left regular representation a smooth Harish-Chandra G-sub-representation:
this means that the closure of the linear span of their G-orbits is a Harish-Chandra G-
representation. It is endowed with the topology induced by the topology of C8temp,NpZq.

There is another definition of Atemp,NpZq. Let η be a continuous H-fixed linear form on
a Harish-Chandra G-representation pπ, V q. One says that η is Z-tempered if there exists
N P N such that, for all v P V , the generalized matrix coefficient mη,v, defined by:

mη,vpgq “ă η, πpg´1
qv ą, g P G,

is in C8temp,NpZq. Then one can show that f P Atemp,NpZq if and only if there exists such a
V and such an η and v0 P V such that f “ mη,v0 .

Let I be a subset of S and let aI “
Ş

αPI Kerα. Let X P a´´I “ tX P aI : αpXq ă 0, α P
SzIu. Let HI be the analytic subgroup of G with Lie algebra

LieHI “ lim
tÑ`8

et adXLieH,

where the limit is taken in the Grassmanian Grpgq of g. Then (see [11, Proposition 3.2])
ZI “ G{HI is a real spherical space, PHI is open in G and Q is ZI-adapted to P . Let us
denote HI by z0,I in the quotient space ZI . Let WI be the set corresponding to W for ZI .
One can define similarly C8temp,NpZIq and Atemp,NpZIq.

The main result of this paper is the following (cf. Proposition 4.8 and Theorem 4.13).

Theorem. Let I be a finite codimensional ideal of the center Zpgq of Upgq and let
Atemp,NpZ : Iq be the space of elements of Atemp,NpZq annihilated by I. There exists
NI P N such that, for all N P N, for each f P Atemp,NpZ : Iq, there exists a unique
fI P Atemp,N`NIpZI : Iq such that, for all g P G, X P a´´I :

(i) limTÑ`8 e
´TρQpXq pfpg exppTXqq ´ fIpg exppTXqqq “ 0.

(ii) T ÞÑ e´TρQpXqfIpg exppTXqq is an exponential polynomial with unitary characters,
i.e. of the form

řn
j“1 pjpT qe

iνjT , where the pj’s are polynomials and the νj’s are real
numbers.
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Moreover the linear map f ÞÑ fI is a continuous G-morphism and, for each wI PWI , there
exist w P W, mwI P M such that, for any compact subset C in a´´I and any compact subset
Ω of G, there exists ε ą 0 and a continuous semi-norm p on Atemp,NpZq such that:

|pa expTXq´ρQ
`

fpωa exppTXqw ¨ z0q ´ fIpωm
´1
wI
a exppTXqwI ¨ z0,Iq

˘

|

ď e´εTppfqp1` } log a}qN , a P A´Z , X P C, ω P Ω, T ě 0.

This generalizes the work of Harish-Chandra in the group case (see [5, Sections 21 to 25],
also the work of Wallach [16, Chapter 12]) and the one of Carmona for symmetric spaces (see
[4]). A certain control of these estimates are established when I is the kernel of a character
of Zpgq and varies in such a way that (in particular) the real part of the Harish-Chandra
parameter of this character is fixed (see Theorem 7.4 for more detail). This is related to
some results of Harish-Chandra (cf. [6, Section 10]).

While the work of Harish-Chandra is for K-finite functions, we deal with smooth tem-
pered functions, but without using asymptotic expansions as it is done in [16, Chapter 12].

For a Z-tempered continuous linear form η on a Harish-Chandra G-representation pπ, V q,
one can define a constant term ηI which is a ZI-tempered continuous linear form on V in
such a way that, for all v P V ,

mηI ,vpzIq “ pmη,vqIpzIq, zI P ZI

(cf. Proposition 4.14). Moreover we show that, if pπ, V q is irreducible with unitary central
character, then pπ, V, ηq is a discrete series modulo the center of Z if and only if for all I Ł S,
ηI “ 0 (see Theorem 4.15). Again it is analogous to a result of Harish-Chandra. For this we
use in a crucial manner some results on discrete series from [11, Section 8]. More generally,
our work owes a lot to their work.

The proof of these results is quite parallel to the work of Harish-Chandra on the constant
term (cf. [5, 6]) by studying certain system of linear differential equations. In the case of one
variable, this reduces to show the following:

Let E be a finite dimensional complex vector space, A P EndpEq, ψ P

C8pr0,`8r, Eq of exponential decay, i.e.

there exists β ă 0 such that }ψptq} ď eβt, t ě 0.

Consider the linear differential equation on r0,`8r :

φ1 “ Aφ` ψ,

Then, if φ is a bounded solution, there exists an exponential polynomial φ̃ with
unitary characters such that:

lim
tÑ8

φptq ´ φ̃ptq “ 0.
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There are some variations, as we are allowed to work with vectors in a Harish-Chandra
G-representation, where Harish-Chandra was working only with K-finite functions. Some
important properties of Harish-Chandra G-representations are used (see e.g. [16, Chapter 11]
or [2]).

First one establishes the Theorem for wI “ 1. The passage to general wI is delicate. One
has to give some more insight on the link between w and wI explained in [11, Lemma 3.10].
This is done in Proposition 5.1 which holds for general spherical spaces. It uses a reduction
to quasi-affine spherical spaces and properties of finite dimensional representations.

The motivation of our work is the determination of the Plancherel formula for Z along
the lines of the work of Sakellaridis and Venkatesh (cf. [13]). This requires several important
changes as it is quite unclear what could be the asymptotics for general C8, even K-finite,
functions. We hope that our results will allow to avoid these asymptotics.

1 Notation

In this paper, we will denote (real) Lie groups by upper case Latin letters and their Lie
algebras by lower case German letters. If R is a real Lie group, then R0 will denote its
identity component.

Let G be a connected reductive algebraic group defined over R and let GpRq be its group
of real points. Let G be an open subgroup of the real Lie group GpRq.

If R is a closed subgroup of G, we will denote by RC,0 the connected analytic subgroup
of GpCq with Lie algebra rC. Then we set R0 “ RC,0 XG. Note that:

if R is a Levi subgroup of G then R Ă RC,0, (1.1)

as RC,0 is a Levi subgroup of GpCq (remark that Levi subgroups of a complex group are
connected).

We will say that A is a split torus of G if it is of the form ApRq0, where A is an R-split
torus of G.

Let H be a closed connected subgroup of G such that h is algebraic, and let us assume
that Z “ G{H is real spherical. This means that there exists a minimal parabolic subgroup
P of G with PH open in G.

From the local structure theorem (cf. [10, Theorem 2.3]),

There exists a unique parabolic subgroup Q of G with a Levi de-
composition Q “ LU such that:

(i) P ¨ z0 “ Q ¨ z0,

(ii) Ln Ă QXH Ă L,

where z0 denotes H in Z and Ln is the product of all non compact
non abelian factors in L.

(1.2)
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Such a parabolic subgroup Q is called Z-adapted to P . Let AL be a maximal split torus of
the center of L and AH “ pAL XHq0. Let A be a maximal split torus of P X L. It contains
AL.

Let us prove that there exist a maximal compact subgroup K of G and an involution θ
of G such that its differential, denoted also by θ, restricted to rg, gs, is equal to the Cartan
involution associated to k X rg, gs, θpXq “ X if X P c X k, where c is the center of g, and
θpXq “ ´X if X P a.

First one notices that A contains a maximal split torus AG of the center of G. It is, in
the terminology of [5] or [14, p. 197], a split component of G. In fact, one can construct a
maximal split torus of G by starting with a maximal split torus of the derived group G1 of
G0, which has this property. But all maximal split tori of G are conjugate by an element of
G as it is the case for maximal R-split tori of GpRq (cf. [3, Theorem 20.9]). Hence A has
also the required property and one has a “ a1 ‘ aG, where a1 “ aX rg, gs.

Now we can find pK 1, θ1, a1q with the above properties when replacing K by K 1, θ by θ1,
a by a1 and such that a1 contains aG (cf. [14, Part II, Section 1, Theorem 3.13]), but we do
not require a1 to be the Lie algebra of a maximal split torus of G. Let j1 (resp. j11) be a
Cartan subalgebra of Zrg,gspa1q (resp. Zrg,gspa

1
1q, where a11 “ a1 X rg, gs). Then j1 and j11 are

maximally split Cartan subalgebras of rg, gs, hence there are conjugate by an element g of
G1. As a1 (resp. a11) is equal to the space of X P j1 (resp. j11) such that the eigenvalues of
adrg,gsX are real, the element g conjugates a1 and a11, i.e. Adpgqa1 “ a11. Hence Adpgqa “ a1.
Then K “ gK 1g´1 and θ “ θ1 ˝Adpg´1q satisfy the required properties and G “ KAN is an
Iwasawa decomposition.

Moreover, as L “ ZGpALq and AL Ă A is θ-stable, L is θ-stable and L “ KLANL is an
Iwasawa decomposition, where KL “ K X L and NL “ N X L.

Let AZ “ AL{AH . Let us notice, from the fact that Ln Ă LXH, that aZ “ a{aX h.

We choose a section s : AZ Ñ AL of the projection AL Ñ AL{AH which is a
morphism of Lie groups. We will often use ã instead of spaq.

(1.3)

Let B be a g, AdG and θ-invariant bilinear form on g such that the quadratic form X ÞÑ

}X}2 “ ´BpX, θXq is positive definite. We will denote by p ¨ , ¨ q the corresponding scalar
product on g. It defines a quotient scalar product and a quotient norm on aZ that we still
denote by } ¨ }.

Let Σ be the set of roots of a in g. If α P Σ, let gα be the corresponding weight space for
a. We write Σu (resp. Σn)Ă Σ for the set of a-roots in u (resp. n) and set u´ “

ř

αPΣu
g´α,

i.e. the nilradical of the parabolic subalgebra q´ opposite to q with respect to a.
Let plXhqKl be the orthogonal of lXh in l with respect to the scalar product p ¨ , ¨ q. One

has:
g “ h‘ plX hqKl ‘ u.

Let T be the restriction to u´ of minus the projection from g onto pl X hqKl ‘ u parallel to
h. Let α P Σu and X´α P g

´α. Then (cf. [11, equation (3.2)])

T pX´αq “
ÿ

βPΣuYt0u

Xα,β, (1.4)
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with Xα,β P g
β Ă u if β P Σu and Xα,0 P plX hqKl .

Let M Ă N0rΣus be the monoid generated by:

tα ` β : α P Σu, β P Σu Y t0u such that there exists X´α P g
´α with Xα,β ‰ 0u.

The elements of M vanish on aH so M identifies to a subset of a˚Z . We define

a´´Z “ tX P aZ : αpXq ă 0, α PMu
and a´Z “ tX P aZ : αpXq ď 0, α PMu.

Following e.g. [11], we define the set S of spherical roots as the set of irreducible elements
of M, i.e. those which cannot be expressed as a sum of two non-zero elements in M. We
define also

aZ,E “ tX P aZ : αpXq “ 0, α P Su,

which normalizes h.
We have the polar decomposition for Z. Namely (cf. [11, equation (3.16)] or [8, Theo-

rem 5.13]),

There exist two finite sets F2 and W in G such that Z “ F2KA´ZW ¨ z0 and
such that PwH is open and AHw Ă wH for each w PW .

(1.5)

Moreover

Any open pP,Hq-orbit in G is of the form PwH for at least an
element w of W .

Let us recall some notation used in [11, Section 3.4]. Let

ĥ :“ h` ãZ,E,

let pHC,0 be the connected algebraic subgroup of GC with Lie algebra ĥC, pH0 :“ pHC,0XG and

TZ :“ exppiaZq. Recall that h is an ideal in ĥ. Then pHC,0 “ exppiãZ,Eq rAZ,EHC,0.

1.1 Lemma. The set W can be chosen such that any w PW can be written:

w “ th, where t P exppiãZq and h P HC,0. (1.6)

Moreover, if a P AH , aw ¨ z0 “ w ¨ z0.

Proof. Let us use the notation of [11, after equation (3.12)]. Any f P F can be written

f “ th with h P pHC,0 “ exppiãZ,Eq rAZ,EHC,0 and t P TZ . Then write h “ aZ,EtZ,Eh1 with

h1 P HC,0, aZ,E P rAZ,E, tZ,E P rTZ,E “ exppiãZ,Eq. As aZ,E P P , one is allowed to change w in
a´1
Z,Ew in loc.cit. equation (3.12). Hence, elements of this chosen set F satisfies (1.6), i.e.

f “ th, t P exppiãZq, h P HC,0. (1.7)
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NowW “ FF 1 (cf. loc.cit. after equation (3.15)) and F 1 is a finite subset of pH0 “ pHC,0XG Ă
NGpHq (cf. loc.cit. equation (3.14)). More precisely, F 1 is a minimal set of representatives

of pH0{HAZ,E. Let us first study elements f 1 of F 1 Ă pH0. These elements can be written

f 1 “ a1Z,Et
1
Z,Eh

1
1 with a1Z,E P

rAZ,E, t1Z,E P
rTZ,E, h11 P HC,0. Hence, using (1.7), a1´1

Z,Eff
1 “

tt1h1h
1
1, where h1pa

1
Z,Eq

´1pt1Z,Eq
´1hpt1Z,Eq

´1a1Z,E P HC,0, as rAZ,E and rTZ,E normalize HC,0.

Then, by changing the element ff 1 into a1´1
Z,Eff

1, we define a new choice W for which the
polar decomposition (1.5) is valid and its elements satisfy (1.6).

The elements of the originalW satisfy aw ¨z0 “ w ¨z0 (cf. [11, Lemma 3.5 and its proof]).
As the elements of the new set W are obtained by multiplying the elements of the old one
by elements of rAZ,E which commute to AH , one gets the last assertion of the Lemma.

If w PW , one introduces Hw “ wHw´1 and Zw “ G{Hw. Then (cf. [11, Corollary 3.7]),
PHw is open and Q is Zw-adapted to P . Moreover AZw “ AZ and A´Zw “ A´Z . Let Ω denote
the compact set FK.

2 Z-tempered H-fixed continuous linear forms and the

space AtemppZq

2.1 Harish-Chandra representations of G

Let us recall some definitions and results of [2].
A continuous representation pπ,Eq of a Lie group G on a topological vector space E is a

representation such that the map:

Gˆ E Ñ E, pg, vq ÞÑ πpgqv, is continuous.

If R is a compact subgroup of G and v P E, we say that v is R-finite if πpRqv generates a
finite dimensional subspace of E. Let VpRq denote the vector space of R-finite vectors in E.
Let η be a continuous linear form on E and v P E. Let us define the generalized matrix
coefficient associated to η and v by:

mη,vpgq :“ă η, πpg´1
qv ą, g P G.

Let G be a real reductive group. Let } ¨ } be a norm on G (cf. [15, Section 2.A.2] or [2,
Section 2.1.2]). We have the notion of a Fréchet representation with moderate growth. A
representation pπ,Eq of G is called a Fréchet representation with moderate growth if it is
continuous and if for any continuous semi-norm p on E, there exist a continuous semi-norm
q on E and N P N such that:

ppπpgqvq ď qpvq}g}N , v P E, g P G. (2.1)

This notion coincides with the notion of F-representations given in [2, Definition 2.6] for
the large scale structure corresponding to the norm } ¨ }. We will adopt the terminology of
F-representations.
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Let pπ,Eq be an F-representation. A smooth vector in E is a vector such that g ÞÑ πpgqv
is smooth from G to E. The space V 8 of smooth vectors in V is endowed with the Sobolev
semi-norms that we define now. Fix a basis X1, . . . , Xn of g and k P N. Let p be a continuous
semi-norm on E and set

pkpvq “

˜

ÿ

m1`¨¨¨`mnďk

ppπpXm1
1 ¨ ¨ ¨Xmn

n qvq2

¸1{2

, v P E8. (2.2)

We endow E8 with the topology defined by the semi-norms pk, k P N, when p varies in the set
of continuous semi-norms of E, and denote by pπ8, E8q the corresponding sub-representation
of pπ,Eq.

An SF-representation is an F-representation pπ,Eq which is smooth, i.e. such that E “
E8 as topological vector spaces. Let us remark that if pπ,Eq is an F-representation, then
pπ8, E8q is an SF-representation (cf. [2, Corollary 2.16]). The topology on E8 is also given
by the semi-norms:

∆p2k
pvq “

˜

k
ÿ

j“0

pppπp∆j
qvqq2

¸1{2

, v P E8, (2.3)

where ∆ “ X2
1 ` ¨ ¨ ¨ `X

2
n and p varies in the set of continuous semi-norms of E.

2.1 Lemma. Let G be a real reductive group and K be a maximal compact subgroup of G.
Let pπ,Eq be a continuous Banach representation of G (i.e. a continuous representation in
a Banach space).

(i) Let V be a pg, Kq-module of finite length which is contained in E8. Then V is contained
in the space Eω of analytic vectors of E.

(ii) The closure of V in E8, V , is an SF-representation of G with underlying pg, Kq-module
equal to V . In fact V is isomorphic to the canonical SF-globalization of V .

Proof. Let Cg be the Casimir element of Upgq and let Ck be the Casimir element of Upkq.
Then ∆ :“ Cg ´ 2Ck is a Laplacian for G. Since V is of finite length, every element of V is
a finite linear combination of v P V satisfying the following:

There exist Λg,Λk P C and n P N such that πpCg´Λgq
nv “ 0 and πpCk´Λkq

nv “
0.

This implies that, if Λ “ Λg ´ 2Λk,

πp∆´ Λq2nv “ 0.

To show that V Ă Eω, it is then enough to show that v P Eω for such v. Fix such a v P V .
Let η be a continuous linear form on E. Then the generalized matrix coefficient mη,v is a
smooth function on G, as v P V Ă E8, and is annihilated by p∆ ´ Λq2n. Hence mη,v is
analytic. This shows that:

G Ñ E
g ÞÑ πpgqv

is weakly analytic.
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As E is a Banach space, it follows from [17, Lemma 4.4.5.1] that the map is analytic. Hence
v P V ω and (i) follows.

Let us show (ii). We first prove that V is G-invariant. It is clearly K-invariant as V is.
It is also invariant by the identity component of G due to [17, Corollary 4.4.5.5]. Hence it
is G-invariant. Then V is a closed G-submodule of E8, hence of moderate growth as E is
a continuous Banach representation of G. It remains to check that V is equal to the space
of K-finite elements in V 8. Let v be a K-finite element of V . Let us prove that v P V . By
linearity, one can assume that there exists a finite dimensional representation of K, δ, with
normalized character χδ, such that:

πpχδqv “ v.

On the other hand, v is the limit of a sequence pvnq of elements of V . Hence πpχδqvn ÝÝÝÝÑ
nÑ`8

πpχδqv “ v. But pπpχδqvnqnPN lies in a finite dimensional subspace of V . Hence v belongs
to this finite dimensional subspace of V . In particular v P V . This achieves to prove the
Lemma.

We define a Harish-Chandra representation of G as an SF-representation V 8 such that
the underlying pg, Kq-module of K-finite vectors V is of finite length.

2.2 The spaces C8
temp,NpZq and Atemp,NpZq

In the remaining of Section 2, we will assume that Z is unimodular. Let ρQ be the half sum
of the roots of a in u. Let us show that:

ρQ is trivial on aH .

As lX h-modules,
g{h “ u‘ pl{lX hq.

But the action of aH “ aLX h on pl{lX hq is trivial. Since Z is unimodular, the action of aH
has to be unimodular. Our claim follows.

Hence ρQ can be defined as a linear form on aZ .

