
HAL Id: hal-01467988
https://hal.science/hal-01467988

Submitted on 15 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Geometric side of a local relative trace formula
Patrick Delorme, Pascale Harinck, Sofiane Souaifi

To cite this version:
Patrick Delorme, Pascale Harinck, Sofiane Souaifi. Geometric side of a local relative trace formula.
Transactions of the American Mathematical Society, 2019, 371 (3), pp.1815-1857. �10.1090/tran/7360�.
�hal-01467988�

https://hal.science/hal-01467988
https://hal.archives-ouvertes.fr
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P. Delorme∗, P. Harinck, S. Souaifi

Abstract

Following a scheme suggested by B. Feigon, we investigate a local relative
trace formula in the situation of a reductive p-adic group G relative to a
symmetric subgroup H “ HpF q where H is split over the local field F of
characteristic zero and G “ GpF q is the restriction of scalars of HIE relative
to a quadratic unramified extension E of F. We adapt techniques of the proof
of the local trace formula by J. Arthur in order to get a geometric expansion
of the integral over H ˆ H of a truncated kernel associated to the regular
representation of G.
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Introduction

In this article, we investigate a local relative trace formula in the situation of p-
adic groups relative to a symmetric subgroup. This work is inspired by the recent
results of B. Feigon ([F]), where she investigated what she called a local relative
trace formula on PGLp2q and a local Kuznetsov trace formula for Up2q.

Before we describe our setting and results, we would to explain on the toy model
of finite groups the framework of the formulas of B. Feigon. We even start with the
more general framework of the relative trace formula initiated by H. Jacquet ([J],
see also [O] for an account of some applications of this relative trace formula).

Let G be a finite group and let H, H 1, Γ be subgroups of G. We endow any finite
set with the counting measure. We denote by r the right regular representation of
G on L2pΓzGq and we consider the H-fixed linear form ξ on L2pΓzGq defined by

ξ “
ÿ

hPHXΓzH

δΓh (0.1)

where δΓh is the Dirac measure of the coset Γh, or in other words

ξpψq “

ż

HXΓzH

ψpΓhqdh, ψ P L2
pΓzGq.

We define similarly ξ1 relative to H 1.
We view ξ, ξ1 as elements of L2pΓzGq and we form the coefficient cξ,ξ1pgq “ prpgqξ, ξ

1q.
Integrating over functions on G, it defines a ”distribution” Θ on G which is right
invariant by H and left invariant by H 1. The relative trace formula in this context
gives two expressions of Θpfq for f a function on G, the first one, called the geometric
side, in terms of orbital integrals, and the second one, called the spectral side, in
terms of irreducible representations of G.

First we deal with the geometric side. For this purpose we introduce suitable
orbital integrals. For γ P Γ, we set rγs :“ pH 1XΓqγpH XΓq and one introduces two
subgroups of H 1 ˆH

pH 1
ˆHqγ “ tph

1, hq|h1γh´1
“ γu, pH 1

X ΓˆH X Γqγ “ pH
1
ˆHqγ X pΓˆ Γq.

Then, we define the orbital integral of a function f on G by

Iprγs, fq “

ż

pH 1ˆHqγzpH 1ˆHq

fph1γh´1
qdh1dh.

Let f be a function on G. Since rpgqδΓh “ δΓhg´1 , the definition of ξ and ξ1 gives
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Θpfq “
ÿ

gPG

fpgqΘpgq “
ÿ

gPG

fpgq
1

volpΓXHq

1

volpΓXH 1q

ÿ

hPH

ÿ

h1PH 1

pδΓhg´1 , δΓh1q.

Changing g in g´1h and using the fact that pδΓg, δΓh1q is equal to 1 for g P Γh1

and to zero otherwise, one gets

Θpfq “
1

volpΓXHq

1

volpΓXH 1q

ÿ

hPH

ÿ

h1PH 1

ÿ

γPΓ

fph1γhq. (0.2)

A simple computation of volumes leads to the geometric expression of Θ in terms
of orbital integrals

Θpfq “
ÿ

rγsPH 1XΓzΓ{ΓXH

volppH 1
X ΓˆH X ΓqγzpH

1
ˆHqγqIprγs, fq. (0.3)

Let us turn to the spectral side. We decompose L2pΓzGq into isotypic components
‘πPĜHπ The restriction of ξ and ξ1 to Hπ will be denoted ξπ and ξ1π respectively.
The spectral formula for Θ is the simple equality

Θ “
ÿ

πPĜ

cξπ ,ξ1π . (0.4)

Notice that it might be also interesting to decompose further the representation into
irreducible representations and the restriction of ξ to each of them will be called a
period.

There is a third interpretation of the distribution Θ. If f is a function on G,
then the operator rpfq on L2pΓzGq is an integral operator whose kernel Kf is the
function on ΓzGˆ ΓzG given by

Kf px, yq “
ÿ

γPΓ

fpx´1γyq.

By (0.2), one gets easily the following expression of Θpfq

Θpfq “

ż

pH 1XΓzH 1qˆpHXΓzH

Kf ph
1, hqdh1dh. (0.5)

This point of view is probably the best one. But it is important to have the repre-
sentation theoretic meaning of Θ.

The toy model for the local relative trace formula of B. Feigon appears as a
particular case of the above relative trace formula. In that case, the groups G, H
and H 1 are products G1ˆG1, H1ˆH1 and H 1

1ˆH
1
1 respectively and Γ is the diagonal

of G1 ˆ G1. Then ΓzG identifies with G1 and the right representation corresponds
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to the representation R of G1 ˆ G1 on L2pG1q given by rRpx, yqφspgq “ φpx´1gyq.
Then, we have

ξpψq “

ż

H1

ψphqdh, ψ P L2
pG1q.

The spectral side is more concrete. If pπ1,Hπ1q is an irreducible unitary represen-
tation of G1 then G1ˆG1 acts on EndpHπ1q by an irreducible representation denoted
by π. It is unitary if we use the scalar product associated to the Hilbert-Schmidt
norm. Moreover L2pG1q is canonically isomorphic to the direct sum‘π1PĜ1

EndpHπ1q.
Let Pπ be the orthogonal projector onto the space of invariant vectors under H1.
Then, the period map ξπ, which is a linear form on EndpHπ1q, is given by

ξπpT q “

ż

H1

Trpπ1phqT qdh “ pT, Pπq, T P EndpHπ1q.

One further decomposes ξπ by using an orthonormal basis (ηπ1,i) of the space
of H1-invariant vectors. We will use the identification of EndpHπ1q with the tensor
product of Hπ1 with its conjugate complex vector space. In this identification, one
has

Pπ “
ÿ

i

ηπ1,i b ηπ1,i.

We define similar notations for ξ1 relative to H 1. Then, for two functions f1, f2 on
G1, the spectral side (0.4) can be written

Θpf1 b f2q “
ÿ

π1PĜ1

ÿ

i,i1

cηπ1,i
,η1
π1,i

1
pf1qcηπ1,i

,η1
π1,i

1
pf2q.

For the geometric side, we define the integral orbital of a function f on G1 by

Ipg, fq “

ż

pH 11ˆH1qgzH 11ˆH1

fph1gh´1
qdhdh1

which depends only on the double coset H 1
1gH1. Then one gets by (0.3) the equality

Θpf1 b f2q “
ÿ

gPH 11zG1{H1

vpgqIpg, f1qIpg, f2q

where the vpgq’s are positive constants depending on volumes. Hence the final form
of the local relative trace formula is:

ÿ

gPH 11zG1{H1

vpgqIpg, f1qIpg, f2q “
ÿ

π1PĜ1

ÿ

i,i1

cηπ1,i
,η1
π1,i

1
pf1qcηπ1,i

,η1
π1,i

1
pf2q.

This formula allows to invert the orbital integrals Ipg, f1q. For this purpose, one
chooses g1 P G1 and takes for f2 the Dirac measure at g1. Then Ipg1, f2q “ 1 and
the other orbital integrals of f2 are zero. Hence

vpg1qIpg1, f1q “
ÿ

π1PĜ1

ÿ

i,i1

cηπ1,i
,η1
π1,i

1
pf1qcηπ1,i

,η1
π1,i

1
pf2q.
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In order to make the formula more precise, one needs to compute the constants
cηπ1,i

,η1
π1,i

1
pf2q.

The inversion of orbital integrals is one of our motivations to investigate a lo-
cal relative trace formula in the situation of p-adic groups relative to a symmetric
subgroup H and we will take H “ H 1.

In this article, we consider a reductive algebraic group H defined over a non
archimedean local field F of characteristic 0. We fix a quadratic unramified extension
E of F and we consider the group G :“ ResE{FH obtained by restriction of scalars
of H, where here H is considered as a group defined over E. We denote by H and
G the group of F-points of H and G respectively. Then G is isomorphic to HpEq
and H appears as the fixed points of G under the involution of G induced by the
nontrivial element of the Galois group of E{F. We assume that H is split over F
and we fix a maximal split torus A0 of H. The groups G and H correspond to G1

and H1 “ H 1
1 respectively in our example of a local relative trace formula for finite

groups.

The starting point of our study is the analogue to the expression (0.5). We
consider the regular representation R of GˆG on L2pGq given by pRpg1, g2qψqpxq “
ψpg´1

1 xg2q. Then for f “ f1 b f2 where f1 and f2 are two smooth compactly
supported functions on G, the corresponding operator Rpfq is an integral operator
on L2pGq with smooth kernel

Kf px, yq “

ż

G

f1pxgqf2pgyqdg “

ż

G

f1pgqf2px
´1gyqdg.

As H may be not compact, even modulo the split component AH of the center
of H, we have to truncate this kernel to integrate it. We multiply this kernel by a
product of functions upx, T qupy, T q where up¨, T q is the characteristic function of a
large compact subset in AHzH depending on a parameter T P a0 “ RatpA0q bZ R
(RatpA0q is the group of F-rational characters of A0) as in [Ar3] (cf. (2.7)). As H
is split, we have AH “ AG. Hence the kernel Kf is left invariant by the diagonal
diagpAHq of AH and we can integrate the truncated kernel over diagpAHqzH ˆH.
We set

KT
pfq :“

ż

diagpAHqzpHˆHq

Kf px1, x2qupx1, T qupx2, T qdpx1, x2q.

In [Ar3], J. Arthur studies the integral of Kf px, xqupx, T q over AGzG to obtain
its local trace formula on reductive groups.

We study the geometric expression of the distribution KT pfq and its dependence
on the parameter T . Our main results (Theorem 2.3 and Corollary 2.11) assert that
KT pfq is asymptotic as T approaches infinity to another distribution JT pfq of the
form

JT pfq “
N
ÿ

k“0

pξkpT, fqe
ξkpT q (0.6)
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where ξ0 “ 0, . . . ξN are distinct points of the dual space ia˚0 and each pξkpT, fq is a
polynomial function in T . Moreover, the constant term J̃pfq :“ p0p0, fq of JT pfq is
well-defined and uniquely determined by KT pfq. We give an explicit expression of
this constant term in terms of weighted orbital integrals.

These results are analogous to those of [Ar3] for the group case. Our proof follows
closely the study by J. Arthur of the geometric side of his local trace formula which
we were able to adapt under our assumptions to the case of double truncations.

In the first section, we introduce notation on groups and on symmetric spaces
according to [RR]. The starting point of our study is the Weyl integration formula
established in [RR], which takes into account the pH,Hq-double classes of σ-regular
elements of G (cf. (1.30) and (1.32)). These double classes are express in terms of σ-
torus, that is torus whose elements are anti-invariant by σ. Under our assumptions,
there is a bijective correspondence S Ñ Sσ between maximal tori of H and maximal
σ-tori of G which preserves H-conjugacy classes.

Then the Weyl integration formula can be written in terms of Levi subgroups
M P LpA0q of H containing A0 and M -conjugacy classes of maximal anisotropic tori
of M (cf. (1.33)):

ż

G

fpgqdg “
ÿ

MPLpA0q

cM
ÿ

SPTM

ÿ

xmPκS

cS,xm

ż

Sσ

|∆σpxmγq|
1{2
F

ż

diagpAM qzHˆH

fph´1xmγlqdph, lqdγ

where κS is a finite subset of G, cM and cS,xm are positive constants, TM is a suitable
set of anisotropic tori of M and ∆σ is a jacobian.

A fundamental result for our proofs concerns the orbital integral Mpfq of a
compactly smooth function f on G. It is defined on σ-regular points by

Mpfqpxmγq “ |∆σpxmγq|
1{4
F

ż

diagpASqzHˆH

fph´1xmγlqdph, lq,

where S is a maximal torus of H, xm P κS and γ P Sσ such that xmγ is σ-regular.
As in the group case using the exponential map and the property that each root of
Sσ has multiciplity 2 in the Lie algebra of G, we prove that the orbital integral is
bounded on the subset of σ-regular points of G (cf. Theorem 1.2).

In the second section, we explain the truncation process based on the notion
of pH,Mq-orthogonal sets and prove our main results. Using the Weyl integration
formula, we can write

KT
pfq “

ÿ

MPLpA0q

cM
ÿ

SPTM

ÿ

xmPκS

cS,xm

ż

Sσ

KT
pxm, γ, fqdγ

where

KT
pxm, γ, fq “ |∆σpxmγq|

1{2
F

ż

diagpAM qzHˆH

ż

diagpAM qzHˆH

f1py
´1
1 xmγy2q
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ˆf2px
´1
1 xmγx2quMpx1, y1, x2, y2, T qdpx1, x2qdpy1, y2q

and

uMpx1, y1, x2, y2, T q “

ż

AHzAM

upy´1
1 ax1, T qupy

´1
2 ax2, T qda.

The function JT pfq is obtained in a similar way to KT pfq where we replace the
weight function uMpx1, y1, x2, y2, T q by another weight function vMpx1, y1, x2, y2, T q.

The weight function vM is given by

vMpx1, y1, x2, y2, T q :“

ż

AHzAM

σMphMpaq,YMpx1, y1, x2, y2, T qqda

where σMp¨,Yq is the function of [Ar3] depending on a pH,Mq-orthogonal set Y and
YMpx1, y1, x2, y2, T q is a pH,Mq- orthogonal set obtained as the ”minimum” of two
pH,Mq- orthogonal sets YMpx1, y1, T q and YMpx2, y2, T q (cf. (2.4), Lemma 2.2 and
(2.11)). If Y1 and Y2 are two pH,Mq-orthogonal positive sets then the ”minimum”
Z of Y1 and Y2 satisfies the property that the convex hull SMpZq in aHzaM of the
points of Z is the intersection of the convex hulls SMpY1q and SMpY2q in aHzaM of
the points of Y1 and Y2 respectively.

If }T } is large relative to }xi}, }yi}, i “ 1, 2 then σMp¨,YMpx1, y1, x2, y2, T qq is just
the characteristic function of SMpYMpx1, y1, x2, y2, T qq. In that case, this function
is equal to the product of σMp¨,YMpx1, y1, T qq and σMp¨,YMpx2, y2, T qq.

Our proofs consist to establish good estimates of |uMppx1, y1, x2, y2, T q ´
vMpx1, y1, x2, y2, T q| when xi, yi, i “ 1, 2 satisfy f1py

´1
1 xmγy2qf1px

´1
1 xmγx2q ‰ 0 for

some γ P Sσ and xm P κS. Then, using that orbital integrals are bounded, we deduce
our result on |KT pfq ´ JT pfq|.

This work is a first step towards a local relative trace formula. For the spectral
side, we have to prove that KT pfq is asymptotic to a distribution kT pfq which is of
general form (0.6) and constructed from spectral data. We hope that we can express
the constant term of kT pfq in terms of regularized local period integrals introduced
by B. Feigon in [F] in the same way than Jacquet-Lapid-Rogawski regularized period
integrals for automorphic forms in [JLR]. We plan to explicit such a local relative
trace formula for PGLp2q.

Acknowledgments. We thank warmly Bertrand Lemaire for his answers to our
many questions on algebraic groups. We thank Bertrand Rémy and David Renard
for our helpful discussions. We thank also Guy Henniart for providing us a proof of
(1.5).
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1 Preliminaries

1.1 Reductive p-adic groups

Let F be a non archimedean local field of characteristic 0 and odd residual charac-
teristic q. Let | ¨ |F denote the normalized valuation on F.

For an algebraic variety M defined over F, we identify M with MpFq where F is
an algebraic closure of F and we set M :“MpFq.

