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Geometric side of a local relative trace formula

P. Delorme} P. Harinck, S. Souaifi

Abstract

Following a scheme suggested by B. Feigon, we investigate a local relative
trace formula in the situation of a reductive p-adic group G relative to a
symmetric subgroup H = H(F) where H is split over the local field F of
characteristic zero and G = G(F') is the restriction of scalars of H j; relative
to a quadratic unramified extension E of F. We adapt techniques of the proof
of the local trace formula by J. Arthur in order to get a geometric expansion
of the integral over H x H of a truncated kernel associated to the regular
representation of G.
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Introduction

In this article, we investigate a local relative trace formula in the situation of p-
adic groups relative to a symmetric subgroup. This work is inspired by the recent
results of B. Feigon ([F]), where she investigated what she called a local relative
trace formula on PGL(2) and a local Kuznetsov trace formula for U(2).

Before we describe our setting and results, we would to explain on the toy model
of finite groups the framework of the formulas of B. Feigon. We even start with the
more general framework of the relative trace formula initiated by H. Jacquet ([J],
see also [O] for an account of some applications of this relative trace formula).

Let G be a finite group and let H, H', " be subgroups of G. We endow any finite
set with the counting measure. We denote by r the right regular representation of
G on L*(T'\G) and we consider the H-fixed linear form ¢ on L*(T\G) defined by

E= > om (0.1)

heHAT\H

where 0y, is the Dirac measure of the coset I'h, or in other words

£(w) = L PTG

We define similarly &’ relative to H'.

We view &, £ as elements of L?(I'\G) and we form the coefficient c¢ ¢ (g) = (r(g)&,&’).
Integrating over functions on G, it defines a ”distribution” © on G which is right
invariant by H and left invariant by H’. The relative trace formula in this context
gives two expressions of O( f) for f a function on G, the first one, called the geometric
side, in terms of orbital integrals, and the second one, called the spectral side, in
terms of irreducible representations of G.

First we deal with the geometric side. For this purpose we introduce suitable
orbital integrals. For v € I', we set [y] := (H' nT")y(H n I') and one introduces two
subgroups of H' x H

(H' x H), = {(W,h)|Wvh™ ' =~},(H nT x HAT), = (H x H), n (T xT).

Then, we define the orbital integral of a function f on G by

I, f) = F(WAR™YYdW dh.

J(H’xH)w\(H’xH)

Let f be a function on G. Since 7(g)drp, = Orpy-1, the definition of £ and &' gives
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Of) = X 10)8(0) = 3 16) i~ vty 2 35, D00
geG

geG heH h'eH’

Changing ¢ in g~ 'h and using the fact that (dry,drs) is equal to 1 for g € A’
and to zero otherwise, one gets

1 1 )
vol(I' n H) vol(T' n H') Z Z Zf(h’yh). (02)

heH h'eH’ vel’

o(f) =

A simple computation of volumes leads to the geometric expression of © in terms
of orbital integrals

o(f) = > vol(H' n T x HAT)\H x H))I([], f). (0.3)

[vleH'~AT\I'/TnH

Let us turn to the spectral side. We decompose L?(T'\G) into isotypic components
@, ccHr The restriction of £ and ¢ to H, will be denoted &, and £ respectively.
The spectral formula for © is the simple equality

O = Z C&rﬂr' (04)

e

Notice that it might be also interesting to decompose further the representation into
irreducible representations and the restriction of £ to each of them will be called a
period.

There is a third interpretation of the distribution ©. If f is a function on G,
then the operator r(f) on L*(I'\G) is an integral operator whose kernel K is the
function on I'\G x I'\G given by

Ky(z,y) = ). fla ).

el

By (0.2), one gets easily the following expression of O(f)

o(f) = f Ky(W, h)dh dh. (0.5)
(H'~T\H')x (HAT\H

This point of view is probably the best one. But it is important to have the repre-
sentation theoretic meaning of ©.

The toy model for the local relative trace formula of B. Feigon appears as a
particular case of the above relative trace formula. In that case, the groups G, H
and H' are products G1 x Gy, Hy x Hy and H{ x H{ respectively and I is the diagonal
of G; x G1. Then I'\G identifies with GG; and the right representation corresponds
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to the representation R of Gy x Gy on L*(G) given by [R(z,y)¢](g) = ¢(z " gy).
Then, we have

§(v) = . w(h)dh, e L*(Gh).

The spectral side is more concrete. If (7, Hr, ) is an irreducible unitary represen-
tation of G then G x G acts on End(#,, ) by an irreducible representation denoted
by m. It is unitary if we use the scalar product associated to the Hilbert-Schmidt
norm. Moreover L*(G1) is canonically isomorphic to the direct sum @, s End (., ).
Let P, be the orthogonal projector onto the space of invariant vectors under H;.
Then, the period map &, which is a linear form on End(H,,), is given by

&(T) = L Tr(m(h)T)dh = (T, P,), T €End(H,).

One further decomposes &, by using an orthonormal basis (7., ;) of the space
of Hy-invariant vectors. We will use the identification of End(#,,) with the tensor

product of H,, with its conjugate complex vector space. In this identification, one
has

p7r = Z Ny i ® Nryie

We define similar notations for £ relative to H’. Then, for two functions fi, fo on
G1, the spectral side (0.4) can be written

O(/i®f) = Z Zcmlm (f1) oy il (fZ)
7T1€G1 i Z
For the geometric side, we define the integral orbital of a function f on G; by
Io.5) = | P g dnd
(HiXHl)g\H{ ><H1
which depends only on the double coset H;gH;. Then one gets by (0.3) the equality
Oh®f)= >, vgllg )9, f)
gGHi\Gl/Hl

where the v(g)’s are positive constants depending on volumes. Hence the final form
of the local relative trace formula is:

D ) g, f)I(g. ) = )] chmn (fo)ene, om ,(f2):
geH{\G1/H; meGy b

This formula allows to invert the orbital integrals (g, f1). For this purpose, one
chooses g; € G and takes for fy the Dirac measure at g;. Then I(gy, f2) = 1 and
the other orbital integrals of f, are zero. Hence

v(g1)I(g1, f1) = Z Z Crey il fl oty i, <f2)

71'16G1 1,1



In order to make the formula more precise, one needs to compute the constants
7771'1 7.»77 (f2)

The inversion of orbital integrals is one of our motivations to investigate a lo-
cal relative trace formula in the situation of p-adic groups relative to a symmetric
subgroup H and we will take H = H’.

In this article, we consider a reductive algebraic group H defined over a non
archimedean local field F of characteristic 0. We fix a quadratic unramified extension
E of I' and we consider the group G := Resg/rH obtained by restriction of scalars
of H, where here H is considered as a group defined over E. We denote by H and
G the group of F-points of H and G respectively. Then G is isomorphic to H(F)
and H appears as the fixed points of G under the involution of G induced by the
nontrivial element of the Galois group of E/F. We assume that H is split over F
and we fix a maximal split torus Ay of H. The groups G and H correspond to Gy
and H; = H] respectively in our example of a local relative trace formula for finite
groups.

The starting point of our study is the analogue to the expression (0.5). We
consider the regular representation R of G x G on L*(G) given by (R(g1, g2)¢)(x) =
V(g 'wgs). Then for f = fi ® f, where fi and f, are two smooth compactly
supported functions on G, the corresponding operator R(f) is an integral operator
on L*(G) with smooth kernel

Ky(r,y) = L fi(zg) f2(gy)dg = L f1(9) f2(z" " gy)dy.

As H may be not compact, even modulo the split component Ay of the center
of H, we have to truncate this kernel to integrate it. We multiply this kernel by a
product of functions u(x,T)u(y,T) where u(-,T') is the characteristic function of a
large compact subset in Ag\H depending on a parameter T' € ap = Rat(A4g) ®z R
(Rat(Ap) is the group of F-rational characters of Ag) as in [Ar3] (cf. (2.7)). As H
is split, we have Ay = Ag. Hence the kernel K is left invariant by the diagonal
diag(Ap) of Ay and we can integrate the truncated kernel over diag(Ax)\H x H.
We set

KT (f) = f Kg(xy, xo)u(zy, T)u(ze, T)d(x1, x2).
diag(Ap)\(Hx H)
In [Ar3], J. Arthur studies the integral of K(z, z)u(x,T) over Ag\G to obtain
its local trace formula on reductive groups.