We have the notion of weights on an homogeneous space X of a locally compact group G
(cf. [1, Section 3.1]). This is a function w : X Ñ R`˚ such that, for every ball B of G (i.e. a
compact symmetric neighborhood of 1 in G), there exists a constant c “ cpw,Bq such that:

wpg ¨ xq ď cwpxq, g P B, x P X. (2.4)

One sees easily that if w is a weight, then w´1 is also a weight.
Let v (resp. w) be the weight function on Z defined in [8, Section 4] (resp. [8, Propo-

sition 3.4]). For any N P N, let EN be the completion of C8c pZq for the norm pN defined
by:

pNpfq “ sup
zPZ

`

p1`wpzqq´Nvpzq1{2|fpzq|
˘

, (2.5)
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i.e. EN consists of the space of continuous functions f on Z such that pNpfq ă `8. From
the polar decomposition of Z (cf. (1.5)), one has:

pNpfq “ sup
ωPΩ,aPA´Z ,wPW

`

p1`wpωaw ¨ z0qq
´Nvpωaw ¨ z0q

1{2
|fpωaw ¨ z0q|

˘

.

From the fact that v and w are weight functions on Z and from [8, Propositions 3.4(2)
and 4.3], one then sees that:

The norm pN is equivalent to the norm:

f ÞÑ qNpfq :“ sup
ωPΩ,wPW,aPA´Z

`

a´ρQp1` } log a}q´N |fpωawq|
˘

.
(2.6)

Moreover, due to the fact that v and w´1 are weight functions on Z, one gets that G acts
by left translations on EN , and, for any compact subset C of G, by changing z into z1 “ g ¨ z
in (2.5), one sees that:

There exists c ą 0 such that:

pNpLgfq ď cpNpfq, g P C, f P EN .
(2.7)

But this action is not continuous. Let VN be the space of continuous vectors of EN , i.e. the
space of f P EN such that the map GÑ EN , g ÞÑ Lgf , is continuous. It is easy, using (2.7),
to prove that VN is a closed G-invariant subspace of EN and VN is a continuous Banach
representation of G.

2.2 Lemma.

(i) The space V 8N is equal to

C8temp,NpZq :“ tf P C8pZq : pN,upfq ă 8, u P Upgqu,

where pN,upfq “ pNpLufq.

(ii) The topology on V 8N is defined by the semi-norms pN,u, u P Upgq. It is also defined by
the semi-norms pN,k, k P N (cf. (2.2)), or ∆pN,2k , k P N (cf. (2.3)).

(iii) The topology on V 8N is defined by the semi-norms qN,u, u P Upgq. It is also defined by
the semi-norms qN,k, k P N, or ∆qN,2k , k P N.

Proof. Looking at the definition, it is easy to see that:

V 8N Ă C8pZq

and is contained in C8temp,NpZq. Reciprocally, let f P C8temp,NpZq. It is an element of EN .
Let us show that f P VN . This is a consequence of the mean value theorem:

If X is in a compact neighborhood B of 0 in g, z P Z and t P r0, 1s, then there
exists ct,X,z P r0, 1s such that:

pLexp tXfqpzq ´ fpzq “ tpLXfqpexppct,X,zXq
´1
¨ zq.
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Hence

pNpLexp tXf ´ fq “ t sup
zPZ
p1`wpzqq´Nvpzq1{2|pLXfqpexppct,X,zXq

´1
¨ zq|.

Changing z into exppct,X,zXq
´1 ¨z and using that v and w are weights (cf. (2.4)), one deduces

easily that f P VN . To prove that f P V 8N , one can first show that the map g ÞÑ Lgf is
1-differentiable. It is clear that, if X P g and g P G, LXpLgfq P C

8
temp,NpZq. Hence, by the

previous discussion, one has LXpLgfq P VN . One can proceed similarly as above by studying:

pN

ˆ

Lexp tXpLgfq ´ Lgf

t
´ LXpLgfq

˙

,

using the Taylor expansion in 0 at order 2 of the function t ÞÑ Lexp tXpLgfq. It implies that
the map g ÞÑ Lgf has partial derivatives at order 1 given by LXpLgfq, X P g. Let us show
that these partial derivatives are continuous from G to VN . First g ÞÑ Lgf is continuous by
definition of VN . LetX1, . . . , Xn be a basis of g. Then, using that LXpLgfq “ LgpLAdpg´1qXfq,
there exist real valued C8-functions on G, ci, i “ 1, . . . , n, such that

LXpLgfq “
ÿ

i

cipgqLgpLXifq.

But, as f P C8temp,NpZq, LXif P C
8
temp,NpZq which has been seen to be contained in VN . It

follows that g ÞÑ LXpLgfq is continuous from G to VN . Thus, the map g ÞÑ Lgf is a C1-map
from G to VN . Then, using induction on the order of the partial derivatives, one shows that
g ÞÑ Lgf has continuous partial derivatives at every order. Hence f P V 8N . This achieves to
prove (i).

The point (ii) follows from [2, Proposition 3.5] and then (iii) follows from (2.6).

Let us define the notion of Z-tempered continuous H-fixed linear forms on a Harish-
Chandra representation of G, V 8. If V denotes the subspace of K-finite vectors of V 8, then
a continuous H-fixed linear form η is called Z-tempered if it satisfies:

There exists N P N such that, for all v P V (resp. v P V 8),

mη,v P C
8
temp,NpZq.

The first condition is the original definition of temperedness of [9, Definition 5.3 and Re-
mark 5.4]. That this condition implies the second is proved in [11, Theorems 7.1 and 6.13(2)].
Denote by pV ´8qHtemp the space of Z-tempered continuous H-fixed linear forms on V 8.

2.3 Lemma. Let f P C8pZq. The following conditions are equivalent:

(i) There exist a Harish-Chandra G-representation V 8, a Z-tempered contiuous linear
form η on V 8 and v0 P V

8 such that mη,v0 “ f ;
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(ii) There exist N P N and a Harish-Chandra sub-representation V 81 of C8temp,NpZq such
that f P V 81 .

We define AtemppZq as the set of f P C8pZq satisfying (one of) these equivalent conditions.
If N P N, Atemp,NpZq is the set of f P C8pZq satisfying (ii) for this precise N .

Proof. Let f P C8pZq satisfying (i). Then, from Lemma 2.2(i) and the definition of tem-
peredness, tmη,v : v P V 8u is a sub-representation of C8temp,NpZq for some N P N. Let
V be the underlying pg, Kq-module of V 8 and let V 81 be the closure in C8temp,NpZq of
tmη,v : v P V u. It is an SF-representation of G (cf. Lemma 2.1(ii)). Let pV 81 qpKq be
the space of K-finite vectors in V 81 . One has (cf. loc. cit.)

pV 81 qpKq “ tmη,v : v P V u. (2.8)

Hence pV 81 qpKq is of finite length and V 81 is a Harish-Chandra representation of G. It is the
SF-globalization of tmη,v : v P V u. Hence (cf. [16, Theorem 11.6.7]) there exists a surjective
(because of (2.8)) continuous linear intertwining operator T 1 between V 8 and V 81 such that:

T 1pvq “ mη,v, v P V. (2.9)

We claim that T 1pvq “ mη,v for all v P V 8. Let us show that, if a sequence pvnq in V 8

converges to v, pmη,vnq converges to mη,v uniformly on compact sets. In fact, from (2.1), if
Ω is a compact set in G, there exist a continuous semi-norm q on C8pZq and N 1 P N such
that

| ă η, πpg´1
qvn ą ´ ă η, πpg´1

qv ą | ď Cqpvn ´ vq, g P ΩH,

for some C ą 0. Our claim follows.
From the fact that η is a continuous H-fixed linear form on the SF-representation V 8,

it is then easily seen that the map:

T : v ÞÑ mη,v

is a continuous map from V 8 into CpZq. On the other hand, the embedding of C8temp,NpZq
in CpZq is obviously continuous and linear. Then, by composition, the map T 1, given in
(2.9), defines a continuous linear map from V 8 into CpZq. Hence (2.9) implies by density
that T “ T 1. This implies that T is a continuous and surjective linear map from V 8 to V 81 .
This shows that mη,v0 P V

8
1 and V 81 satisfies (ii).

Reciprocally, if f satisfies (ii), let η be the restriction to V 81 of the Dirac measure at z0.
Then pV 81 , ηq satisfies (i) for v0 “ f .

Let us remark that, for any N1, N2 P N,

N1 ď N2 implies Atemp,N1pZq Ă Atemp,N2pZq. (2.10)

Indeed, this follows from the property:

pN2pfq ď pN1pfq, f P C8c pZq,

which implies that C8temp,N1
pZq is a subspace of C8temp,N2

pZq. We endow Atemp,NpZq with the
topology induced by the topology of C8temp,NpZq.
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2.4 Lemma. The space AtemppZq is a vector subspace of C8pZq.

Proof. As AtemppZq is the union
Ť

NPNAtemp,NpZq and according to (2.10), it is enough to
prove that Atemp,NpZq is a vector subspace of C8pZq. It is clear that if f P Atemp,NpZq,
one has λf P Atemp,NpZq for λ P C. Let f1, f2 P Atemp,NpZq. For i “ 1, 2, let V 8i be a
Harish-Chandra sub-representation of C8temp,NpZq containing fi. Let Vi be the underlying
pg, Kq-module of V 8i . Let V “ V1 ` V2. It is a pg, Kq-submodule of C8temp,NpZqpKq. Recall
from Lemma 2.2 that C8temp,NpZq is the space of smooth vectors of a Banach representation.
Then, from Lemma 2.1(ii), one sees that the closure of V , V 8, is a Harish-Chandra sub-
representation of C8temp,NpZq which contains f1 ` f2. Hence f1 ` f2 P Atemp,NpZq.

Recall that, if V 8 is a Harish-Chandra representation of G, then pV ´8qH is a finite
dimensional vector space (cf. [12, Theorem 3.2]).

2.5 Lemma. Let V 8 be a Harish-Chandra representation of G. Then:

(i) The group AZ,E acts on the finite dimensional vector space pV ´8qH .

(ii) If η P pV ´8qHtemp and a0 P AZ,E, then a0η P pV
´8qHtemp.

(iii) If η P pV ´8qHtemp, η ‰ 0, transforms by a character χ under AZ,E, then one has
|χpaq| “ aρQ, a P AZ,E.

(iv) If η P pV ´8qHtemp and v P V 8,

a ÞÝÑ a´ρQ ă aη, v ą

is an exponential polynomial on AZ,E with unitary characters and polynomials having
bounded degrees by the dimension of pV ´8qH .

Proof. The assertion (i) follows from the fact that h is normalized by AZ,E (cf. [11, equa-
tion (3.2)]) Let us look at ă ωawa0η, v ą, where v P V 8, ω P Ω, w P W , a0 P AZ,E and
a P AZ . Then, from [11, Lemma 3.5], as η is H-fixed, this is equal to ă ωaa0wη, v ą. Then,
by using (2.6) and } log aa0} ď } log a} ` } log a0}, one gets that a0η is Z-tempered. This
shows (ii).

Let us now assume that η transforms by a character χ under AZ,E. As η is Z-tempered,

|a´ρQ ă aη, v ą | ď Cp1` } log a}qn, a P AZ,E.

As ă aη, v ą“ χpaq ă η, v ą, one then gets, assuming v such that ă η, v ą‰ 0, that
|χpaqa´ρQ | “ 1 for a P AZ,E and hence (iii).

Let us prove (iv). As AZ,E acts on the finite dimensional vector space pV ´8qH , it follows
that, for all v P V 8, the function on AZ,E, a ÞÑă aη, v ą, is an exponential polynomial
function follows from the fact that AZ,E acts on the finite dimensional vector space pV ´8qHtemp.
If a character χ appears in the decomposition of this AZ,E-module, there is a non zero ηχ P
pV ´8qHtemp which transforms by χ under AZ,E. One concludes from (iii) that a ÞÑ a´ρQχpaq
is unitary. Moreover the degrees of the polynomials are bounded by the dimension of the
AZ,E-module pV ´8qHtemp.
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3 Differential equation for some functions on Z wave-

front and unimodular

3.1 Boundary degenerations of Z

Let I be a subset of S and set:

aI “ tX P aZ : αpXq “ 0, α P Iu,
a´´I “ tX P aI : αpXq ă 0, α P SzIu,
AI “ exp aI Ă AZ ,
A´´I “ exppa´´I q.

Then there exists an algebraic Lie subalgebra hI of g such that, for all X P a´´I , one has:

hI “ lim
tÑ`8

ead tXh

in the Grassmanian of g (cf. [11, equation (3.6)]).
Let HI be the connected subgroup of G corresponding to hI which is closed, as hI is

algebraic. Let ZI “ G{HI . Then ZI is a real spherical space for which:

(i) PHI is open,

(ii) Q is ZI-adapted to P ,

(iii) aZI “ aZ and a´ZI “ tX P aZ : αpXq ď 0, α P Iu contains a´Z

(cf. [11, Proposition 3.2]). Let A´ZI “ exp a´ZI . Similarly to Z, the real spherical space ZI
has a polar decomposition:

ZI “ ΩIA
´
ZI
WI ¨ z0,I ,

where z0,I “ HI , ΩI “ FIK, and FI and WI are finite sets in G (cf. [11, Section 3.4.1]).
Using Lemma 1.1, we can make the same kind of choice for WI as for W .

If X P a´´I , we define
βIpXq “ max

αPSzI
αpXq ă 0 (3.1)

and, if a P A´´I with a “ expX, we set aβI “ eβIpXq.

3.2 Some estimates

3.1 Lemma. Let Y P hI and N P N. There exists a continuous semi-norm on C8temp,NpZq,
p, such that

|pLY fqpaq| ď ppfqaρQ`βI p1` } log a}qN , a P A´´I , f P C8temp,NpZq.

15



Proof. If Y P lX h,
pLY fqpaq “ 0, a P AI .

Hence the conclusion of the Lemma holds for Y P lX h.
Let α be a root of a in u, i.e. α P Σu, and let X´α P g´α. We have defined (cf. (1.4))

Xα,β P gβ for α P Σu, β P Σu and Xα,0 P pl X hqKl , where pl X hqKl is the orthogonal in l of
lX h for the scalar product on g (cf. Section 1) restricted to l. We set (cf. [11, beginning of
Section 3.3]):

XI
α,β “

"

Xα,β, if α ` β P xIy,
0, otherwise,

where xIy Ă N0rSs is the monoid generated by I, and we define (cf. loc.cit. equation (3.7)):

TIpX´αq “
ÿ

βPΣuYt0u

XI
α,β.

Then (cf. loc.cit. equation (3.9)):

Y´α “ X´α ` TIpX´αq P hI

and lX h and the Y´α, when α and X´α vary, generate hI .
Let ã “ spaq (cf. (1.3) for the definition of s). Then let us show that:

AdpãqY´α “ ã´αY´α.

One has AdpãqX´α “ ã´αX´α and AdpãqXα,β “ ãβXα,β. But α ` β P I. Hence ãα`β “ 1,
as a P AI . Our claim follows.

Let us study pLY´αfqpaq for a P A´´I and f P Atemp,NpZq. One has:

pLY´αfqpaq “ pLã´1pLY´αfqqpz0q

“ ãαpLY´αLã´1fqpz0q.

Let us notice that:
Y´α `

ÿ

βPΣuYt0u, α`βRxIy

Xα,β P h.

Hence one has:

pLY´αfqpaq “ ´ãα
ř

βPΣuYt0u, α`βRxIy
pLXα,βLã´1fqpz0q

“ ´
ř

βPΣuYt0u, α`βRxIy
ãα`βpLã´1LXα,βfqpz0q.

But ãα`β “ aα`β as a P AI Ă AZ and α ` β P S. Then, as pLã´1LXα,βfqpz0q “ LXα,βfpaq,
one has:

pLY´αfqpaq “ ´
ÿ

βPΣuYt0u, α`βRxIy

aα`βpLXα,βfqpaq. (3.2)

If α ` β R xIy as above and LXα,βf ‰ 0, one has α ` β PMzxIy and, from the definition of
βI (cf. (3.1)):

aα`β ď aβI , a P A´´I .
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Then
|pLY´αfqpaq| ď aβI

ÿ

βPΣuYt0u, α`βRxIy

|pLXα,βfqpaq|.

Hence we get the inequality of the Lemma for Y “ Y´α by taking

p “
ÿ

βPΣuYt0u, α`βRxIy

pXα,β ,N .

Let us recall (cf. e.g. [11, Section 5.1]) that Z is said wave-front if

a´Z “ pa
´
` aHq{aH .

We will now make the following hypothesis on Z:

Let us assume from now, unless specified, that
Z is wave-front and unimodular.

(H)

Let I Ă S. Let FQ be the subset of the set of simple roots Π of a in n, such that Q is the
parabolic subgroup of G corresponding to the roots ΣnzxFQy. Let us recall some results of
[11, Corollary 5.6]. As Z is wave-front, there exists a minimal set FI Ă Π which contains FQ
and such that:

xFIy X N0rSs “ xIy.

Moreover, if QI denotes the parabolic subgroup of G containing Q and corresponding to the
roots ΣnzxFIy, and QI “ LIUI is its Levi decomposition with A Ă LI , one has:

pLI XHq0 U
´
I Ă HI Ă Q´I ,

where Q´I is the parabolic subgroup of G opposite to QI containing A. Let us denote by u´I
the nilradical of the parabolic subalgebra q´I .

3.2 Lemma. Let X P u´I and u P Upgq. There exists a continuous semi-norm on C8temp,NpZq,
q, such that, for all f P C8temp,NpZq,

|pLXLufqpaZaIq| ď qpfqpaZaIq
ρQaβII p1` } log aZ}q

Np1` } log aI}q
N ,

aZ P A
´
Z , aI P A

´´
I .

Proof. As Lu is a continuous operator on C8temp,NpZq, it is enough to prove the Lemma for
u “ 1. By linearity, we can assume that X “ X´α is a weight vector in a for the weight ´α,
where α is a root of a in uI .

As X´α P hI , TIpX´αq “ 0 and Y´α “ X´α. In particular, AdpãqY´α “ ã´αY´α for
a P AZ (recall that in the proof of Lemma 3.1, this is true only for a P AI). Hence (3.2) is
true for a P AZ and:

pLY´αfqpaq “
ÿ

βPΣuYt0u, α`βRxIy

aα`βpLXα,βfqpaq, a P AZ .
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Let us assume a “ aZaI with aZ P A
´
Z , aI P A

´´
I . Then, as aα`βZ ď 1, and as aI P A

´´
I ,

aα`βI ď aβII , by definition of βI (cf. (3.1)), one gets aα`β ď aβII . Moreover, as elements of
Upgq act continuously on C8temp,NpZq, there exists a continuous semi-norm p on C8temp,NpZq
such that, for all β P Σu Y t0u,

|pLXα,βfqpaZaIq| ď ppfqpaZaIq
ρQp1` } log aZ}q

N
p1` } log aI}q

N , f P C8temp,NpZq.

To get this inequality, we have used that:

} logpaZaIq} ď } log aZ} ` } log aI}.

The Lemma follows.

3.3 Algebraic preliminaries

Let ALI be the maximal vector subgroup of the center of the Levi subgroup LI ofQI contained
in A. Then (cf. [11])

aLI{aLI X aH » aI Ă aZ .

Let clI be the center of lI and 0lI “ rlI , lIs ` clI X k. One has:

lI “
0lI ‘ aLI . (3.3)

Let prI be the projection of lI on aLI parallel to 0lI . Let ρQI denote the half sum of the roots
in Σ`zxFIy, i.e. the roots of a in uI . From [11, equation (3.9)] and the fact that aLI Ă a, one
has aLI X hI “ aLI X h. Let us show that:

ρQI is trivial on aLI X hI . (3.4)

From [11, Lemma 3.11], ZI is also unimodular and, as lI X hI-modules,

g{hI “ uI ‘ plI{lI X hIq.

In fact, the action of aLI X hI on lI{lI X hI is trivial. Hence the action of aLI X hI on uI has
to be unimodular. Our claim follows. Let us define a function dQI on LI by:

dQI plq “ pdetpAd l|uI qq
1{2, l P LI .