We will use conventions like in [W2]. One considers various algebraic groups J
defined over F, and sentences like

” let M be an algebraic group” will mean ” let M be the F-points of an
algebraic group M defined over F” and ” let A be a split torus ” will
mean ” let A be the group of F-points of a torus, A, defined and split
over F .”

(1.1)

If J is an algebraic group, one denotes by RatpJq the group of its rational characters
defined over F. If V is a vector space, V ˚ will denote its dual. If V is real, VC will
denote its complexification.

Let G be an algebraic reductive group defined over F. We fix a maximal split
torus A0 of G and we denote by M0 its centralizer in G.

We denote by AG the maximal split torus of the center of G and we define

aG :“ HomZpRatpGq,Rq.

One has the canonical map hG : GÑ aG which is defined by

exhGpxq,χy “ |χpxq|F, x P G,χ P RatpGq. (1.2)

The restriction of rational characters from G to AG induces an isomorphism

RatpGq bZ R » RatpAGq bZ R. (1.3)

Notice that RatpAGq appears as a generating lattice in the dual space a˚G of aG
and

a˚G » RatpGq bZ R. (1.4)

The kernel of hG, which is denoted by G1, is the intersection of the kernels of
|χ|F for all character χ P RatpGq of G. The groupe G1 is distinguished in G and
contains the derived group Gder of G. Moreover, it is well-known that

the group G1 is generated by the compact subgroups of G. (1.5)

G. Henniart has communicated to us an unpublished proof of this result by N. Abe,
F. Herzig, G. Henniart and M.F. Vigneras.
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One denotes by aG,F (resp., ãG,F) the image of G (resp., AG) by hG.
Then G{G1 is isomorphic to the lattice aG,F.

(1.6)

If P is a parabolic subgroup of G with Levi subgroup M , we keep the same
notation with M instead of G.

The inclusions AG Ă AM Ă M Ă G determine a surjective morphism aM,F Ñ

aG,F (resp., an injective morphism, ãG,F Ñ ãM,F) which extends uniquely to a sur-
jective linear map hMG from aM to aG (resp., injective map between aG and aM).
The second map allows to identify aG with a subspace of aM and the kernel of the
first one, aGM , satisfies

aM “ aGM ‘ aG. (1.7)

For M “ M0, we set a0 :“ aM0 and aG0 :“ aGM0
. We fix a scalar product p¨, ¨q on a0

which is invariant under the Weyl group W pG,A0q of pG,A0q. Then aG identifies
with the fixed point set of a0 by W pG,A0q and aG0 is an invariant subspace of a0

under W pG,A0q. Hence, it is the orthogonal subspace to aG in a0. The space
a˚G might be viewed as a subspace of a˚0 by (1.7). Moreover, by definition of the
surjective map a0 Ñ aG, one deduces that

if m0 P M0 then hGpm0q is the orthogonal projection of hM0pm0q onto
aG.

(1.8)

From (1.7) applied to pM,M0q instead of pG,Mq, one obtains a decomposition a0 “

aM0 ‘ aM . From the W pG,A0q invariance of the scalar product, one gets:

The decomposition a0 “ aM0 ‘ aM is an orthogonal decomposition.
The space a˚M appears as a subspace of a˚0 and, in the identification of
a0 with a˚0 given by the scalar product, a˚M identifies with aM .

(1.9)

The decomposition aM “ aGM ‘ aG is orthogonal relative to the restriction to aM
of the W pG,A0q-invariant inner product on a0 and the natural map hMG is identified
with the orthogonal projection of aM onto aG.

In particular, aG,F is the orthogonal projection of aM,F onto aG. More-
over, we have ãG,F “ aG X ãM,F (cf. [Ar3] (1.4)).

(1.10)

By a Levi subgroup of G, we mean a group M containing M0 which is the Levi
component of a parabolic subgroup of G. If P is a parabolic subgroup containing
M0 then it has a unique Levi subgroup denoted by MP which contains M0. We will
denote by NP the unipotent radical of P .

For a Levi subgroup M , we write LpMq for the finite set of Levi subgroups of G
which contain M and we also let PpMq denote the finite set of parabolic subgroups
P with MP “M .

9



Let K be the fixator of a special point in the apartment of A0 in the Bruhat-Tits
building. We have the Cartan decomposition

G “ KM0K. (1.11)

If P “MPNP is a parabolic subgroup of G containing M0, then

G “ PK “MPNPK. (1.12)

If x P G, we can write

x “ mP pxqnP pxqkP pxq, mP pxq PMP , nP pxq P NP , kP pxq P K. (1.13)

We set
hP pxq :“ hMP

pmP pxqq. (1.14)

The point mP pxq is defined up an element of K but hppxq does not depend of this
choice.

We introduce a norm } ¨ } on G as in ([W2] §I.1.) (called height function in
([Ar3])). Let Λ0 : GÑ GLnpFq be an algebraic embedding. For g P G, we write

Λ0pgq “ pai,jqi,j“1...n, Λ0pg
´1
q “ pbi,jqi,j“1...n.

We set
}g} :“ sup

i,j
supp|ai,j|F, |bi,j|Fq. (1.15)

If Λ : GÑ GLdpFq is another algebraic embedding then the norm } ¨ }Λ attached to
Λ as above is equivalent to } ¨ } in the following sense: there are a positive constant
CΛ and a positive integer dΛ such that

}g}Λ ď CΛ}g}
dΛ .

This allows us to use results of [W2] for estimates on norms.
The following properties of } ¨ } are immediate consequences of definition:

1 ď }x} “ }x´1
}, x P G, (1.16)

}xy} ď }x}}y}, x, y P G. (1.17)

In order to have estimates, we introduce the following notation. Let r be a
positive integer. Let f and g be two positive functions defined over a subset W of
Gr .

We write fpxq ď gpxq, x P W if and only if there are a positive constant
c and a positive integer d such that fpxq ď cgpxqd for all x P W .

(1.18)
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We write fpxq « gpxq, x P W if fpxq ď gpxq, x P W and gpxq ď

fpxq, x P W .
(1.19)

If f1, f2 and f3 are positive functions on Gr, we clearly have

if f1pxq ď f2pxq, x P W and f2pxq ď f3pxq, x P W then f1pxq ď f3pxq, x P W ,
if f1pxq « f2pxq, x P W and f2pxq « f3pxq, x P W then f1pxq « f3pxq, x P W .

Moreover, if f1, f2, g1 and g2 are positive functions on Gr which take values greater
or equal to 1, we obtain easily the following properties:

1. for all positive integer d, we have f1pxq « f1pxq
d, x P W ,

2. if f1pxq ď g1pxq, x P W and f2pxq ď g2pxq, x P W then
pf1f2qpxq ď pg1g2qpxq, x P W ,

3. if f1pxq « g1pxq, x P W and f2pxq « g2pxq, x P W then
pf1f2qpxq « pg1g2qpxq, x P W .

(1.20)

Since }x} “ }xyy´1} ď }xy}}y} and }xy} ď }x}}y}, we obtain

If Ω is a compact subset of G, then }x} « }xω}, x P G,ω P Ω. (1.21)

Let P “MPNP be a parabolic subgroup of G containing M0. Then, each x P G can
be written x “ mP pxqnP pxqk where mP pxq PMP , nP pxq P NP and k P K. By ([W2]
Lemma II.3.1), we have

}mP pxq} ` }nP pxq} ď }x}, x P G. (1.22)

Recall that G1 is the kernel of hG : GÑ aG. Let us prove that

}xa} « }x}}a}, x P G1, a P AG. (1.23)

According to the Cartan decomposition (1.11), if g P G, we denote by m0pgq an
element of M0 such that there exist k, k1 P K with g “ km0pgqk

1. Notice that
}hM0pm0pgqq} does not depend on our choice of m0pgq. By (1.21), one has

}g} « }m0pgq}, g P G, (1.24)

and by ([W2]) 1.1.(6)) we have

}m0} « e}hM0
pm0q}, m0 PM0. (1.25)

Let x P G1 and a P AG. Then m0pxq P G
1 XM0 and m0pxaq “ m0pxqa. Thus, one

has hGpm0pxqq “ 0. We deduce from (1.8) that hM0pm0pxqq belongs to aG0 . Since
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hM0pm0pxqaq “ hM0pm0pxqq ` hM0paq and hM0paq P aG, we obtain by orthogonality
that

1

2
p}hM0pm0pxqq} ` }hM0paq}q ď }hM0pm0pxqaq} ď }hM0pm0pxqq} ` }hM0paq}.

Hence (1.23) follows from (1.24) and (1.25).

We denote by C8c pGq the space of smooth functions on G with compact support.
We normalize Haar measures according to [Ar3] §1. Unless otherwise stated, the
Haar measure on a compact group will be normalized to have total volume 1.

Let M be a Levi subgroup of G. We fix a Haar measure on aM so that the
volume of the quotient aM{ãM,F equals 1.

Let P “MNP P PpMq. We denote by δP the modular function of P given by

δP pmnq “ e2ρP phM pmqq,m PM,n P NP ,

where 2ρP is the sum of roots, with multiplicity, of pP,AMq. Let P̄ “MNP̄ be the
the parabolic subgroup which is opposite to P . If dn is a Haar measure on NP then
the number

γpP q “

ż

NP

e2ρP̄ phP̄ pnqqdn

is finite. Moreover, the measure γpP q´1dn is independent of the choice of dn and
thus defines a canonical Haar measure on NP .
If dm is a Haar measure on M then there exists a unique Haar measure dg on G,
independent of the choice of the parabolic subgroup P , such that

ż

G

fpgqdg “
1

γpP qγpP̄ q

ż

NP

ż

M

ż

NP̄

fpnmn̄qδP pmq
´1dn̄ dm dn,

for f P C8c pGq. We say that dm and dg are compatible. Compatibility has the
obvious transitivity property relative to Levi subgroups of M . Using the Iwasawa
decomposition (1.12), these measures satisfy

ż

G

fpgqdg “
1

γpP q

ż

K

ż

M

ż

NP

fpmnkqdn dm dk.

1.2 The symmetric space HzG

Let E be an unramified quadratic extension of F. Thus E “ Frτ s where τ 2 is not a
square in F. We denote by σ the nontrivial element of the Galois group GalpE{Fq
of E{F. The normalized valuation | ¨ |E on E satisfies |x|E “ |x|

2
F for x P F.

If J is an algebraic group defined over F, as usual we denote by J its group of
points over F. Let JˆFE be the group, defined over E, obtained from J by extension
of scalars. We consider the group

J̃ :“ ResE{FpJ ˆF Eq
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defined over F, obtained by restriction of scalars.

With our convention, one has J̃ “ J̃pFq and J̃ is isomorphic to JpEq.

Let H be a reductive group defined over F. In all this article, we assume that H
is split over F and we set G :“ H̃ and G :“ H̃. We fix a maximal split torus A0 of
H. Then A0 is also a maximal split torus of G and we have AH “ AG.

The nontrivial element σ of GalpE{Fq induces an involution of G defined over
F, which we denote by the same letter. This automorphism σ extends to an E-
automorphism σE on GˆF E.

We consider the canonical map ϕ defined over F from G to pH ˆF Eqˆ pH ˆF Eq
by ϕpgq “ pg, σpgqq.

Then, ϕ extends uniquely to an isomorphism Ψ defined over E from
GˆF E to pH ˆF Eqˆ pH ˆF Eq such that Ψpgq “ pg, σpgqq for all g P G
and if Ψpgq “ pg1, g2q then ΨpσEpgqq “ pg2, g1q.

(1.26)

Now we turn to the description of the geometric structure of the symmetric space
S “ HzG according to [RR] sections 2 and 3.

Let g be the Lie algebra of G and g be the Lie algebra of its F-points. We will
say that g is the Lie algebra of G and the Lie algebra h of H consists of the elements
of g invariant by σ. We denote by q the space of antiinvariant elements of g by σ.
Thus, one has g “ h‘ q and g may be identified with hbF E.

As in ([RR] §2.), we say that a subspace c of q is a Cartan subspace of q if c is
a maximal abelian subspace of q made of semisimple elements. As E “ Frτ s, the
multiplication by τ induces an isomorphism between the set of Cartan subspaces of
q and the set of Cartan subalgebras of h which preserves H-conjugacy classes.

We denote by P the connected component of 1 in the set of x in G such that
σpxq “ x´1. Then the map p from G to P defined by ppxq “ x´1σpxq induces an
isomorphim of affine varieties p : HzGÑ P .

A torus A of G is called a σ-torus if A is a torus defined over F contained in
P . Notice that such torus are called σ-split torus in [RR]. We prefer change the
terminology as σ-tori are not necessarily split over F. Each σ-torus is the centralizer
in P of a Cartan subspace of q, or equivalently of a Cartan subalgebra of h.

Let S be a maximal torus of H. We denote by Sσ the connected component of
rS X P . Then Sσ is a σ-torus defined over F which identifies with the antidiagonal
tps, s´1q; s P Su of S ˆS by the isomorphism (1.26). Thus, Sσ is a maximal σ-torus
and each maximal σ-torus arises in this way . The H-conjugacy classes of maximal
tori of H are in bijective correspondence with the H-conjugacy classes of maximal
σ-tori of G by the map S ÞÑ Sσ. The roots of S (resp.; Sσ) in h “ LiepHq (resp.;
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qbF F̄) are the restrictions of the roots of S̃ in g “ LiepGq.

Therefore, each root of S (resp.; Sσ) in g has multiplicity two. If S̃ splits
over a finite extension F1 of F, we denote by ΦpS 1σ, g

1q (resp.; ΦpS 1, h1q)
the set of roots of SσpF

1q in gbF F1 (resp.; SpF1q in hbF F1).
Let s̃ be the Lie algebra of S̃. Then, the differential of each root α of
ΦpS̃ 1, g1q defines a linear form on s̃bF F1 which we denote by the same
letter.

(1.27)

Let GalpF{Fq be the Galois group of F{F. By ([RR] §3), the set of pH,Sσq-
double cosets in HSσXG are parametrized by the finite set I of cohomology classes
in H1pGalpF{Fq, H X Sσq which split in both H and Sσ. To each such classe m, we
attach an element xm P G of the form xm “ hma

´1
m with hm P H and am P Sσ such

that mγ “ h´1
m γphmq “ a´1

m γpamq for all γ P GalpF{Fq.

1.1 Lemma. Let x P G such that x “ hs with h P H and s P S̃. Then, xSx´1 is a
maximal torus of H and there exists h1 P H such that x1 “ h1x centralizes the split
connected component AS of S.

Proof :

Replace S by a H-conjugate if necessary, we may assume that A :“ AS is contained
in the fixed maximal split torus A0 of H. Since H is split, A0 is also a maximal split
torus of G.

Since x “ hs P G, the torus S 1 :“ xSx´1 is equal to hSh´1 Ă H. Thus S 1 is
defined over F and contained in H and we obtain the first assertion.

Let S 1 :“ S 1pFq and let A1 be the split connected component of S 1. There exists
h1 P H such that h1A

1h´1
1 Ă A0. We set x1 “ h1x, thus we have A1 :“ x1Ax

´1
1 Ă A0.

Let M “ ZGpAq and M1 “ ZGpA1q “ x1Mx´1
1 . Then A0 and x1A0x

´1
1 are

maximal split tori of M1. Therefore, there exists y1 PM1 such that y1x1A0x
´1
1 y´1

1 “

A0. As H is split, the Weyl group of A0 in G coincides with the Weyl group of A0

in H. Thus, there exist h2 P NHpA0q and v P ZGpA0q such that z :“ y1x1 “ h2v.
For a P A Ă A0, one has zaz´1 “ h2ah

´1
2 “ y1x1ax

´1
1 y´1

1 “ x1ax
´1
1 since

x1ax
´1
1 P A1 and y1 PM1. One deduces that x1 :“ h´1

2 h1x centralizes A.

Thus, for each maximal torus S of H, we can fix a finite set of represen-
tatives κS “ txmumPI of the pH,Sσq-double cosets in HSσXG such that
each element xm may be written xm “ hma

´1
m where hm P H centralizes

AS and am P Sσ. Hence xm centralizes AS.

(1.28)

1.3 Weyl integration formula and orbital integrals

We first recall basic notions on the symmetric space according to ([RR], §3). An
element x in G is called σ-semisimple if the double coset HxH is Zariski closed. This
is equivalent to say that ppxq is a semisimple point of G. We say that a semisimple
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element x is σ-regular if this closed double coset HxH is of maximal dimension.
This is equivalent to say that the centralizer of ppxq in q (resp.; P) is a Cartan
subspace of q (resp.; a maximal σ-torus of G).