We study the geometric expression of the distribution K7 (f) and its dependence
on the parameter 7. Our main results (Theorem 2.3 and Corollary 2.11) assert that
KT (f) is asymptotic as T approaches infinity to another distribution JZ(f) of the
form

i (T, f)esT (0.6)



where & = 0,...{y are distinct points of the dual space iaf and each pe, (T, f) is a
polynomial function in 7. Moreover, the constant term .J(f) := po(0, f) of JT(f) is
well-defined and uniquely determined by K7 (f). We give an explicit expression of
this constant term in terms of weighted orbital integrals.

These results are analogous to those of [Ar3] for the group case. Our proof follows
closely the study by J. Arthur of the geometric side of his local trace formula which
we were able to adapt under our assumptions to the case of double truncations.

In the first section, we introduce notation on groups and on symmetric spaces
according to [RR]. The starting point of our study is the Weyl integration formula
established in [RR], which takes into account the (H, H)-double classes of o-regular
elements of G (cf. (1.30) and (1.32)). These double classes are express in terms of o-
torus, that is torus whose elements are anti-invariant by o. Under our assumptions,
there is a bijective correspondence S — S, between maximal tori of H and maximal
o-tori of G which preserves H-conjugacy classes.

Then the Weyl integration formula can be written in terms of Levi subgroups
M € L(Ap) of H containing Ay and M-conjugacy classes of maximal anisotropic tori
of M (cf. (1.33)):

1/2 -1 VAR
Lf(g)d Y e Y e f S ng(AM>\Hfo(h Eryl) (R Dy

MeLl Ao SE'T]\] TmEKS

where kg is a finite subset of G, ¢y and cg,,, are positive constants, Ty is a suitable
set of anisotropic tori of M and A, is a jacobian.

A fundamental result for our proofs concerns the orbital integral M(f) of a
compactly smooth function f on G. It is defined on o-regular points by

M) @) = [ Do () [ f F () dTT),

diag(Ag)\HxH

where S is a maximal torus of H, z,, € kg and v € S, such that z,,v is o-regular.
As in the group case using the exponential map and the property that each root of
S, has multiciplity 2 in the Lie algebra of GG, we prove that the orbital integral is
bounded on the subset of o-regular points of G (cf. Theorem 1.2).

In the second section, we explain the truncation process based on the notion
of (H, M)-orthogonal sets and prove our main results. Using the Weyl integration
formula, we can write

= D, om ), D, Csan f K™ (2,5, )y
MeL(Ao) Se€Tar TmEKS So

where

KT (@ ) = B ()| f £ )

diag(Apn)\H xH Jdiag(AM)\Hx H
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X fz(ﬂifl%m’Y@)UM(Il, Y1, o, Yo, T)d(z1, 22)d(y1, Y2)
and

ur (21, Y1, T2, Y2, T') = J u(yy taxy, T)u(yy 'axs, T)da.
Ap\Axr

The function J7(f) is obtained in a similar way to KT (f) where we replace the

weight function wys(x1, Y1, T2, y2, 1) by another weight function vy, (1, y1, T2, Y2, T).

The weight function vy, is given by

n (21, Y1, 02,12, T) 1= f on(har(a), Va1, y1, 2,92, T))da
Ap\Am

where op/(+, ) is the function of [Ar3] depending on a (H, M)-orthogonal set ) and
Y (x1,y1, 9,92, T) is a (H, M)- orthogonal set obtained as the "minimum” of two
(H, M)- orthogonal sets Yy (x1,y1,T) and Vs (z2,y2,T) (cf. (2.4), Lemma 2.2 and
(2.11)). If Yy and Y, are two (H, M )-orthogonal positive sets then the ”minimum”
Z of Y, and ), satisfies the property that the convex hull Sy/(Z) in ay\ays of the
points of Z is the intersection of the convex hulls Sy;(Y;) and Sy(%s) in agy\ay of
the points of ), and )» respectively.

If |T| is large relative to |z;|, |v:], ¢ = 1,2 then oar(-, Yar(x1, y1, 2,92, T)) is just
the characteristic function of Sy (Var(x1,y1, 22, y2,T)). In that case, this function
is equal to the product of oy (-, Var(x1,y1,T)) and opr (-, Vs (22, y2, T)).

Our proofs consist to establish good estimates of |up/((x1,y1, 22,92, T) —
vn (21, Y1, T2, y2, T)| when z;, 93,1 = 1,2 satisty fi(y; " wmyye) f1(2] ' @myas) # 0 for
some v € S, and z,, € kg. Then, using that orbital integrals are bounded, we deduce
our result on |KT(f) — JL(f)|.

This work is a first step towards a local relative trace formula. For the spectral
side, we have to prove that K7 (f) is asymptotic to a distribution k7 (f) which is of
general form (0.6) and constructed from spectral data. We hope that we can express
the constant term of k7 (f) in terms of regularized local period integrals introduced
by B. Feigon in [F] in the same way than Jacquet-Lapid-Rogawski regularized period
integrals for automorphic forms in [JLR]. We plan to explicit such a local relative
trace formula for PGL(2).

Acknowledgments. We thank warmly Bertrand Lemaire for his answers to our
many questions on algebraic groups. We thank Bertrand Rémy and David Renard
for our helpful discussions. We thank also Guy Henniart for providing us a proof of
(1.5).



1 Preliminaries

1.1 Reductive p-adic groups

Let F be a non archimedean local field of characteristic 0 and odd residual charac-
teristic ¢. Let | - |p denote the normalized valuation on F.

For an algebraic variety M defined over F, we identify M with M(F) where F is
an algebraic closure of F and we set M := M(F).

We will use conventions like in [W2]. One considers various algebraic groups .J
defined over F, and sentences like

7 let M be an algebraic group” will mean ” let M be the F-points of an
algebraic group M defined over F” and 7 let A be a split torus 7 will (1.1)
mean " let A be the group of F-points of a torus, A, defined and split '
over F .7

If J is an algebraic group, one denotes by Rat(.J) the group of its rational characters
defined over F. If V is a vector space, V* will denote its dual. If V is real, V¢ will
denote its complexification.

Let G be an algebraic reductive group defined over F. We fix a maximal split
torus Ay of G and we denote by M, its centralizer in G.
We denote by Ag the maximal split torus of the center of G and we define

ac := Homgz(Rat(G), R).

One has the canonical map hg : G — ag which is defined by
@0 — |\ (2)|p, =€ G,y e Rat(G). (1.2)

The restriction of rational characters from G to Ag induces an isomorphism
Rat(G) ®z R ~ Rat(Ag) ®z R. (1.3)

Notice that Rat(Aq) appears as a generating lattice in the dual space af, of ag

and
af, ~ Rat(G) ®z R. (1.4)

The kernel of h¢g, which is denoted by G*, is the intersection of the kernels of
|x|r for all character y € Rat(G) of G. The groupe G is distinguished in G and
contains the derived group Gy, of G. Moreover, it is well-known that

the group G' is generated by the compact subgroups of G. (1.5)

G. Henniart has communicated to us an unpublished proof of this result by N. Abe,
F. Herzig, G. Henniart and M.F. Vigneras.
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One denotes by agr (resp., agr) the image of G (resp., Ag) by he. (1.6)
Then G/G' is isomorphic to the lattice ag r. '

If P is a parabolic subgroup of G with Levi subgroup M, we keep the same
notation with M instead of G.

The inclusions Ag < Ay € M < G determine a surjective morphism ayp —
acr (resp., an injective morphism, agp — @ r) which extends uniquely to a sur-
jective linear map hyg from ays to ag (resp., injective map between ag and ayy).
The second map allows to identify ag with a subspace of aj; and the kernel of the
first one, a{;, satisfies

ay = a]\%@ag. (1-7)

For M = My, we set ag := ayy, and a§ := a]\%. We fix a scalar product (-,-) on ag
which is invariant under the Weyl group W (G, Ay) of (G, Ap). Then a¢ identifies
with the fixed point set of ag by W (G, 4p) and a§ is an invariant subspace of ag
under W (G, Ag). Hence, it is the orthogonal subspace to ag in ag. The space
ag, might be viewed as a subspace of af by (1.7). Moreover, by definition of the
surjective map ag — ag, one deduces that

if mg € My then hg(my) is the orthogonal projection of hyy,(mg) onto

ac (1.8)

From (1.7) applied to (M, M) instead of (G, M), one obtains a decomposition ay =
a)! @ apr. From the W (G, Ap) invariance of the scalar product, one gets:

The decomposition ag = a)! @ ay is an orthogonal decomposition.
The space a%; appears as a subspace of a¥ and, in the identification of  (1.9)
ap with aj given by the scalar product, a}, identifies with ay,;.