In particular
dQI paq “ aρQI , a P ALI .

Let us notice that, from (3.4),

dQI is trivial on ALI X AH . (3.5)

We define an automorphism of UplIq:

σI : UplIq Ñ UplIq
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such that:
LσIpXq “ d´1

QI
˝ LX ˝ dQI , X P lI ,

i.e. σIpXq “ X ´ ρQI pprIpXqq, X P lI .
We define also a map µI : Zpgq Ñ ZplIq characterized by:

z ´ µIpzq P u
´
I Upgq, z P Zpgq.

Then γI :“ σI ˝ µI : Zpgq Ñ ZplIq is the so-called Harish-Chandra homomorphism and one
has:

LγIpzq “ d´1
QI
˝ LµIpzq ˝ dQI , z P Zpgq.

One knows that ZplIq is a free module of finite rank over γIpZpgqq. Hence there exists a
finite dimensional vector subspace W of ZplIq containing 1 such that the map:

γIpZpgqq bW ÝÑ ZplIq
ub v ÞÝÑ uv

is a linear bijection.
Let I be a finite codimensional ideal of Zpgq and let J “ γIpIq. Let V be a finite

dimensional vector subspace of γIpZpgqq containing 1 such that γIpZpgqq “ J ‘ V . Hence:

ZplIq “ pJ ‘ V qW
“ JW ‘ VW,

where JW (resp. VW ) is the linear span of tuv : u P J , v P W u (resp. tuv : u P V, v P W u).
We set WI :“ VW . Let us notice that:

JW “ J γIpZpgqqW “ JZplIq.

We see that, if I is the kernel of a character χ of Zpgq, one may and will take V “ C1, hence
WI “ W . One has:

ZplIq “ WI ‘ JW.

Let sI , resp. qI , be the linear map from ZplIq to WI , resp. JW , deduced from this direct
sum decomposition. The algebra ZplIq acts on WI by a representation ρI defined by:

ρIpuqv “ sIpuvq, u P ZplIq, v P WI .

In fact:

The representation pρI ,WIq is isomorphic to the natural representation of ZplIq
on ZplIq{ZplIqJ .

We notice that:
uv “ ρIpuqv ` qIpuvq. (3.6)
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Let pviqi“1,...,n be a basis of W . Then:

qIpuvq “
n
ÿ

i“1

γIpzipu, v, Iqqvi, (3.7)

where the zipu, v, Iq are in I. Let us recall that:

γIpzipu, v, Iqq “ d´1
QI
˝ LµIpzipu,v,Iqq ˝ dQI (3.8)

and that:
µIpzipu, v, Iqq P zipu, v, Iq ` u´I Upgq.

Let us take a basis pu´I,jqj“1,...,p of u´I . We may assume that each u´I,j is a weight vector for
a with weight αj. Then

µIpzipu, v, Iqq “ zipu, v, Iq `
p
ÿ

j“1

u´I,jvi,jpu, v, Iq, (3.9)

where vi,jpu, v, Iq P Upgq.
Let jC be a complex Cartan subalgebra of gC of the form tC ‘ aC, where t is a maximal

abelian subalgebra of m, the centralizer of a in k. Let W pgC, jCq be the corresponding Weyl
group.

One has a “ aLI ‘ paX
0lIq. Hence one has natural inclusions:

a˚LI Ă a˚ and a˚C Ă j˚C. (3.10)

If Λ P j˚C, let χΛ “ χg
λ be the character of Zpgq corresponding to Λ via the Harish-Chandra

isomorphism γ from Zpgq onto SpjCq
W pgC,jCq. More precisely,

χΛpuq “ pγpuqqpΛq, u P Zpgq.

We define similarly the character χlI
Λ of ZplIq.

When I “ IΛ :“ KerχΛ, we take, as we have already said, WI “ W and we write sΛ

instead of sI , qΛ instead of qI , ρΛ instead of ρI and pu, v,Λq instead of pu, v, Iq. Let us
show that, for u P ZplIq, sΛpuq and qΛpuq are polynomial in Λ. It is enough to prove this
for u “ γIpzqv where z P Zpgq and v P W . Then u “ pγIpzq ´ χΛpzqqv ` χΛpzqv. Hence
qΛpuq “ pγIpzq ´ χΛpzqqv P ZplIqJ and sΛpuq “ χΛpzqv P W . Our claim follows. It implies
easily that:

zipu, v,Λq in (3.7) depends polynomially on Λ.

This implies, as µI is linear, that:

vi,jpu, v,Λq in (3.9) depends polynomially on Λ. (3.11)

Using Harish-Chandra isomorphisms, one sees that:

Each simple subquotient of the representation ρΛ of ZplIq is given
by some character of the form χlI

µ , where µ varies in W pgC, jCqΛ.
(3.12)

Let us notice that χlI
µ “ χlI

wµ, where w P W plI,C, jCq.
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3.4 The function ϕf on LI and related differential equations

If I is a cofinite dimensional ideal in Zpgq and N P N˚, we denote by Atemp,NpZ : Iq
(resp. AtemppZ : Iq) the space of f P Atemp,NpZq (resp. AtemppZq) annihilated by I.

Let f P Atemp,NpZ : Iq that we might view as a function on G. We denote by ϕf the
function on LI with values in W ˚

I defined by:

ă ϕf plq, v ą“
`

Lvpd
´1
QI
fq
˘

plq, l P LI , v P WI . (3.13)

This is a function on LI , not necessarily on LI{LI XH.
Let us study Luϕf for u P ZplIq. For v P WI ,

ă Luϕf plq, v ą“ Luvd
´1
QI
fplq, l P LI .

Using (3.6) and (3.7), we get:

ă Luϕf plq, v ą“ LρIpuqvd
´1
QI
fplq `

n
ÿ

i“1

d´1
QI

`

dQILγIpzipu,v,Iqqvid
´1
QI
f
˘

plq, l P LI .

From (3.8) and (3.9), we then deduce:

ă Luϕf plq, v ą “ LρIpuqvd
´1
QI
fplq `

n
ÿ

i“1

d´1
QI

`

Lzipu,v,IqdQILvid
´1
QI
f
˘

plq

`

n
ÿ

i“1

p
ÿ

j“1

d´1
QI

´

Lu´I,j
Lvi,jpu,v,IqdQILvid

´1
QI
f
¯

plq, l P LI .

(3.14)

One has
dQI ˝ Lvi ˝ d

´1
QI
“ LvIi

for an element vIi of ZplIq. The operators Lzipu,v,Iq and LvIi commute. Hence, as zipu, v, Iq P I
and f P Atemp,NpZ : Iq, one has:

Lzipu,v,IqLvIi f “ 0. (3.15)

Let us define a function on LI with values in W ˚
I , ψf,u, by:

ă ψf,uplq, v ą“ ´
ÿ

i,j

d´1
QI
Lu´I,j

Lv1i,jpu,v,Iqfplq, v P WI , l P LI , (3.16)

where v1i,jpu, v, Iq “ vi,jpu, v, IqvIi . From (3.14) and (3.15), we deduce:

Luϕf “
tρIpuqϕf ´ ψf,u, u P ZplIq. (3.17)

Let X P aLI X aH . As f restricted to LI and dQI are left invariant by expX (cf. (3.5) for
dQI ), one sees that:

LXϕf “ 0.
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3.5 The function Φf on AZ and related differential equations

Let us consider the natural projection p : aL Ñ aZ “ aL{aH and let s be the section of p
introduced in (1.3). From [11, Corollary 5.6], we have that aI is equal to the projection of
aLI on aZ . Hence:

One may and will choose the section s such that spaIq Ă aLI .

Recall that the map s is be also denoted by X ÞÑ X̃ or a ÞÑ ã for the corresponding
morphism of Lie groups.

Recall that AZ “ AZI . Let ρLIXQ be the half sum of the roots of a in lI Xu. In particular
ρQ “ ρLIXQ ` ρQI on a.

Let f P Atemp,NpZ : Iq and let us define a function Φf : AZ Ñ W ˚
I by:

Φf paZq “ ã
´ρLIXQ
Z ϕf pãZq, aZ P AZ . (3.18)

Let us recall (cf. (3.13)) that, for v P WI ,

ă ϕf pãq, v ą“ Lvpd
´1
QI
fqpã ¨ z0q “ d´1

QI
pLvIfqpã ¨ z0q, ã P ALI ,

where vI “ dQI ˝ v ˝ d
´1
QI
P ZplIq. Hence, for aZ P AZ and v P WI ,

ă Φf paZq, v ą“ ã
´ρLIXQ
Z d´1

QI
pãZqpLvIfqpãZ ¨ z0q.

One has:
ã
´ρLIXQ
Z d´1

QI
pãZq “ ã

´ρLIXQ
Z ã

´ρQI
Z

“ ã
´ρQ
Z .

(3.19)

Moreover ρQ is trivial on aH (cf. (3.4)). Hence ã
´ρQ
Z “ a

´ρQ
Z . But ãZ ¨ z0 “ aZ . This leads to:

ă Φf paZq, v ą“ a
´ρQ
Z pLvIfqpaZq, v P WI , aZ P AZ . (3.20)

This shows that Φf does not depend on the section s.
Let us study LXΦf for X P aI . It is equal to LX̃Φf , where X̃ P aLI . If aI P AI ,

ã
´ρLIXQ
I “ 1 as ãI P ALI by our choice of the section s. Now we use (3.18) and (3.17) to get:

LX̃Φf paZq “
tρIpX̃qΦf paZq ´ ã

´ρLIXQ
Z ψf,X̃paZq, aZ P AZ . (3.21)

Let us study ã
´ρLIXQ
Z ψf,X̃paZq using (3.16):

ă ã
´ρLIXQ
Z ψf,X̃pãZq, v ą“ ´ã

´ρLIXQ
Z d´1

QI
pãZq

ÿ

i,j

pLu´I,jv1i,jpX̃,v,Iq
fqpaZq, aZ P AZ , v P WI .

Using (3.19), one has:

ă ã
´ρLIXQ
Z ψf,X̃pãZq, v ą“ă Ψf,XpaZq, v ą, aZ P AZ , v P WI , (3.22)
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where Ψf,X : AZ Ñ W ˚
I is defined by:

ă Ψf,XpaZq, v ą“ ´a
´ρQ
Z

ÿ

i,j

pLu´I,j
Lv1i,jpX̃,v,IqfqpaZq, v P WI , X P aI , aZ P AZ . (3.23)

Using (3.21) and (3.22), one gets:

LXΦf “
tρIpX̃qΦf ´Ψf,X , X P aI .

One sets:
ΓIpXq “ ´

tρIpX̃q, X P aI . (3.24)

Hence, one has the important relation:

LXΦf “ ´ΓIpXqΦf ´Ψf,X , X P aI . (3.25)

We notice that ΓI is a representation of the abelian Lie algebra aI on W ˚
I . For λ P a˚I,C, one

denotes by W ˚
I,λ the space of joint generalized eigenvectors of W ˚

I by the endomorphisms
ΓIpXq, X P aI , for the eigenvalue λ. Let QI be the (finite) subset of a˚I,C such that W ˚

I,λ ‰

t0u. One has:
W ˚

I “
à

λPQI

W ˚
I,λ.

If λ P QI , let Eλ be the projector of W ˚
I onto W ˚

I,λ parallel to the sum of the other W ˚
I,µ’s. We

endow W ˚
I with a scalar product and if T P EndpW ˚

I q, we denote by }T } its Hilbert-Schmidt
norm. It is clear that Eλ commutes with the operators ΓIpXq, X P aI . We set

Φf,λ “ EλΦf .

The proofs of the following results (Lemma 3.3 up to Proposition 3.14) follow closely the
work of Harish-Chandra (cf. [5, Section 22]). Here M`

1 is replaced by A´Z and M1 by A´ZI .

3.3 Lemma. One has, for all aZ P AZ, T P R, XI P aI , λ P QI,

(i)

Φf paZ exppTXIqq “ eTΓIpXIqΦf paZq `

ż T

0

epT´tqΓIpXIqΨf,XI paZ expptXIqq dt.

(ii)

Φf,λpaZ exppTXIqq “ eTΓIpXIqΦf,λpaZq `

ż T

0

Eλe
pT´tqΓIpXIqΨf,XI paZ expptXIqq dt.

Proof. The equality (i) is an immediate consequence of (3.25). Indeed, we apply the el-
ementary result on first order linear differential equation to the function t ÞÑ F ptq “
Φf paZ expptXIqq, whose derivative is F 1ptq “ ´LXIΦf paZ expptXIqq satisfies

F 1ptq “ ΓIpXIqF ptq `Ψf,XI paZ expptXIqq.

The equality (ii) follows by applying Eλ to both sides of the equality of (i).
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Let
EλpXq :“ Eλ exppΓIpXq ´ λpXqq

for X P aI . Since EλpΓIpXq ´ λpXqq is nilpotent, one has:

3.4 Lemma. We can choose c ě 0 such that:

}EλpXq} ď cp1` }X}qNI , X P aI ,

where NI is the dimension of WI.

The function Ψf,X is a function on AZ and one is interested in its derivatives along
Y P aZ . On one hand, one has:

LY a
´ρQ
Z “ ρQpY qa

´ρQ
Z .

One the other hand, one has:

Ỹ u´I,j “ rỸ , u
´
I,js ` u

´
I,jỸ “ αjpỸ qu

´
I,j ` u

´
I,jỸ .

Hence LY Ψf,X and more generally LuΨf,X , u P SpaZq, is a function of the same type than
Ψf,X (see (3.23)).

3.5 Lemma. Fix u P SpaZq.

(i) There exists a continuous semi-norm on C8temp,NpZq, pu, such that:

}LuΦf paZ expXIq} ď pupfqp1` } log aZ}q
Np1` }XI}q

N ,
aZ P A

´
Z , XI P a

´´
I , f P Atemp,NpZ : Iq.

(ii) There exists a continuous semi-norm on C8temp,NpZq, qu, such that:

}LuΨf,XpaZ expXIq} ď qupfqe
βIpXIqp1` } log aZ}q

Np1` }XI}q
N ,

aZ P A
´
Z , XI P a

´´
I , f P Atemp,NpZ : Iq.

Proof. Let us first prove (i). It is easy to see, using (3.20), that:

ă LuΦf paZq, v ą“ a
´ρQ
Z pLvILu1fqpaZq, v P WI ,

for some u1 P SpaZq with deg u1 ď deg u. Then (i) follows from the continuity of the operator
LvILu1 on C8temp,NpZq and the definition of C8temp,NpZq (cf. Lemma 2.2(i)). By definition of
Ψf,X (cf. (3.23)), one gets (ii) using Lemma 3.2.

We say that an integral depending on a parameter converges uniformly if the absolute
value of the integrand is bounded by an integrable function independently of the parameter.
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3.6 Lemma. Let us fix u P SpaZq, λ P QI, XI P a´´I , and let us suppose that ReλpXIq ą

βIpXIq. Then

(i) The integral
ż 8

0

Eλe
´tΓIpXIqLuΨf,XI paZI expptXIqq dt

converges uniformly on any compact subset of A´ZI .

(ii) The map

aZI ÞÑ

ż 8

0

Eλe
´tΓIpXIqΨf,XI paZI expptXIqq dt

is a well-defined map on A´ZI . Its derivatives along u P SpaZq are given by derivation
under the integral sign.

Proof. One has

Eλe
´tΓIpXIq “ e´tλpXIqEλe

tpλpXIq´ΓIpXIqq “ e´tλpXIqEλp´tXIq.

Hence, from Lemma 3.4, one has:

}Eλe
´tΓIpXIq} ď cp1` }tXI}q

NIe´tReλpXIq. (3.26)

Using Lemma 3.5(ii) and (3.26), one can show that the integral in (i) converges uniformly for
aZI P A

´
Z . Let aZI be in a compact subset C of A´ZI . There exists T0 ą 0 such that, for all z P

C, z exppT0XIq P A
´
Z . Writing

ş`8

0
“
şT0

0
`
ş`8

T0
, aZI expptXIq “ aZI expT0XI exppt´ T0qXI ,

and, using the uniform convergence proved above, one gets (i).
The assertion (ii) follows from (i) and the theorem on derivatives of integrals depending

of a parameter.

Fix f P Atemp,NpZ : Iq and λ P QI and put, for XI as in Lemma 3.6, i.e. ReλpXIq ą

βIpXIq:

Φ “ Φf ,
Φλ “ Φf,λ,

ΨXI “ Ψf,XI ,
Φλ,8paZI , XIq “ limTÑ`8 e

´TΓIpXIqΦf,λpaZI exppTXIqq, aZI P A
´
ZI
.

(3.27)

It follows from Lemmas 3.3(ii) and 3.6 that this limit exists and is C8 on A´ZI . Moreover

LuΦλ,8paZI , XIq “ LuΦλpaZI q `

ż 8

0

Eλe
´tΓIpXIqLuΨXI paZ expptXIqq dt,

u P SpaZq, aZI P A
´
ZI
.

(3.28)
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3.7 Lemma. For XI P a
´´
I such that ReλpXIq ą 0, one has:

Φλ,8paZI , XIq “ 0, aZI P A
´
ZI
.

Proof. One has

}e´TΓIpXIqΦλpaZI exppTXIqq} ď e´TReλpXIq}Eλp´TXIq}}ΦpaZI exppTXIqq}

and, from Lemmas 3.4 and 3.5(i), the right hand side of the inequality tends to zero as
T Ñ `8. Hence the Lemma follows from the definition (3.27) of Φλ,8paZI , XIq.

3.8 Lemma. Let X1, X2 P a
´´
I and suppose that

ReλpXiq ą βIpXiq, i “ 1, 2.

Then
Φλ,8paZI , X1q “ Φλ,8paZI , X2q, aZI P A

´
ZI
.

Proof. Same as the proof of [5, Lemma 22.8]. We give it for sake of completeness. Let
aZI P A

´
ZI

. Applying Lemma 3.3(ii) to X2 instead of XI and T2 instead of T , one gets:

e´ΓIpT1X1`T2X2qΦλpaZI exppT1X1q exppT2X2qq

“ e´T1ΓIpX1qΦλpaZI exppT1X1qq

`

ż T2

0

Eλe
´ΓIpT1X1´t2X2qΨX2paZI exppT1X1 ` t2X2qq dt2,

for T1, T2 ą 0. From Lemmas 3.4 and 3.5(ii) applied to T1X1 ` t2X2 instead of XI , one sees
that:

ż 8

0

}Eλe
´ΓIpT1X1´t2X2q}}ΨX2paZI exppT1X1 ` t2X2qq} dt2

tends to 0 when T1 Ñ `8. Hence:

limT1,T2Ñ`8 e
´ΓIpT1X1`T2X2qΦλpaZI exppT1X1 ` T2X2qq

“ limT1Ñ`8 e
´ΓIpT1X1qΦλpaZI exppT1X1qq

“ Φλ,8paZI , X1q.

Since the left side is symmetrical in X1 and X2, one then deduces that:

Φλ,8paZI , X1q “ Φλ,8paZI , X2q.
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We decompose QI into three disjoints subsets Q`I , Q0
I and Q´I as follows:

(1) λ P Q`I if ReλpXq ą 0 for some X P a´´I ,

(2) λ P Q0
I if ReλpXq “ 0 for all X P a´´I ,

(3) λ P Q´I if λ R Q`I YQ0
I , i.e. for all X P a´´I , ReλpXq ď 0 and there exists

X P a´´I such that ReλpXq ă 0.

3.9 Lemma. Fix λ P Q`I and suppose that X P a´´I is such that ReλpXq ą βIpXq. Then,
for any aZI P A

´
ZI

,
Φλ,8paZI , Xq “ 0

and, for any u P SpaZq,

LuΦλpaZI exppTXqq “ ´

ż 8

T

Eλe
´pt´T qΓIpXqLuΨXpaZI expptXqq dt, T P R.