We denote by Gσ´reg the set of σ-regular elements of G.

For g P G, we denote by DGpgq the coefficient of the least power of t appearing
nontrivially in detpt`1´Adpgqq. We define the H-biinvariant function ∆σ on G by
∆σpxq “ DGpppxqq. Then by ([RR], Lemma 3.2. and Lemma 3.3), the set of g P G
such that ∆σpgq ‰ 0 coincides with Gσ´reg.
Let S be a maximal torus of H with Lie algebra s. Then s̃ :“ sbF E identifies with
the Lie algebra of S̃. For g P xmSσ with xm P κS, one has

∆σpgq “ DGpppgqq “ detp1´ Adpppgqqqg{s̃. (1.29)

By ([RR] Theorem 3.4 (1)), the set Gσ´reg is a disjoint union

Gσ´reg
“

ď

tSuH

ď

xmPκS

H
`

pxmSσq XG
σ´reg

˘

H,

where tSuH runs the H-conjugacy classes of maximal tori of H.

(1.30)

If xm P κS then xm “ hmam for some hm P H and am P Sσ, hence ppxmq “ a´2
m

commutes with S and Sσ. Therefore for γ P Sσ, we have

ppxmγq “ ppxmqγ
´2 and HxmγS “ Hxmγ.

We have the following Weyl integration formula (cf. [RR] Theorem 3.4 (2)):

Let f be a compactly supported smooth function on G, then we have

ż

G

fpyqdy “
ÿ

tSuH

ÿ

xmPκS

c0
S,xm

ż

Sσ

|∆σpxmγq|
1{2
F

ż

SzH

ż

H

fphxmγlqdhdl̄dγ,
(1.31)

where the constants c0
S,xm

are explicitly given in ([RR] Theorem 3.4 (1)).

For our purposes, we need another version of this Weyl integration formula.
Let S be a maximal torus of H. We denote by AS its split connected component.
Since the quotient ASzS is compact, by our choice of measure, the integration over
SzH in the Weyl formula above can be replaced by an integration over ASzH.
Moreover, it is convenient to change h into h´1. As every xm P κS commutes with AS
(cf. (1.28)), one can replace the integration over pASzHqˆH, by an integration over
diagpASqzpH ˆHq where diagpASq is the diagonal of AS. This gives the following
Weyl integration formula equivalent to (1.31):
ż

G

fpyqdy “
ÿ

tSuH

ÿ

xmPκS

c0
S,xm

ż

Sσ

|∆σpxmγq|
1{2
F

ż

diagpASqzpHˆHq

fph´1xmγlqdph, lqdγ.

(1.32)
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We will now describe the H-conjugacy classes of maximal tori of H in terms of
Levi subgroups M in LpA0q and M -conjugacy classes of some tori of M .

Let M P LpA0q. We denote by NHpMq its normalizer in H. If S is a maximal
torus of M , we denote by W pM,Sq (resp. W pH,Sq) its Weyl group in M (resp.
H). We choose a set TM of representatives for the M -conjugacy classes of maximal
tori S in M such that AMzS is compact. For M,M 1 P LpA0q, we write M „ M 1 if
M and M 1 are conjugate under H.

Let S be a maximal torus of H whose split connected component AS is contained
in A0. Then, the centralizer M of AS belongs to LpA0q and S is a maximal torus of
M such that AMzS is compact. If S 1 is a maximal torus conjugated to S by H such
that AS1 is contained in A0, then the centralizer M 1 of AS1 in H belongs to LpA0q

and M 1 „M .
Since each maximal torus of H is H-conjugate to a maximal torus S such that

AS Ă A0, we obtain a surjective map S ÞÑ tSuH from the set of S in TM where
M runs a system of representatives of LpA0q{„ to the set of H-conjugacy classes of
maximal tori of H.

Let M P LpA0q. By ([Ko ] (7.12.3)), the cardinal of the class of M in LpA0q{„ is
equal to

|W pH,A0q|

|W pM,A0q||NHpMq{M |

where NHpMq is the normalizer of M in H.
By ([Ko ] Lemma 7.1), if S is a maximal torus ofM , then the number ofM -conjugacy
classes of maximal torus S 1 in M such that S 1 is H-conjugate to S is equal to

|NHpMq{M ||W pM,Sq|

|W pH,Sq|
.

Therefore, we can rewrite (1.32) as follows:
ż

G

fpgqdg “
ÿ

MPLpA0q

cM
ÿ

SPTM

ÿ

xmPκS

cS,xm

ż

Sσ

|∆σpxmγq|
1{2
F

ż

diagpAM qzHˆH

fph´1xmγlqdph, lqdγ

(1.33)
where

cM “
|W pM,A0q|

|W pH,A0q|
and cS,xm “

|W pH,Sq|

|W pM,Sq|
c0
S,xm .

Let f P C8c pGq. We define the orbital integral Mpfq of f on Gσ´reg as follows.
Let S a maximal torus of H. For xm P κS and γ P Sσ with xmγ P G

σ´reg, we set

Mpfqpxmγq :“ |∆σpxmγq|
1{4
F

ż

diagpASqzpHˆHq

fph´1xmγlqdph, lq

“ |∆σpxmγq|
1{4
F

ż

SzH

ż

H

fphxmγlqdhdl.

(1.34)
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Our definition corresponds, up to a positive constant, to Definition 3.8 of [RR].
Indeed, by definition of ∆σ, we have ∆σpxmγq “ DGpppxmγqq. Since we can write
xm “ hmam with hm P H and am P Sσ, we have ppxmγq “ ppxmqγ

´2 “ a´2
m γ´2 for

γ P Sσ. Let F1 be an extension of E such that S̃ splits over F1 and am P SσpF
1q.

Since each root α of SσpF
1q in gb F1 have multiplicity mpαq “ 2, using notation of

(1.27), we obtain:

∆σpxmγq “
ź

αPΦpS1σ ,g
1q

p1´ ppxmq
αγ´2α

q
2
“

ź

αPΦpS1σ ,g
1q

pγα ´ ppxmq
αγ´αq2,

hence
|∆σpxmγq|

1{4
F1 “

ź

αPΦpS1σ ,g
1q

|pγα ´ ppxmq
αγ´αqmpαq´1

|
1{2
F1 ,

“
ź

αPΦpS1σ ,g
1q

|pγα ´ ppxmq
αγ´αq|

1{2
F1 .

Then, the Weyl integration formula (1.31) in terms of orbital integrals is given as in
([RR] page 126) by

ż

G

fpyqdy “
ÿ

tSuH

ÿ

xmPκS

c0
S,xm

ż

Sσ

|∆σpxmγq|
1{4
F Mpfqpxmγqdγ.

1.2 Theorem. Let f P C8c pGq and S be a maximal torus of H. Let xm P κS.

1. There exists a compact set Ω in Sσ such that, for any γ in the complementary
of Ω with xmγ P G

σ´reg, one has Mpfqpxmγq “ 0.

2.
sup

γPSσ ; xmγPGσ´reg
|Mpfqpxmγq| ă `8.

Proof :

The proof follows that of the group case (cf. [HC3] proof of Theorem 14). We write
it for convenience of the reader.
1. Let ω be the support of f . We consider the set ωS of elements γ in Sσ such that
xmγ is in the closure of HωH. For g P G, we consider the polynomial function

detp1´ t´ Ad ppgqq “ tn ` qn´1pgqt
n´1

` . . .` qlpgqt
l (1.35)

where l is the rank of G and n its dimension. Each qj is a HˆH biinvariant regular
function on G, thus it is bounded on xmωS. Therefore, the roots of detp1 ´ t ´
Ad ppgqq are bounded on xmωS.

For γ P Sσ, we have ppxmγq “ ppxmqγ
´2. We choose a finite extension F1 of F

such that S̃ splits over F1 and ppxmq P SσpF
1q. Using notation of (1.27), the roots of

detp1 ´ t ´ Ad ppxmγqq are the numbers p1 ´ ppxmq
αγ´2αq for α P ΦpS 1σ, g

1q. Since
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these roots are bounded on xmωS, we deduce that the maps γ Ñ γα, α P ΦpS 1σ, g
1q,

are bounded on ωS. This implies that ωS is bounded. Then, the closure Ω of ωS
satisfies the first assertion.

2. By 1., if γ R Ω then Mpfqpxmγq “ 0. Thus, it is enough to prove that for each
γ0 P Sσ, there exists a neighborhood Vγ0 of γ0 in Sσ such that

sup
γPVγ0 ,xmγPG

σ´reg

|Mpfqpxmγq| ă `8. (1.36)

Let y0 :“ ppxmγ0q. We first assume that y0 is central in G. Then, we have
∆σpxmγ0γq “ DGpy0γ

´2q “ DGpγ
´2q for γ P Sσ and xmγ0hpxmγ0q

´1 P H for
h P H. We define the function f0 on G by f0pgq :“ fpxmγ0gq. Then, we have
Mpf0qpγq “Mpfqpxmγ0γq for γ P Sσ X Gσ´reg. Thus, we are reduced to the case
y0 “ 1. As in the group case, we use the exponential map ” exp ” which is well
defined in a neighborhood of 0 in g since the characteristic of F is equal to zero
(cf. [HC4] §10). As in ([HC1] proof of Lemma 15), we can choose a H-invariant
open neighborhood V0 of 0 in h such that the map X P V0 ÞÑ exppτXq is an
isomorphism and an homeomorphism onto its image and there is a H-invariant
function ϕ P C8c phq such that ϕpXq “ 1 for X P V0. We define f̄ in C8c phq by
f̄pXq “ ϕpXq

ş

H
fph exppτXqqdh.

Let s be the Lie algebra of S. For X P s, we set ηpXq “ |detpadXqh{s|F. We

consider a finite extension F1 of F such that S̃ splits over F1 and ppxmq P SσpF
1q.

We use notation of (1.27). Since each root of S 1σ in g1 has multiplicity 2, we have
for X P V0

|∆σpexp τXq|
1{2
F1

ηpXq
“
|DG1pexpp´2τXq|

1{2
F1

ηpXq
“

ś

αPΦpS1,h1q |1´ e
2ταpXq|F1

ś

αPΦpS1,h1q |αpXq|F1

“ |2τ |
|ΦpS1,h1q|
F1

ź

αPΦpS1,h1q

|1` ταpXq `
4τ 2αpXq2

3!
` . . . |F1 .

We can reduce V0 in such way that each term of this product is equal to 1. Thus,
we obtain

Mpfqpexp τXq “ |2τ |
|ΦpS1,h1q|
F1 ηpXq1{2

ż

H{S

`

ż

H

fph exp τAdplqXqdh
˘

dl̄

“ |2τ |
|ΦpS1,h1q|
F1 ηpXq1{2

ż

H{S

f̄pAdplqXqdl̄,

for X P V0. The estimate (1.36) follows from the result on the Lie algebra (cf. [HC3]
Theorem 13).

If y0 “ ppxmγ0q is not central in G, we consider the centralizer Z of y0 in H.

Let Z0 be the connected neutral component of Z. By([Bo], III.9), the group Z0 is
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defined over F. As usual, we set Z̃0
:“ ResE{FpZ0

ˆF Eq and we denote by z̃ its Lie
algebra. By definition of z̃, one has

|detp1´ Adpy0qqg{̃z|F ‰ 0.

Thus, there exists a neighborhood V of 1 in Sσ such that, for all γ P V , then

|detp1´ Adpy0γ
´2
qqg{̃z|F “ |detp1´ Adpy0qg{̃zq|F ‰ 0. (1.37)

From ([HC3] Lemma 19), there exist a neighborhood V1 of y0 in S̃ and a compact
subset CG of Z̃0zG such that, if g P G satsifies g´1V1g X ppωq ‰ H then its image ḡ

in Z̃0zG belongs to CG (here ω is the support of f).
We choose a neighborhood W of 1 in Sσ such that W Ă V and ppxmγ0γq “

y0γ
´2 P V1 for all γ P W . By ([Bo], III 9.1), the quotient Z0zH is a closed subset of

Z̃0zG, hence

the set C :“ CGXZ0zH is a compact subset of Z0zH such that if l P H
satisfies l´1y0γ

´2l P ppωq for some γ P W then its image l̄ in Z0zH

belongs to C.

(1.38)

Let γ P W such that xmγ0γ P G
σ´reg. One has

ż

SzH

ż

H

fphxmγ0γlqdhdl̄ “

ż

Z0zH

ż

SzZ0

ż

H

fphxmγ0γξlqdhdξ̄dl̄. (1.39)

By the choice of W , the map

l̄ P Z0
zH ÞÑ

ż

SzZ0

ż

H

fphxmγ0γξlqdhdξ̄

vanishes outside C̄. We choose u P C8c pHq such that the map u P C8c pZ0zHq defined
by upl̄q :“

ş

Z0 upξlqdξ is equal to 1 if l̄ P C. As u and f are compactly supported,
the map

Φ : z P Z̃0
ÞÑ

ż

H

uplq

ż

H

fphxmγ0zlqdhdl

is well-defined. Since y0 “ ppxmγ0q “ pxmγ0q
´1σpxmγ0q, we have

ξpxmγ0q
´1σpxmγ0q “ pxmγ0q

´1σpxmγ0qξ for ξ P Z0. Hence, xmγ0ξpxmγ0q
´1 P H.

Thus Φ is left invariant by Z0.
We claim that Φ P C8c pZ0zZ̃0q. Indeed, fix l in the support of u. If fphxmγ0zlq

is nonzero for some h P H and z P Z̃0 then pphxmγ0zlq “ ppxmγ0zlq belongs to
ppωq, where ω is the support of f . Since z commutes with y0 “ ppxmγ0q, we have
ppxmγ0zlq “ l´1y0ppzqσplq. As u is compactly supported, we deduce that Φpzq “ 0
when ppzq is outside a compact set. Hence, the map Φ is a compactly supported

function on Z0zZ̃0.
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By assumption, the function f is right invariant by a compact open subgroup of
G. Thus f is right invariant by some compact open subgroup of H. We denote by
τlf the right translate of f by an element l P G. Since u is compactly supported,
the vector space generating by τlf , when l P H runs the support of u, is finite
dimensional. Hence, one can find a compact open subgroup J1 of Z̃0 such that for
each l in the support of u, the function τlf is right invariant by J1. This implies
that Φ is smooth and our claim follows.

Therefore, there exists ϕ P C8c pZ̃0q such that

Φpzq “

ż

Z0

ϕpξzqdξ “

ż

H

uplq

ż

H

fphxmγ0zlqdhdl, z P Z̃0.

We obtain
ż

SzZ0

ż

Z0

ϕpξ1γξ2qdξ1dξ̄2 “

ż

H

uplq
`

ż

SzZ0

ż

H

fphxmγ0γξ2lqdhdξ̄2

˘

dl

“

ż

Z0zH

ż

Z0

upξ1lq
`

ż

SzZ0

ż

H

fphxmγ0γξ2ξ1lqdhdξ̄2

˘

dξ1dl̄

“

ż

Z0zH

upl̄q
`

ż

SzZ0

ż

H

fphxmγ0γξ2lqdhdξ̄2

˘

dl̄.

By definition, the map ū is equal to 1 on the compact set C. By definition of C (cf.
(1.38) and (1.3)), we obtain

ż

SzZ0

ż

Z0

ϕpξ1γξ2qdξ1dξ̄2 “

ż

SzH

ż

H

fphxmγ0γlqdhdl̄.

By (1.37) and the choice of W , one has

|DGpy0γ
´2
q|F “ |DZ̃0pγ´2

q|F|detp1´ Adpy0qqg{̃z|F, γ P W.

Then, we deduce that for γ P W satisfying xmγ0γ P G
σ´reg, one has

Mpfqpxmγ0γq “ |detp1´ Adpy0qqg{̃z|
1{4
F |DZ̃0pγ´2

q|
1{4
F

ż

SzZ0

ż

Z0

ϕpξ1γξ2qdξ1dξ̄2.

Since |DZ̃0pγ´2q|F coincides with the function |∆σ|F for the group Z̃0 evaluated at
γ (cf. (1.29)), one deduces the estimate (1.36) for f applying the first case to ϕ
defined on Z̃0.
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2 Geometric side of the local relative trace for-

mula

2.1 Truncation

In this section, we will recall some results of ([Ar3], §3), needed in the sequel. We
keep notation of §1.1 for the group H. Since H is split, one has M0 “ A0. We fix
a Levi subgroup M P LpA0q of H. Let P P PpMq. We recall that AM denotes the
maximal split connected component of M .