The decomposition ay; = a]\% @ ag is orthogonal relative to the restriction to ay,
of the W(G, Ap)-invariant inner product on ag and the natural map h ¢ is identified
with the orthogonal projection of a; onto ag.

In particular, ag  is the orthogonal projection of ay r onto ag. More-
over, we have agr = ag N ayp (cf. [Ar3] (1.4)).

(1.10)

By a Levi subgroup of GG, we mean a group M containing M, which is the Levi
component of a parabolic subgroup of G. If P is a parabolic subgroup containing
My then it has a unique Levi subgroup denoted by Mp which contains M,. We will
denote by Np the unipotent radical of P.

For a Levi subgroup M, we write £(M) for the finite set of Levi subgroups of G
which contain M and we also let P(M) denote the finite set of parabolic subgroups
P with Mp = M.



Let K be the fixator of a special point in the apartment of Ay in the Bruhat-Tits
building. We have the Cartan decomposition

G = KMK. (1.11)

If P = MpNp is a parabolic subgroup of G containing M, then

G = PK = MpNpK. (1.12)
If x € G, we can write
x =mp(x)np(x)kp(z), mp(x)e Mp,np(x) € Np,kp(z) € K. (1.13)
We set
hp(l‘) = hMP(mp($)). (114)

The point mp(x) is defined up an element of K but h,(z) does not depend of this
choice.

We introduce a norm | - | on G as in ([W2] §L.1.) (called height function in
([Ar3])). Let Ag : G — GL,(F) be an algebraic embedding. For g € G, we write

Ao(g) = (ai,j)i,jzl...ny Ao(gfl) = (bz’,j)i,jzl...n-

We set

lgll := supsup(|ai ;lr, [bij|r)- (1.15)
[2¥}

If A: G — GL4(F) is another algebraic embedding then the norm | - |5 attached to
A as above is equivalent to | - | in the following sense: there are a positive constant
C and a positive integer d such that

lglla < Callgl™.

This allows us to use results of [W2] for estimates on norms.

The following properties of | - || are immediate consequences of definition:
1< |z| =[z7"], =eG, (1.16)
lzyl < lllyl, 2z yeG. (1.17)

In order to have estimates, we introduce the following notation. Let r be a
positive integer. Let f and g be two positive functions defined over a subset W of
G" .

We write f(z) < g(z),x € W if and only if there are a positive constant

c and a positive integer d such that f(z) < cg(x)? for all z € W. (1.18)
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We write f(z) ~ g(x),x € W if f(z) < g(x),zr € W and g(z) <

flz),zeW. (1.19)

If f1, fo and f3 are positive functions on G", we clearly have

if f1(z) < fo(z),z e W and fo(z) < f3(z),x € W then fi(x) < f3(x),z € W,
if fi(x) ~ fa(x),z e W and fo(x) ~ f3(x),z € W then fi(z) ~ f3(z),x € W.

Moreover, if fi, f2, g1 and gy are positive functions on G" which take values greater

or equal to 1, we obtain easily the following properties:

1. for all positive integer d, we have fi(z) ~ fi(z)¢,ze W,

2.1f fi(z) <
(fifo)(x)

3. if fi(z) ~ gi(x),z € W and fy(x) ~ g2(x), 2 € W then
(fif2)(x) ~ (g192)(x),x € W.

Since ||z = [zyy~

g1(z),x e W and fo(z) < g2(x),x € W then
< (g192)(x),x e W, (1.20)

< lzyllyl and [zy| < [z[|y], we obtain

If Q is a compact subset of G, then |z| ~ [Jzw|, x€ G,we Q. (1.21)
Let P = MpNp be a parabolic subgroup of GG containing My. Then, each x € G can
be written © = mp(x)np(x)k where mp(x) € Mp,np(x) € Np and k € K. By ([W2]

Lemma I1.3.1), we have

[mp ()] + [np()| <[z, zeG. (1.22)

Recall that G is the kernel of h¢ : G — aq. Let us prove that
|za| ~ ||z|||al, zeG' ae Ag. (1.23)
According to the Cartan decomposition (1.11), if ¢ € G, we denote by mg(g) an

element of My such that there exist k, k' € K with ¢ = kmg(g)k’. Notice that
|hat, (mo(g))]| does not depend on our choice of mg(g). By (1.21), one has

lgll ~ Imo(g)ll, g€G, (1.24)
and by ([W2]) 1.1.(6)) we have
HmoH % €HhMO(mO)H, mg € Mo. (125)

Let x € G' and a € Ag. Then mg(z) € G n My and mg(za) = mo(x)a. Thus, one
has hg(mo(x)) = 0. We deduce from (1.8) that hys, (mo(z)) belongs to a§. Since

11



hagg (mo(x)a) = ha,(mo(x)) + hag,(a) and hyy,(a) € ag, we obtain by orthogonality
that

%(ULMO (mo (@) + [hary (@)} < [agy (mo(@)a) | < har, (mo ()| + [as (@)

Hence (1.23) follows from (1.24) and (1.25).

We denote by C(G) the space of smooth functions on G with compact support.
We normalize Haar measures according to [Ar3] §1. Unless otherwise stated, the
Haar measure on a compact group will be normalized to have total volume 1.

Let M be a Levi subgroup of G. We fix a Haar measure on aj; so that the
volume of the quotient ays/an r equals 1.

Let P = MNp e P(M). We denote by dp the modular function of P given by

Sp(mn) = 2Pim) py e M ne Np,

where 2pp is the sum of roots, with multiplicity, of (P, Ay;). Let P = M Np be the
the parabolic subgroup which is opposite to P. If dn is a Haar measure on Np then
the number

v(P) :f e2ep(hp(m) gy
Np

is finite. Moreover, the measure v(P) !dn is independent of the choice of dn and
thus defines a canonical Haar measure on Np.

If dm is a Haar measure on M then there exists a unique Haar measure dg on G,
independent of the choice of the parabolic subgroup P, such that

f f(g JNPJ NPf (nma)dp(m)~tdn dm dn,

for f € CP(G). We say that dm and dg are compatible. Compatibility has the
obvious transitivity property relative to Levi subgroups of M. Using the Iwasawa
decomposition (1.12), these measures satisfy

f f(g)dg = (1]3) L{ JM N f(mnk)dn dm dk.

1.2 The symmetric space H\G

Let E be an unramified quadratic extension of F. Thus E = F[7] where 72 is not a
square in F. We denote by o the nontrivial element of the Galois group Gal(E/F)
of E/F. The normalized valuation | - g on E satisfies |x|g = |z|% for z € F.

If J is an algebraic group defined over F, as usual we denote by J its group of
points over F. Let J xpE be the group, defined over E, obtained from J by extension
of scalars. We consider the group

J = Resg/r(J x7 E)

12



defined over F, obtained by restriction of scalars.
With our convention, one has J = J(F) and J is isomorphic to J(E).

Let H be a reductive group defined over F. In all this article, we assume that H
is split over F and we set G := H and G := H. We fix a maximal split torus A, of
H. Then Aj is also a maximal split torus of G and we have Ay = Ag.

The nontrivial element ¢ of Gal(E/F) induces an involution of G defined over
F, which we denote by the same letter. This automorphism o extends to an E-
automorphism og on G Xy E.

We consider the canonical map ¢ defined over F from G to (H xg E) x (H xp E)

by ¢(g) = (g9,0(9)).

Then, ¢ extends uniquely to an isomorphism ¥ defined over E from
G xpEto (H xpE) x (H xpE) such that U(g) = (g9,0(g)) forall ge G (1.26)
and if U(g) = (g1, g2) then V(og(g)) = (92, 01)-

Now we turn to the description of the geometric structure of the symmetric space
S = H\G according to [RR] sections 2 and 3.