Proof. Since λ P Q`I , there exists X0 P a
´´
I such that ReλpX0q ą 0. Then, from Lemma 3.7,

Φλ,8paZI , X0q “ 0, and, from Lemma 3.8, as ReλpX0q ą 0 ą βIpX0q, one has Φλ,8paZI , Xq “
Φλ,8paZI , X0q for any X P a´´I such that ReλpXq ą βIpXq. This proves the first part of the
Lemma. The second part follows from (3.28) by change of variables and when we replace
aZI by aZI exppTXq.

3.10 Corollary. Let λ P Q`I . Suppose X P a´´I is such that ReλpXq ě βIpXq{2. Then, for
u P SpaZq, aZI P A

´
ZI

and T ě 0,

}LuΦλpaZI exppTXqq} ď eTβIpXq{2
ż 8

T

e´tβIpXq{2}EλppT ´ tqXq}}LuΨXpaZI expptXqq} dt.

Proof. Since βIpXq ă 0 and ReλpXq ě βIpXq{2, one has in particular ReλpXq ą βIpXq.
Then one can see from Lemmas 3.9 and 3.6 that:

}LuΦλpaZI exppTXqq} ď

ż 8

T

e´pt´T qReλpXq
}EλppT ´ tqXq}}LuΨXpaZI expptXqq} dt.

Our assertion follows, since ReλpXq ě βIpXq{2 implies that ´pt ´ T qReλpXq ď ´pt ´
T qβIpXq{2 for t ě T .

3.11 Lemma. Suppose λ P QI, and X P a´´I is such that ReλpXq ď βIpXq{2. Then

}LuΦλpaZI exppTXqq} ď eTβIpXq{2
´

}EλpTXq}}LuΦpaZI q}

`

ż 8

0

e´tβIpXq{2}EλppT ´ tqXq}}LuΨXpaZI expptXqq} dt
¯

,

T ě 0, u P SpaZq, aZI P A
´
ZI
.

27



Proof. We use Lemma 3.3(ii) and the inequality pT ´ tqReλpXq ď pT ´ tqβIpXq{2 for t ď T

in order to get an analogue of the inequality of the Lemma where
ş8

0
is replaced by

şT

0
. The

Lemma follows.

Like in [5, after the proof of Lemma 22.8], one sees that one can choose 0 ă δ ď 1{2
such that:

ReλpXq ď δβIpXq, X P a´´I , λ P Q´I . (3.29)

3.12 Lemma. Let λ P Q´I and X P a´´I . Then, for u P SpaZq, aZI P A
´
ZI

, T ě 0,

}LuΦλpaZI exppTXqq} ď eTδβIpXq
´

}EλpTXq}}LuΦpaZI q}

`

ż 8

0

e´tβIpXq{2}EλppT ´ tqXq}}LuΨXpaZI expptXqq} dt
¯

.

Proof. This is proved like Lemma 3.11, using that ReλpXq ď δβIpXq and 0 ă δ ď 1{2.

Let λ P Q0
I . It follows from Lemma 3.8 and the definition of βI (cf. (3.1)) that:

For aZI P A
´
ZI

, Φλ,8paZI , Xq is independent of X P a´´I .

We will denote it by Φλ,8paZI q.

3.13 Lemma. Let λ P Q0
I and X P a´´I . Then one has, for u P SpaZq, T ě 0 and aZI P A

´
ZI

,

}LuΦλpaZI exppTXqq ´ LuΦλ,8paZI exppTXqq}

ď eTβIpXq{2
ż 8

0

e´tβIpXq{2}EλppT ´ tqXq}}LuΨXpaZI expptXqq} dt.

Proof. From (3.28), one deduces

LuΦλ,8paZI exppTXqq “ LuΦλpaZI exppTXqq `

ż 8

T

Eλe
´pt´T qΓIpXqLuΨXpaZI expptXqq dt.

The Lemma now follows from the fact that pT ´ tqβIpXq ě 0 if t ě T .

We define now:
Φλ,8paZI q “ 0, aZI P A

´
ZI
, λ P Q`I YQ´I . (3.30)

3.14 Proposition. Let λ P QI, X P a´´I and u P SpaZq. Then, for aZI P A
´
ZI

, T ě 0,

}LuΦλpaZI exppTXqq ´ LuΦλ,8paZI exppTXqq}

ď eTδβIpXq
´

}EλpTXq}}LuΦpaZI q}

`

ż 8

0

e´tβIpXq{2}EλppT ´ tqXq}}LuΨXpaZI expptXqq} dt
¯

.

Proof. If λ P Q0
IYQ´I , our assertion follows from Lemmas 3.12 and 3.13. On the other hand,

if λ P Q`I , we can apply Lemmas 3.9 and 3.11, and Corollary 3.10.
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4 Definition of the constant term and its properties

Let us recall that I is a subset of S and I a finite codimensional ideal in Zpgq.

4.1 Some estimates

In this Subsection, we establish some estimates analogous to the ones given in [5, Section 23].

4.1 Lemma. We fix a compact set C in a´´I and choose ε0 ą 0 such that βIpXq ď ´2ε0 for
all X P C. We put ε “ δε0, where δ is given by (3.29). Let u P SpaZq. Then there exists a
continuous semi-norm q on C8temp,NpZq such that, for all λ P QI, T ě 0, X P C, aZ P A

´
Z

and f P Atemp,NpZ : Iq,

}LuΦf,λpaZ exppTXqq ´ LuΦf,λ,8paZ exppTXqq} ď e´εT qpfqp1` } log aZ}q
N .

Proof. As A´Z is contained in A´ZI , this follows from Proposition 3.14, Lemmas 3.5(ii) and 3.4.

4.2 Lemma. Let λ P QI. One has:

Φf,λ,8paZI expXq “ eΓIpXqΦf,λ,8paZI q, X P aI , aZI P A
´
ZI
, f P Atemp,NpZ : Iq.

Proof. One may assume λ P Q0
I . From Lemma 3.3(ii) applied with T “ 1, one has, for

aZ P AZ , X P aI ,

e´ΓIpXqΦλpaZ expXq “ ΦλpaZq `

ż 1

0

Eλe
´tΓIpXqΨXpaZ expptXqq dt.

Let Y P a´´I . Replacing aZ by aZI exppTY q, with aZI P AZI , and multiplying by e´TΓIpY q,
one gets:

e´ΓIpX`TY qΦλpaZI exppX ` TY qq “ e´ΓIpTY qΦλpaZI exppTY qq

`

ż 1

0

Eλe
´ΓIptX`TY qΨXpaZI expptX ` TY qq dt.

One can choose T0 ą 0 such that aZI exppT0Y q P A
´
Z . If T is sufficiently large, tX ` pT ´

T0qY P a
´´
I for all t P r0, 1s. Recalling that λ P Q0

I , it follows from Lemma 3.5(ii) applied to
aZ “ aZI exppT0Y q and XI “ tX `pT ´T0qY that, if aZI P A

´
ZI

, the integral in this equality
tends to 0 as T Ñ `8. Recalling the definition of Φf,λ,8 (cf. (3.27)), one gets

e´ΓIpXqΦf,λ,8paZI expXq “ Φf,λ,8paZI q, X P aI , aZI P A
´
ZI
.
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4.3 Lemma. Let λ P Q0
I. There exists a continuous semi-norm p on C8temp,NpZ : Iq such

that, for all f P Atemp,NpZ : Iq,

}Φf,λ,8paZI q} ď ppfqp1` } log aZI}q
N`dimWI , aZI P A

´
ZI
.

Proof. We fix X P a´´I . Let aZI P A´ZI . If t is large enough, aZI expptXq P A´Z . More
precisely, if aZI “ expY with Y P aZI , t has to be such that αpY ` tXq ď 0 for all α P SzI.

For this, it is enough that t ě |αpY q
αpXq

| for all α P SzI. But |αpY q
αpXq

| is bounded above by C}Y }
for some constant C ą 0. We will take:

T “ C}Y } (4.1)

and write aZI “ aZ expp´TXq with aZ “ aZI exppTXq P A´Z . One has, from Lemma 4.2,

Φf,λ,8paZ expp´TXqq “ e´TΓIpXqΦf,λ,8paZq. (4.2)

As λ P Q0
I , }Eλe

´TΓIpXq} is bounded by a constant times p1 ` T }X}qNI , where NI is the
dimension of WI (cf. Lemma 3.4). Using (4.1) and as X is fixed, one concludes that there
exists C1 ą 0 such that:

}Eλe
´TΓIpXq} ď C1p1` } log aZI}q

NI .

We remark that } log aZ} ď } log aZI} ` }TX} is bounded by some constant times } log aZI}
because T “ C}Y } and }X} is fixed. Then, using (4.2), the Lemma follows from Lemma 4.1
for T “ 0 and Lemma 3.5(i) for XI “ 0.

Let I be a finite codimensional ideal in Zpgq, I Ă S, N P N˚ and f P Atemp,NpZ : Iq.
Let us define

f̃IpaZI q :“
ÿ

λPQ0
I

ă Φf,λ,8paZI q, 1 ą, aZI P A
´
ZI
. (4.3)

From Lemma 4.2 and as the eigenvalues, for any X P aI , of EλpΓIpXqq are pure imaginary
if λ P Q0

I , one has that:

The map T ÞÑ f̃IpexppTXqq is an exponential polynomial with
unitary characters.

(4.4)

4.4 Lemma. For any f P Atemp,NpZ : Iq,

pLa´1
I
fqrIpaZq “ a

ρQ
I f̃IpaIaZq, aI P AI , aZ P AZ .

Proof. Using (3.20), one sees that, for any aZ P AZ , aI P AI ,

ă ΦL
a´1
I
f paZq, v ą“ a

´ρQ
Z pLvILa´1

I
fqpaZq.
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But, as vI P ZplIq, La´1
I

commutes with LvI . Hence:

ă ΦL
a´1
I
f paZq, v ą “ a

´ρQ
Z pLa´1

I
LvIfqpaZq,

“ a
ρQ
I a

´ρQ
I a

´ρQ
Z pLvIfqpaIaZq,

“ a
ρQ
I ă Φf paIaZq, v ą,

“ a
ρQ
I ă pLa´1

I
Φf qpaZq, v ą .

Hence ΦL
a´1
I
f “ a

ρQ
I La´1

I
Φf . Going to the defintition to Φf,λ,8 (cf. (3.27) and (3.30)) and of

f̃I (cf. (4.3)), one gets the equality of the Lemma.

Let C be as in Lemma 4.1. According to this Lemma and the fact that Φf,λ,8 “ 0 for
λ P Q`I YQ´I (cf. (3.30)) and C is a compact subset of a´´I , one has:

}Φf paZ exppTXqq ´ Φf,8paZ exppTXqq} ď ce´εT qpfqp1` } log aZ}q
N ,

T ě 0, aZ P A
´
Z , X P C, (4.5)

where c is the cardinal of QI . By the property (3.20) of Φf applied with v “ 1, one sees
that:

ă Φf paz exppTXqq, 1 ą“ a
´ρQ
Z e´TρQpXqfpaZ exppTXqq.

Using the equation above and the definition (4.3) of f̃I , one deduces from (4.5) the following
Lemma.

4.5 Lemma. Let C be as in Lemma 4.1. There exist c ą 0, ε ą 0 and a continuous
semi-norm q on Atemp,NpZq such that, for f P Atemp,NpZ : Iq, X P C, aZ P A

´
Z and T ě 0,

|paZ exppTXqq´ρQfpaZ exppTXqq ´ f̃IpaZ exppTXqq| ď ce´εT qpfqp1` } log aZ}q
N .

Let us show that, for any X P a´´I ,

lim
TÑ8

´

paZI exppTXqq´ρQfpaZI exppTXqq ´ f̃IpaZI exppTXqq
¯

“ 0, aZI P A
´
ZI
. (4.6)

If aZI P A´Z , it follows from Lemma 4.5. If aZI P A´ZI , one writes aZI exppTXq “
aZI exppT0Xq expppT ´ T0qXq, where T0 ą 0 is such that aZI exppT0Xq P A

´
Z . Then one

uses Lemma 4.5 and obtains (4.6).

4.2 Definition of the constant term of elements of AtemppZ : Iq
Let us first start by the following general remark:

If an exponential polynomial function of one variable, P ptq, with unitary char-
acters, satisfies:

lim
tÑ`8

P ptq “ 0,

then P ” 0.

(4.7)
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We define some linear forms η and ηI on AtemppZ : Iq by:

ă η, f ą “ fpz0q,

ă ηI , f ą “ f̃Ipz0,Iq, f P AtemppZ : Iq.

Let us remark that η is a continuous linear form on Atemp,NpZ : Iq.

4.6 Lemma. With f as above, one has:

mηI ,f paq “ aρQ f̃Ipaq, a P AI .

Proof. This follows from the definition of ηI and Lemma 4.4 for aI “ a and aZ “ 1.

4.7 Lemma. The linear form ηI is the unique linear form on Atemp,NpZ : Iq such that:

(i) limTÑ8pexppTXqq´ρQ pmη,f pexppTXqq ´mηI ,f pexppTXqqq “ 0, f P Atemp,NpZ :
Iq, X P a´´I .

(ii) For any X P aI , T ÞÑ pexppTXqq´ρQmηI ,f pexppTXqq is an exponential polynomial with
unitary characters.

Moreover ηI is continuous and HI-invariant.

Proof. The assertion (i) follows from Lemma 4.6 and (4.6). From Lemma 4.6 and (4.4), one
gets (ii).

To prove the unicity of such an ηI satisfying (i) and (ii), we use (4.7). If η1I is another
linear form satisfying (i) and (ii), then, for any f P Atemp,NpZ : Iq,

mηI ,f pexppTXqq ´mη1I ,f
pexppTXqq “ 0, X P a´´I , T P R.

This equality applied to T “ 0 implies that ηI “ η1I .
Let us show the continuity of ηI . By taking T “ 0 and aZ “ 1 in the inequality of

Lemma 4.5, one gets:

|fpz0q ´ f̃Ipz0,Iq| ď Cqpfq, i.e. | ă η, f ą ´ ă ηI , f ą | ď Cqpfq.

Moreover η is a continuous map on Atemp,NpZ : Iq. This implies that ηI is continuous on
Atemp,NpZ : Iq.

It remains to get that ηI is HI-invariant. From (4.6), for any X P a´´I ,

lim
TÑ8

´

pexppTXqq´ρQfpexppTXqq ´ f̃IpexppTXqq
¯

“ 0.

One applies this to LY f , Y P hI , and gets:

lim
TÑ8

`

exppTXq´ρQLY fpexppTXqq ´ pLY fq
r

IpexppTXqq
˘

“ 0. (4.8)
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On the other hand, from Lemma 3.1, one has:

lim
TÑ8

exppTXq´ρQLY fpexppTXqq “ 0. (4.9)

Hence, one gets from (4.8) and (4.9) that:

lim
TÑ8

pLY fq
r

IpexppTXqq “ 0.

But T ÞÑ pLY fq
r

IpexppTXqq is an exponential polynomial with unitary characters (cf. (4.4)).
Hence, from (4.7), it is identically equal to 0. This means that:

ηIpLY fq “ 0.

Then ηI is continuous and hI-invariant, and hence HI-invariant.

For f P Atemp,NpZ : Iq, let fI be the function on ZI defined by:

fIpg ¨ z0,Iq “ mηI ,f pgq, g P G. (4.10)

As ηI is an HI-invariant continuous linear form on Atemp,NpZ : Iq (cf. Lemma 4.7), fI is
well-defined. Moreover,

pLgfqI “ LgfI , g P G. (4.11)

4.8 Proposition. Let f P Atemp,NpZ : Iq. One has that fI is the unique C8 function on ZI
such that, for all g P G:

(i) For X P a´´I , limTÑ8pexppTXqq´ρQ pfpg exppTXqq ´ fIpg exppTXqqq “ 0,

(ii) For X P aI , T ÞÑ pexppTXqq´ρQfIpg exppTXqq is an exponential polynomial with uni-
tary characters.

Proof. The Proposition follows immediately from Lemma 4.7 applied to Lg´1f , (4.11) and
the definition (4.10) of fI . Unicity follows from (4.7).

4.9 Lemma. For any f as above:

fIpaZI q “ a
ρQ
ZI
f̃IpaZI q, aZI P A

´
ZI
. (4.12)

Proof. This follows from Proposition 4.8 and (4.6).

4.10 Lemma. Let p be as in Lemma 4.3. For any aZI P A
´
ZI

and f P Atemp,NpZ : Iq,

|fIpaZI q| ď a
ρQI
ZI

ppfqp1` } log aZI}q
N`dimWI .
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Proof. The Lemma follows from Lemma 4.3, (4.3) and (4.12).

Let wI PWI (the set analogous to W for ZI). Let w be the element of W associated to
wI by [11, Lemma 3.10].

Set HI,wI “ wIHIw
´1
I and Hw “ wHw´1. Consider the real spherical spaces Zw “ G{Hw

and ZI,wI “ G{HI,wI , and put zw0 “ Hw P Zw and zwI0,I “ HI,wI P ZI,wI “ G{HI,wI . Then (cf.

[11, Corollary 3.7]) Q is Zw-adapted to P and a´Z is the compression cone for Zw.
For f P C8pZq, let us define fw by:

fwpg ¨ zw0 q “ fpgw ¨ z0q, g P G.

In the same way, one defines φwI for φ P C8pZIq. Then fw P C8pZwq and φwI P C8pZI,wI q.

Let I Ă S. Let us choose XI P a´´I , i.e. XI P aI and αpXIq ă 0 for all α P SzI. For
s P R, let

as :“ exppsXIq. (4.13)

Let wI PWI . From Lemma 1.1 applied to the real spherical space ZI , one has:

wI “ t̃IhI , for some t̃I P exppiãZq and hI P HI,C,0, (4.14)

One has PwH open (cf. (1.5)) and there exists s0 ą 0 with

PwIasH “ PwH, s ě s0.

One has (cf. Lemma 1.1):

w “ t̃h for some t̃ P exppiãZq and h P HC,0. (4.15)

For any s ě s0, let us P U , bs P AZ , ms PM and hs P H be given by loc.cit. Lemma 3.10.
In particular:

wI ãs “ usmsb̃swhs, s ě s0,
lim
sÑ`8

pasb
´1
s q “ 1,

lim
sÑ`8

us “ 1,

lim
sÑ`8

ms “ mwI , for some mwI PM.

(4.16)

Let us notice that (4.16) is valid without assuming Z wave-front or unimodular.
Let us remark that:

If wI “ 1, one can take w “ 1 and then one has mwI “ 1. (4.17)

The proof of the following Proposition will be postponed to the next Section.

4.11 Proposition. Let wI P WI , w P W be as above and f P Atemp,NpZ : Iq. Then
fw P Atemp,NpZw : Iq and

pLmwI fIq
wI paZq “ pf

w
qIpaZq, aZ P AZ .
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Here fw P AtemppZw : Iq, pfwqI P C8pZw,Iq, fI P C8pZIq, pLmwI fIq
wI P C8pZI,wI q, and,

from [11, Proposition 3.2(5) and Corollary 3.7], one has:

AZw,I “ AZw “ AZ ,
AZI,wI “ AZI “ AZ .

Hence both sides of the equality are well-defined on AZ .
Before stating the next Theorem, we recall, from Proposition 4.8, that, for f P AtemppZq,

fI is the unique C8 function on ZI such that, for all X P a´´I and g P G,

lim
TÑ8

pexppTXqq´ρQ pfpg exppTXqq ´ fIpg exppTXqqq “ 0 (4.18)

and
T ÞÑ pexpTXq´ρQfIpg exppTXqq is an exponential polynomial

with unitary characters.
(4.19)

We see that, using Lemma 4.2 for λ P Q0
I , one can replace (4.19) by the stronger condition:

X ÞÑ pexpXq´ρQfIpg expXq is an exponential polynomial on aI
with unitary characters.