We denote by ΣP the set of roots of AM in the Lie algebra of P , Σr
P the subset

of reduced roots and ∆P the subset of simple roots.
For β P ∆P , the ”co-root” β̌ P aM is defined as usual as follows: if P P PpA0q

is a minimal parabolic subgroup, then β̌ “ 2pβ, βq´1β, where a˚0 identifies with a0

by the scalar product on a0. In the general case, we choose P0 P PpA0q contained
in P . Then, there exists a unique α P ∆P0 such that β “ α|aM . The ”co-root” β̌ is
the projection of α̌ onto aM with respect to the decomposition a0 “ aM ‘ a

M
0 . This

projection does not depend of the choice of P0.

We denote by a`P the positive Weyl chamber of elements X P aM satisfying
αpXq ą 0 for all α P ΣP .

Let M P LpA0q. A set of points in aM indexed by P P PpMq

Y “ YM :“ tYP P aM ;P P PpMqu

is called a pH,Mq-orthogonal set if for all adjacent parabolic subgroups P, P 1 in
PpMq whose chambers in aM share the wall determined by the simple root α P
∆P Xp´∆P 1q, one has YP ´Y

1
P “ rP,P 1α̌ for a real number rP,P 1 . The orthogonal set

is called positive if each of the numbers rP,P 1 are nonnegative. This is the case for
example if the number

dpYq “ inf
tαP∆P ;PPPpMqu

αpYP q (2.1)

is nonnegative.
One example is the set

t´hP pxq;P P PpMqu,
defined for any point x P H. This is a positive pH,Mq-orthogonal set by ([Ar1]
Lemma 3.6).

If L belongs to LpMq and Q is a group in PpLq, we define YQ to be
the projection onto aL of any point YP , with P P PpMq and P Ă Q.
Then YQ is independent of P and YL :“ tYQ;Q P PpLqu is a pH,Lq-
orthogonal set.

(2.2)

We shall write SMpYq for the convex hull in aM{aH of a pH,Mq-orthogonal set Y .
Notice that SMpYq does only depend on the projection onto aHM of each YP P Y ,
P P PpMq.
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Let P P PpMq. If each YP is in the positive Weyl chamber a`P (this condition is
equivalent to say that dpYq is positive), we have a simple description of SMpYqXa`P
([Ar3] Lemma 3.1). We denote by pωPγ qγP∆P

the set of weights, that is the dual basis
in paHMq

˚ of the set of co-roots tγ̌; γ P ∆P u. Then, we have

SMpYq “ tX P a`P ;ωPγ pX ´ YP q ď 0, γ P ∆P u. (2.3)

We now recall a decomposition of the characteristic function of SMpYq valid when
Y is positive. (cf. [Ar3] (3.8)). Suppose that Λ is a point in a˚M,C whose real part
ΛR P a

˚
M is in general position. If P P PpMq, we define ∆Λ

P the set of simple roots
α P ∆P such that ΛRpα̌q ă 0. Let ϕΛ

P be the characteristic function of the set of
X P aM such that ωPα pXq ą 0 for each α P ∆Λ

P and ωPα pXq ď 0 for each α in the
complement of ∆Λ

P in ∆P . We define

σMpX,Yq :“
ÿ

PPPpMq

p´1q|∆
Λ
P |ϕΛ

P pX ´ YP q. (2.4)

By ([Ar3], §3 p22), the function σMp¨,Yq vanishes on the complement
of SMpYq and is bounded. Moreover, if Y is positive then σMp¨,Yq is
exactly the characteristic function of SMpYq.

(2.5)

The following Lemma will allow us to define the minimum of two orthogonal
sets.

For P P PpMq, we denote by pω̃Pγ qγP∆P
the set of coweights, that is the dual

basis in aHM of the roots tγ; γ PP ∆P u.

2.1 Lemma. Let P and P 1 two adjacent parabolic subgroups in PpMq whose cham-
bers in aM share the wall determined by the simple root α P ∆P X p´∆P 1q. Then:

1. For all β in ∆P ´ tαu, there exists a unique β1 in ∆P 1 ´ tαu such that β1 “
β ` kβα where kβ is a nonnegative integer. Moreover, the map β ÞÑ β1 is a
bijection between ∆P ´ tαu and ∆P 1 ´ t´αu.

2. For all β in ∆P ´ tαu, one has ω̃P
1

β1 “ ω̃Pβ .

Proof :

We denote by N the set of nonnegative integers and by N˚ the subset of positive
integers.
1. As P and P 1 are adjacent, we have ΣP 1 “

`

ΣP ´tαu
˘

Yt´αu. Let β P ∆P ´tαu.
If β P ∆P 1 then we set β1 :“ β.
Assume that β is not in ∆P 1 . Since β P ΣP 1 , there exists Θ Ă ∆P 1 ´t´αu such that
β “

ř

δPΘ nδδ ´ kβα where the nδ’s are positive integers and kβ is a nonnegative
integer. Each δ in Θ belongs to ΣP . Therefore, there are nonnegative integers
prδ,ηqηP∆P

such that δ “
ř

ηP∆P
rδ,ηη. We set β1 :“

ř

δPΘ nδδ “ β ` kβα.

Let γ P ∆P ´ tαu. If γ ‰ β, one has β1pω̃
P
γ q “ βpω̃Pγ q “ 0. Thus, for each δ P Θ,

we have rδ,γ “ 0, hence δ “ rδ,ββ ` rδ,αα.
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On the other hand, one has β1pω̃
P
β q “ βpω̃Pβ q “ 1. Thus, for all δ P Θ, one has

ř

δPΘ nδrδ,β “ 1. Since nδ P N˚ and rδ,β P N, one deduces that there exists a unique
δ0 P Θ such that rδ0,β ‰ 0 and we have nδ0 “ rδ0,β “ 1. This implies that Θ “ tδ0u

and β “ δ0 ´ kβα. We can take β1 :“ δ0. Hence, we obtain the existence of β1 in all
cases.

If β11 P ∆P 1 satisfies β11 “ β ` k1
βα then β1 “ β11 ` pkβ ´ k

1
βqα. Since the roots β11,

β1 and ´α belong to the set of simple roots ∆P 1 , we deduce that β11 “ β1. This gives
the unicity of β1.

Let γ and β be in ∆P such that γ1 “ β1. Then we have β “ γ ` pkγ ´ kβqα.
Since γ, β and α belong to ∆P , the same argument as above leads to β “ γ. Hence,
the map β ÞÑ β1 is injective.

2. Let β P ∆P ´tαu. By definition, we have β1 “ β`kβα P ∆P 1´t´αu with kβ P N.
Thus we have αpω̃P

1

β1 q “ αpω̃Pβ q “ 0 and βpω̃P
1

β1 q “ β1pω̃P
1

β1 q “ 1. If γ P ∆P ´ tβ, αu,

then γ1 “ γ ` kγα is different from β1 by (1.), thus we have γpω̃P
1

β1 q “ γ1pω̃P
1

β1 q “ 0.

One deduces that ω̃P
1

β1 “ ω̃Pβ .

For Y 1 and Y 2 in aM , we denote by infP tY 1, Y 2u the unique el-
ement Z in aHM such that, for all γ P ∆P , one has pω̃Pγ , Zq “
inftpω̃Pγ , Y

1q, pω̃Pγ , Y
2qu.

(2.6)

2.2 Lemma. Let Y1 “ tY 1
P , P P PpMqu and Y2 “ tY 2

P , P P PpMqu be two pH,Mq-
orthogonal sets. Let Z :“ infpY1,Y2q be the set of ZP :“ infP tY 1

P , Y
2
P , u when P

runs PpMq.

1. The set Z is a pH,Mq-orthogonal set.

2. If dpYjq ą 0 for j “ 1, 2 then dpZq ą 0. In this case, the convex hull SMpZq
is the intersection of SMpY1q and SMpY2q.

Proof :

1. Let P and P 1 two adjacent parabolic subgroups in PpMq whose chambers in aM
share the wall determined by the simple root α P ∆P X p´∆P 1q. Let γ P ∆P ´ tαu.
By definition of orthogonal sets, for j “ 1 or 2, one has pω̃Pγ , Y

j
P q “ pω̃Pγ , Y

j
P 1q.

By Lemma 2.1, we have ω̃Pγ “ ω̃P
1

γ1 . Hence we obtain pω̃Pγ , ZP q “ pω̃P
1

γ1 , ZP 1q and

pω̃P
1

γ1 , ZP 1q “ pω̃Pγ , ZP 1q. Since the scalar product on a0 identifies aM to a˚M , one
deduces that ZP ´ ZP 1 is proportional to α̌.

2. Let j P t1, 2u and P P PpMq. By definition, we have dpYjq ą 0 if and only if
αpY j

P q ą 0 for all α P ∆P . By ([Ar1] Corollary 2.2), this implies that pω̃Pα , Y
j
P q ą 0

for all α P ∆P . Let α P ∆P . Writing

Y j
P “ pω̃

P
α , Y

j
P qα `

ÿ

βP∆P´tαu

pω̃Pβ , Y
j
P qβ `X

j,
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with Xj P aH , the condition αpY j
P q ą 0 is equivalent to

ÿ

βP∆P´tαu

pω̃Pγ , Y
j
P qr´pβ, αqs ă pω̃

P
α , Y

j
P qpα, αq.

Since the real numbers pω̃Pβ , Y
j
P q for β P ∆P and ´pβ, αq for α ‰ β in ∆P are

nonnegative, one deduces that

ÿ

βP∆P´tαu

pω̃Pβ , ZP qr´pβ, αqs “
ÿ

βP∆P´tαu

inf
`

pω̃Pβ , Y
1
P q, pω̃

P
β , Y

2
P q
˘

r´pβ, αqs

ď inf
`

ÿ

βP∆P´tαu

pω̃Pβ , Y
1
P qr´pβ, αqs,

ÿ

βP∆P´tαu

pω̃Pβ , Y
2
P qr´pβ, αqs

˘

ă inf
`

pω̃Pα , Y
1
P q, pω̃

P
α , Y

2
P q
˘

pα, αq “ pω̃Pα , ZP qpα, αq.

One deduces that αpZP q ą 0 for α P ∆P , thus dpZq ą 0.

For the property of the convex hulls, it is enough to prove that, for all P P PpMq,
one has a`P X SMpY1q X SMpY2q “ a`P X SMpZq. By ([Ar3], Lemma 3.1), one has

a`P X SMpYjq “ tX P a`P ;ωPγ pX ´ Y j
P q ď 0, γ P ∆P u.

Since ω̃Pγ “ cγω
P
γ for γ P ∆P , where cγ is a positive real number, the assertion follows

easily.

2.2 The truncated kernel

We consider the regular representation R of GˆG on L2pGq defined by

`

Rpy1, y2qφ
˘

pxq “ φpy´1
1 xy2q, φ P L2

pGq, y1, y2 P G.

Consider f P C8c pG ˆ Gq of the form fpy1, y2q “ f1py1qf2py2q with fj P C
8
c pGq.

Then

Rpfq :“

ż

G

ż

G

f1py1qf2py2qRpy1, y2qdy1dy2

is an integral operator with smooth kernel

Kf px, yq “

ż

G

f1pxgqf2pgyqdg “

ż

G

f1pgqf2px
´1gyqdg.

In our case (H is split), one has AH “ AG, and the kernel Kf is invariant by
the diagonal diagpAHq of AH . Since H is not compact, we introduce truncation to
integrate this kernel on diagpAHqzpH ˆHq.
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We fix a point T in a0,F. If P0 P PpA0q, let TP0 be the unique translate by the
Weyl group W pH,A0q of T in the closure ā`P0

of the positive Weyl chamber a`P0
.

Then
YT :“ tTP0 ;P0 P PpA0qu

is a pH,A0q-orthogonal set. We shall assume that the number

dpT q :“ inf
αP∆P0

, P0PPpA0q
αpTP0q

is suitable large. This means that the distance from T to any of the root hyperplanes
in a0 is large.

We denote by up¨, T q the characteristic function in AHzH of the set of
points x such that

x “ k1ak2 with a P AHzA0, k1, k2 P K and hA0paq P SA0pYT q,

where H “ KA0K is the Cartan decomposition of H.

(2.7)

We consider up¨, T q as a AH-invariant function on H. Thus, there is a compact set
ΩT of H such that if upx, T q ‰ 0 then x P AHΩT . Let Ω be a compact subset of G
containing the support of f1 and f2. We consider g P G and x1, x2 P H such that
f1pgqf2px

´1
1 gx2qupx1, T qupx2, T q ‰ 0. Thus, there are ω1, ω2 in ΩT and a1, a2 in AH

such that x1 “ ω1a1, x2 “ ω2a2 and we have g P Ω and x´1
1 gx2 “ ω´1

1 gω2a
´1
1 a2 P Ω

since AH “ AG. One deduces that a´1
1 a2 lies a compact subset of AH . Therefore

the map pg, x1, x2q ÞÑ f1pgqf2px
´1
1 gx2qupx1, T qupx2, T q is a compactly supported

function on Gˆ diagpAHqzpH ˆHq.
Hence, we can define

KT
pfq :“

ż

diagpAHqzHˆH

Kf px1, x2qupx1, T qupx2, T qdpx1, x2q.

By Fubini’s Theorem, we have

KT
pfq “

ż

G

ż

diagpAHqzHˆH

f1pgqf2px
´1
1 gx2qupx1, T qupx2, T qdpx1, x2qdg.

We apply the Weyl integration formula (1.33). Thus, we obtain

KT
pfq “

ÿ

MPLpA0q

cM
ÿ

SPTM

ÿ

xmPκS

cS,xm

ż

Sσ

KT
pxm, γ, fqdγ, (2.8)

where, for S P TM , xm P κS and γ P Sσ, we have

KT
pxm, γ, fq “ |∆σpxmγq|

1{2
F

ż

diagpAM qzHˆH

ż

diagpAHqzHˆH

f1py
´1
1 xmγy2q
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ˆf2px
´1
1 y´1

1 xmγy2x2qupx1, T qupx2, T qdpx1, x2qdpy1, y2q.

We recall that each xm in κS and γ in Sσ commute with AM for S P TM .
We first replace px1, x2q by py1x1, y2x2q in the integral over px1, x2q. The resulting
integral over diagpAHqzHˆH can be expressed as a double integral over a P AHzAM
and px1, x2q P diagpAMqzHˆH which depends on py1, y2q P diagpAMqzHˆH. Since
AM commutes with xm P κS and γ P Sσ, we obtain

KT
pxm, γ, fq “ |∆σpxmγq|

1{2
F

ż

diagpAM qzHˆH

ż

diagpAM qzHˆH

f1py
´1
1 xmγy2q

ˆf2px
´1
1 xmγx2quMpx1, y1, x2, y2, T qdpx1, x2qdpy1, y2q

where

uMpx1, y1, x2, y2, T q “

ż

AHzAM

upy´1
1 ax1, T qupy

´1
2 ax2, T qda.

(2.9)

Our goal is to prove that KT pfq is asymptotic to an expression JT pfq where
JT pfq is obtained in a similar way to KT pfq where we replace the weight func-
tion uMpx1, y1, x2, y2, T q by another weight function vMpx1, y1, x2, y2, T q defined as
follows.

We fix M P LpA0q and P P PpMq. Let P0 P PpA0q be contained in P . We denote
by TP the projection of TP0 on aM according to the decomposition a0 “ aM ‘ aM0 .
By (2.2), the set YMpT q :“ tTP ;P P PpMqu is a pH,Mq-orthogonal set independent
of the choices of P0. Moreover, by ([Ar3] (3.2)), we have dpYMpT qq ě dpT q ą 0.
Thus, YMpT q is positive.

For x, y in H, we set

YP px, y, T q :“ TP ` hP pyq ´ hP pxq.

By ([Ar3], page 30), the set YMpx, y, T q :“ tYP px, y, T q;P P PpMqu is a pH,Mq-
orthogonal set, which is positive when dpT q is sufficiently large relative to x and y.