Let g be the Lie algebra of G and g be the Lie algebra of its F-points. We will
say that g is the Lie algebra of G and the Lie algebra h of H consists of the elements
of g invariant by 0. We denote by q the space of antiinvariant elements of g by o.
Thus, one has g = h @ q and g may be identified with h ®r E

As in ([RR] §2.), we say that a subspace ¢ of q is a Cartan subspace of q if ¢ is
a maximal abelian subspace of q¢ made of semisimple elements. As E = F[r], the
multiplication by 7 induces an isomorphism between the set of Cartan subspaces of
q and the set of Cartan subalgebras of fh which preserves H-conjugacy classes.

We denote by P the connected component of 1 in the set of x in G such that
o(z) = 7', Then the map p from G to P defined by p(z) = x~'o(z) induces an
isomorphim of affine varieties p : H\G — P.

A torus A of G is called a o-torus if A is a torus defined over F contained in
P. Notice that such torus are called o-split torus in [RR]. We prefer change the
terminology as o-tori are not necessarily split over F. Each o-torus is the centralizer
in P of a Cartan subspace of ¢, or equivalently of a Cartan subalgebra of h.

Let S be a maximal torus of H. We denote by S, the connected component of
S N P. Then S, is a o-torus defined over F which identifies with the antidiagonal
{(s,571);5€ S} of S x S by the isomorphism (1.26). Thus, S, is a maximal o-torus
and each maximal o-torus arises in this way . The H-conjugacy classes of maximal
tori of H are in bijective correspondence with the H-conjugacy classes of maximal
o-tori of G by the map S — S,. The roots of S (resp.; S,) in b = Lie(H) (resp.;
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q®r F) are the restrictions of the roots of S in g = Lie(G).

Therefore, each root of S (resp.; S, ) in g has multiplicity two. If S splits

over a finite extension F’ of F, we denote by ®(5",g') (resp.; ®(5,5’))

the set of roots of S, (F') in g®g [’ (resp.; S(F') in h ®r F'). (1.27)
Let s be the Lie algebra of S. Then, the differential of each root a of

®(S', ¢') defines a linear form on & ®p F’ which we denote by the same

letter.

Let Gal(F/F) be the Galois group of F/F. By ([RR] §3), the set of (H,S,)-
double cosets in HS, N G are parametrized by the finite set I of cohomology classes
in H'(Gal(F/F), H n S,) which split in both H and S,. To each such classe m, we
attach an element z,, € G of the form z,, = h,,a,,! with h,, € H and a,, € S, such

that m, = h,'y(hy,) = a,y(ay) for all v € Gal(F/F).

1.1 Lemma. Let z € G such that x = hs with he H and s € S. Then, xSz is a
mazimal torus of H and there exists h' € H such that @’ = h'x centralizes the split
connected component Ag of S.

Proof :

Replace S by a H-conjugate if necessary, we may assume that A := Ag is contained
in the fixed maximal split torus Ay of H. Since H is split, Ay is also a maximal split
torus of G.

Since = hs € G, the torus S’ := xSz~ ! is equal to hSh™! < H. Thus S’ is
defined over F and contained in H and we obtain the first assertion.

Let S’ := S'(F) and let A’ be the split connected component of S’. There exists
h, € H such that hlA’hl’l c Ay. Weset x1 = hyx, thus we have A := xlefl c Ap.

Let M = Zg(A) and My, = Zg(A)) = xyMay'. Then Ay and zAgx;" are
maximal split tori of M;. Therefore, there exists y; € M; such that ylxlexflyfl =
Ag. As H is split, the Weyl group of Ay in G coincides with the Weyl group of Ay
in H. Thus, there exist hy € Ny(Ap) and v € Z5(Ap) such that z := y;zq = hov.

For a € A © Ay, one has zaz™' = hyahy' = yiviaxy'y;' = ziax]’ since
xla:z:l_l € A; and y; € M;. One deduces that 2’ := h;lhlx centralizes A. O

Thus, for each maximal torus S of H, we can fix a finite set of represen-
tatives kg = {@m }mer of the (H, S,)-double cosets in HS NG such that
each element x,, may be written x,, = hma;f where h,, € H centralizes
Ag and a,, € S,. Hence z,, centralizes Ag.

(1.28)

1.3 Weyl integration formula and orbital integrals

We first recall basic notions on the symmetric space according to ([RR], §3). An
element x in G is called o-semisimple if the double coset Hx H is Zariski closed. This
is equivalent to say that p(z) is a semisimple point of G. We say that a semisimple
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element x is o-regular if this closed double coset HxH is of maximal dimension.
This is equivalent to say that the centralizer of p(x) in q (resp.; P) is a Cartan
subspace of q (resp.; a maximal o-torus of G).

We denote by G777 the set of o-regular elements of G.

For g € G, we denote by D¢(g) the coefficient of the least power of ¢ appearing
nontrivially in det(t + 1 — Ad(g)). We define the H-biinvariant function A, on G by
Ay (z) = Dg(p(x)). Then by ([RR], Lemma 3.2. and Lemma 3.3), the set of g € G
such that A,(g) # 0 coincides with G~
Let S be a maximal torus of H with Lie algebra s. Then s := s ®p E identifies with
the Lie algebra of S. For g € xS, with x,, € kg, one has

As(g) = Da(p(g)) = det(1 — Ad(p(9)))gs- (1.29)
By ([RR] Theorem 3.4 (1)), the set G777 is a disjoint union
GO — U U A~ GO reg)
{S}H ImEKS (130)
where {S}y runs the H-conjugacy classes of maximal tori of H.

—2

It z,, € kg then z,, = hya,, for some h,, € H and a,, € S,, hence Q(xm) =a,

commutes with S and S,. Therefore for v € S,, we have

p(@my) = p(zn)y? and Hzp,yS = Hzpy.

We have the following Weyl integration formula (cf. [RR] Theorem 3.4 (2)):

Let f be a compactly supported smooth function on G, then we have

[RECEDIIE T W

{S} TmERS So

1.31
mwlﬂf th%MMMM% (1.31)
S\H

where the constants g, —are explicitly given in ([RR] Theorem 3.4 (1)).

For our purposes, we need another version of this Weyl integration formula.
Let S be a maximal torus of H. We denote by Ag its split connected component.
Since the quotient Ag\S is compact, by our choice of measure, the integration over
S\H in the Weyl formula above can be replaced by an integration over Ag\H.
Moreover, it is convenient to change h into h™!. As every z,, € kg commutes with Ag
(cf. (1.28)), one can replace the integration over (As\H) x H, by an integration over
diag(Ag)\(H x H) where diag(Ag) is the diagonal of Ag. This gives the following
Weyl integration formula equivalent to (1.31):

f fldy = D5 ), cosf As(Tm7) 1/2f F(h ) d(h, 1) dr.
{S}u zmers diag(As)\(H x H)
(1.32)
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We will now describe the H-conjugacy classes of maximal tori of H in terms of
Levi subgroups M in £(Ap) and M-conjugacy classes of some tori of M.

Let M € L(Ap). We denote by Ny (M) its normalizer in H. If S is a maximal
torus of M, we denote by W(M,S) (resp. W(H,S)) its Weyl group in M (resp.
H). We choose a set Ty of representatives for the M-conjugacy classes of maximal
tori S in M such that Ap/\S is compact. For M, M’ € L(Ay), we write M ~ M’ if
M and M’ are conjugate under H.

Let S be a maximal torus of H whose split connected component Ag is contained
in Ag. Then, the centralizer M of Ag belongs to £(Ap) and S is a maximal torus of
M such that Ay/\S is compact. If S’ is a maximal torus conjugated to S by H such
that Ag is contained in Ay, then the centralizer M’ of Ag in H belongs to L£(Ay)
and M’ ~ M.

Since each maximal torus of H is H-conjugate to a maximal torus S such that
Ag < Ay, we obtain a surjective map S +— {S}y from the set of S in Ty, where
M runs a system of representatives of £(Ag),. to the set of H-conjugacy classes of
maximal tori of H.