Let f P AtemppZq. Then f P Atemp,NpZ : Iq for some N as above and some finite codimen-
sional ideal I in Zpgq. Hence we can define fI as above.

4.12 Proposition. With f P AtemppZq as above, one has that fI does not depend on N and
I.

Proof. This follows from the characterization of fI above (see (4.18) and (4.19)).

From this Proposition, we can define a linear form, still denoted ηI , on AtemppZq, by
f ÞÑ fIpz0,Iq.

4.13 Theorem.

(i) With NI “ dimWI as in Lemma 4.10, for all N P N, the map f ÞÑ fI is a continuous
linear map from Atemp,NpZ : Iq to Atemp,N`NIpZI : Iq.

(ii) Let N P N, C be a compact subset of a´´I and Ω1 be a compact subset of G. Let wI PWI

and pw,mwI q PWˆM be as above. Then there exist ε ą 0 and a continuous semi-norm
p on C8temp,NpZq such that, for all f P Atemp,NpZ : Iq,

|paZ exppTXqq´ρQ
`

fpω1aZ exppTXqw ¨ z0q ´ fIpω
1m´1

wI
aZ exppTXqwI ¨ z0,Iq

˘

|

ď e´εTppfqp1` } log aZ}q
N , aZ P A

´
Z , X P C, ω1 P Ω1, T ě 0.
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Proof. In view of (2.6), to get (i), it is enough to prove that, for any wI P WI and any
compact subset Ω of G, there exists a continuous semi-norm p on Atemp,NpZ : Iq such that:

sup
ωPΩ,aPA´ZI

|a´ρQp1` log }a}q´pN`NIqfIpωawIq| ď ppfq, f P Atemp,NpZ : Iq.

Using (2.7), one is reduced to prove this for Ω reduced to 1. For wI “ 1, one can take w “ 1
(cf. (4.17)) and our claim follows from Lemma 4.10. For general wI , one uses Proposition 4.11
to get pLmwI fIqpaZIwIq “ pf

wqIpaZI q and the above inequality for Hw. This shows (i).
One reduces easily to prove (ii) for Ω “ t1u, by using (2.7). Then, using Proposition 4.11,

one is reduced to prove (ii) with Ω “ t1u and wI “ w “ mwI “ 1 by changing H into Hw.
In that case, (ii) follows from Lemma 4.1.

4.3 Constant term of tempered H-fixed linear forms

Let I be a subset of S.

4.14 Proposition. Let pπ, V 8q be a Harish-Chandra G-representation. If ξ is a Z-tempered
continuous linear form on V , then there exists a unique ZI-tempered continuous linear form
ξI on V 8 such that:

(i) limTÑ8pexppTXqq´ρQ pmξ,vpexppTXqq ´mξI ,vpexppTXqqq “ 0, v P V 8, X P a´´I .

(ii) For any v P V 8 and X P aI , T ÞÑ pexppTXqq´ρQmξI ,vpexppTXqq is an exponential
polynomial with unitary characters.

Proof. Let
ă ξI , v ą:“ pmξ,vqIpz0,Iq, v P V 8.

Then
mξI ,vpgq “ ă ξI , πpg

´1qv ą
“ pmξ,πpg´1qvqIpz0,Iq

“ pLg´1mξ,vqIpz0,Iq.

As f ÞÑ fI is a G-morphism (cf. Theorem 4.13), one then obtains that:

mξI ,vpg ¨ z0,Iq “ pmξ,vqIpg ¨ z0,Iq.

From the properties of pmξ,vqI , one sees that (ii) is satisfied. Furthermore, from Theo-
rem 4.13, one sees that pmξ,vqI P Atemp,NpZIq for some integer N . Hence ξI satisfies the
required properties. Unicity is clear using (4.7).
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4.4 Application to the relative discrete series for Z

As Z is wave-front and ρQ P aZ , one has ρQ|a´Z
ď 0. Hence ρQ|aZ,E “ 0.

Let χ be a unitary character of AZ,E. We recall that, if a P AZ,E and w PW , ãwH “ wa
(cf. [11, Lemma 3.5]). As AZ,E normalizes H, there is a right action pa, zq ÞÑ z ¨ a of AZ,E
on Z. Let C8pZ, χq be the space of C8 functions on Z such that:

fpz ¨ aq “ χpaqfpzq, a P AZ,E, z P Z.

If f P C8pZ, χq, u P Upgq and N P N, let

rN,upfq “ sup
ωPΩ,aPA´Z {AZ,E ,wPW

|a´ρQp1` } log a}qNpLufqpωawq|,

and we define:

CpZ, χq “ tf P C8pZ, χq : rN,upfq ă 8, N P N, u P Upgqu.

Let us recall that pH “ HAZ,E and pZ “ G{ pH. If χ is a character of AZ,E, we extend it trivially

to H on a character of pH still denoted χ. Let us define L2p pZ;χq as in [11, Section 8.1], by
replacing χ by χ´1.

4.15 Theorem. Let pπ, V 8q be a Harish-Chandra G-representation and η be a Z-tempered
continuous linear form on V 8 which transforms under a character χ of AZ,E. Then the
following assertions are equivalent:

(i) For all v P pV 8qpKq, mη,v P L
2p pZ;χq.

(ii) For all proper subset I of S, ηI “ 0.

(iii) For all v P V 8, mη,v P CpZ, χq.

4.16 Remark. Note that we use χ´1 instead of χ in [11] as we use that the linear form η
transforms by χ under the natural action of AZ,E on the dual of V 8.

Proof. Let us assume (i). Let S “ tσ1, . . . , σsu and ω1, . . . , ωs P aZ be such that:

σipωjq “ δi,j, i, j “ 1, . . . , s
ωi K aZ,E, i “ 1, . . . , s.

Here we use the scalar product on aZ defined before (1.4). From [11, Theorem 8.5], the linear
form ΛV,η on aZ , defined in loc.cit. (6.10), satisfies

pΛV,η ´ ρQqpωjq ą 0, j “ 1, . . . , s. (4.20)

Then it follows from loc.cit. Theorem 7.6 used for a fixed X P a´Z of norm 1, Ω “ texpp´Xqu,
w “ 1 and t “ 1, that there exists a d P N and a continuous semi-norm p on V 8 such that:

|mη,vpaq| ď ppvqaΛV,ηp1` } log a}qd, a P A´Z , v P V, (4.21)
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where V “ pV 8qpKq. Let I be a proper subset of S and XI “ ´
ř

i,ωiPSzI
ωi P a´´I .

From (4.20), one deduces that one can choose β ą 0 such that:

pΛV,η ´ ρQqpXIq ă ´β.

Hence, one deduces from (4.21) that, for each v P V ,

|mη,vpexpptXIqq| ď ppvqetρQpXIqp1` t}XI}q
de´tβ, t ě 0.

As β ą 0, this implies that:

lim
tÑ`8

pexpptXIqq
´ρQmη,vpexpptXIqq “ 0.

From the definition of the constant term ηI of η (cf. Proposition 4.14) and from (4.7), one
deduces ηIpvq “ 0 for any v P V . As ηI is continuous on V 8 and V is dense in V 8, one
concludes ηI “ 0. This achieves to prove that (i) implies (ii).

Let us assume that (ii) holds. Let I be an ideal of Zpgq which annihilates V or V 8. It
is of finite codimension. Let us assume that, for all v P V 8, mη,v P Atemp,NpZ : Iq. Then
one can apply Theorem 4.13. Let v P V 8 and set f “ mη,v. Let I Ł S. Let C be a compact
subset of a´´I , Ω1 be a compact subset of G and u P Upgq. Hence there exists a continuous
semi-norm p on Atemp,NpZq, ε ą 0 such that:

|paZ exppTXqq´ρQpLufqpωaZ exppTXqw ¨ z0q|

ď e´εTppfqp1` } log aZ}q
N , aZ P A

´
Z{AZ,E, X P C, ω P Ω1, w PW , T ě 0.

(4.22)

From this, we will deduce that f P CpZ, χq. Let S1 be the unit sphere on aZ{aZ,E and let
X0 P S1 X a´Z{aZ,E. Let Ω0 be an open neighborhood of X0 in S1 X a´Z{aZ,E such that, for
all X P Ω0, αpXq ď αpX0q{2, α P S. Let I be the set of α P S such that αpX0q “ 0. One
has I ‰ S. Then one has X0 P a´´I . Let Y P Ω0 and t ě 0. Then tpY ´ X0{2q P a´Z and
expptY q “ exp tpY ´X0{2q expptX0{2q. Using (4.22) for X0{2 instead of X, exp tpY ´X0{2q
instead of aZ and T “ t, one gets:

|pexpptY qq´ρQpLufqpω expptY qw ¨ z0q|

ď e´εtppfqp1` t}Y ´X0{2}q
N , Y P Ω0, ω P Ω1, w PW , t ě 0.

One deduces easily from this that:

sup
ωPΩ1,wPW,aPexppR`Ω0q

a´ρQp1` } log a}qN |pLufqpωaw ¨ z0q| ă `8.

Using a finite covering of the compact set S1Xa
´
Z{aZ,E, one deduces from this that f P CpZ, χq.

This achieves to prove that (ii) implies (iii).
To prove that (iii) implies (i), one proceeds as in the proof that (ii) implies (i) in [11,

Theorem 8.5].
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5 Proof of Proposition 4.11

We refer to Section B for the definition and properties of rapid convergence. The main goal
of this Section is to prove:

5.1 Proposition. Here we only assume Z real spherical (not necessarily wave-front or uni-
modular). The families pasb

´1
s q and pusq converge rapidly to 1 and one can choose the family

pmsq such that pmsq converges rapidly to mwI .

Let wI PWI and w PW corresponding to wI as in [11, Lemma 3.10]. In particular, there
exists s0 ą 0 with PwIasH “ PwH, s ě s0. Then one introduces us P U , bs P AZ , ms P M
and hs P H as in loc.cit. Lemma 3.10 (cf. (4.16)).

5.1 Reduction of the proof of Proposition 5.1 to the case where Z
is quasi-affine

First we will reduce the proof to the case where Z is quasi-affine.
Let H be the connected algebraic group defined over R with Lie algebra h. Let us recall

that Z “ G{H is quasi-affine if Z “ G{H is quasi-affine (this is equivalent to suppose that
there is an embedding of G{H in an affine space V defined over R).

Hence let us assume that the Proposition has been proved when Z is quasi-affine. We
want to prove it for a general Z.

Given a real spherical space G{H, we want to associate a quasi-affine real spherical space
Z 1 “ G1{H 1.

From [3, Theorem 11.2], there exists a rational representation of G, pπ, V q, which is
immersive, defined over R and such that there is a line ` “ Cv, defined over R, such that:

HpCq “ tx P GpCq : πpxq` Ă `u,
hC “ tX P gC : πpXq` Ă `u.

We denote by ψ´1 the algebraic character of H defined over R by which HpCq acts on v.
Now we let, for F “ R or C,

G1pFq “ GpFq ˆ Fˆ,
H 1
pFq “ tph, ψphqq : h P H 1

pFqu.

Then the map
pg, zqH 1

pCq ÞÑ zπpgqv

is an embedding of Z 1pCq :“ G1pCq{H 1
pCq in V defined over R. Then, with our convention,

Z 1 “ G1{H 1 is a quasi-affine real spherical space, where H 1 “ tph, ψphqq : h P Hu and
G1 “ Gˆ Rˆ.

If P 1 “ P ˆRˆ, then it is easily seen that P 1H 1 is open in G. Let us prove the following
Lemma.

We thank R. Beuzard-Plessis for his help for the proof of the following Lemma.
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5.2 Lemma.

(i) The parabolic Q1 :“ Qˆ Rˆ of G1 is Z 1-adapted to P 1.

(ii) There is a canonical exact sequence 0 Ñ t0u ˆ RÑ aZ1 Ñ aZ Ñ 0.

(iii) The set a´Z1 is invariant by translation by the image of t0uˆR in aZ1 and projects onto
a´Z .

(iv) If Z is wave-front, the spherical space Z 1 is also wave-front.

(v) The exact sequence of (ii) induces the following exact sequence

0 Ñ t0u ˆ RÑ aZ1,E Ñ aZ,E Ñ 0.

Proof. To get (i), one has to check the conditions (1) to (5) in [10, Theorem 2.3]. Let
L1 :“ Lˆ Rˆ. First, let us consider the map:

Q1 ˆL1 pL
1{L1 XH 1q Ñ Z 1

pq1, l1L1 XH 1q ÞÑ q1l1H 1,

and let us show that it is a diffeomorphism. This reduces easily to prove the injectivity which
is equivalent to Q1 XH 1 “ L1 XH 1. But pq, sq P H 1 with q P Q and s P Rˆ is equivalent to
q P QXH and s “ ψpqq. But then, by the local structure theorem for Z, one has q P LXH.
Hence pq, sq “ pl, ψplqq with l P LXH, and hence pq, sq P L1 XH 1. Hence Q1 XH 1 Ă L1 XH 1

and the reverse inclusion is clear. This proves (1) and (2) of loc.cit. Theorem 2.3.
Let us notice that L1n “ Ln ˆ t1u. Indeed, as Ln is a product of connected semisimple

Lie groups, ψ|Ln “ 1. Hence, as Ln Ă H, L1n Ă H 1 which proves condition (3) of loc.cit. The-
orem 2.3.

Let us look at pL1 X P 1qpL1 XH 1q. One has t1u ˆ Rˆ Ă L1 X P 1. Hence

ppLX P q ˆ t1uqppLXHq ˆ t1uqpt1u ˆ Rˆq Ă pL1 X P 1qpL1 XH 1
q.

But, by the local structure theorem for Z,

pLX P qpLXHq “ L.

Hence, as wanted, we get:
pL1 X P 1qpL1 XH 1

q “ L1,

i.e. condition (4) of loc. cit. Theorem 2.3.
Similarly we get condition (5) of loc.cit. Theorem 2.3, i.e. Q1H 1 “ P 1H 1. This finishes to

prove (i).
Let us prove (ii). The space aZ1 is the quotient of aL1 “ aL ˆ R by:

aL1 X h1 “ tpX,ΨpXqq : X P aL X hu,
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where Ψ denotes the differential of ψ. It is clear that the projection of aL1 on the first factor
of aLˆR followed by the projection from aL to aZ goes through the quotient in a surjective
map from aZ1 to aZ . Its kernel is clearly t0u ˆ R. This proves (ii).

Let us prove (iii). Let a´´Z (resp. a´´Z1 ) be the interior of a´Z (resp. a´Z1). Let hlim “

phX lq ‘ u´ and h1lim “ ph
1 X l1q ‘ u´. Then, from [8, Lemma 5.9], one has:

For X P aZ (resp. X 1 P aZ1), X P a´´Z (resp. X 1 P a´´Z1 ) if and only if
limtÑ`8 e

tadpXqphq “ hlim (resp. limtÑ`8 e
tadpX 1qph1q “ h1lim).

(5.1)

It is clear from (5.1) that a´´Z1 is invariant by translation by the image of t0u ˆ R in aZ1 .
Let X 1 P a´´Z1 and X its projection on aZ . Let us look at etadpXqphq. It is the projection of

etadpX 1qph1q on the first factor of gˆR. Let O be the open subset of the Grassmanian Grpg1q
of g1, consisting of the subspaces of g1 which do not contain t0u ˆ R. The map from O to
the Grassmanian Grpgq of g which associates to W P O its image by the projection onto g
is continuous. Then the second condition of (5.1) implies that X P a´´Z .

Now let X P a´Z and X̃ P aL which projects onto X P aZ . Let X 1 be the projection of
pX̃, 0q in aZ1 . Hence X 1 projects onto X.

We study etadXpRH 1q for H 1 element of a basis of h1. For this, we take a basis of l1Xh1 and
elements of the form H 1

α “ pX´α ` T pX´αq,ΨpHαqq (cf. (1.4) for the definition of T ), where
Hα P h is equal to X´α ` T pX´αq and X´α describes a basis of g´α. If H 1 is an elements of

l1 X h1, etadX̃RH 1 “ RH 1 Ă h1lim. If H 1 “ H 1
α, then

etadX̃H 1
α “ pe

´tαpX̃qX´α `
ÿ

βPΣuYt0u

etβpX̃qXα,β,ΨpHαqq. (5.2)

Multiplying by etαpX̃q, one gets:

etαpX̃qetadX̃
pH 1

αq “ pX´α `
ÿ

βPΣuYt0u

etpα`βqpX̃qXα,β, e
tαpX̃qΨpHαqq. (5.3)

If Xα,β ‰ 0, pα ` βqpX̃q “ pα ` βqpXq ă 0, as α ` β PM Ă a˚Z and X P a´´Z .

If αpX̃q ă 0, then etαpX̃qΨpHαq ÝÝÝÝÑ
tÑ`8

0 and (5.3) imply

lim
tÑ`8

etadX̃RH 1
α “ RpX´α, 0q Ă h1lim.

Let us assume αpX̃q ą 0. Then, if Xα,β ‰ 0, one has pα ` βqpX̃q ă 0 and αpX̃q ą 0. Hence

βpX̃q ă 0. Using (5.2), one sees that limtÑ`8 e
tadX̃H 1

α “ p0,ΨpHαqq.

Let pX̃ be the space of Y in g such that limtÑ`8 e
tadX̃Y exists. Then pX̃ is a parabolic

subalgebra of g with Levi subalgebra lX̃ equal to the centralizer of X̃ in g. The nilradical

uX̃ of pX̃ is equal to the set of Y P g such that limtÑ`8 e
tadX̃Y “ 0. Hence Hα P uX̃ which

implies that Hα is nilpotent. As Ψ is the differential of a rational character of H, one has
ΨpHαq “ 0.
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If αpX̃q “ 0, again, as X P a´´Z , if Xα,β ‰ 0, one has βpX̃q ă 0. From (5.2), one

deduces that limtÑ`8 e
tadX̃Hα “ X´α. This shows that Hα P pX̃ and X´α P lX̃ . Moreover

Hα “ X´α `X 1
α with X 1

α P uX̃ . As X´α is nilpotent, this implies that Hα is also nilpotent.
Hence ΨpHαq “ 0 and, as above, we deduce from (5.3) that:

lim
tÑ`8

etadX̃RH 1
α “ RpX´α, 0q Ă h1lim.

This shows that limtÑ`8 e
tadX̃h1 “ h1lim and X 1 P a´´Z1 as wanted. This proves that a´´Z1

projects onto a´´Z . We get (iii) by taking the closure. Remark that (iii) also follows from [7,
Corollary 6.10].

To prove (iv), let us assume that Z is wave-front. Let X 1 P a´Z1 and let X be its projection
on aZ . As Z is wave-front, there exists X̃ P a´L which projects onto X. Hence there exists
r P R such that pX̃, rq P a´L ˆ R “ a´L1 projects on X 1 P aZ1 . Hence Z 1 is wave-front.

The last assertion (v) of the Lemma follows from the equalities aZ,E “ a´Z X ´a
´
Z and

aZ1,E “ a´Z1 X´a
´
Z1 . This achieves to prove the Lemma.

We define ĥ1 “ h1 ` aZ1,E “ ĥ ˆ R. Then pH 1
0 “

pH0 ˆ Rˆ, where pH0 “ pHC,0 X G and
pH 1

0 “
pH 1
C,0 X G1. The pP 1, pH 1

0q-orbits have representatives in G as P 1 contains t1u ˆ Rˆ.