For x1, x2, y1 and y2 in H, we set

ZP px1, y1, x2, y2, T q :“ infP pYP px1, y1, T q, YP px2, y2, T qq (2.10)

where infP is defined in (2.6) and

YMpx1, y1, x2, y2, T q :“ tZP px1, y1, x2, y2, T q;P P PpMqu. (2.11)

By Lemma 2.6, the set YMpx1, y1, x2, y2, T q is a pH,Mq-orthogonal set. Moreover,
when dpT q is large relative to xi, yi, for i “ 1, 2, one has dpYMpx1, y1, x2, y2, T qq ą 0,
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hence this set is positive. We define the weight function vM by

vMpx1, y1, x2, y2, T q :“

ż

AHzAM

σMphMpaq,YMpx1, y1, x2, y2, T qqda (2.12)

where σM is defined in (2.4).
We set

JT pfq :“
ÿ

MPLpA0q

cM
ÿ

SPTM

ÿ

xmPκS

cS,xm

ż

Sσ

JT pxm, γ, fqdγ, (2.13)

where

JT pxm, γ, fq “ |∆σpxmγq|
1{2
F

ż

diagpAM qzHˆH

ż

diagpAM qzHˆH

f1py
´1
1 xmγy2q

ˆf2px
´1
1 xmγx2qvMpx1, y1, x2, y2, T qdpx1, x2qdpy1, y2q.

(2.14)

Our main result is the following. We will prove it in section 2.4.

2.3 Theorem. Let δ ą 0. Then, there are positive numbers C and ε such that for
all T with dpT q ě δ}T }, one has

|KT
pfq ´ JT pfq| ď Ce´ε}T }. (2.15)

2.3 Preliminaries to estimates

We fix a norm } ¨ } on G as in (1.15). Let F1 be a finite extension of F. We set
G1 :“ GˆF F1 and G1 :“ G1pF1q. One can extend the absolute value | ¨ |F to F1, and
the norm } ¨ } to G1. For x, y in G1, we set

}px, yq} :“ }x}}y}.

To obtain our estimates, we will use notation of (1.18) and (1.19). Since the
norm takes values greater or equal to 1, we will freely apply the properties (1.20).

2.4 Lemma. Let S be a maximal torus of H and let M be the centralizer of AS in
H. We fix xm P GXMSσ “ M̃ XMSσ. Then, one has

inf
sPS
}psx´1

m x1, sx2q} ď inf
s1PSpF1q

}ps1x´1
m x1, s

1x2q}, x1, x2 P H. (2.16)

Proof :

Since H1AH is of finite index in H, using (1.21) we may assume that x1, x2 belong
to H1AH . Since AG “ AH , using the invariance of the property by the left action
of diagpAHq on px1, x2q, it is enough to prove the result for x1 P H

1 and x2 “ a2y2

with a2 P AH and y2 P H
1.
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To establish (2.16), we first assume that AS “ AH which implies that the quotient
AHzS is compact. By (1.21), there is a positive constant C such that

inf
sPS
}psx´1

m x1, sx2q} ď C inf
aPAH

}pax´1
m x1, ax2q}.

We deduce from (1.17) that

}pax´1
m x1, ax2q} ď }x

´1
m }}a}

2
}a2}}x1}}y2}.

Taking the lower bound in a P AH , there is a positive constant C1 such that

inf
sPS
}psx´1

m x1, sx2q} ď C1}x1}}a2}}y2}. (2.17)

We now use the following Lemma of [Ar3] (Lemma 4.1):

If S0 is a maximal torus of H with AHzS compact, then there exists an
element s0 P S0 such that

}y} ď }y´1s0y}, y P H1.

(2.18)

We apply this Lemma to S0 “ S. Since SpF1q commutes with s0, using the property
(1.17) of the norm, one deduces

}y2} ď }s1y2}
2
}s0}, y2 P H

1, s1 P SpF1q. (2.19)

On the other hand S1 :“ xmSx
´1
m is a maximal torus of H which satisfies AS1 “ AH

since xm P GXMSσ. Applying (2.18) to S0 “ S1, there exists s1 P S such that

}x1} ď }x´1
1 xms1x

´1
m x1}, x1 P H

1. (2.20)

The same argument as above leads to

}x1} ď }s1x´1
m x1}

2
}s1}, x1 P H

1, s1 P SpF1q. (2.21)

Then, by (2.17), (2.19) and (2.21), and applying the properties (1.20), we deduce
that

inf
sPS
}psx´1

m x1, sa2y2q} ď }s1x´1
m x1}}s

1y2}}a2}, s1 P SpF1q, x1, y2 P H
1, a2 P AH .

(2.22)

To obtain our result, we have to prove that

}s1x´1
m x1}}s

1y2}}a2} ď }ps1x´1
m x1, s

1a2y2q}, s1 P SpF1q, x1, y2 P H
1, a2 P AH . (2.23)

We can write S “ TAH where T is a maximal torus of the derived group Hder of
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H. We set T 1 :“ T pF1q and A1H :“ AHpF
1q. Then T 1 is contained in H 11. Moreover,

the intersection of T and AH is finite. Hence, one has the exact sequence

1 Ñ T X AH Ñ T ˆ AH Ñ S Ñ 1.

Going to F1-points, the long exact sequence in cohomology implies that T 1A1H is of
finite index in SpF1q. By (1.21), it is enough to prove (2.23) for s1 “ t1a1 P SpF1q with
t1 P T 1 and a1 P A1H . By (1.5), if x1 P H

1 then x1 P H
11 Ă G11 and x´1

m x1xm P G
11.

Since H is split, we have A1H “ A1G. Then (1.23) gives

}a1t1x´1
m x1} « }a

1t1x´1
m x1xm} « }a

1
}}t1x´1

m x1xm}, a1 P A1H , t
1
P T 1, x1 P H

1,

and

}a1t1y2} « }a
1
}}t1y2} a1 P A1H , t

1
P T 1, y2 P H

1.

Applying (1.20), we deduce that

}t1a1x´1
m x1}}a

1t1y2}}a2} « }a2}}a
1
}

2
}t1x´1

m x1xm}}t
1y2} « }a2}}a

1
}}t1x´1

m x1xm}}t
1y2},
(2.24)

for t1 P T 1, a1 P A1H , x1, y2 P H
1, a2 P AH .

Let us prove that

}a1}}a1a2} « }a
1
}}a2}, a1 P A1H , a2 P AH . (2.25)

We have }a1a2} ď }a
1}}a2} by (1.17). Then }a1}}a1a2} ď p}a

1}}a2}q
2 since 1 ď }a2}.

As }a1} “ }a1a2a
´1
2 } ď }a

1a2}}a2}, we have }a1}}a2} ď p}a
1a2}}a2}q

2 and (2.25) follows.
Applying (2.25) in (2.24), we deduce that

}t1a1x´1
m x1}}a

1t1y2}}a2} ď }a1}}t1x´1
m x1xm}}a

1a2}}t
1y2},

for t1 P T 1, a1 P A1H , x1, y2 P H
1, a2 P AH .

(2.26)

Since x´1
m H1xm Ă G11 and A1H “ A1G, we obtain from (1.23)

}a1}}t1x´1
m x1xm} « }a

1t1x´1
m x1xm} « }a

1t1x´1
m x1}, a1 P A1H , t

1
P T 1, x1 P H

1,

and
}a1a2}}t

1y2} « }a
1a2t

1y2}, a1 P A1H , t
1
P T 1, a2 P AH , y2 P H

1.

Applying this in (2.26) and using (1.20), we deduce that

}t1a1x´1
m x1}}a

1t1y2}}a2} ď }a1t1x´1
m x1}}a

1t1a2y2}

for a1 P A1H , t1 P T 1, x1, y2 P H
1.

(2.27)
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Then, the property (2.23) follows. This finishes the proof of the Lemma when AHzS
is compact.

We now prove (2.16) for any maximal torus S of H. Let AS be the maximal
split torus of S and M be the centralizer of AS in H. Thus we have AM “ AS
and AMzS is compact. Let P “ MNP P PpMq and let K be a compact subgroup
of H such that H “ PK. Each x P H can be written x “ mP pxqnP pxqkpxq with
mP pxq P M,nP pxq P NP and kpxq P K. Then, there is a positive constant C such
that

inf
sPS
}psx´1

m x1, sx2q} ď C inf
sPS

`

}sx´1
m mP px1q}}smP px2q}

˘

}nP px1q}}nP px2q}, (2.28)

for x1, x2 P H. By assumption on xm, there are hm P M and am P Sσ such that
xm “ hmam P M̃ . Hence, we can applied the first part of the proof to pM,Sq instead
of pH,Sq. Therefore, we obtain

inf
sPS
}psx´1

m x1, sx2q} ď inf
s1PSpF1q

`

}s1x´1
m mP px1q}}s

1mP px2q}
˘

}nP px1q}}nP px2q}, x1, x2 P H.

To compare the right hand-side of this inequality to those of (2.16), we will use the
Iwasawa decomposition (1.12) of H 1. Let K 1 be a compact subgroup of H 1 such
that H 1 “ P pF1qK 1 “ MpF1qNP pF

1qK 1. According to (1.13), each y in H 1 can be
written y “ m1

P pyqn
1
P pyqk

1 with m1
P pyq PMpF

1q, n1P pyq P NP pF
1q and k1 P K 1. Then

for x P H and z P MpF1q, we have zx “ zmP pxqnP pxqk “ m1
P pzxqn

1
P pzxqk

1 with
k P and k1 P K 1. Hence, since K and K 1 are compact subsets, there is a positive
constant C 1 such that

}n1P pzxq
´1m1

P pzxq
´1zmP pxqnP pxq} ď C 1, z PMpF1q, x P H.

Since zmppxq P MpF
1q for z P MpF1q and x P H, we deduce from (1.22) that there

is a positive constant C1 such that for x P H and z PMpF1q, one has

}n1P pzxq
´1m1

P pzxq
´1zmP pxqn

1
P pzxq} ď C1 and }n1P pzxq

´1nP pxq} ď C1.

By (1.17), we obtain

}zmP pxq} ď C1}m
1
P pzxq}}n

1
P pzxq}

2 and }nP pxq} ď C1}n
1
P pzxq}.

Using (1.22) again, it follows that

}zmP pxq} ď }zx}, and }nP pxq| ď }zx}, z PMpF1q, x P H,

hence by (1.20)

}zmP pxq}}nP pxq| ď }zx}, z PMpF1q, x P H. (2.29)

We deduce that

}s1mP px2q}}nP px2q| ď }s1x2}, s1 P SpF1q, x2 P H. (2.30)

30



Since xm “ hmam with hm P M and am P Sσ, one has xms
1x´1
m P M XH 1 “ MpF1q

for s1 P SpF1q. Therefore, we deduce from (2.29) that

}xms
1x´1
m mP px1q}}nP px1q| ď }xms

1x´1
m x1}, s1 P SpF1q, x1 P H. (2.31)

Since }s1x´1
m mP px1q} ď }x´1

m }}xms
1x´1
m mP px1q} and }xms

1x´1
m x1} ď }xm}|s

1x´1
m x1},

we deduce the estimate (2.16) from (2.28), (2.30) and (2.31). This finishes the proof
of the Lemma.

The following Lemma is the analogue of Lemma 4.2 of ([Ar3]).

2.5 Lemma. Let S be a maximal torus of H and let xm P κS. Then, there is a
positive integer k with the property that, for any given compact subset Ω of G, there
exists a positive constant CΩ such that, for all γ P Sσ with xmγ P G

σ´reg, and all
x1, x2 in H satisfying x´1

1 xmγx2 P Ω, one has

inf
sPS
}psx´1

m x1, sx2q} ď CΩ|∆σpxmγq|
´k
F .

Proof :

Let F1 be a finite extension of E such that S̃ splits over F1. Recall that we can write
xm “ hmam with hm P H and am P Sσ. Thus we may and will choose F1 such that
hm P HpF

1q and am P SσpF
1q. For convenience of lecture, if J is an algebraic variety

defined over F, we set J 1 :“ JpF1q.
By the previous Lemma 2.4, it is enough to prove the existence of a positive

integer k satisfying the property that for any compact subset Ω1 of G1σ´reg, there
exists CΩ1 ą 0 such that

inf
s1PS1

`

}s1x´1
m x1}}s

1x2}
˘

ď CΩ1 |∆σpxmγq|
´k
F (2.32)

for all x1, x2 P H
1 and γ P Sσ satisfying xmγ P G

σ´reg and x´1
1 xmγx2 P Ω1.

Let B1 “ S 1N 1 be a Borel subgroup of H 1 containing S 1 and K 1 be a com-
pact subgroup of H 1 such that H 1 “ S 1N 1K 1 “ N 1S 1K 1. We can also write
H 1 “ phmS

1h´1
m qphmN

1h´1
m qphmK

1h´1
m q. By (1.21), one can reduce the proof of the

statement for x1 P phmS
1h´1
m qphmN

1h´1
m q and x2 P S

1N 1.
Let x1 “ hms1n1h

´1
m and x2 “ s1s2n2 with s1, s2 P S

1 and n1, n2 P N
1. Since

xm “ hmam, we have xms1x
´1
m “ hms1h

´1
m , hence for s1 P S 1, we have s1x´1

m x1 “

s1x´1
m xms1x

´1
m hmn1h

´1
m “ s1s1x

´1
m hmn1h

´1
m . We obtain

inf
s1PS1

`

}s1x´1
m x1}}s

1x2}
˘

“ inf
s1PS1

`

}s1x´1
m hmn1h

´1
m }}s

1s2}
˘

.

Notice that x´1
1 xmγx2 “ hmn

´1
1 h´1

m xms
´1
1 x´1

m xmγs1s2n2 “ hmn
´1
1 h´1

m xmγs2n2.
Therefore, we are reduced to prove (2.32) for x1 “ hmn1h

´1
m with n1 P N 1,

x2 “ s2n2 with n2 P N 1, s2 P S 1 and γ P Sσ such that xmγ is σ-regular and
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x´1
1 xmγx2 P Ω1. By the properties of the norm, there is some positive constant C 1

such that

inf
s1PS1

`

}s1x´1
m x1}}s

1x2}
˘

ď C 1}n1}}s2}}n2}, x1 “ hmn1h
´1
m , x2 “ s2n2. (2.33)

We want to estimate }n1}}s2}}n2} when x1 “ hmn1h
´1
m and x2 “ s2n2 satisfy

x´1
1 xmγx2 P Ω1. For this, we use the isomorphism Ψ from G1 to H 1 ˆ H 1 defined

in (1.26). If x P H 1 then Ψpxq “ px, xq and if y P G satisfies y´1 “ σpyq then
Ψpyq “ py, y´1q. We set py1, y2q :“ Ψpx´1

1 xmγx2q. Then, we have

y1 “ hmn
´1
1 amγn2s2 “ hmpn

´1
1 amγn2pamγq

´1
qpamγs2q,

and
y2 “ hmn

´1
1 a´1

m γ´1n2s2 “ hm
`

n´1
1 a´1

m γ´1n2γam
˘

pamγq
´1s2.

Since H 1 “ N 1S 1K 1, the condition x´1
1 xmγx2 P Ω1 implies that there exist two

compact subsets ΩN Ă N 1 and ΩS Ă S 1 depending only on Ω1 such that

n´1
1 amγn2pamγq

´1
P ΩN , and n´1

1 a´1
m γ´1n2γam P ΩN ,

amγs2 P ΩS, and pamγq
´1s2 P ΩS.

We deduce from the second property that s2 and γ must lie in compact subsets of
S 1. We set

ν1pγ, n1, n2q :“ n´1
1 amγn2pamγq

´1 and ν2pγ, n1, n2q :“ n´1
1 pamγq

´1n2amγ.

We consider the map ψ from N 1 ˆ N 1 into itself defined by ψpn1, n2q “ pν1, ν2q.
Recall that ΦpS 1, h1q denotes the set of roots of S 1 in the Lie algebra h1 of H 1 (cf.
1.27). Let n1 be the Lie algebra of N 1. For α P ΦpS 1, h1q, we denote by Xα P n1

the root vector in h1 corresponding to α. Then pamγq acts on Xα by aα :“ pamγq
α.

The differential dpn1,n2qψ of ψ at pn1, n2q P N
1 ˆ N 1 is given by dpn1,n2qψpX1, X2q “

pAdpamγn
´1
2 pamγq

´1qY1,Adppamγq
´1n´1

2 amγqY2q where

Y1 “ ´Adpn1qX1 ` AdpamγqAdpn2qX2

and
Y2 “ ´Adpn1qX1 ` Adpamγq

´1Adpn2qX2.