Let M € L(Ay). By ([Ko | (7.12.3)), the cardinal of the class of M in L(Ay),. is
equal to

[W(H, Ao)
(WM, Ao)||[Nu (M)/M]|
where Ny (M) is the normalizer of M in H.
By ([Ko ] Lemma 7.1), if S is a maximal torus of M, then the number of M-conjugacy
classes of maximal torus S’ in M such that S’ is H-conjugate to S is equal to

[N (M)/M|[W (M, S)|
(W(H, S)]

Therefore, we can rewrite (1.32) as follows:

1/2 —1 YERREDY
Lf(g)d S o Y Y s f S J e g O T D

MeL AO S€Th TmERS
(1.33)
where WM, Ay)| W(H, 5)|
5 <10 ) 0
e = and  Cgu, = 7 Cqu -
MW (H, Ag)) Som W (M, S)| S

Let f e CP(G). We define the orbital integral M(f) of f on G777 as follows.
Let S a maximal torus of H. For z,, € kg and v € S, with x,,v € G777 we set

M) ) = A () [ j gy {0 20D
itag(As)\(HxH (134)

= | A (@) J f F(hayl)dhd.
S\H
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Our definition corresponds, up to a positive constant, to Definition 3.8 of [RR].
Indeed, by definition of A,, we have A, (z,,7y) = Da(p(xm7y)). Since we can write
T = hpa,, with h,, € H and a,, € S, we have ]_o(xma) = Q(xm)v*2 = a, 2y 2 for
v € S,. Let F' be an extension of E such that S splits over ' and a,, € S, (F').
Since each root « of S (F') in g ® F have multiplicity m(a) = 2, using notation of
(1.27), we obtain:

No(wmy) = [ C=pam) v = ] " —plam)*y)

ae®(S,.g') ae®(S,.9')
hence
1/4 o o —aym(a)—11/2
Do)l = T 10 = plam) )@=,
acd(S! o)
o o —Q 1/2
= I 10" =pl@n) )"
aed(S7.,g')

Then, the Weyl integration formula (1.31) in terms of orbital integrals is given as in
([RR] page 126) by

Lf(wdy: SO, j Ao () MUF) ().

(S} Tmers So
1.2 Theorem. Let f € CP(G) and S be a mazimal torus of H. Let x,, € Kg.

1. There exists a compact set () in S, such that, for any v in the complementary

of Q with x,y € G779, one has M(f)(xyy) = 0.

sup (M) (@my)| < +o.

YESs; TmyEGT eI
Proof :
The proof follows that of the group case (cf. [HC3| proof of Theorem 14). We write
it for convenience of the reader.

1. Let w be the support of f. We consider the set wg of elements v in .S, such that
T,y is in the closure of HwH. For g € GG, we consider the polynomial function

det(1 —t — Ad p(9)) = t" + guor (" + ... + q(9)t! (1.35)

where [ is the rank of G and n its dimension. Each ¢; is a H x H biinvariant regular
function on G, thus it is bounded on z,,ws. Therefore, the roots of det(1 — ¢ —
Ad p(g)) are bounded on z,,ws.

For v € S,, we have p(emy) = p(@m)y~>. We choose a finite extension F’ of F
such that S splits over F” and p(z,,) € S, (F’). Using notation of (1.27), the roots of
det(1 —t — Ad p(x,y)) are the numbers (1 — p(xm)*y>*) for a € ®(S,,¢'). Since
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these roots are bounded on z,,ws, we deduce that the maps v — 7%, a € ®(S.,¢'),
are bounded on wg. This implies that wg is bounded. Then, the closure 2 of wg
satisfies the first assertion.

2. By 1., if v ¢ Q then M(f)(z,,y) = 0. Thus, it is enough to prove that for each
Y0 € S, there exists a neighborhood V. of 7y in S, such that

sup IM(f)(@my)] < +o0. (1.36)

YEVyg ,xmYEGTTTEY

Let yo := p(zmy). We first assume that yy is central in G. Then, we have
Ao(zmr0Y) = Dalyory™) = Da(y™?) for v € S, and @pyoh(emy0)™" € H for
h € H. We define the function fy on G by fo(g9) := f(zm7y0g). Then, we have
M(fo)(v) = M(f)(xmy0y) for v € S, n G779, Thus, we are reduced to the case
Yo = 1. As in the group case, we use the exponential map ” exp” which is well
defined in a neighborhood of 0 in g since the characteristic of F is equal to zero
(cf. [HC4] §10). As in ([HC1] proof of Lemma 15), we can choose a H-invariant
open neighborhood V4 of 0 in b such that the map X € Vj — exp(rX) is an
isomorphism and an homeomorphism onto its image and there is a H-invariant
function gp € Coo(h) such that o(X) = 1 for X € V5. We define f in C*(h) by
f(x X) S, f(hexp(rX))dh.

Let s be the Lie algebra of S. For X € s, we set n(X) = |det(adX)yss|p. We
consider a finite extension F’ of F such that S splits over F" and p(z,,) € S, (F').
We use notation of (1.27). Since each root of S in g’ has multiplicity 2, we have
for X € V}

|A, (exp TX)HT//Q _ |DG/(eXp(—2TX)|11?/,2 _ Hae@(s’,h’) 11— e2X)|p
T](X) n(X) HO&E‘P(S’,I’]’) |OZ(X)|F/

4720(X)?

(S
— |27—||F,( 2l H 11+ 7a(X) + i

aed(5,h')

+ . e

We can reduce Vj in such way that each term of this product is equal to 1. Thus,
we obtain

M(f)(expTX) = |27|‘<I>(Sh X)I/QJH/S(J f(hexpTAd(l)X)dh)dl

— 278l [ FAd() X)L,
H/S

for X € Vi. The estimate (1.36) follows from the result on the Lie algebra (cf. [HC3]
Theorem 13).

If yo = p(wm70) is not central in G, we consider the centralizer Z of yo in H.
Let Z° be the connected neutral component of Z. By([Bo], I11.9), the group Z° is
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defined over F. As usual, we set ZO := Resg/p (ZO xr E) and we denote by 3 its Lie
algebra. By definition of 3, one has

det(1 — Ad(y0) g5l # 0.

Thus, there exists a neighborhood V' of 1 in S, such that, for all v € V', then
[det(1 — Ad(yoy™?))gssle = |det(1 — Ad(yo)gs)|r # 0. (1.37)

From ([HC3] Lemma 19), there exist a neighborhood V; of 4 in S and a compact
subset Cg of Z°\@ such that, if g € G satsifies g~ 'Vig N p(w) # & then its image g
in Z%\G belongs to Cg (here w is the support of f).

We choose a neighborhood W of 1 in S, such that W < V and p(z,,707) =
Yoy~ 2 € Vi for all y € W. By ([Bo], I1I 9.1), the quotient Z°\H is a closed subset of
Z0\@, hence

the set C' := Cun Z°\H is a compact subset of Z°\H such that if [ € H
satisfies {~'ygy™?l € p(w) for some v € W then its image [ in ZNH  (1.38)
belongs to C.

Let v € W such that z,,vyy € G°". One has

L\HJ f(hxmyoyl)dhdl = LO\H L\ZO JH f(hamyovél)dhdEdl. (1.39)

By the choice of W, the map

le 2~ | | fhanmnhdndg
S\ 20

Vanishes outside C. We choose u € CX(H ) such that the map @ € C(Z°\H) defined
by u(l) := Szo u(€l)d€ is equal to 1 if [ € C. As u and f are compactly supported,
the map

A J u(Z)J f(hamyozl)dhdl
H H

is  well-defined. Since yo = pEmy) = (Twmy) 'o(Tm), we have
g(xmeO)_lo(xmeO) = (xm’VO)_lo-(xm70>£ for £ € ZO- Hence, xm70£(xm70)_1 € H.
Thus @ is left invariant by Z°.