Then, if w1 P G1, P 1w1 pH 1
0 “ pPw

pH0q ˆ Rˆ for some w P G and P 1w1 pH 1
0 is open in G1 if and

only if PwĤ0 is open in G. Let us consider the set F given in the proof of Lemma 1.1. It
follows from the previous discussion that the corresponding set for Z 1 can be taken equal to
F .

We come to the set F 1 defined in [11, equation (3.15)], i.e. F 1 is a set of representatives

of the finite group pH0{HAZ,E. Then pH0 “ AZ,EF 1H. As pH 1
0 “

pH0 ˆ Rˆ (see above) and

AZ1,E “ AZ,EˆR`˚, one has pH 1
0 “ AZ1,EpF 1ˆt˘1uqH 1. Hence the set F 1 for Z 1 can be taken

to be contained in F 1 ˆ t˘1u. Looking at the end of the proof of Lemma 1.1, one sees that
one can arrange the set W 1 given for Z 1 by this Lemma in such a way that W is contained
in W 1.

Let us recall that we have chosen a section s : aZ Ñ ãZ Ă aL. We may and will choose
a section s1 : aZ1 Ñ aL1 such that, if e1 P aZ1 is the image of p0, 1q P t0u ˆ R in aZ1 , then

s1pe1q “ p0, 1q. Then it follows easily from Lemma 5.2(v) that pH 1
C,0 contains Cˆ and is equal

to pHC,0 ˆ Cˆ.
Let I Ă S and X P a´´I Ă a´Z . Let X 1 P a´Z1 which projects to X. It follows from [11,

Section 3.1.2] that there exists limtÑ`8 e
tadpX 1qph1q that we will denote by h1I . Let us show that

h1I “ limtÑ`8 e
tadXph1q. In fact, if pX̃, rq P aL ˆ R projects on X 1, etadX 1ph1q “ etadpX̃,rqph1q.

As t0u ˆ R is central in g1, one gets etadX 1ph1q “ etadX̃ph1q “ etadXph1q.
Let H 1

I be the analytic subgroup of G1 with Lie algebra h1I . Then (cf. loc.cit.) Z 1I “ G1{H 1
I

is a real spherical space and aZ1I “ aZ1 .

5.3 Lemma. Using the notation of (iii) of the previous Lemma, one has that a´Z1I
is invariant

by the image of t0u ˆ R in aZ1 and projects onto a´ZI .
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Proof. The invariance of a´Z1I
by the image of t0u ˆR in aZ1 is proved in the same way than

the invariance of a´Z1 (or a´´Z1 ) in the proof of Lemma 5.2(iii).
Let us recall that e1 is the image of p0, 1q in aZ1 . For simplicity, we will identify (not

canonically) aZ1 to aZˆR by choosing a section σ of the projection of aZ1 to aZ and defining a
linear bijection aZˆRÑ aZ1 by pX, rq ÞÑ re1`σpXq. Then Lemma 5.2(iii) can be rewritten
as aZ1 “ aZ ˆ R. Let C Ă aZ (resp. C 1 Ă aZ1) be the closed convex cone generated by the
set S (resp. S 1) of spherical roots of Z (resp. Z 1). One has S Ă a˚Z and also S 1 Ă a˚Z as
Re1 Ă aZ1,E.

To finish the proof of Lemma 5.3, we will need the following simple Lemma.

5.4 Lemma. Let C be a convex cone generated in a real vector space E by a finite family Ξ
of linearly independent vectors. If S is a finite set of generators o this cone, then S contains
a family S0 with a bijection ξ ÞÑ αpξq from Ξ onto S0 such that, for all ξ P Ξ, αpξq is a
non-zero and proportional to Ξ. One says that the elements of Ξ and S0 are proportional.

Proof. Let Ξ “ tξ1, . . . , ξlu and S “ tα1, . . . , αnu. We can assume that ξ1, . . . , ξl generate E.
Let fi be a linear form on E such that:

fipξiq “ 0,
fipξjq ą 0 if j ‰ i.

Hence fi ě 0 on C. Let ξi0 P Ξ. As ξi0 P C and S generates C, one can write:

ξi0 “
n
ÿ

j“1

cjαj.

Then fi0pξi0q “ 0 implies that, for all j such that cj ‰ 0, one has fi0pαjq “ 0. Let j P
t1, . . . , nu be such that cj ‰ 0. Let us show that αj is proportional to ξi0 . In fact, one can

write αj “
řl
i“1 diξi with di ě 0. Then fi0pαiq “ 0 implies that, for i ‰ i0, di “ 0, as

fi0pξiq ą 0 for i ‰ i0. The set of such αi’s, when i0 varies, is denoted by S0. Such a S0 has
the required properties.

End of proof of Lemma 5.3. From [7, Corollary 12.5], C is the cone generated by ΞRpZq
whose elements are linearly independent (cf. loc.cit., Corollary 10.9), and similarly for C 1.
Let S0 (resp. S 10) be the subset of S (resp. S 1) defined by Lemma 5.4 which forms a set of
linear independent generators of C (resp. C 1).

Note that C (resp. C 1) is the dual cone of a´Z (resp. a´Z1) because a´Z (resp. a´Z1) is the dual
cone of C (resp. C 1) and C (resp. C 1) is closed. From Lemma 5.2(iii), one sees that C “ C 1.
Hence, by Lemma 5.4, the elements of S0 and S 10 are proportional.

Now a´ZI “ tY P aZ : αpXq ď 0, α P Iu. Let I0 “ I X S0. Let us prove that a´ZI “
tY P aZ : αpXq ď 0, α P I0u. Let us recall that, as X P a´´I Ă a´Z , one has αpXq ď 0 for
all α P S, and I “ tα P S : αpXq “ 0u. Let α P I. Then α P C and hence is a linear
combination of elements of S0 with coefficients greater or equal to zero, as S0 generates
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the convex cone C. Evaluating at X, one sees that the only elements of S0 which actually
contribute to this linear combination are elements of I0. Our claim follows. Similarly, one
has I 1 “ tα P S 1 : αpX 1q “ 0u and I 10 “ I 1 X S 10.

We have identified the elements of S 1 with elements of a˚Z and one has αpX 1q is equal to
αpXq for this identification. Then I 10 “ tα P S

1
0 : αpXq “ 0u. As the elments S0 and S 10 are

proportional, the elements of I0 and I 10 are proportional. But, as above, a´Z1I
“ tY P a´Z1 :

αpY q ď 0, α P I 10u. Hence one gets the equality:

a´Z1I
“ a´ZI ˆ R.

This implies that aZ1I ,E “ aZI ,E ˆ R. As for Z, one sees that this implies that one can
choose W 1

I (for Z 1I) which contains WI .
Starting with wI PWI ĂW 1

I , one first find with [11, Lemma 3.9] an element w1 of G1 such
that P 1wIasH

1 “ P 1w1H 1 for any s ě s0 and such that P 1w1H 1 is open. One can take w1 P G,
as P 1 contains t1u ˆ Rˆ, and even in W , as W contains a set of representatives of all open
pP,Hq-double cosets (cf. [11, just after equation (3.15)]). Then the elements bs,ms, hs P G
given by (4.16) for G can be obtained via the natural projection G1 Ñ G from the elements
b1s,m

1
s, h

1
s P G

1 given by equation (4.16) for G1. Hence, if the Proposition 5.1 is true for Z 1,
it is true for Z.

5.2 Preliminaries to the proof of Proposition 5.1 when Z is quasi-
affine

A finite dimensional representation of G is said H-spherical (resp. K-spherical) if it has a
non zero H-fixed (resp. K-fixed) vector. A finite dimensional representation of G is said
H-semispherical if it has a real line fixed by H. Let Γ (resp. Γs, ΓK) be the set of (equiva-
lence classes of) finite dimensional H-spherical (resp. H-semispherical, H and K-spherical)
irreducible representations of G. If pπ, V q P Γs, let λπ P a

˚ be the highest weight of π˚ with
respect to a and n. Let us show that any non zero v P V , which transforms under a character
of H, is not orthogonal to the space of weight λπ in V ˚, V ˚λπ . If it was not the case, denoting
by PC,0 the analytic subgroup of GpCq with Lie algebra pC, one would conclude:

ă πphqv, π˚ppqv˚λπ ą“ 0, h P HC,0, p P PC,0, v P V
H , v˚λπ P V

˚
λπ .

But HC,0PC,0 is Zariski open in GpCq, hence dense in GpCq. One would then deduce from
the above equality that v “ 0. This proves that for any v as above, there exists v˚λπ P V

˚
λπ

such that:
ă v, v˚λπ ą‰ 0.

If pπ, V q P Γ and a P A X H, on one hand ă πpaqv, v˚λπ ą“ă v, v˚λπ ą, and on the other
hand ă πpaqv, v˚λπ ą“ a´λπ ă v, v˚λπ ą . Thus aλπ “ 1 for any a P AXH. This implies that
λπ P a

˚
Z .

44



5.5 Lemma. Let pπ, V q P Γs. Let v be a non zero vector of V which transforms under a
character ψ of H. Let λ be the highest weight of π˚ with respect to a and n. Let us decompose
v under the weight a-subspaces of V . Then:

v “
ÿ

µPNΣn

v´λ`µ,

where v´λ`µ is non zero and of weight ´λ` µ, µ P a˚Z. Moreover, if X P a´´Z and µ is non
zero, then µpXq ă 0.

Proof. On one hand, as one notices, ă v, v˚λ ą‰ 0 for some element v˚λ of V ˚λ . On the other
hand, as πpaqv “ ψpaqv for a P AH , one has a´λ ă v, v˚λ ą“ ψpaq ă v, v˚λ ą for a P AH .
Thus a´λ “ ψpaq for all a P AH . Then all µ in the sum are trivial on aH and hence µ P a˚Z .

Let X P a´´Z and at “ expptXq. Let Y P n´ Ă hlim. Then, from (5.1), there exists a
sequence ptnq which tends to `8 and a sequence pXnq in h such that Yn “ AdpatnqXn tends
to Y . By extracting a subsequence, and using the conjugacy of the unit sphere, one can find
a sequence pcnq of non zero real numbers such that pvnq “ pcnπpatnqvq converges to a non
zero limit w. Then πpYnqvn tends to πpY qw. But

πpYnqvn “ cnπpatnqπpXnqvn
“ ΨpXnqvn,

where Ψ is the differential of ψ. Hence πpY qw is proportional to w. As n´ acts by nilpotent
operators in V , this implies

πpY qw “ 0, Y P n´.

Then w is a lowest weight vector. Projecting onto the weight spaces, one sees that, up to
a scalar factor, w “ v´λ and that pcnq is equivalent to aλtn . Hence we may take cn “ aλtn .
As vn “ aλtnπpatnqv, one sees that, for all µ ‰ 0 occuring in the sum, eµptnXq tends to zero.
Hence our claim follows.

5.6 Proposition. Let F be a non identically zero regular function on G which is left-N-
invariant, transforms on the left by a character χ of A and on the right by a real character
ψ of H. Let λ P a˚ be the differential of χ at the identity. Let XI P a

´´
I and X̃I P aL which

projects onto XI . Let ãs “ exppsX̃Iq. Then

(i) limsÑ`8 a
λ
sRpasqF exists in CrGs and is non zero, where R is the right regular repre-

sentation of G in CrGs, the space of complex valued regular functions on G. We denote
it by FI .

(ii) The function FI is left-N-invariant and transforms by the character χ of A on the left
and by a real character ψI of HI on the right. Moreover, if ψ is trivial, then ψI is
trivial too.

(iii) One has F|LC,0 “ FI|LC,0.
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Proof. Let Ψ be the differential of ψ at the identity. Let VF or V be the linear span in CrGs
of the right translates of F by elements of G. Let v˚ be the linear form on V given by the
evaluation at 1. Let π be the right regular representation of G in V . Then one has

F pgq “ă v˚, πpgqF ą, g P G.

Our hypothesis on F implies that pπ, V q P Γs and v˚ is of weight λ under a for the contra-
gredient representation π˚ of π, and is left-N -invariant. Obviously v˚ is cyclic for π˚. The
decomposition Upgq “ Upn´qUpaqUpmqUpnq implies that the a-weights of V ˚ are of the form
λ plus a sum of roots of a in n´. Then the weights of V are of the form ´λ plus a sum of
roots of a in n. One writes F P V as a sum

F “
ÿ

µPΛĂNΣn

v´λ`µ,

where v´λ`µ is a vector of weight ´λ` µ in V . From Lemma 5.5, one sees that, if v´λ`µ ‰ 0,
one has µpXIq ď 0. Then one sees easily that FI exists and satisfies:

FI “
ÿ

µPΛ,µpXIq“0

v´λ`µ. (5.4)

Let us show that v´λ ‰ 0. In fact, as PC,0HC,0 is Zariski dense in GpCq, F is not identically
zero on PC,0HC,0. Let g “ namh P PC,0HC,0 with F pgq ‰ 0. Then ă v˚, πpmqF ą‰ 0. But
ă v˚, πpmqF ą“ă v˚, πpmqv´λ ą, as weight spaces of V for a are M -invariant and v˚ is of
weight λ and thus orthogonal to πpmqv´λ`µ for µ ‰ 0. Hence v´λ is non zero.

From its definition as a limit, one sees that FI transforms on the left by χ under the
action of A and is left-N -invariant. It remains to prove that FI transforms on the right by
a real character of HI . It is enough to prove that RFI is right invariant by the action of
hI . It is clear, from the definition of FI as a limit and from the fact that lX h centralizes a
and RF is right h-invariant that RFI is right invariant by l X h. Let X P hI be of the form
X “ Y ` TIpY q, where Y P g´α with α P Σu. One has X 1 “ Y ` T pY q P h and

X “ lim
sÑ`8

ãαsAdpãsqX
1. (5.5)

Hence
ãλ`αs πpãsqπpX

1
qF “ ΨpX 1

qãαs pã
λ
sπpãsqF q. (5.6)

As ãλ`αs πpãsqπpX
1qF “ ãαs πpAdpãsqX

1qãλsπpãsqF , (5.5) and the definition of FI imply that
the left hand side of (5.6) tends to πpXqFI . The right hand side has the same limit and, as
pãλsπpãsqF q tends to FI and as ΨpX 1qãαs is real, this limit is a real multiple of FI . Hence we
get

πpXqFI P RFI .

Thus we have proved that RFI is invariant by πphIq. Hence FI transforms by a real character
ψI of HI .
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The proof above shows that, if ψ is trivial, ψI is also trivial which gives the last statement
of (ii).

Let us prove (iii). It is clear that, if l P LC,0, as ãs P AL,

RpãsqF plq “ F plãsq “ ã´λs F plq.

Hence ãλs pRpãsqF qplq “ F plq. This implies (iii).

We come back to the notation of (4.14), (4.15) and (4.16). Let F be as in Proposition 5.6,
i.e. F is a regular function on G which transforms on the left trivially under N , by a character
χ of A, and which transforms on the right by a real character ψ of H. Let λ be the differential
of χ. Then one has, with the notation of the proof of Proposition 5.6,

πpt̃IhI ãsqF “ ψphsqπpusmsb̃swqF. (5.7)

We define
Fs “ ãλsπpãsqF,

rFs “ ãλsπpb̃sqF,
ys “ usmst̃.

(5.8)

Then, as t̃ and b̃s commute as elements of AL,C,0, (5.7) can be rewritten as follows

πpt̃IhIqFs “ ψphsqψphqπpysq rFs. (5.9)

Let PpVF q (resp. PRpVF q) be the complex projective (resp. real projective) space of VF .

5.7 Lemma. One has

(i)

Fs
rapid
ÝÝÝÝÑ
sÑ`8

FI

(ii)

rψphqπpysq rFss
rapid
ÝÝÝÝÑ
sÑ`8

rψIphIqπpt̃IqFIs in PRpVF q.

(iii) Moreover, if ψ is trivial, then πpysq rFs
rapid
ÝÝÝÝÑ
sÑ`8

πpt̃IqFI .

Proof. One has with the notation of (5.4),

}Fs ´ FI} “ }ãλsπpãsqF ´ FI}

“ }
ÿ

µPΛ,µpXIq‰0

ãµsv´λ`µ}.

But, as XI P a´´I , one has, from Lemma 5.5, µpXIq ă 0 if µpXIq ‰ 0. This implies that
pFsq tends rapidly to FI when s goes to `8. Then, together with (5.9), this implies that

rπpysq rFss “ rψphqπpysq rFss converges rapidly to rπpt̃IhIqFIs “ rψIphIqπpt̃IqFIs in PRpVF q. If

ψ is trivial, one even has πpysqF̃s
rapid
ÝÝÝÝÑ
sÑ`8

πpt̃IqFI .
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5.8 Lemma. Let us recall that Z is quasi-affine. Then

(i) For all pπ, V q P ΓK,

pasb
´1
s q

λπ rapid
ÝÝÝÝÑ
sÑ`8

1.

(ii) The family pasb
´1
s q converges rapidly to 1 when sÑ `8.

Proof. Let pπ, V q P ΓK , vH be a non zero H-fixed vector and let v˚ P V ˚ be a non zero
highest weight vector with weight λπ. Let F pgq “ă v˚, πpgqvH ą, g P G. Then F satisfies
the hypothesis of Proposition 5.6 and is even left-M -invariant. From Lemma 5.7(iii), one
sees in particular that

pRpysq rFsqp1q
rapid
ÝÝÝÝÑ
sÑ`8

pRpt̃IqFIqp1q. (5.10)

But ys “ usmst̃. From the definition of rFs, one gets

rFspysq “ ãλπs F pusmst̃b̃sq

and from the covariance properties of F , one sees that

rFspysq “ pasb
´1
s q

λπ t̃´λπF p1q.

Then, from (5.10), one deduces that:

pasb
´1
s q

λπ t̃´λπF p1q
rapid
ÝÝÝÝÑ
sÑ`8

FIpt̃Iq.

From Proposition 5.6(iii), one has FIpt̃Iq “ F pt̃Iq. But t̃I P exppiaLq, and hence F pt̃Iq “
pt̃Iq

´λπF p1q. Moreover F p1q ‰ 0 (see above). This proves that there exist ε ą 0 and C ą 0
such that, for s large enough,

|pasb
´1
s q

λπ ´ pt̃t̃´1
I q

λπ | ď Ce´εs.

But pasb
´1
s q

λπ is a positive real number as λπ P a
˚ and asb

´1
s P AZ , and pt̃t̃´1

I q
λπ is of modulus

one. This implies that pt̃t̃´1
I q

λπ is a real number of modulus one, greater or equal than zero,
as it is the limit of positive numbers. Then this implies (i).

The assertion (ii) is a consequence of (i) and of the fact that tλπ : π P ΓKu generates a˚Z ,
as Z is quasi-affine (cf. [10, Lemma 3.4]).

5.9 Lemma. With the notation of Lemma 5.7, one has

(i) rψphqπpysqFIs
rapid
ÝÝÝÝÑ
sÑ`8

rψIphIqπpt̃IqFIs in PRpVF q;

(ii) rπpysqFIs
rapid
ÝÝÝÝÑ
sÑ`8

rπpt̃IqFIs in PpVF q.

48



Proof. Clearly the assertion (ii) follows from (i). Let us prove (i).
For s ě s0, asb

´1
s P AZ and asb

´1
s “ expXs for Xs P aZ . Hence, as exp|aZ is a diffeomor-

phism, Xs
rapid
ÝÝÝÝÑ
sÑ`8

0 and, as the section defined in (1.3) is linear, one has:

X̃s
rapid
ÝÝÝÝÑ
sÑ`8

0. (5.11)

We use the notation of (5.7) and (5.8). Then

} rFs ´ FI} “ }πpexpp´X̃sqqFs ´ FI}

ď }πpexpp´X̃sqqpFs ´ FIq} ` }pπpexpp´X̃sqq ´ IdqFI}.