The map pX1, X2q ÞÑ pY1, Y2q is the composition of the map pX1, X2q ÞÑ

pAdpn1qX1,Adpn2qX2q, whose determinant is equal to 1, with deψ where e is the
neutral point of N 1ˆN 1. We deduce that the jacobian of ψ at pn1, n2q is independent
of pn1, n2q. At the neutral point e P N 1 ˆ N 1, we have deψpXα, 0q “ p´Xα,´Xαq

and deψp0, Xαq “ paαXα, a´αXαq. Hence, the jacobian of ψ is equal to

|
ź

αPΦpS1,h1q

aαp1´a´2αq|F1 “ |detpAdpamγqqh1{s1 |F1 |detp1´Adpamγq
´2
qh1{s1 |F1 “ |DH 1ppamγq

´2
q|F1 .
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Recall that xmγ is assumed to be σ-regular. Thus, by (1.29), one has ∆σpxmγq “
DH 1pa

´2
m γ´2q ‰ 0 . Then, arguing as in ([HC2] proof of Lemma 10 and Lemma 11),

we deduce that the map ψ is an F1-rational isomorphism of N ˆ N to itself whose
inverse pν1, ν2q ÞÑ pn1, n2q :“ pn1pγ, ν1, ν2q, n2pγ, ν1, ν2qq is rational. Moreover, there
is a positive integer k such that the map

py, ν1, ν2q ÞÑ DHpyq
k
pn1py, ν1, ν2q, n2py, ν1, ν2qq

is defined by an F1-rational morphism between the algebraic varieties S ˆ N ˆ N
and N ˆ N . Since ν1, ν2 and γ lie in compact subsets depending only on Ω1, one
deduces that there exists a constant CΩ1 ą 0 such that

}pn1pγ, ν1, ν2q, n2pγ, ν1, ν2qq} ď CΩ1 |DH 1pa
´2
m γ´2

q|
´k
F1 “ CΩ1 |∆σpxmγq|

´k
F .

The Lemma follows from (2.33) and the fact that s2 lies in a compact set.

2.4 Proof of Theorem 2.3

Our goal is to prove that |KT pfq´JT pfq| is bounded by a function which approaches
0 as T approaches infinity. By definition, KT pfq and JT pfq are finite linear combina-
tions of

ş

Sσ
KT pxm, γ, fqdγ and

ş

Sσ
JT pxm, γ, fqdγ respectively, where M P LpA0q,

S is a maximal torus of M satisfying AS “ AM and xm P κS (cf. (2.8) and (2.13)).

We fix M P LpA0q and a maximal torus S of M such that AS “ AM . Let
xm P κS. To obtain our result, it is enough to establish the estimate (2.15) for
ş

Sσ
|KT pxm, γ, fq ´ J

T pxm, γ, T q|dγ. This will be done in the Corollary 2.9 below.

For ε ą 0, we define

Sσpε, T q :“ tγ P Sσ; 0 ă |∆σpxmγq|F ď e´ε}T }u. (2.34)

2.6 Lemma. 1. There exists ε0 ą 0 such that the map γ ÞÑ |∆σpxmγq|
´ε0
F is

locally integrable on Sσ.

2. Let ε ą 0. Let B be a bounded subset of Sσ and p be a nonnegative integer.
Then, there is a positive constant CB,p depending on B and p, such that

ż

Sσpε,T qXB

| log |∆σpxmγq|
´1
F |

pdγ ď CB,pe
´
εε0}T }

2 .

Proof :

1. The proof follows those of the group case, we use the similar statement on Lie
algebras and the exponential map. We denote by s the Lie algebra of S. For X P s,
we set ηpXq “ |detpadX|h{sq|F. By ([HC3] Lemma 44), there exists ε0 ą 0 such that
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X ÞÑ ηpXq´2ε0 is locally integrable on s. To obtain the result, it is sufficient to
prove that

for each γ0 P Sσ, there exists a compact neighborhood U0 of 1 such that

the integral

ż

U0

|∆σpxmγ0γq|
´ε0
F dγ converges. (2.35)

If xmγ0 is σ-regular, there is a compact neighborhood U0 of 1 in Sσ such that
|∆σpxmγ0γq|F “ |∆σpxmγ0q|F ‰ 0 for all γ P U0. Hence (2.35) is clear.

We assume that xmγ0 is not σ-regular. We choose an extension F1 of E such that
S̃ splits over F1 and ppxmq P S̃σpF

1q. We use notation of (1.27). Let Φ0 be the set of
root α in ΦpS 1σ, g

1q such that ppxmγ0q
α “ 1. We set

νpγq “
ź

αPΦpS1σ ,g
1q´Φ0

|1´ ppxmγ0q
αγ´2α

|
2
F1 .

We have ∆σpxmγ0γq “ DG1pppxmγ0qγ
´2q “ detp1´Adppxmγ0qγ

´2q|g{s̃ and each root
of ΦpS 1σ, g

1q has multiplicity 2. Hence, we obtain

|∆σpxmγ0γq|F1 “ νpγq
ź

αPΦ0

|1´ γ´2α
|
2
F1 .

We choose a compact neighborhood W of 1 in Sσ such that νpγq “ νp1q ‰ 0 for

γ P W . Let β “ sup
γPW

ź

αPΦpS1σ ,g
1q´Φ0

|1´ γ´2α
|
2
F1 . Then, for γ P W , we have

β|∆σpxmγ0γq|F1 “ βνp1q
ź

αPΦ0

|1´ γ´2α
|
2
F1 ě νp1q|∆σpγq|F1 .

Consider the exponential map, there exist two open neighborhoods ω and U of 0
and 1 in s and Sσ respectively, such that the map X ÞÑ exppτXq is well-defined on
ω and is an isomorphism and an homeomorphism onto U . For X P ω, we have

|∆σpexppτXq|
1{2
F1

ηpXq
“

ź

αPΦpS1σ ,g
1q

|1´ e2ταpXq|F1

|αpXq|F1
.

We can choose a compact neighborhood ω0 Ă ω of 0 in s such that this product
is a positive constant c and U0 :“ exppτω0q is contained in W . We deduce that

ż

U0

|∆σpxmγ0γq|
´ε0
F dγ ď

´νp1q

β

¯´ε0
ż

U0

|∆σpγq|
´ε0
F dγ “

´νp1q

β

¯´ε0
c

ż

ω0

ηpXq´2ε0dX.

The right hand side of this inequality is finite by our choice of ε0. Hence, we have
proved (2.35).

2. Let ε0 ą 0 as in 1. We set Ip “

ż

Sσpε,T qXB

| log |∆σpxmγq|
´1
F |

pdγ.
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If p is a positive integer, then there is positive constant C 1 such that | log y|p ď
C 1yε0{2 for all y ě 1. Since |∆σpxmγq|

´1
F ě eε}T } ě 1 for all γ P Sσpε, T q, we obtain

Ip ď C 1
ż

Sσpε,T qXB

|∆σpxmγq|
´ε0{2
F dγ ď C 1e´

εε0}T }
2

ż

B

|∆σpxmγq|
´ε0
F dγ.

If p “ 0 then by definition of Sσpε, T q, one has

I0 “

ż

Sσpε,T qXB

|∆σpxmγq|
´ε0
F |∆σpxmγq|

ε0
F dγ ď e´εε0}T }

ż

B

|∆σpxmγq|
´ε0
F dγ.

In the two cases, the result follows from 1.

2.7 Lemma. Let ε0 ą 0 as in Lemma 2.6. Given ε ą 0, we can choose a constant
c ą 0 such that for any T P a0,F, one has

ż

Sσpε,T q

`

|KT
pxm, γ, fq| ` |J

T
pxm, γ, fq|

˘

dγ ď ce´
εε0}T }

4 .

Proof :

We recall that

KT
pxm, γ, fq “ |∆σpxmγq|

1{2

ż

diagpAM qzHˆH

ż

diagpAM qzHˆH

f1py
´1
1 xmγy2q

ˆf2px
´1
1 xmγx2quMpx1, y1, x2, y2, T qdpx1, x2qdpy1, y2q

where

uMpx1, y1, x2, y2, T q “

ż

AHzAM

upy´1
1 ax1, T qupy

´1
2 ax2, T qda.

We first establish an estimate of uM . Let x, y P H and a P AM . According to
(1.11) applied to H, we can write y´1ax “ k1a0k2 with k1, k2 P K and a0 P A0. By
definition of the norm, there is a positive constant C0 such that

log }y´1ax} ď C0p}hA0pa0q} ` 1q.

If upy´1axq ‰ 0, then, by definition of up¨, T q (cf. (2.7)), the projection of
hA0pa0q in aHzaM belongs to the convex hull in aHzaM of the W pH,A0q-translates
of T . Thus, there is a constant C1 ą 0 such that

inf
zPAH

log }y´1zax} ď C1p}T } ` 1q. (2.36)

We assume that }T } ě 1. Taking C2 “ maxp2C1, 1q and using the property
(1.17) of the norm, we obtain
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inf
zPAH

log }za} ď C2p}T } ` log }x} ` log }y}q. (2.37)

We apply this to px1, y1q and px2, y2q such that upy´1
1 ax1, T qupy

´1
2 ax2, T q ‰ 0.

Hence, we deduce that

inf
zPAH

log }za} ď C2p}T } ` log }x1} ` log }y1} ` log }x2} ` log }y2}q.

As }x} ď }xm}}x
´1
m x} and 1 ď }T }, taking the integral over a P AHzAM , we

deduce the following inequality

uMpx1, y1, x2, y2, T q ď p}T }`log }x´1
m x1}`log }x´1

m y1}`log }x2}`log }y2}q,

for all x1, y1, x2 and y2 in H.

(2.38)

The function uMpx1, y1, x2, y2, T q is invariant by the diagonal (left) action of AM
on px1, x2q and py1, y2q respectively. Since xm commutes with AS “ AM (cf.
Lemma 1.1), we can replace log }x´1

m x1} ` log }x2} and log }x´1
m y1} ` log }y2} by

inf
aPAM

log }pax´1
m x1, ax2q} and inf

aPAM
log }pax´1

m y1, ay2q} respectively. By assumption,

the quotient AMzS is compact, then, using (1.21), one has

inf
aPAM

}pax´1
m x, ax1q} « inf

sPS
}psx´1

m x, sx1q}, x, x1 P H.

Therefore, as }T } ě 1, the inequality (2.38) gives

uMpx1, y1, x2, y2, T q ď }T }`log inf
sPS
}psx´1

m x1, sx2q}`log inf
sPS
}psx´1

m y1, sy2q}, x1, y1, x2, y2 P H.

In other words, this means that there are a positive constant C3 and a positive
integer d such that, for all x1, y1, x2 and y2 P H, one has

uMpx1, y1, x2, y2, T q ď C3p}T } ` log inf
sPS
}psx´1

m x1, sx2q} ` log inf
sPS
}psx´1

m y1, sy2q}q
d.

Let Ω be a compact set containing the support of f1 and f2. By Lemma 2.5,
there is a positive integer k (independent of Ω) and a positive constant CΩ such
that, if xmγ P xmSσ is a σ-regular point with f1py

´1
1 xmγy2qf2px

´1
1 xmγx2q ‰ 0 for

some x1, x2, y1 and y2 in H then

uMpx1, y1, x2, y2, T q ď CΩp}T } ` log |∆σpxmγq|
´k
q
d.

This inequality and the expression of KT pxm, γ, fq give

|KT
pxm, γ, fq| ď CΩp}T } ` log |∆σpxmγq|

´k
q
d
|Mpf1qpxmγqMpf2qpxmγq|, (2.39)
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where Mpfjq is the orbital integral of fj defined in (1.34). By Theorem 1.2, these
orbital integrals are bounded by a constant C4 on pxmSσqXG

σ´reg. Hence, we obtain

|KT
pxm, γ, fq| ď CΩC

2
4p}T } ` log |∆σpxmγq|

´k
q
d.

Let B be the set of γ in Sσ such that KT pxm, γ, fq ‰ 0. Then B is bounded by
Theorem 1.2 and (2.39). Using Lemma 2.6, we can find a constant C ą 0 such that

ż

Sσpε,T q

|KT
pxm, γ, fq|dγ ď Ce´

εε0}T }
4 . (2.40)

If }T } ď 1, then (2.36) implies that if upx´1ayq ‰ 0 then

inf
zPAH

log }za} ď 2C1 ` log }x} ` log }y}.

The same arguments to obtain (2.38) imply that there is a positive constant C 11 such
that

uMpx1, y1, x2, y2, T q ď pC 11 ` log }x´1
m x1} ` log }x´1

m y1} ` log }x2} ` log }y2}q, (2.41)

for x1, y1, x2 and y2 in H. Replacing }T } by C 11 in the reasoning after (2.38), we

deduce that

ż

Sσpε,T q

|KT
pxm, γ, fq|dγ is bounded. Hence, one obtains (2.40) for

}T } ď 1.

We will now establish a similar estimate when KT is replaced by JT . For this,
it is enough to prove that the weight function vM have an estimate like (2.38). We
will see that this follows easily from the definition of vM . Indeed, for x1, y1, x2 and
y2 in H, one has by definition

vMpx1, y1, x2, y2, T q :“

ż

AHzAM

σMphMpaq,YMpx1, y1, x2, y2, T qqda

where σMp¨,YMpx1, y1, x2, y2, T qq is a bounded function which vanishes in the com-
plement of the convex hull SMpYMpx1, y1, x2, y2, T qq of the pH,Mq-orthogonal set
YMpx1, y1, x2, y2, T q (cf. (2.5)). Since YMpx1, y1, x2, y2, T q is the set of points
ZP “ infP pTP ` hP py1q ´ hP px1q, TP ` hP py2q ´ hP px2qq for P P PpMq (cf. (2.11)),
if σMpX,YMpx1, y1, x2, y2, T qq ‰ 0 then }X} ď }ZP } for P P PpMq. By definition of
TP , one has }TP } ď }T }.

Let us prove that for P P PpMq, one has

}hP pxq} ď 1` log }x}, x P H. (2.42)

We first compare }m} and }hMpmq} for m PM . Let M “ KMA0KM be the Cartan
decomposition of M where KM is a suitable compact subgroup of M . Then, each
m P M can be written m “ kapmqk1 with k, k1 P KM and apmq P A0. Since KM is
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compact, the property (1.21) gives }m} « }apmq}, m P M and this property does
not depend on our choice of apmq. By (1.25), we have }a} « e}hA0

paq}, a P A0.
Hence, there are a positive constant C and a nonnegative integer d such that
e}hA0

papmqq} ď C}m}d for all m P M . By (1.8) applied to pM,A0q, if a P A0 then
hMpaq is the orthogonal projection of hA0paq onto aM , thus }hMpaq} ď }hA0paq}.
Since hMpmq “ hMpapmqq for m P M , we obtain that there is a positive constant
C 1 such that

}hMpmq} ď }hA0papmqq} ď C 1p1` log }m}q, m PM. (2.43)

By definition (cf. (1.13), (1.14)), we have hP pxq “ hMpmP pxqq for x P H and by
(1.22), we have }mP pxq} ď }x}, x P H. Thus, our claim (2.42) follows from (2.43).

Therefore, there are a positive C1 and a positive integer d such that if
σMphMpaq,YMpx1, y1, x2, y2, T qq ‰ 0, then

}hMpaq} ď }ZP } ď C1p}T } ` log }x1} ` log }y1} ` log }x2} ` log }y2}q
d.

Since }x} ď }xm}}x
´1
m x} for x P H, this gives the following estimates of vM analogous

to (2.38) and (2.41):

If }T } ą 1 then
vMpx1, y1, x2, y2, T q ď }T }`log }x´1

m x1}`log }x´1
m y1}`log }x2}`log }y2},

x1, y1, x2, y2 P H,
(2.44)

and

there is a positive constant C 12 such that for }T } ď 1, one has
vMpx1, y1, x2, y2, T q ď C 12` log }x´1

m x1}` log }x´1
m y1}` log }x2}` log }y2},

x1, y1, x2, y2 P H.
(2.45)

Arguing exactly as above for KT , we deduce that there is a positive constant C 1

such that

ż

Sσpε,T q

|JT pxm, γ, fq|dγ ď C 1e´
εε0}T }

4 .

This finishes the proof of the Lemma.

2.8 Lemma. Fix δ ą 0. Then, there exist positive numbers C, ε1 and ε2 such that,
for all T with dpT q ě δ}T }, and for all x1, y1, x2 and y2 in the set Hε2 :“ tx P
H; }x} ď eε2}T }u, one has

|uMpx1, y1, x2, y2, T q ´ vMpx1, y1, x2, y2, T q| ď Ce´ε1}T }. (2.46)
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Proof :

If }T } remains bounded then, by (2.38), (2.41), (2.44) and (2.45), the functions uM
and vM are bounded and the result (2.46) is trivial. Thus we have to prove the
Lemma for }T } sufficiently large and dpT q ě δ}T }.