We claim that ® € C*(Z° 29). Indeed, fix [ in the support of u. If f(hz,,70zl)
is nonzero for some h € H and z € Z° then p(hryy02l) = p(zmy0zl) belongs to
p(w), where w is the support of f. Since z commutes with yo = p(zm70), we have
p(rmy02l) = 1" 'yop(2)o(l). As u is compactly supported, we deduce that ®(z) = 0
when 1_9( z) is outside a compact set. Hence, the map ® is a compactly supported

function on Z°\ 2°.
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By assumption, the function f is right invariant by a compact open subgroup of
G. Thus f is right invariant by some compact open subgroup of H. We denote by
71f the right translate of f by an element [ € G. Since w is compactly supported,
the vector space generating by 7;f, when | € H runs the support of u, is finite
dimensional. Hence, one can find a compact open subgroup J; of Z° such that for
each [ in the support of u, the function 7;f is right invariant by J;. This implies
that ® is smooth and our claim follows.

Therefore, there exists ¢ € C*(2°) such that

d(z) = LO o(€2)dE = LU(Z) L f(hxmyozl)dhdl, =z e Z°.
We obtain

L\ZO LO p(€17€2)d1dEs = Lu(l)(L\ZO L f(hamryovéal)dhdSy) di

= LO\H LO u(éll)(L\ZO JH f(hamyoy&eéal)dhdéy) déydl

_ J a(l)( J f F(hm0vEal) dhdEy) .
Z0\H s\z0 Ju

By definition, the map @ is equal to 1 on the compact set C. By definition of C' (cf.
(1.38) and (1.3)), we obtain

L\zo fzo () dErde, = L\H JH S (hamyoyl)dhdl.

By (1.37) and the choice of W, one has
[Da(yor)lr = [Dz0(v7)[rldet(L — Ad(yo))gsle, 7€ W
Then, we deduce that for v € W satisfying x,,7oy € G°~", one has

M(f)(@m07) = |det(1 — Ad(yo))g/ﬂyﬂDzo (772) 117/4J J 90(51752)65516@-
S\z0 Jzo

Since | D z0(y2)|r coincides with the function |A,|p for the group Z° evaluated at
v (cf. (1.29)), one deduces the estimate (1.36) for f applying the first case to ¢

defined on Z°. O
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2 Geometric side of the local relative trace for-
mula

2.1 Truncation

In this section, we will recall some results of ([Ar3], §3), needed in the sequel. We
keep notation of §1.1 for the group H. Since H is split, one has My, = Ay. We fix
a Levi subgroup M € L(Ay) of H. Let P € P(M). We recall that Ay, denotes the
maximal split connected component of M.

We denote by Xp the set of roots of A); in the Lie algebra of P, ¥}, the subset
of reduced roots and Ap the subset of simple roots.

For 8 € Ap, the "co-root” f € ay is defined as usual as follows: if P € P(Ap)
is a minimal parabolic subgroup, then = 2(8,8)71B, where af identifies with aqg
by the scalar product on ag. In the general case, we choose Py € P(Ap) contained
in P. Then, there exists a unique o € Ap, such that 3 = q,,,. The ”co-root” B is
the projection of ¢ onto ay; with respect to the decomposition ag = ay @ adf. This
projection does not depend of the choice of F.

We denote by a} the positive Weyl chamber of elements X € ays satisfying
a(X) >0 for all v € Xp.

Let M € L(Ap). A set of points in ays indexed by P € P(M)
Y =Yu = {Ypean; PeP(M)}

is called a (H, M)-orthogonal set if for all adjacent parabolic subgroups P, P" in
P(M) whose chambers in aj; share the wall determined by the simple root o €
Apn (=Ap), one has Yp — Y}, = rp p¢ for a real number rp p. The orthogonal set
is called positive if each of the numbers rp pr are nonnegative. This is the case for

example if the number

) = {aeApl;Ifl’ip(M)} o(Yp) (2.1)

is nonnegative.
One example is the set

{=hp(z); P e P(M)},
defined for any point x € H. This is a positive (H, M )-orthogonal set by ([Arl]
Lemma 3.6).

If L belongs to £L(M) and @ is a group in P(L), we define Yy to be
the projection onto ay of any point Yp, with P € P(M) and P < Q.
Then Yy is independent of P and YV, := {Y;Q € P(L)} is a (H, L)-
orthogonal set.

(2.2)

We shall write Sy/()) for the convex hull in ays/ay of a (H, M)-orthogonal set ).
Notice that Sy;()) does only depend on the projection onto al, of each Yp € Y,
PeP(M).
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Let P € P(M). If each Yp is in the positive Weyl chamber a}, (this condition is
equivalent to say that d()) is positive), we have a simple description of Sy (Y) na}
([Ar3] Lemma 3.1). We denote by (w!'),ea, the set of weights, that is the dual basis
in (afl)* of the set of co-roots {¥;v € Ap}. Then, we have

Su(Y) ={X eap;wl (X —Yp) <0,7€ Ap}. (2.3)

We now recall a decomposition of the characteristic function of Sy;()) valid when
Y is positive. (cf. [Ar3] (3.8)). Suppose that A is a point in a},~ whose real part
AR € a; is in general position. If P € P(M), we define A% the set of simple roots
a € Ap such that Ag(c) < 0. Let ¢ be the characteristic function of the set of
X € ays such that wP(X) > 0 for each a € A and wf(X) < 0 for each « in the
complement of A% in Ap. We define

(X, Y) = ) (1) b (X — V). (2.4)
PeP(M)

By ([Ar3], §3 p22), the function o(-,)) vanishes on the complement
of Sy(Y) and is bounded. Moreover, if ) is positive then op/(-,)) is  (2.5)
exactly the characteristic function of Sy/(Y).

The following Lemma will allow us to define the minimum of two orthogonal
sets.

For P € P(M), we denote by (&f),ea, the set of coweights, that is the dual
basis in af, of the roots {v;vy ee Ap}.

2.1 Lemma. Let P and P’ two adjacent parabolic subgroups in P(M) whose cham-
bers in ap; share the wall determined by the simple root « € Ap n (—Ap/). Then:

1. For all B in Ap — {«}, there exists a unique ' in Ap — {a} such that ' =
B + kga where kg is a nonnegative integer. Moreover, the map  — [ is a
bijection between Ap — {a} and Ap — {—a}.

2. For all p in Ap —{a}, one has @5 = Qf.

Proof :

We denote by N the set of nonnegative integers and by N* the subset of positive
integers.
1. As P and P’ are adjacent, we have ©p = (Xp — {a}) u{—a}. Let 8 € Ap—{a}.
If g € Ap: then we set ' := 3.
Assume that § is not in Apr. Since § € Xpr, there exists © < Apr — {—a} such that
B = Ylsco 60 — kga where the ny’s are positive integers and kg is a nonnegative
integer. Each 0 in © belongs to Xp. Therefore, there are nonnegative integers
(rsm)neap such that 0 =35\ 75,m. We set i 1= D 5650 = B+ kgav.

Let v € Ap —{a}. If v # 3, one has $,(@)) = B(@F) = 0. Thus, for each ¢ € O,
we have 75, = 0, hence 0 = 75505 + 1500
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On the other hand, one has 3 (dzg) = ﬁ(dz[’;) = 1. Thus, for all § € ©, one has
Dseo NoTsp = 1. Since ng € N* and 7543 € N, one deduces that there exists a unique
do € O such that rs 5 # 0 and we have ng, = r5, 5 = 1. This implies that © = {d}
and 8 = 6y — kga. We can take 5 := dp. Hence, we obtain the existence of 5’ in all
cases.

If 3 € Ap satisfies 3] = 8 + kja then 5" = 5] + (kg — kj)a. Since the roots f,
B and —a belong to the set of simple roots Ap/, we deduce that ] = f’. This gives
the unicity of 3.

Let v and 8 be in Ap such that v/ = . Then we have = v + (k, — kg)a.
Since 7, f and « belong to Ap, the same argument as above leads to § = . Hence,
the map 8 — (' is injective.

2. Let f € Ap—{a}. By definition, we have ' = f+kga € Ap —{—a} with ks € N.
Thus we have a(@}) = a(@f) = 0 and B(@F) = B'(@F) = 1. If y e Ap — {B, 0},
then 7' = v + k,a is different from §’ by (1.), thus we have 7(@5’) = 7’(@5’) = 0.
One deduces that @5/ = @5 . O

For Y' and Y? in ayp, we denote by inf”{Y' Y2} the unique el-
ement Z in aj such that, for all v € Ap, one has (@), Z2) = (2.6)
(@, V"), @, Y?).