Let us show that }pπpexpp´X̃sqq ´ IdqFI} tends rapidly to zero. It suffices to decompose FI
into eigenvectors for AL and to use that, if λ P a˚L, then, for s large enough, pe´λpX̃sq ´ 1q is
equivalent to ´λpX̃sq. Then, from Lemma 5.7(i) and (5.11), it follows that

rFs
rapid
ÝÝÝÝÑ
sÑ`8

FI .

One knows that pusq converges to 1 and pmsq converges to mwI . Then pysq lies in a compact

set. Hence πpysqp rFs´FIq converges rapidly to zero as rFs converges rapidly to FI . But, from
Lemma 5.7(ii),

rψphqπpysq rFss
rapid
ÝÝÝÝÑ
sÑ`8

rψIphIqπpt̃IqFIs in PRpVF q.

As pysq converges, πpysqFI has a non zero limit and one can apply Lemma B.7 to vs “

ψphqπpysqFI and ws “ ψphqπpysq rFs. One concludes that:

rψphqπpysqFIs
rapid
ÝÝÝÝÑ
sÑ`8

rψIphIqπpt̃IqFIs in PRpVF q.

5.3 End of proof of Proposition 5.1 when Z is quasi-affine

We will now refine our choice of L in Section 1. We will use some results of [8].
With the notation of Definition 3.5 of loc.cit., one can find a real regular function on

G, f P P``, such that Hˆ
f “ J (cf. Lemma 3.11 in loc.cit. for the notation). In particular

(cf. loc.cit. equation (3.1)), f transforms on the left (resp. the right) by a real character χ
of P (resp. ψ of H). Moreover, from the definition, one has H Ă Hˆ

f .
Let Vf be the linear span of the right translates Rpgqf of f by the elements g P G and let π

be the right regular representation of G on Vf . Let pZf be the closure of spantrRpgqf s : g P Gu
in the complex projective space PpVf q.

With loc.cit., Proposition 3.18, we get a parabolic subgroup Q which is G{Hˆ
f -adapted

to P and a Levi subgroup L of Q such that L XHˆ
f “ Q XHˆ

f . As H Ă Hˆ
f , one also has

LXH “ QXH. This is our choice of L.
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With the notation of this proposition, its proof shows that SY is closed in pZ0, as SY “
µ´1tµpẑqu. We consider, with the notation of Proposition 5.6, rfIs, which is obtained as a
limit in PRpVf q of right translates of rf s by elements of L. As SY is L-invariant, one deduces
that this limit is in SY . It follows from [8, Proposition 3.18(2)], that the stabilizer QˆfI of

rfIs in Q is contained in L. Let us denote it by LˆfI . As f is real on G, fI is also real and the

Lie algebra of the stabilizer pQC,0q
ˆ
fI

of rfIs in QC,0 is equal to the complexified Lie algebra

of QˆfI “ LˆfI . Hence

rpQC,0q
ˆ
fI
s0 “ pL

ˆ
fI
qC,0. (5.12)

We apply Lemma 5.9(ii) to F “ f . The convergence in Lemma 5.9(ii) is a convergence in
rπpQC,0qfIs “ QC,0{pQC,0q

ˆ
fI

. Hence, by Lemma B.6, one also has that ysrpQC,0q
ˆ
fI
s0 converges

rapidly in QC,0{rpQC,0q
ˆ
fI
s0. But (cf. (5.12))

QC,0{rpQC,0q
ˆ
fI
s0 “ U ˆ pLC,0{pL

ˆ
fI
qC,0q.

Hence, as ys “ t̃pt̃´1ust̃qms, one sees that pt̃´1ust̃, mspL
ˆ
fI
qC,0q converges rapidly in U ˆ

pLC,0{pL
ˆ
fI
qC,0q to p1,mwI pL

ˆ
fI
qC,0q. It follows in particular that pt̃´1ust̃q converges rapidly to

1. Hence
us

rapid
ÝÝÝÝÑ
sÑ`8

1.

One also gets that

mspL
ˆ
fI
qC,0

rapid
ÝÝÝÝÑ
sÑ`8

mwI pL
ˆ
fI
qC,0.

5.10 Lemma. Let f be a real regular function on U ˆ pL{LXHq, that we identify with an
open subset of Z, which is left-U-invariant and which transforms on the left by a character
χf of A.

Then there exists a real regular function hf on Z, positive valued, which is not identically
zero on L{LXH, left-N-invariant, which transforms under a character χhf by the left action
of A, and such that Ff “ hff is regular on Z.

Proof. This is similar to the proof of [10, Lemma 3.4]. We give it for sake of completeness.
From the definition of the rational function (cf. [3, AG.8.1]), f is a rational function on

Z. As Z is quasi-affine, Z is an open set in an affine set sZ. Then the field of rational
functions on Z, CpZq, is equal to the field of rational functions on sZ, Cp sZq, which is the
field of fractions of Cr sZs.

Hence there are regular functions h1, h2 on sZ with f “ h1{h2.
Let I “ th P CrZs : hf P CrZsu. Then I ‰ t0u as h2 P I, and I “ sI as f is real. Recall

that N “ UpLn X Nq and Ln is normal in L X H. As f is left-U -invariant, right-L X H-
invariant and transforms by a character of A on the left, f transforms by a character of AN
on the left. Hence I is left-AN -invariant. The action of AN on CrZs is algebraic, hence
locally finite. Thus we can find an element 0 ‰ h P I which is an eigenvector for AN . One
takes hf “ hh̄.

As N is unipotent, h is N -invariant. Moreover UpL{LXHq is Zariski dense in Z. Then
one sees that h is not identically zero on L{LXH.
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Diagonalizing the action of A on RrL{L X Hs, one gets a basis pfkqkPK of RrL{L X Hs,
made of functions fk which transform under a (real) character of A by the left regular
representation. We extend fk to a left-U -invariant function on U ˆ L{L XH, still denoted
fk.

We set, with the notation of Lemma 5.10, hk “ hfk and Fk “ Ffk :“ hkfk. As the real
characters of a connected compact Lie group are trivial and as Fk is real, one has

pM X LˆFk,I q0 ĂM X LFk,I ,

where LFk,I is the stabilizer for the right action of Fk,I|L in L.
For reason of dimension, there exists a finite set L Ă K such that the intersection of the

Lie algebras of the groups pMXLFk,I q0, k P K, is equal to the intersection of the Lie algebras
of M X LFk,I , k P L.

5.11 Lemma. Let ML “
Ş

kPLM X LFk,I . Then ML,0 is contained in M XH.

Proof of Lemma 5.11. The group ML,0 is a connected compact Lie group which is generated
by its compact one parameter subgroups. Let S be such a one parameter subgroup. Then,
by definition of K and L, one has S Ă LFk,I for all k P K. Hence in particular, for all l P L,
k P K and s P S, as Fk,I “ Fk on L (see Proposition 5.6(iii)),

Fkplsq “ Fkplq,

i.e.
hkplsqfkplsq “ hkplqfkplq.

5.12 Lemma. Let p, p1 be two non identically zero trigonometric polynomials such that pp1

is constant. If p is real, then p and p1 are constant.

Proof. Write p “ einθpa0 ` ¨ ¨ ¨ ` ake
ikθq with k ě 0, a0 ‰ 0, ak ‰ 0, and p1 “ ein

1θpa10 ` ¨ ¨ ¨ `
a1ke

ik1θq with k1 ě 0, a10 ‰ 0, a1k ‰ 0. Then the pn ` n1q-th Fourier coefficient of pp1 is a0a
1
0.

Moreover its pn ` n1 ` k ` k1q-th Fourier coefficient is non zero. Hence, as pp1 is constant,
n ` n1 “ 0, n ` n1 ` k ` k1 “ 0 and thus k “ k1 “ 0 which implies that p “ a0e

inθ. As p is
real, one has n “ 0 and hence n1 “ 0 and p1 is also constant.

Applying this Lemma, one sees that, for k fixed, if hkplq ‰ 0 and fkplq ‰ 0, then
fkplsq “ fkplq for all s P S. But the set of l P L such that fkplq ‰ 0 and hkplq ‰ 0 is dense
in L, as fk and hk are not identically zero on L (cf. Lemma 5.10). By continuity, we get for
all k P K,

fkplsq “ fkplq, l P L, s P S.

In particular fkpsq “ fkp1q. But the fk’s separate the points of L{L XH. Indeed, as G{H
is quasi-affine, the regular functions on G{H separate the points of G{H (by restriction of
functions on the affine subset in which G{H is open). Then, again by restriction, we get our
claim.
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Hence one has s P LXH. This proves that S ĂM XH which achieves the proof of the
Lemma.

Now we consider Vk “ VFk , i.e. the complex linear span of the right translates of Fk by
elements of G (cf. notation of the proof of Proposition 5.6) and let πk be the right regular
representation of G on Vk. One uses Lemma 5.9(i), with ψ trivial, for the Fk’s, k P L, and
gets

rπkpysqFk,Is
rapid
ÝÝÝÝÑ
sÑ`8

rπkpt̃IqFk,Is in PRpVkq.

As pusq converges rapidly to 1, one gets:

rπkpmsqπpt̃qFk,Is
rapid
ÝÝÝÝÑ
sÑ`8

rπkpt̃IqFk,Is in PRpVkq,

and the same is true if one restricts functions to L. But t̃ and t̃I are elements of exppiãZq Ă
AC, which is central in LC,0, and FI transforms on the left by a character χk of A. Hence
πkpt̃qFk,I “ χkpt̃qFk,I and πkpt̃IqFk,I “ χkpt̃IqFk,I .

But, if a family of vectors pvsq in a finite dimensional complex vector space E is such
that prvssq converges rapidly to rvs in PRpEq and z P C˚, then przvssq converges rapidly to
rzvs in PRpEq. Thus

rπkpmsqFk,I|Ls converges rapidly in PRpVk,|Lq,

where Vk,|L denotes the space of restrictions to L of elements of Vk. As pmsq converges to
mwI , one then has

rπkpmsqFk,I|Ls
rapid
ÝÝÝÝÑ
sÑ`8

rπkpmwI qFk,I|Ls in PRpVk,|Lq. (5.13)

Set V “ ‘kPLVk, F “ ‘kPLFk, FI “ ‘kPLFk,I and let π be the direct sum of the right regular
representations πk of G in the Vk’s. Then one gets from (5.13) that

rπpmsqFI|Ls
rapid
ÝÝÝÝÑ
sÑ`8

rπpmwI qFI|Ls in ΠkPLPRpVk,|Lq.

Here, if v “ pvkqkPL P V , then rvs “ prvksqkPL P ΠkPLPRpVkq.
For any k P L, recall that the stabilizer for the right action of Fk,I|L in L has been denoted

LFk,I . Hence, from Lemma B.5, one sees that:

msML
rapid
ÝÝÝÝÑ
sÑ`8

mwIML.

Thus, as ML is compact and hence ML{ML,0 is finite, one deduces from Lemma B.6 that:

msML,0
rapid
ÝÝÝÝÑ
sÑ`8

mwIML,0.
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But ML,0 ĂM XH. Hence

mspM XHq0
rapid
ÝÝÝÝÑ
sÑ`8

mwI pM XHq0.

It follows from this that, for s large enough,

m´1
wI
ms “ pexpYsqm

1
s,

where Ys is an element of a supplementary subspace r of mXh in m such that pYsq converges
rapidly to 0, and m1

s P pM XHq0. Note that Ys is unique and that pm1
sq converges to 1.

Let us show that one can change pmsq into pmsm
1´1
s q in (4.16). One has pM X Hq0 “

pM XHwq0 as the Lie algebra of these groups are the same. In fact l X hw “ l X h (cf. [11,
Lemma 3.7]) which implies easily that mX hw “ mX h. Hence m1

s PM XHw. Then:

mswhs “ msm
1´1
s ww´1m1

swhs
and h1s “ w´1m1

sw P H, as m1
s P Hw.

Hence, from (4.16), one gets:
wI ãs “ usmsm

1´1
s wh1shs.

This proves our claim. One then deduces that one can choose pmsq such that pmsq converges
rapidly to mwI . This achieves the proof of Proposition 5.1.

5.4 End of proof of Proposition 4.11

Let us continue the preparation of the proof of Proposition 4.11

5.13 Lemma. Let pg1sq be a family in G which converges rapidly to g P G. Let f P

Atemp,NpZq. Then there exist C ą 0 and ε ą 0 such that:

|pLpg1sq´1fqpaq ´ pLg´1fqpaq| ď CaρQs e´εs, a P A´Z , s ě s0.

Proof. As pg1sq converges rapidly to g when s tends to `8, there exists s10, C 1, ε1 strictly
positive and pXsq Ă g such that, for all s ě s10,

g1s “ g expXs and }Xs} ď C 1e´ε
1s. (5.14)

As Lg´1 preserves Atemp,NpZq, one is reduced to prove that, for all f P Atemp,NpZq, there
exist C, ε, s0 ą 0 such that:

|fpexppXsqasq ´ fpasq| ď CaρQs e´εs.

But, by the mean value Theorem, if a P A and X P g,

|fpexppXqaq ´ fpaq| ď sup
tPr0,1s

pLXfpexpptXqaqq}X}.
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From (5.14), one then sees that it is enough to prove that, if }X} is bounded by a constant
C2 ą 0, there exists a constant C3 ą 0 such that:

sup
tPr0,1s

}LXfpexpptXqaq} ď C3aρQp1` } log a}qN , a P A´Z . (5.15)

Decomposing X in a basis pXiq of g and using the continuity of the endomorphisms LXi of
Atemp,NpZq, one sees that there exists a continuous semi-norm such that:

|pLXfqpaq| ď qpfqaρQp1` } log a}qN , a P A´Z .

But f ÞÑ sup}X}ďC2 qpLexpp´tXqfq is a continuous semi-norm on Atemp,NpZq. Hence, as LX
and Lexpp´tXq commute, (5.15) follows. This achieves to prove the Lemma.

Proof of Proposition 4.11. If a P A, one has:

ppLafq
wqI “ pLapf

wqqI as pLafq
w “ Laf

w

and pLmwI pLafqIq
wI “ pLaLmwI fIq

wI “ LapLmwI fIq
wI .

Hence it is enough to prove the identity of the Proposition for aZ “ z0. Using (4.7) and
Proposition 4.8, it is enough to prove that, for some family pasq as in (4.13), that s ÞÑ
pLmwI fIq

wI pasq is an exponential polynomial with unitary characters satisfying:

lim
sÑ`8

a´ρQs

`

fwpasq ´ pLmwI fIq
wI pasq

˘

“ 0. (5.16)

But from (4.16),

ãsw ¨ z0 “ pãsb̃
´1
s m´1

s u´1
s qpusmsb̃swq ¨ z0 “ gswI ãs ¨ z0

for s ě s0, where gs “ ãsb̃
´1
s m´1

s u´1
s . Then one has:

fwpasq “ Lw´1
I g´1

s
fpasq.

On the other hand, from [11, Lemma 3.4] for Z “ ZI , as AZI ,E “ AI (cf. loc.cit. equa-
tion (3.10)), one has:

ãswI ¨ z0,I “ wI ãs ¨ z0,I , (5.17)

which implies that:
pLw´1

I mwI
fIqpãs ¨ z0,Iq “ pLmwI fIq

wI pasq. (5.18)

Now, as pgswIq converges rapidly to m´1
wI
wI , we can apply Lemma 5.13 with g1s “ gswI and

find C 1, ε1, s10 ą 0 such that:

a´ρQs |pLw´1
I g´1

s
fqpasq ´ pLw´1

I mwI
fqpasq| ď C 1e´ε

1s, s ě s10. (5.19)
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Using Lemmas 4.5 and 4.9, one has, for some C2, ε1 ą 0,

|a´ρQs

´

Lw´1
I mwI

fpasq ´ Lw´1
I mwI

fIpasq
¯

| ď C2e´ε
1s, s ě s10.

Hence from (5.18) and (5.19), one deduces (5.16). It remains to prove that:

s ÞÑ pLmwI qf
wI
I pexppsXIqq “ fIpm

´1
wI

exppsXIqwI ¨ z0,Iq

is an exponential polynomial with unitary characters. But, from [11, Lemma 3.4] applied to
ZI ,

pLmwI fIq
wI pexppsXIqq “ fIpm

´1
wI
wI exppsXIqq.

Hence our claim follows from(5.17). This achieves the proof of the Proposition.

6 Transitivity of the constant term

Let us notice that if Z is wave-front, then, for J Ă S, ZJ is not necessarily wave-front. Let
us see that it is possible to define the constant term fI for I Ă J and f P AtemppZJq.

In particular, the characterization of fI will be given by the analogue of Proposition 4.8,
say Proposition 4.8’, with Z changed in ZJ and a´´I changed in a´´I,J “ tX P aI : αpXq ă
0, α P JzIu. One has also an analogue of Theorem 4.13 (say Theorem 4.13’). To see this,
one gets the analogues of Lemmas 3.1 and 3.5 where Z is changed in ZJ , a´´I in a´´I,J and βI
is changed in βI,J with:

βI,JpXq “ max
αPJzI

αpXq, X P a´´I,J .

In the proof one changes α ` β R xIy by α ` β P xJy, α ` β R xIy. The rest of the proof is
then entirely similar to the proof of Proposition 4.8 and Theorem 4.13. Let us notice that
here we use Proposition 5.1 for a non wave-front spherical space.

6.1 Proposition. Let I Ă J be two subsets of S. Then, if f P AtemppZq,

fI “ pfJqI .

Proof. By G-equivariance of the maps:

AtemppZq Ñ AtemppZIq
f ÞÑ fI

and
AtemppZJq Ñ AtemppZIq

f ÞÑ fI
,

it is enough to show that, if f P AtemppZq, fIpz0,Iq “ pfJqIpz0,Iq. Recall that aZJ “ aZ and

a´´I “ tX P aI : αpXq ă 0, α P SzIu, a´´I,J “ tX P aI : αpXq ă 0, α P JzIu.

As aI “ tX P aZ : αpXq “ 0, α P Iu and aJ “ tX P aZ : αpXq “ 0, α P Ju, one has:

aJ Ă aI , a´´I Ă a´Z , a´´I,J Ă a´Z .
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One remaks that a´´I Ă a´´I,J . Let X P a´´J and Y P a´´I . Then X ` Y P a´´I .
Using Theorem 4.13(ii) applied successively to pZ, I, f,X`Y, 1q and pZ, J, f,X, exppTY qq

instead of pZ, I, f,X, aZq, and finally the analogue Theorem 4.13’(ii) of Theorem 4.13(ii) for
pZJ , I, fJ , Y, exppTXqq, one gets that there exist C ą 0 and ε ą 0 such that, for all T ě 0,

αT }fpexppT pX ` Y qqq ´ fIpexppT pX ` Y qqq} ď Ce´εT

αT }fpexppTY q exppTXqq ´ fJpexppTY q exppTXqq} ď Ce´εT

αT }fJpexppTXq exppTY qq ´ pfJqIpexppTXq exppTY qq} ď Ce´εT ,

where αT “ e´TρQpX`Y q. Hence one concludes from the three inequalities above that:

αT }fIpexppT pX ` Y qqq ´ pfJqIpexppT pX ` Y qqq} ď 3Ce´εT , T ě 0.

Hence αTfIpexppT pX ` Y qqq ´ αT pfJqIpexppT pX ` Y qqq tends to zero when T goes to `8.
But each term of this difference is an exponential polynomial in T with unitary characters.
Hence, according to (4.7), the difference of the two occurring exponential polynomials is
identically zero. It implies, taking T “ 0, that fIpz0,Iq “ pfJqIpz0,Iq.