By (5.8) of [Ar3], we can choose ε2 such that dpYMpx, y, T qq ą 0 for all x, y P Hε2 .
By the discussion of l.c. bottom of page 38 and top of page 39, there is a constant
C0 ą 0 such that, for T with dpT q ě δ}T } and }T } ą C0, for x, y P Hε2 and
a P AHzAM , one has

upy´1ax, T q “ σMphMpaq,YMpx, y, T qq.

By Lemma 2.2, for X P aM , we have

σMpX,YMpx1, y1, x2, y2, T qq “ σMpX,YMpx1, y1, T qqσMpX,YMpx2, y2, T qq.

Thus, one deduces that

σMphMpaq,YMpx1, y1, x2, y2, T qq “ upy´1
1 ax1, T qupy

´1
2 ax2, T q,

for a P AHzAM . Hence, for dpT q ě δ}T } ě δC0, and xi, yi in Hε2 , we have

uMpx1, y1, x2, y2, T q “ vMpx1, y1, x2, y2, T q.

This finishes the proof of the Lemma.

Theorem 2.3 follows from the corollary below.

2.9 Corollary. Fix δ ą 0.There exist two positive numbers ε and c ą 0 such that,
for all T with dpT q ě δ}T }, one has

ż

γPSσ

|KT
pxm, γ, fq ´ J

T
pxmγ, fq| dγ ď ce´ε}T }. (2.47)

Proof :

By Lemma 2.7, it is enough to prove that we can find positive numbers ε, ε1 and C0

such that
ż

γPSσ´Sσpε,T q

|KT
pxm, γ, fq ´ J

T
pxm, γ, fq|dγ ď C0e

´ε1}T } (2.48)

where Sσpε, T q is defined in (2.34).
Let ε ą 0. Let Ω be a compact subset of G which contains the support of f1 and

f2. We will estimate |uMpx1, y1, x2, y2, T q ´ vMpx1, y1, x2, y2, T q| for x1, x2, y1 and y2

in H satisfying x´1
1 xmγx2 P Ω and y´1

1 xmγy2 P Ω for some γ P Sσ ´ Sσpε, T q with
xmγ P G

σ´reg. For this, we will use the invariance of the functions uM and vM by
the diagonal left action of AM on px1, x2q and py1, y2q respectively.
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By Lemma 2.5, there are a positive integer k and a positive constant CΩ, (de-
pending only on Ω) such that, for all γ P Sσ ´ Sσpε, T q with xmγ P G

σ´reg and for
all xi, yi in H, i “ 1, 2 with x´1

1 xmγx2 and y´1
1 xmγy2 in Ω, we have

inf
sPS
}psx´1

m x1, sx2q} ď CΩ∆σpxmγq
´k
ď CΩe

kε}T } (2.49)

and
inf
sPS
}psx´1

m y1, sy2q} ď CΩ∆σpxmγq
´k
ď CΩe

kε}T }.

Since AMzS is compact, we deduce from (1.21) and (2.49) that there is a constant
C 1Ω ą 0 such that

inf
aPAM

}pax´1
m x1, ax2q} ď C 1Ωe

kε}T }.

Thus, for η ą 0, there is a0 P AM such that

}a0x
´1
m x1}}a0x2} ď CΩe

kε}T }
` η. (2.50)

Since AM “ AS, the point a0 commutes with xm by (1.28) and we have }a0x1} ď

}xm}}x
´1
m a0x1}.

If }T } remains bounded, then }a0xi}, i “ 1, 2 are bounded by a constant inde-
pendent of }T }. By the same arguments, there is a1 P AM such that }a1yi}, i “ 1, 2
are bounded by a constant independent of }T }. Using the invariance of uM
and vM by the left action of diagpAMq on px1, x2q and py1, y2q respectively and
the estimates (2.38), (2.41) , (2.44) and (2.45) for uM and vM , we deduce that
|uMpx1, y1, x2, y2, T q´ vMpx1, y1, x2, y2, T q| is bounded by a constant independent of
T and of xi, yi. Recall that by Theorem 1.2, the constant

C1 :“

ż

Sσ

Mp|f1|qpxmγqMp|f2|qpxmγqdγ

is finite. We deduce that
ş

γPSσ´Sσpε,T q
|KT pxm, γ, fq ´ JT pxm, γ, fq|dγ is bounded,

hence we obtain (2.48).

We assume that }T } is not bounded. Let ε1, ε2 and C as in Lemma 2.8. Taking
}T } to be sufficiently large and ε such that kε is smaller than the constant ε2, we
can assume by (2.50) that

}a0xi} ď eε2}T }, i “ 1, 2.

The same arguments are valid for }yi}, i “ 1, 2. Thus, there is a1 P AM such that

}a1yi} ď eε2}T }, i “ 1, 2.
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Using Lemma 2.8 and the invariance of uM and vM by the left action of the diagonal
of AM on px1, x2q and py1, y2q respectively, we deduce that, for all T with dpT q ě
δ}T }, one has

|uMpx1, y1, x2, y2, T q ´ vMpx1, y1, x2, y2, T q| ď Ce´ε1}T }.

Hence, we obtain
ż

S´Sσpε,T q

|KT
pxm, γ, fq ´ J

T
pxm, γ, T q| ď CC1e

´ε1}T |,

where C1 :“
ş

Sσ
Mp|f1|qpxmγqMp|f2|qpxmγqdγ. This finishes the proof of the

Corollary.

2.5 The function JT pfq

The goal of this section is to prove that JT pfq is of the form

N
ÿ

k“0

pkpT, fqe
ξkpT q, (2.51)

where ξ0 “ 0, ξ1, . . . , ξN are distinct points in ia˚0 and each pkpT, fq is a polynomial
function of T . Moreover, the constant term J̃pfq :“ p0p0, fq is well-defined and is
uniquely determined by KT pfq. Except for one detail, our arguments and calcula-
tions are the same as those of section 6 of [Ar3]. We give the details of proof for
convenience of the reader.

Recall that JT pfq is a finite sum of the distributions

JT pxm, γ, fq “ |∆σpxmγq|
1{2
F

ż

diagpAM qzHˆH

ż

diagpAM qzHˆH

f1py
´1
1 xmγy2q

ˆf2px
´1
1 xmγx2qvMpx1, y1, x2, y2, T qdpx1, x2qdpy1, y2q

where M P LpA0q, S is a maximal torus of M such that AS “ AM , xm P

κS and vMpx1, y1, x2, y2, T q :“
ş

AHzAM
σMphMpaq,YMpx1, y1, x2, y2, T qqda where

YMpx1, y1, x2, y2, T q is defined in (2.11).

We first study the weight function vM as a function of T . We fix M P LpA0q and
x1, y1, x2 and y2 in H.

Let LM :“ paM,F ` aHq{aH and ĂLM :“ pãM,F ` aHq{aH be the projection in
aM{aH of the lattices aM,F and ãM,F respectively. By (1.10), one has

ãM,F{ãH,F “ ãM,F{ãM,F X aH » ĂLM . (2.52)
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For M “ A0, we replace the subscript A0 by 0. We denote by L _ :“ HompL , 2πiZq
the dual lattice of a lattice L .

Let P P PpMq. We introduce the following sublattice of LM . For k P N, we set

µα,k :“ k logpqqα̌, α P ∆P ,

where q is the order of the residual field of F, and

LM,k :“
ÿ

αP∆P

Zµα,k.

Then LM,k is a lattice in aHM » aM{aH independent of P and by ([Ar2] §4), one can
find k P N˚ such that for all M P LpA0q, one has

LM,k Ă
ĂLM .

The set of points
ř

αP∆P
yαµα,k with yα Ps ´ 1, 0s is a fundamental domain of LM,k

which we denote by DM,k.

For X P LM{LM,k and Y P aM{aH , we denote by X̄P pY q the represen-
tative of X in LM such that X̄P pY q ´ Y P DM,k.

(2.53)

For λ P a˚M,C, we set

θP,kpλq “ volpaHM{LM,kq
´1

ź

αP∆P

p1´ e´λpµα,kqq. (2.54)

We fix T P a0,F. By definition of σM (cf. (2.4)), the function vM depends only
on the image of TP in LM . Hence we can assume that T lies in the lattice L0. For
P P PpMq, the map T ÞÑ TP sends surjectively L0 onto the intersection of LM with

the closure a`P of the chamber associated to P . Thus, we may restrict T to lie in
the intersection of L0 with suitable regular points in some positive chamber a`0 of
aHza0. Then the points TP range over a suitable regular points in LM X a

`
P .

We recall that YMpx1, y1, x2, y2, T q is the set of points ZP :“ ZP px1, y1, x2, y2, T q
defined in (2.10). Thus, we can write

ZP “ TP ` Z
0
P with Z0

P :“ infP phP py1q ´ hP px1q, hP py2q ´ hP px2qq. (2.55)

Notice that the points Z0
P do not necessarily belong to the lattice LM . It is the

only difference with [Ar3] section 6 in what follows.

2.10 Lemma. There is a positive integer N independent of M and polynomial
functions qξpT q for ξ P p 1

N
L _

0

˘

{L _
0 (depending on x1, y1, x2 and y2), such that
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vMpx1, y1, x2, y2, T q “
ÿ

ξPp 1
N

L_
0 q{L

_
0

qξpT qe
ξpT q.

Moreover, the constant term ṽMpx1, y1, x2, y2q :“ q0p0q of vMpx1, y1, x2, y2, T q is
given by

ṽMpx1, y1, x2, y2q “ lim
ΛÑ0

`

ÿ

PPPpMq

|LM{LM,k|
´1

ÿ

XPLM {LM,k

exΛ,X̄P pZ
0
P qyθP,kpΛq

´1
˘

.

Proof :

The kernel of the surjective map hM : AHzAM Ñ ãM,F{ãH,F is a compact group
which has volume 1 by our convention of choice of measure. Thus, using (2.52), we
can write

vMpx1, y1, x2, y2, T q :“
ÿ

XPĂLM

σMpX,YMpx1, y1, x2, y2, T qq.

For our study, it is convenient to take a sum over LM . The finite quotient ĂL _
M{L

_
M

can be identified with the character group of LM{
ĂLM under the pairing

pν,Xq P ĂL _
M{L

_
M ˆLM{

ĂLM ÞÑ eνpXq.

Hence, by inversion formula on finite abelian groups, we obtain

vMpx1, y1, x2, y2, T q “ |LM{
ĂLM |

´1
ÿ

νPĂL_
M {L

_
M

ÿ

XPLM

σMpX,YMpx1, y1, x2, y2, T qqe
νpXq.

Coming back to the definition of σM (cf. (2.4)), we fix a small point Λ P paM{aHq
˚
C

whose real part ΛR is in general position. One has

σMpX,YMpx1, y1, x2, y2, T qq “
ÿ

PPPpMq

p´1q|∆
Λ
P |ϕΛ

P pX ´ ZP q

“ lim
ΛÑ0

ÿ

PPPpMq

p´1q|∆
Λ
P |ϕΛ

P pX ´ ZP qe
ΛpXq.

By definition of ϕΛ
P , the function X ÞÑ eΛpXq is rapidly decreasing on the support

of X ÞÑ ϕΛ
P pX ´ ZP q. Hence, the product of these two functions is summable over

X P LM . Therefore, we can write

vMpx1, y1, x2, y2, T q “
ÿ

νPĂL_
M {L

_
M

lim
ΛÑ0

ÿ

PPPpMq

F T
P pΛq (2.56)

where
F T
P pΛq :“ |LM{

ĂLM |
´1

ÿ

XPLM

p´1q|∆
Λ
P |ϕΛ

P pX ´ ZP qe
pΛ`νqpXq.
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The above discussion implies that

the map Λ ÞÑ
ř

PPPpMq F
T
P pΛq is analytic at Λ “ 0. (2.57)

We fix P P PpMq. We want to express F T
P pΛq in terms of a product of geometric

series. For this, we write

F T
P pΛq :“ |LM{

ĂLM |
´1

ÿ

XPLM {LM,k

ÿ

X 1PLM,k

p´1q|∆
Λ
P |ϕΛ

P pX `X 1
´ ZP qe

pΛ`νqpX`X 1q.

(2.58)

Let X P LM{LM,k. Recall that X̄P pY q is the representative of X in LM such that
X̄P pY q ´ Y P DM,k. We set

X̄Λ
P pY q :“ X̄P pY q `

ÿ

αP∆Λ
P

µα,k.

Thus X̄Λ
P pY q is also a representative of X in LM . Taking Y :“ ZP , we can set

ϕΛ
P pX `X 1

´ ZP q “ ϕΛ
P pX̄

Λ
P pZP q `X

1
´ ZP q

in (2.58). The set of points X 1 P LM,k such that this characteristic function equals
to 1 is exactly the set

t
ÿ

αP∆Λ
P

nαµα,k ´
ÿ

αP∆P´∆Λ
P

nαµα,k;nα P Nu.

Therefore, a simple calculation as in [Ar3] top of page 45 gives

p´1q|∆
Λ
P |

ÿ

X 1PLM,k

ϕΛ
P pX `X 1

´ ZP qe
pΛ`νqpX`X 1q

“ epΛ`νqpX̄P pZP qqp
ź

αP∆P

p1´ e´pΛ`νqpµα,kqq´1.
(2.59)

We have fixed the Haar measure on aHM » aM{aG with the property that the quotient

of aM{aH by the lattice ĂLM has volume 1. Thus, we have

|LM{
ĂLM |

´1
ź

αP∆P

p1´ e´pΛ`νqpµα,kqq´1
“ |LM{

ĂLM,k|
´1θP,kpΛ` νq

´1.

By the above equality, (2.58) and (2.59), we obtain

F T
P pΛq “ |LM{LM,k|

´1
ÿ

XPLM {LM,k

eăΛ`ν,X̄P pZP qąθP,kpΛ` νq
´1. (2.60)
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Let X P LM{LM,k. We recall that TP belongs to LM for P P PpMq and
ZP “ TP`Z

0
P (cf. (2.55)). By definition (cf. (2.53)), the point X̄P pZP q is the unique

representative of X in LM such that X̄P pZP q´TP ´Z
0
P P DM,k and pX ´ TP qP pZ

0
P q

is the unique representative of X´TP in LM such that pX ´ TP qP pZ
0
P q´Z

0
P P DM,k.

Hence, we deduce that

X̄P pZP q “ pX ´ TP qP pZ
0
P q ` TP . (2.61)

Replacing X by X ´ TP in (2.60), we obtain

FP pΛq
T
“ |LM{LM,k|

´1
ÿ

XPLM {LM,k

eăΛ`ν,TP`X̄P pZ
0
P qąθP,kpΛ` νq

´1 (2.62)

where X̄P pZ
0
P q is independent of T . Thus by (2.56), we have established that

vMpx1, y1, x2, y2, T q is equal to

ÿ

νPĂL_
M {L

_
M

lim
ΛÑ0

`

ÿ

PPPpMq

|LM{LM,k|
´1

ÿ

XPLM {LM,k

eăΛ`ν,TP`X̄P pZ
0
P qąθP,kpΛ` νq

´1
˘

.

(2.63)

Recall that the expression in the brackets is analytic at Λ “ 0 (cf. (2.57)). To
analyze this expression as function of T , we argue as in ([W1] p.315). We give the
details for convenience of lecture. We replace Λ by zΛ. The map z ÞÑ θP,kpzΛ`νq´1

may have a pole at z “ 0. Let r denotes the biggest order of this pole when P runs
PpMq. Then, using Taylor expansions, one deduces that

lim
ΛÑ0

`

ÿ

PPPpMq

|LM{LM,k|
´1

ÿ

XPLM {LM,k

eăΛ`ν,TP`X̄P pZ
0
P qąθP,kpΛ` νq

´1
˘

“

r
ÿ

m“0

ÿ

PPPpMq

Cm
ÿ

XPLM {LM,k

Bm

Bzm
peăzΛ`ν,TP`X̄P pZ

0
P qąqrz“0s

Br´m

Bzr´m
pzrθP,kpzΛ` νq´1

qrz“0s,

where Cm “
1

m!pr´mq!
|LM{LM,k|

´1.
But we have

Bm

Bzm
peăzΛ`ν,TP`X̄P pZ

0
P qąqrz“0s “ pă Λ, TP ` X̄P pZ

0
P q ąq

meăν,TP`X̄P pZ
0
P qą,

and
Br´m

Bzr´m
pzrθP,kpzΛ` νq´1qrz“0s is independent of TP .

Therefore, we deduce that vMpx1, y1, x2, y2, T q is a finite sum of functions

qP,νpTP qe
νpTP q, ν P ĂL _

M{L
_
M , P P PpMq,

where qP,ν is a polynomial function on aM .