2.2 Lemma. Let Y' = {Y2, Pe P(M)} and Y* = {Y3, P € P(M)} be two (H, M)-
orthogonal sets. Let Z := inf(Y',V?) be the set of Zp = inf"{V} Y2} when P
runs P(M).

1. The set Z is a (H, M)-orthogonal set.

2. If d()7) > 0 for j = 1,2 then d(Z) > 0. In this case, the convex hull Sy (Z)
is the intersection of Sy (V') and Sy(Y?).

Proof :

1. Let P and P’ two adjacent parabolic subgroups in P (M) whose chambers in ay,
share the wall determined by the simple root o € Ap n (—Ap/). Let v € Ap — {a}.
By definition of orthogonal sets, for j = 1 or 2, one has (0! YE) = (@ Y.
P = d)f,l. Hence we obtain (@1, Zp) = (dzf,l,Zp/) and
(cbf,/,Zp/) = (@f, Zpr). Since the scalar product on ay identifies ay; to aj;, one
deduces that Zp — Zp/ is proportional to c.

2. Let j e {1,2} and P € P(M). By definition, we have d()”) > 0 if and only if
a(Y) > 0 for all « € Ap. By ([Arl] Corollary 2.2), this implies that (@7, Y3) > 0
for all @ € Ap. Let a € Ap. Writing

By Lemma 2.1, we have @

Yi= (@ Yo+ D (@f, Y8+ X,
BeAp—{a}
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with X7 € ay, the condition a(Y}) > 0 is equivalent to
> @ YD-(8.0)] < @, Y)) (e, a).
ﬁEApf{a}

Since the real numbers (d)};,Y]_Z) for § € Ap and —(f,«) for a #  in Ap are
nonnegative, one deduces that

doo@F.Zp)[-B.a)] = > inf (@F,YP), @F,YR)[-(8,q)]

BeA p—{a} BeA p—{a}

<imf (Y @ YA Y (@ Y2I-(8,))

peAp—{a} peAp—{a}
< inf (@, Y3), @5, Y3) (@) = (@F, Zp)(@, ).
One deduces that a(Zp) > 0 for a € Ap, thus d(Z) > 0.

For the property of the convex hulls, it is enough to prove that, for all P € P(M),
one has a} N Sy (V') N S (V?) = afh n Su(Z). By ([Ar3], Lemma 3.1), one has

ap 0 Su(V7) = {X eap;wl (X = V1) <0,7€ Ap}.

Since d)f = cvwff for v € Ap, where c, is a positive real number, the assertion follows
easily. O

2.2  The truncated kernel
We consider the regular representation R of G x G on L?(G) defined by
(Ry1,92)9) (2) = d(yr ' 2ya), ¢ € L*(G),y1, 40 € G.

Consider f € CX(G x G) of the form f(y1,v2) = fi(y1)fa(y2) with f; € CP(G).
Then

R(f) = JG fa fi(y1) fa(y2) R(y1, ya2)dyrdy:

is an integral operator with smooth kernel

Ky(z,y) = L f1(29) f2(gy)dg = L £1(9) Falag)dyg.

In our case (H is split), one has Ay = Ag, and the kernel K is invariant by
the diagonal diag(Apy) of Ay. Since H is not compact, we introduce truncation to
integrate this kernel on diag(Ay)\(H x H).
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We fix a point T in agp. If Py € P(Ap), let T, be the unique translate by the
Weyl group W (H, Ag) of T in the closure aj, of the positive Weyl chamber a}, .
Then

yT = {TP(); P() S P(Ao)}
is a (H, Ap)-orthogonal set. We shall assume that the number

d(T) := inf T
( ) OLGAPO}I;()G'P(A()) a< PO)

is suitable large. This means that the distance from 7" to any of the root hyperplanes
in aq is large.

We denote by u(-,T') the characteristic function in Ag\H of the set of
points x such that

T = klakfg with a € AH\A(), k’l, kg € K and hAO (a) € SAO (yT), (27)

where H = K AgK is the Cartan decomposition of H.

We consider u(-,T) as a Ag-invariant function on H. Thus, there is a compact set
Qp of H such that if u(z,T) # 0 then z € AgQr. Let Q be a compact subset of G
containing the support of f; and f,. We consider g € G and x1, x5 € H such that
f1(9) fa(x7 gxo)u(zy, T)u(xs, T) # 0. Thus, there are wy,ws in Qp and a1, ay in Ay
such that 1 = wyay, x9 = weas and we have g € ) and a:l_lga:Q = wflgwml—lag e )
since Ay = Ag. One deduces that aflag lies a compact subset of Ay. Therefore
the map (g,71,72) — fi(g)f2(x]  gzo)u(ay, T)u(zs, T) is a compactly supported
function on G x diag(Ay)\(H x H).

Hence, we can define

KT (f) = J Ky(z1, zo)u(zy, T)u(ze, T)d(21, z2).
diag(Ag)\HxH

By Fubini’s Theorem, we have

K- | 11(9) ey ga)uer, T, Tl a)dg.
G Jdiag(Ag)\HxH
We apply the Weyl integration formula (1.33). Thus, we obtain

K= 5 o 3 % esun | Ko 5 (28)

MEL‘,(AO) S€Tr TmEKS

where, for S € Ty, x,, € kg and vy € S,, we have

KT (@, ) = | A0 (@) Fryr Tmyys)

J;liag(AM)\H xH Liag(AH)\H xH
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Xf2($f13/f137m7y2$€2)u(5517 T)u(za, T)d(z1, 22)d(y1, y2).

We recall that each z,, in kg and « in S, commute with A,; for S € Ty,.

We first replace (z1,x2) by (y171,y222) in the integral over (z1,x2). The resulting
integral over diag(Ag)\H x H can be expressed as a double integral over a € Ag\ Ay,
and (1, x2) € diag(Anr)\H x H which depends on (y1,y2) € diag(Any)\H x H. Since
Ajp commutes with x,, € kg and v € S,,, we obtain

KT (2,7, ) = |20 () |1 £y wmyy2)

Liag(AM)\HxH Liag(AM)\HxH

X fo (@1 Tryao )uns (w1, Y1, T2, Yo, T)d(w1, T2)d(y1, y2) (2.9)
where

un (@1, Y1, T2, Yo, T) = J u(yy tazy, T)u(y; 'azs, T)da.
A\Anr

Our goal is to prove that K7 (f) is asymptotic to an expression J7(f) where
JT(f) is obtained in a similar way to K (f) where we replace the weight func-
tion wups (1, Y1, T2, Yo, T') by another weight function vy (z1, y1, T2, y2,T) defined as
follows.

We fix M € L(Ap) and P € P(M). Let By € P(Ap) be contained in P. We denote
by Tp the projection of T’p on aj according to the decomposition ay = ay @ aé” )
By (2.2), the set Yy (T') := {Tp; P € P(M)} is a (H, M )-orthogonal set independent
of the choices of Py. Moreover, by ([Ar3] (3.2)), we have d(Yy(T)) = d(T) > 0.
Thus, Y (T) is positive.

For x,y in H, we set
Yp(z,y,T) :=Tp + hp(y) — hp(z).
By ([Ar3], page 30), the set Yy (x,y,T) := {Yp(z,y,T); Pe P(M)} is a (H, M)-
orthogonal set, which is positive when d(T) is sufficiently large relative to z and y.
For x1,z9,y; and 4, in H, we set
Zp(w1,y1, 72,0, T) 1= ian(YP(iUby1>T)aYP($2,?/2,T)) (2.10)
where inf” is defined in (2.6) and
Vw1, Y1, w2, 42, T) := {Zp (w1, 41, 02,40, T); P € P(M)}. (2.11)

By Lemma 2.6, the set Yy (1, y1, T2, y2, T) is a (H, M )-orthogonal set. Moreover,
when d(7T) is large relative to x;, y;, for i = 1,2, one has d(Va(x1, y1, T2,y2,T)) > 0,
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hence this set is positive. We define the weight function v,; by

UM($1,ZJ1,33273/27T) = J UM(hM(a)7yM($1791,$27y27T))da (2-12)
Ap\Axr
where o) is defined in (2.4).
We set
FW= Y e XY s [ T P (2.13)
MeL(Ao)  SE€Tam TmErs So
where

T @y, ) = A (2m) ¥ £y myy2)

Lz‘ag(AM)\HxH Liag(AM)\HxH (2.14)

Xf2($1_1$m7$2)UM(ZE1, Y1, T2, Y2, T)d(xh 172)d(y1, Y2).
Our main result is the following. We will prove it in section 2.4.