7 Uniform estimates

Let L1 be a Levi subgroup of G which contains A. Let AL1 be a maximal vector subgroup
of the center of L1 contained in A. Recall that t is a maximal abelian subalgebra of m. Let
j “ it‘a so that jC is a complex Cartan subalgebra of gC. Let us notice that the Weyl group
W pgC, tCq preserves j. One has

j “ V ‘ U “ V1 ‘ U1,

where V “ aLI , V1 “ aL1 , U “ it‘paX 0lIq and U1 “ it‘paX 0l1q (cf. (3.3) for the definition
of 0lI ,

0l1).
In the following, we will apply Lemma A.1 to the map:

j˚C ˆ aLI Ñ EndpW q
pω,Xq ÞÑ ´tρωpXq,

where the notation has been defined after (3.10) and in (3.24).
From (3.12), one sees that the eigenvalues of ΓωpXq are of the form ´wωpXq for w P

W pgC, jCq.
Let Λ P t˚C ‘ pa X

0l1q˚C fixed. Let ν P ia˚L1 and λ P a˚I . We set Λν “ Λ ` ν P j˚C. Let us
look to the sum of the joint spectral projections of the ΓΛν pXq, X P aI , for a joint eigenvalue
with real part equal to λ.

Let IΛν be the kernel of the character χΛν of Zpgq given by the composition of the
Harish-Chandra isomorphism from Zpgq onto SpjCq

W pgC,jCq with the evaluation at Λν . Let
us recall the notation introduced at Sections 3.1 and 3.5. Write AtemppZ : Λνq instead of
AtemppZ : IΛν q.

56



We want to make Lemma 3.3(ii) more precise in this case. To do so, it is better to group
spectral projections. We denote this sum by Eλ,ν .

Let QΛ “ t´RewΛ ˝ s|ãI : w P W pgC, jCqu. Identifying a˚I and ã˚I by s, from (3.12), one
sees that:

Eλ,ν ‰ 0 implies λ P QΛ.

7.1 Lemma. Let λ P QΛ.

(i) There exists ε ą 0 such that ν ÞÑ Eλ,ν extends to a holomorphic function on

a˚L1,ε “ tν P a
˚
L1,C : }Re ν} ă εu.

(ii) There exists C ą 0 and q P N such that:

}Eλ,ν} ď Cp1` }ν}qq, ν P ia˚L1 .

(iii) There exists C ą 0 and r P N such that:

}Eλ,νe
ΓΛν pXq} ď CeλpXqp1` }ν}qrp1` }X}qr, ν P ia˚L1 , X P aI .

Proof. As ρΛν is a representation of the abelian Lie algebra aLI , hence of ãI , the spectral
projection Eλ,ν is equal (following the notation of Appendix A) to the product:

k
ź

j“1

PλpXjq,Xjp´iνq,

where X1, . . . , Xk is a basis of aI . Then the assertions (i) and (ii) follow immediately from
Lemma A.1.

Let us show (iii). One remarks that:

Eλ,νe
ΓΛν pXq “ eEλ,νΓνpXq.

The norm of Eλ,ν has a bound given by (i) and the norm of ΓΛν pXq is bounded by a constant
times p1 ` }ν}qlp1 ` }X}q, as ΓΛν pXq is polynomial in ν and linear in X. Then (iii) follows
from [16, Lemma 12.A.2.4].

For λ P QΛν , set
Eλ,νpXq “ e´ReλpXqEλ,νpe

ΓΛpXqq, X P aI .

One has the analogue of Lemma 3.3(ii).

7.2 Lemma. Let N P N. If, for any ν P ia˚L1, λ P QΛν and f P Atemp,NpZ : Λνq, one sets:

Φf,λ,ν “ Eλ,νΦf ,

then one has:

Φf,λ,νpaZ exppTXIqq “ eTΓΛν pXIqΦf,λ,νpaZq

`

ż T

0

Eλ,νe
pT´tqΓΛν pXIqΨf,XI paZ expptXIqq dt,

aZ P AZI , XI P aI .
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7.3 Lemma. Let X P aI . There exist a continuous semi-norm q on C8temp,NpZq and m P N
such that, for all ν P ia˚L1 and f P Atemp,NpZ : Λνq,

}Ψf,XpaZ expXIq} ď qpfqp1` } log aZ}q
N
p1` }XI}q

N
p1` }ν}qm, aZ P A

´
Z , XI P a

´´
I .

Proof. The proof is the same than the proof of Lemma 3.5(ii), the factor p1` }ν}qm coming
from (3.11).

One has an analogue of Lemma 3.6, where f P Atemp,NpZ : Λνq, λ P QΛ and Eλ is
replaced by Eλ,ν . The proof is the same using Lemma 7.1(iii) instead of (3.26).

One introduces Φf,λ,ν,8 as in (3.27) by replacing Φf,λ by Φf,λ,ν (and λ P QΛ instead of
QI). Similarly one has an analogue of Lemma 3.8.

We also define a partition of QΛ into three disjoint sets Q´Λ , Q0
Λ and Q`Λ . Then one has

analogue of Lemma 3.9, Corollary 3.10, Lemmas 3.11 and 3.12, and Proposition 3.14, which
are valid for all ν P ia˚I and all f P Atemp,NpZ : Λνq, by replacing Φλ by Φf,λ,ν , EΛ by Eλ,ν
and Φλ,8 by Φf,λ,ν,8.

7.4 Theorem. Let L1 be a Levi subgroup of G containing A, C be a compact subset of a´´I
and Ω1 be a compact subset of G. Let N P N.

(i) There exist ε ą 0, m P N and a continuous semi-norm p on C8temp,NpZq such that, for
all ν P ia˚L1 and all f P Atemp,NpZ : Λνq, one has:

paZ exppTXqq´ρQ |fpωaZ exppTXqq ´ fIpωaZ exppTXqq|

ď e´εTppfqp1` } log aZ}q
Np1` }ν}qm, aZ P A

´
Z , X P C, ω P Ω1, T ě 0.

(ii) Let q be a continuous semi-norm on C8temp,N`dim pW qpZIq. Then there exists a continuous

semi-norm p on C8temp,NpZq such that

qpfIq ď ppfqp1` }ν}qm, ν P ia˚L1 , f P Atemp,NpZ : Λνq.

Proof. To get (i), one needs an analogue of Lemma 4.1. Due to the occurrence of powers of
p1` }ν}q in Lemmas 7.3, 7.1(ii) and (iii), one gets:

7.5 Lemma. We fix a compact set C in a´´I and choose ε0 ą 0 such that βIpXq ď ´2ε0 for
X P a´´I . We put ε “ δε0, with δ given by (3.29). Then there exist m P N and a continuous
semi-norm p on C8temp,NpZq such that, for all ν P ia˚L1 and all f P Atemp,NpZ : Λνq, one has:

}Φf,λ,νpaZ exppTXqq ´ Φf,λ,8paZ exppTXqq} ď e´εTppfqp1` } log aZ}q
Np1` }ν}qm,

aZ P A
´
Z , X P C, T ě 0.

Then, using Lemma 7.5 instead of Lemma 4.1, the proof of Theorem 7.4(i) is similar to
the proof of Theorem 4.13(ii).
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The proof of (ii) is analogous to the proof of Theorem 4.13(i), keeping track on the
dependence on ν. The cornerstone is Lemma 4.10 relying on Lemma 4.3. Looking to the proof
of the later, it is based on Lemmas 3.5(i) and 4.1. But the dependence of Lemma 4.1 with
the parameter ν is given by (i) above. Moreover, as W “ WI for I “ IΛν , in Lemma 3.5(i),
the proof shows that the semi-norm pu does not depend on I “ IΛν if ν P ia˚L1 . This leads
to our claim.

A Variation of a Lemma due to N. Wallach

We will need a mild variation of Lemma 12.A.2.9 in [16].
Let E be a finite dimensional vector space over R and assume that U , V , U1 and V1 are

real vector subspaces such that E “ V ‘ U “ V1 ‘ U1. If ν P U˚C or ν P U˚1,C (resp. V ˚C or
V ˚1,C) we extend ν to E by νpV q “ 0 or νpV1q “ 0 (resp. νpUq “ 0 or νpU1q “ 0). If Λ P E˚C
and Λ “ Λ1 ` iΛ2 with Λ1,Λ2 P E

˚, we set Λ1 “ Re Λ, Λ2 “ Im Λ.
Let B : E˚C ˆ V Ñ MnpCq be a map which is polynomial in the first variable and linear

in the second. We assume that there exist s1, . . . , sr P GLpE˚Cq such that the eigenvalues of
BpΛ, vq, v P V , are of the form sjΛpvq.

We fix Λ1 P U
˚
1,C (and not in U˚ as in loc.cit.). We fix linear coordinates tx1, . . . , xnu on

V and we will use the multi-index notation for partial derivatives.
If µ P R, ν P V ˚1 and v P V , let Pµ,vpνq be the projection onto the sum of generalized

eigenspaces for BpΛ1 ` iν, vq with eigenvalues having real part equal to µ.

A.1 Lemma. Let v P V and µ P R.

(i) The map ν ÞÑ Pµ,vpνq is real analytic on V ˚1 . Even more, there exists ε1 ą 0 such that
Pµ,v extends to an holomorphic function on V ˚1,ε1 “ tν P V

˚
1,C : }Im ν} ă ε1u.

(ii) There exists q P N such that, for any I P Nm, there exists cI ą 0 such that:

}B
IPµ,vpνq} ď cIp1` }ν}q

p, ν P V ˚1 .

Proof. We give a complete proof in order to take care of the change and repair small misprints
in the proof of [16, Lemma 12.A.2.9].

If Re sjΛ1pvq ‰ µ for all j, then Pµ,v ” 0 and there is nothing to prove.
Otherwise, after we reorder the sj’s, we may assume that there exists some 0 ă m ď r

such that:

Re s1Λ1pvq “ ¨ ¨ ¨ “ Re smΛ1pvq “ µ and Re sjΛ1pvq ‰ µ for j ą m.

Let 0 ă ε ď 1{2 minjąm |Re sjΛ1pvq ´ µ| and let ν0 P V
˚

1 be fixed. There exists Rpν0q ą 0
such that the interior O of the rectangle O in C of center µ, width 2ε and height 2Rpν0q is
such that ν0 satisfies the property (Pν), for ν “ ν0, given by:

sjpΛ1 ` iνqpvq P O if and only if j ď m and in that case sjpΛ` iνqpvq P O. (Pν)
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One can take Rpν0q “ maxjďr |sjpIm pΛ1q ` ν0qpvq| ` 1. The reason to add 1 is to ensure
Rpν0q ą 0. Let us notice that there is a constant c1 ą 0 such that:

Rpν0q ď c1p1` }ν0}q.

Let Ωpν0q “ tν P V ˚1 : maxjďr |sjpIm pΛ1q ` νqpvq| ă Rpν0qu. Then Ωpν0q is open and
contains ν0.

Let ωε :“ tν P V ˚1 : |sjpνqpvq| ă ε{2, j ď ru and let Ωεpν0q :“ tν1 ` iν2 : ν1 P ωε, ν2 P

Ωpν0qu. Then, if ν P Ωεpν0q,

|Re sjpΛ1 ` νqpvq ´ µ| ă ε, j “ 1, . . . ,m,
|Re sjpΛ1 ` νqpvq ´ µ| ą ε, j “ m` 1, . . . , r.

This implies that, if ν P Ωεpν0q, then (Pν) is satisfied.
Let C be the boundary of O and ν P Ωεpν0q. Let

Qpνq “
1

2iπ

ż

C

pBpΛ1 ` iν, vq ´ zIdq
´1 dz, ν P Ωεpν0q.

Then, if ν P Ωpν0q, Pµ,vpνq “ Qpνq. Moreover ν ÞÑ Qpνq is holomorphic on Ωεpν0q. Varying
ν0, it implies that Qpνq is holomorphic on Ωεpν0q by Ω1 :“ tν1` iν2 P V

˚
1,C : ν1 P ωε, ν2 P V

˚
1 u.

But it is clear that Ω1 contains V ˚1,ε1 for some ε1 ą 0, as ωε is a neighborhood of 0 in V ˚1 .
This proves (i).

Let us fix ν P Ωεpν0q. We can write BpΛ1 ` iν, vq “ UpD ` NqU´1 (cf. [16,
Lemma 12.A.2.2]), where D,N,U P MnpCq are such that D is diagonal, N is upper tri-
angular with zeros on the main diagonal and U is unitary.

As the eigenvalues of D are of the form skpΛ1` iνqpvq and as we use the Hilbert-Schmidt
norm on MnpCq as all norms on MnpCq are equivalent, hence }BpΛ1 ` iν, vq} “ }D ` N}.
For the purpose of our estimate, we may assume BpΛ1 ` iν, vq “ D `N .

Let z P C. As one can write:

pD `N ´ zIq “ pD ´ zIqpI ` pD ´ zIq´1Nq

and N is nilpotent, one can obtain:

pD `N ´ zIq´1
“

˜

n´1
ÿ

k“0

p´1qkppD ´ zIq´1Nqk

¸

pD ´ zIq´1.

If z P C, for all k,
|skpΛ1 ` iνqpvq ´ z| ě ε{2.

Then, as we use the Hilbert-Schmidt norm,

}pD ´ zIq´1
} ď 2n1{2

{ε.

From the equality BpΛ1 ` iν, vq “ D `N , one gets:

}N} ď }BpΛ1 ` iν, vq}.
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From the polynomial behavior of B in the first variable, there exists c2 ą 0 and q P N such
that:

}BpΛ1 ` iν, vq} ď c2p1` }ν}q
q, ν P V ˚2 .

There exists c3 ą 0 such that, for all x ą 0,

p1` ¨ ¨ ¨ ` xn´1
q ď c3p1` x

n´1
q.

Hence

}pD `N ´ zIq´1
} ď c3

2n1{2

ε
p1` c2p1` }ν}q

qpn´1q
q.

Now we want to have a bound of }Qpνq}. It remains to bound the length of the contour C.
This is bounded by 4Rpν0q ` 4ε and }Rpν0q} ď c1p1 ` }ν0}qp1 ` }v}q. Hence one sees easily
that there exists c4 ą 0 such that:

}Qpνq} ď c4p1` }ν0}qp1` }ν}q
qpn´1q, ν P Ωεpν0q.

Applying this inequality for ν “ ν0, one gets:

}Qpν0q} ď c4p1` }ν0}q
qpn´1q`1.

To deal with arbitrary derivative BI , one has to use the Cauchy integral formula.

B Rapid convergence

B.1 Definition. Let a ě 0 and pxsq be a family of elements of a normed vector space with
s P ra,`8r. One says that pxsq converges rapidly to l if

there exist ε ą 0, C ą 0, s0 P ra,`8r such that, for any s ě s0

}xs ´ l} ď Ce´εs.

To shorten, we will write xs
rapid
ÝÝÝÑ
sÑ8

l.

B.2 Lemma. Let a ě 0, E and F be two Euclidean spaces, l P E. Let φ be an F -valued
map which is of class C1 on a neighborhood U of l and such that the differential φ1plq of Φ

at l is injective, if pxsqsPra,`8r be a family of elements of E such that φpxsq
rapid
ÝÝÝÑ
sÑ8

φplq and

pxsq converges to l when s tends to `8. Then

xs
rapid
ÝÝÝÑ
sÑ8

l.

Proof. Let G be a supplementary of the image of φ1plq in F and consider the map:

Φ : E ˆG Ñ F
px, zq ÞÑ φpxq ` z.
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As φ1pxq is injective, Φ1pl, zq is injective and dimpEˆGq “ dimpF q. Hence Φ1pl, zq is invertible
for any z P G. From the local inversion theorem, Φ is then bijective on its image and of class
C1 on a neighborhood V ˆW of pl, zq contained in U ˆG. Consider the restriction rΦ of Φ

to V ˆW . Then rΦ is well-defined and of class C1. Applying the Taylor expansion of rΦ´1 at
Φpl, 0q “ φplq, one has for s large enough such that xs P V :

}xs ´ l} “ }rΦ´1pφpxsqq ´ rΦ´1pφplqq}

ď }prΦ´1q1pφplqq} }φpxsq ´ φplq} ` op}φpxsq ´ φplq}q.

Our claim follows from the rapid convergence of pφpxsqq.

B.3 Definition. Let a ě 0, X be a d-dimensional smooth manifold and pxsqra,`8r be a family
of elements of X. One says that pxsq converges rapidly in X if there exist l P X and a chart
pU, φq around l such that

pφpxsqq converges rapidly to φplq.

B.4 Remark. This notion is independent of the choice of the chart pU, φq. Indeed, let pŨ , φ̃q
be another chart around l. Then, from Lemma B.2, ppφ ˝ φ̃q´1pφpxsqqq converges rapidly to
φ̃plq over F which means that pφ̃pxsqq converges rapidly to φ̃plq over F . Also Ψ : X Ñ Y
is a differentiable map between C8 manifolds and pxsq converges rapidly to x in X, then
Ψppxsqq converges rapidly to Ψpxq in Y .

B.5 Lemma. Let X and Y be two smooth manifolds, l P X and ϕ be an Y -valued smooth
map on a neighborhood U of l in X such that ϕ1plq is injective.
If pxsqsPra,`8r is a family of elements of U converging to l when s tends to `8 and such that
pϕpxsqq converges rapidly to ϕplq, then pxsq converges rapidly to l.

Proof. By taking charts in a neighborhood of l and ϕplq, one is reduced to the case where X
and Y are Euclidean spaces. Then the lemma follows from Lemma B.2 and Definition B.3.

B.6 Lemma. Let a ě 0. Let G be a Lie group and R a closed subgroup of G such that R{R0

is finite. Let pgsqsPra,`8r be a family in G and g P G such that gs ÝÝÝÝÑ
sÑ`8

g and

gsR
rapid
ÝÝÝÑ
sÑ8

gR.

Then one has:
gsR0

rapid
ÝÝÝÑ
sÑ8

gR0.

Proof. By multiplying on the left by g´1, on can reduce to the case where g “ 1. Let q be
a supplementary of r in g and b ě a such that, for any b ě a, gsR “ eXsR where pXsq is a
family in q which converges rapidly to 0. Hence, for any s ě b, gs “ eXsrs, where prsq is a
family in R. As pgsq converges to 1, one has also that prsq converges to 1. Hence, as R0 is
open, rs P R0 for s large enough. This proves the Lemma.
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B.7 Lemma. Let V be a finite dimensional vector space over R and PRpV q be its real
projective space. Let s0 ě 0 and let pvsqsěs0, pwsqsěs0 be two families of vectors in V such
that, when sÑ `8:

(i) pvsq converges to a non zero element v;

(ii) pvs ´ wsq converges rapidly to zero;

(iii) prwssq tends rapidly to rws in PRpV q.

Then rvss
rapid
ÝÝÝÝÑ
sÑ`8

rws.

Proof. By dividing vs and ws by }vs}, one can reduce to the case where }vs} “ 1. Then
ws “ vs`εs with }εs} ď Ce´εs for some C ą 0 and ε ą 0. As }vs}´}εs} ď }ws} ď }vs}`}εs},

}ws} “ 1` ε1s with |ε1s| ď }εs}. Then ws
}ws}

´ vs “
ws´vsp1`ε1sq

1`ε1s
implies for s large enough,

} ws
}ws}

´ vs} ď
}εs} ` |ε

1
s|

1` ε1s
ď 2Ce´εs

for s large enough. Hence ws
}ws}

´ vs tends rapidly to zero. Thus one can reduce also to the

case where pvsq and pwsq are of norm 1. Then, as pvsq converges to v ‰ 0, pwsq converges
to v. One can take w “ v. Let us look at the canonical map ϕ of the unit sphere of V ,
S, to PRpV q. Applying Lemma B.5, one sees that pwsq converges rapidly to w. Hence pvsq
converges also rapidly to w. This implies easily that prvssq converges rapidly to rws (cf. end
of Remark B.4).
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