45



Since L _
0 Ă ĂL0

_

are lattices of same rank, one can find a positive integer N

such that NĂL0

_

Ă L _
0 . Therefore, by our choice of T and the above expression,

we can write
vMpx1, y1, x2, y2, T q “

ÿ

ξPp 1
N

L_
0 q{L

_
0

qξpT qe
ξpT q,

where qξpT q is a polynomial function of T . This gives the first part of the Lemma.
Since the polynomials qξpT q are obviously uniquely determined, the constant

term ṽMpx1, y1, x2, y2q :“ q0p0q is well defined. To calculate it, we take the summand
corresponding to ν “ 0 in (2.63) and then set T “ 0. We obtain

ṽMpx1, y1, x2, y2q “ lim
ΛÑ0

`

ÿ

PPPpMq

|LM{LM,k|
´1

ÿ

XPLM {LM,k

exΛ,X̄P pZ
0
P qyθP,kpΛq

´1
˘

.

This finishes the proof of the Lemma.

We substitute the expression we have obtained for vM in Lemma 2.10 into the
expression for JT pxm, γ, fq. Hence, we obtain the following similar decomposition
for JT pfq.

2.11 Corollary. There is a decomposition

JT pfq “
ÿ

ξPp 1
N

L_
0 q{L

_
0

pξpT, fqe
ξpT q, T P L0 X a

`
0 ,

where N is positive integer and each pξpT, fq is a polynomial function of T . More-
over, the constant term J̃pfq :“ p0p0, fq of JT pfq is given by

J̃pfq :“
ÿ

MPLpA0q

cM
ÿ

SPTM

ÿ

xmPκS

cS,xm

ż

Sσ

J̃pxm, γ, fqdγ,

where

J̃pxm, γ, fq “ |∆σpxmγq|
1{2

ż

diagpAM qzHˆH

ż

diagpAM qzHˆH

f1py
´1
1 xmγy2q

ˆf2px
´1
1 xmγx2qṽMpx1, y1, x2, y2qdpx1, x2qdpy1, y2q.

A Appendix. Spherical character of a supercusp-

idal representation as weighted orbital integral

Let pπ, V q be a unitary irreducible admissible representation of G. We say that π
is H-distinguished if the space V ˚H “ HomHpπ,Cq of H-invariant linear forms on
V is nonzero. In that case, a distribution mξ,ξ1 , called spherical character, can be
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associated to two H-invariant linear forms ξ, ξ1 on V (cf. definition below). By ([Ha]
Theorem 1), spherical characters are locally integrable functions on G, which are
smooth on the set of σ-regular points of G.

From now, we assume that AH “ t1u. We fix a H-distinguished supercuspidal
representation pτ, V q of G. We denote by dpτq its formal degree.

The aim of this appendix is to deduce from our main results, the value mξ,ξ1pgq,
when g P G is σ-regular and ξ, ξ1 P V ˚H , in terms of weighted orbital integrals of
a matrix coefficient of τ (cf. Theorem A.2 ). This result is analogous to that of J.
Arthur in the group case ([Ar2]). Notice that this result of J. Arthur can be deduced
from his local trace formula ([Ar3]) which was obtained later.

Let p¨, ¨q be a G-invariant hermitian inner product on V . Since τ is unitary, it
induces an isomorphism ι : v ÞÑ p¨, vq from the conjugate complex vector space V of
V and the smooth dual V̌ of V , which intertwines the complex conjugate of τ and
its contragredient τ̌ . If ξ is a linear form on V , we define the linear form ξ on V by
ξ̄puq :“ ξpuq.
For ξ1 and ξ2 two nonzero H-invariant linear forms on V , we associate the spherical
character mξ1,ξ2 defined to be the distribution on G given by

mξ1,ξ2pfq :“
ÿ

uPB
ξ1

`

τpfqu
˘

ξ2puq,

where B is an orthonormal basis of V . Since τpfq is of finite rank, this sum is
finite. Moreover, this sum does not depend on the choice of B. Indeed, let pτ˚, V ˚q
be the dual representation of τ . For f P C8c pGq, we set f̌pgq :“ fpg´1q. By ([R]
Théorème III.3.4 and I.1.2), the linear form τ˚pf̌qξ belongs to V̌ . Hence we can
write ι´1pτ˚pf̌qξq “

ř

vPB
`

τ˚pf̌qξ
˘

pvq ¨ v where pλ, vq ÞÑ λ ¨ v is the action of C on

V . Therefore we deduce easily that one has

mξ1,ξ2pfq “ ξ2

`

ι´1
pτ˚pf̌qξ1qq. (1.1)

Since τ is a supercuspidal representation, we can define the HˆH-invariant pairing
L on V ˆ V by

Lpu, vq :“

ż

H

pτphqu, vqdh.

By ([Z] Theorem 1.5),

the map v ÞÑ ξv : u ÞÑ Lpu, vq is a surjective linear map from V onto
V ˚H .

(1.2)

For v, w P V , we denote by cv,w the corresponding matrix coefficient defined by
cv,wpgq :“ pτpgqv, wq for g P G.
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A.1 Lemma. Let ξ1, ξ2 P V
˚H and v, w P V . Then we have

mξ1,ξ2pčv,wq “ dpτq´1ξ1pvqξ2pwq.

Proof :

By (1.2), there exist v1 and v2 in V such that ξj “ ξvj for j “ 1, 2. By definition of
the spherical character, for f P C8c pGq and B an orthonormal basis of V , one has

mξ1,ξ2pfq “
ÿ

uPB

ż

H

pτphqτpfqu, v1qdh

ż

H

pτphqu, v2qdh

“
ÿ

uPB

ż

HˆH

pu, τpf̌qτph1qv1qpτph2qv2, uqdh1dh2

“

ż

HˆH

pτph2qv2, τpf̌qτph1qv1qdh1dh2

Hence we obtain

mξ1,ξ2pfq “

ż

HˆH

ż

G

fpgqpτph1gh2qv2, v1qdgdh1dh2. (1.3)

Let fpgq :“ čv,wpgq “ pτpgqw, vq. By the orthogonality relation of Schur, for h1, h2 P

H, one has

ż

G

pτpgqτph2qv2, τph1qv1qpτpgqw, vqdg “ dpτq´1
pτph2qv2, wqpv, τph1qv1q.

Thus, we deduce that

mξ1,ξ2pfq “ dpτq´1ξwpv2qξv1pvq “ dpτq´1ξ1pvqξ2pwq.

For M P LpA0q, we define the weight function wM on H ˆH by

wMpy1, y2q :“ ṽMp1, y1, 1, y2q,

where ṽM is defined in Lemma 2.10 and 1 is the neutral element ofH. For f P C8c pGq,
we define the weighted orbital integral of f by

WMpfqpgq :“ |∆σpgq|
1{2

ż

HˆH

fpy1gy2qwMpy1, y2qdy1dy2, g P Gσ´reg
X M̃.

A.2 Theorem. Let M P LpA0q and S P TM . Let xM P κS and γ P Sσ be such that
xmγ is σ-regular. Then, for v, w P V , we have

cMcS,xmWMpcv,wqpxmγq “ mξw,ξvpxmγq.
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Proof :

Let f1 be a matrix coefficient of τ and f2 P C
8
c pGq. We set f :“ f1b f2. For x P G,

we define

hpgq :“

ż

G

f1pxuqf2pugxqdu,

so that
Kf px, yq “

“

ρpyx´1
qh
‰

peq.

If π is a unitary irreducible admissible representation of G, one has

π
`

ρpyx´1
qh
˘

“

ż

GˆG

f1pxuqf2pugyqπpgqdudg

“

ż

GˆG

f1pxuqf2pu2qπpu
´1u2y

´1
qdudu2 “

ż

GˆG

f1pu
´1
1 qf2pu2qπpu1xu2y

´1
qdu1du2

“ πpf̌1qπpxqπpf2qπpy
´1
q.

Since τ is supercuspidal and f1 is a matrix coefficient of τ , we deduce that
π
`

ρpyx´1qh
˘

is equal to 0 if π is not equivalent to τ . Therefore, applying the
Plancherel formula ([W2] Théorème VIII.1.1.) to

“

ρpyx´1qhsˇ, we obtain

Kf px, yq “ dpτqtr
`

τpf̌1qτpxqτpf2qτpy
´1
q
˘

.

We identify V̌ b V with a subspace of Hilbert-Schmidt operators on V . Taking
an orthonormal basis BHSpV q of V̌ b V for the scalar product pS, S1q :“ trpSS 1˚q,
one obtains

Kf px, yq “ dpτqtr
´

τpf̌1qτpxqτpf2qτpyq
˚
¯

“ dpτqpτpf̌1qτpxqτpf2q, τpyqq

“ dpτq
ÿ

SPBHSpV q

pτpf̌1qτpxqτpf2q, S
˚
qpτpyq, S˚q

“ dpτq
ÿ

SPBHSpV q

tr
`

τpxqτpf2qSτpf̌1q
˘

tr
`

τpyqSq,

where the sums over S are finite since τpf2q and τpf̌1q are of finite rank. Therefore,
the truncated kernel is equal to

KT
pfq “ dpτq

ÿ

SPBHSpV q

P T
τ pτ̌ b τpfqSqP

T
τ pSq

where

P T
τ pSq “

ż

H

tr
`

τphqS
˘

uph, T qdh, S P V̌ b V.
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For v̌bv P V̌bV , one has tr
`

τphqpv̌bvq
˘

“ cv̌,vphq. Since cv̌,v is compactly supported,
the truncated local period P T

τ pSq converges when }T } approaches infinity to

Pτ pSq “

ż

H

tr
`

τphqS
˘

dh.

Therefore, we obtain

lim
}T }Ñ`8

KT
pfq “ dpτqmPτ ,Pτ pfq, (1.4)

where mPτ ,Pτ is the spherical character of the representation τ̌ b τ associated to the
H ˆH-invariant linear form Pτ on V̌ b V .

Recall that J̃pfq is the constant term of JT pfq. We deduce from Theorem 2.15
that

dpτqmPτ ,Pτ pfq “ J̃pfq. (1.5)

We now express mPτ ,Pτ in terms of H-invariant linear forms on V . Let VH be the

orthogonal of V ˚H in V . Since ξupvq “ ξvpuq for u, v P V , the space V H is the kernel
of v ÞÑ ξv. Let W be a complementary subspace of VH in V . Then, the map v ÞÑ ξv
is an isomorphism from W to V ˚H and pu, vq ÞÑ ξvpuq is a nondegenerate hermitian
form on W . Let pe1, . . . , enq be an orthogonal basis of W for this hermitian form.
We set ξi :“ ξei for i “ 1, . . . , n. Thus we have ξipeiq ‰ 0.
We identify V and V̌ by the isomorphism ι. We claim that

Pτ “
n
ÿ

i“1

1

ξipeiq
ξi b ξi (1.6)

Indeed, we have Pτ pv b uq “ ξvpuq “ ξupvq. Hence, the two sides are equal to 0
on V b VH ` V H b V ` V H b VH and take the same value ξkpelq on ek b el for
k, l P t1, . . . nu. Hence, by definition of spherical characters, we deduce that

mPτ ,Pτ pf1 b f2q “
ÿ

ubvP o.b.pV̄bV q

Pτ

´

τ̄pf1q b τpf2qpub vq
¯

Pτ pub vq

“
ÿ

ubvP o.b.pV̄bV q

n
ÿ

i,j“1

1

ξipeiqξjpejq
ξipτ̄pf1quqξipτpf2qvqξjpuqξjpvq,

where o.b.pV̄ b V q is an orthonormal basis of V̄ b V . By definition of ξ̄ for ξ P V ˚H ,

one has ξ̄pτ̄pf1quq “ ξpτpf̄1qq. Therefore, we obtain

mPτ ,Pτ pf1 b f2q “

n
ÿ

i,j“1

1

ξipeiqξjpejq
mξi,ξjpf̄1qmξi,ξjpf2q. (1.7)
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Let v and w in V . Let f1 :“ cv,w so that f̄1 “ čv,w. . If v P VH or w P VH , it follows
from Lemma A.1 that mξi,ξjpf̄1q “ 0 for i, j P t1, . . . , nu, hence mPτ ,Pτ pf1 b f2q “ 0.
Thus, we deduce from (1.5) that

J̃pcv,w b f2q “ 0, v P VH or w P VH . (1.8)

Let k, l P t1, . . . , nu. We set f1 :“ cek,el , hence f̄1 “ čel,ek . By Lemma A.1, one has
mξi,ξjpf̄1q “ dpτq´1ξipelqξjpekq. Therefore, by (1.5) and (1.7) we obtain

J̃pcek,el b f2q “ mξl,ξkpf2q. (1.9)

By sesquilinearity, ones deduces from (1.8) and (1.9) that one has

J̃pcv,w b f2q “ mξw,ξvpf2q v, w P V. (1.10)

Let pJnqn be a sequence of compact open sugroups whose intersection is equal to
the neutral element of G. The characteristic function gn of JnxmγJn approaches the
Dirac measure at xmγ as n approaches `8. Thus, if v, w P V then mξw,ξvpgnq con-
verges to mξw,ξvpxmγq. By Corollary 2.11, the constant term J̃pcv,w b gnq converges
to cMcS,xmWMpcv,wqpxmγq. We deduce the Theorem from (1.10).

References

[Ar1] J. Arthur, The characters of discrete series as orbital integrals, Invent. Math.,
32 (1976), 205-261.

[Ar2] J. Arthur, The characters of supercuspidal representations as weighted orbital
integrals, Proc. Indian Acad. Sci. Math. Sci., 97 (1987), 3-19.

[Ar3] J. Arthur, A Local Trace formula, Publ. Math. Inst. Hautes Études Sci. , 73
(1991), 5 - 96.

[Bo] A. Borel, Linear Algebraic Groups, 2d edition, Grad. Texts in Math., Springer,
vol. 126 (1991).

[F] B. Feigon, A Relative Trace Formula for PGLp2q in the Local Setting, Pacific
J. Math. (Rogawski Memorial Volume), 260 (2012), no. 2, 395–432.

[Ha] J. Hakim, Admissible distributions on p-adic symmetric spaces, J. Reine
Angew. Math. 455 (1994), 119.

[HC1] Harish-Chandra, A formula for semisimple Lie groups, Amer. J. Math. 79
(1957), 733-760.

[HC2] Harish-Chandra, Two Theorems on semisimple Lie groups, Ann. of Math.,
83 (1966), 74-128.

51



[HC3] Harish-Chandra (notes by G. van Dijk), Harmonic Analysis on reductive p-
adic groups, Lecture Notes in Math., vol. 162, Springer (1970).

[HC4] Harish-Chandra (notes by S. DeBacker and P. J. Sally, Jr.), Admissible In-
variant Distributions on Reductive p-adic Groups, University Lecture Series,
vol. 162, Amer. Math. Soc., Vol. 16 (1999).

[J] H. Jacquet, Automorphic spectrum of symmetric spaces, in Representation The-
ory and Automorphic Forms, (Eds T. N. Bailey and A. W. Knapp) Proc. Sym-
pos. Pure Math., 61 (1997).

[JLR] H. Jacquet, E. Lapid, and J. Rogawski, Periods of automorphic forms,
J. Amer. Math. Soc. 12 (1999), no. 1, 173240.

[KT] S. Kato and K. Takano, Subrepresentation theorem for p-adic symmetric
spaces. Int. Math. Res. Not. 11 (2008), Art. ID rnn 028, 40pp.

[Ko ] R. E. Kottwitz, Harmonic Analysis on Reductive p-adic Groups and Lie Al-
gebras, Harmonic Analysis, the Trace Formula and Shimura Varieties, Amer.
Math. Society, Cambridge: Clay Mathematics Institute, 2005.

[O] O. Offen, Unitary Periods and Jacquet’s relative trace formula, Automorphic
forms and L-functions, Proceedings of a workshop in honor of Steve Gelbart on
the occasion of his 60th birthday, Contemporary Mathematics 488, AMS and
BIU (2009) 148183.

[RR] C. Rader, S. Rallis, Spherical characters on p-adic symmetric spaces, Amer.
J. Math., Vol 118, No 1 (5 Feb. 1996), 91-178.

[R] D. Renard, Représentations des groupes réductifs p-adiques, Cours spécialisés,
volume 17, SMF.

[Se] J. P. Serre, Cohomologie Galoisienne, Lecture Notes in Math., vol 5, Springer-
Verlag, New-York, (1973).
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