2.3 Theorem. Let 6 > 0. Then, there are positive numbers C' and € such that for
all T with d(T) = 6|T|, one has

[KT(f) = J"(f)] < CeIT. (2.15)

2.3 Preliminaries to estimates

We fix a norm | - || on G as in (1.15). Let F’ be a finite extension of F. We set
G' =G xpF and G’ := G'(F’). One can extend the absolute value | - [ to F, and
the norm || - | to G’. For z,y in G', we set

|G 9)] = ]yl

To obtain our estimates, we will use notation of (1.18) and (1.19). Since the
norm takes values greater or equal to 1, we will freely apply the properties (1.20).

2.4 Lemma. Let S be a mazimal torus of H and let M be the centralizer of As in
H. We fix ;e GAMS, =M nMS_. Then, one has

1

1S£1£ |(sztoy, szo)| < inf ||(s'xtay, s'20)|, 21,29 € H. (2.16)

s'eS(F)
Proof :

Since H' Ay is of finite index in H, using (1.21) we may assume that z;, xo belong
to H'Ay. Since Ag = Ap, using the invariance of the property by the left action
of diag(Ag) on (x1,x9), it is enough to prove the result for x; € H' and xo = asys
with ay € Ay and yo € H'.
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To establish (2.16), we first assume that Ag = Ay which implies that the quotient
Ap\S is compact. By (1.21), there is a positive constant C' such that

inf | (sx, 21, s20)|| < C inf |(az; 'z, azs)].
seS a€EAy

We deduce from (1.17) that
[(azy w1, azs)| < 27! lal® s |21] fy:]-
Taking the lower bound in a € Ay, there is a positive constant C; such that

inf |(sz,, 21, 522) | < iz ] (2.17)

We now use the following Lemma of [Ar3] (Lemma 4.1):

If Sy is a maximal torus of H with Ay \S compact, then there exists an
element sy € Sy such that (2.18)

Iyl < ly~"soyll, yeH".

We apply this Lemma to Sy = S. Since S(F') commutes with sg, using the property
(1.17) of the norm, one deduces

[yl < [5y2|*ls0ll,  yo € H', s € S(F). (2.19)

On the other hand S := x,,S,! is a maximal torus of H which satisfies Ag, = Ay
since z,,, € G n M.S,. Applying (2.18) to Sy = Sy, there exists s; € S such that

|z1]| < oy emsiay, 2], @€ HY. (2.20)
The same argument as above leads to

Joill < 8"z 2P| s1]l, @i€ HY,s" e S(F). (2.21)

Then, by (2.17), (2.19) and (2.21), and applying the properties (1.20), we deduce
that

inf | (s, 50200)] < |5/ |5 llasl, 5" € S(F), v,y € Y az € Ap.
(2.22)

To obtain our result, we have to prove that

"z w1 l|sy2llaz] < [(s'2, 21, s'ang) |, 5" € S(F), 21,90 € H' az € Ay (2.23)

We can write S = T'A;; where T is a maximal torus of the derived group H,,, of
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H. We set T" := T(F') and A} := Ay, (F'). Then T" is contained in H''. Moreover,
the intersection of " and A, is finite. Hence, one has the exact sequence

l1>TnAy >TxAy—S—1

Going to F’-points, the long exact sequence in cohomology implies that 7" A", is of
finite index in S(F’). By (1.21), it is enough to prove (2.23) for s’ = t'a’ € S(F') with
t'e T and o’ € Ayy. By (1.5), if 1 € H* then 7, € H' < G"* and 'z 2, € G'.
Since H is split, we have A} = Af,. Then (1.23) gives

latayte| ~ o't xy vz ~ o[tz 2120, o € Ayt T 2 e HY,

and

la't'ys| ~ |a'||[t'ye] o € Ayt € T y, € H'.

Applying (1.20), we deduce that

[ta'wn w]|a'tyollaz] ~ fazlla’[?[t 2w wrzm[tye]l ~ laz]|a’[[ta7 w120y,
(2.24)
for ' € T’ a' € Ay, x1,y0 € H',ay € Ap.
Let us prove that

la'lla’as| ~ [la’[[az]l, o' € Ay, a2 € An. (2.25)

We have |a'as| < [@||lag| by (1.17). Then |a'|[a’as|| < (a’[[laz])? since 1 < [aq].
As|d| = ||d’azas | < ||d’as||az|, we have || |asz| < (|a’az||asz])? and (2.25) follows.
Applying (2.25) in (2.24), we deduce that

[t'a s oty laz]| < o'l 2 21 2m | aaz][[¢'y2]) (2.26)

for ' € T',a' € Ay, x1,y0 € H', ay € Ap.
Since z,,' H'x,, = G'" and A} = AJ,, we obtain from (1.23)
|||t ey ~ |a't o, ey ~ |a't e oy, o € Ayt eT 2y e HY,
and

|a'as|||t'ya| ~ |’ ast'ys||, o € Ay, t' €T ay € Ay, yo € H.

Applying this in (2.26) and using (1.20), we deduce that

[t'aa, z [la't oz ]| < o'tz ] |0t asys|

(2.27)
fora' € Ay, t' €T, xy,y, € H'.
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Then, the property (2.23) follows. This finishes the proof of the Lemma when Ag\S
is compact.

We now prove (2.16) for any maximal torus S of H. Let Ag be the maximal
split torus of S and M be the centralizer of Ag in H. Thus we have Ay, = Ag
and Ap/\S is compact. Let P = MNp € P(M) and let K be a compact subgroup
of H such that H = PK. Each x € H can be written © = mp(z)np(x)k(x) with
mp(x) € M,np(x) € Np and k(x) € K. Then, there is a positive constant C' such
that

inf |[(sz,, 21, s22) | < Cinf ([lszy, mp(0)[[smp(z2)]]) Inp(z)llne(z2)],  (2.28)

for 1,29 € H .NBy assumption on x,,, there are h,, € M and a,, € S, such that
T = hpma,, € M. Hence, we can applied the first part of the proof to (M, S) instead
of (H,S). Therefore, we obtain

inf |[(s27,' w1, s20)| < inf (||S/9€ZzlmP(9U1)HHSImP(xz)H)||”P($1)||H7”LP($2)H7 T1, %2 € H.
seS s'eS(F)

To compare the right hand-side of this inequality to those of (2.16), we will use the
Iwasawa decomposition (1.12) of H’. Let K’ be a compact subgroup of H' such
that H' = P(F)K' = M(F)Np(F')K’. According to (1.13), each y in H’ can be
written y = m’p(y)ns(y)k" with m/s(y) € M(F'), n’s(y) € Np(F') and k' € K’. Then
for x € H and z € M(F'), we have zx = zmp(x)np(x)k = mp(zx)np(z2)k" with
k € and k' € K'. Hence, since K and K’ are compact subsets, there is a positive
constant C” such that

s (z2) " tmlp(z2) temp(z)np(z)| < C', ze M(F'),x e H.

Since zmy,(z) € M(F') for z € M(F') and z € H, we deduce from (1.22) that there
is a positive constant C; such that for x € H and z € M (F’), one has

[np(22) " mip(z2)~amp(z)np(22)| < v and  [np(z2) 'np(z)] < Ch.

By (1.17), we obtain
[zmp(2)] < Cillmp(z2)|[np(22)|* and  [np(@)] < Ci|np(22)].
Using (1.22) again, it follows that
|zmp(z)| < |zz], and |np(2)] <[22,  ze€ M(F),zeH,
hence by (1.20)
[zmp(@)lnp(@)] < |zz], 2e M(F),z e H. (2.29)

We deduce that

[s'mp(z2)[Inp(2)| < |s'za], "€ S(F),z2 € H. (2.30)
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Since z,,, = hyua,, with h,, € M and a,, € S,, one has z,,s'x;} € M n H = M(F’)
for s € S(F’). Therefore, we deduce from (2.29) that

|zms z tmp(z) | |np(21)| < |zms'z o], s €S(F),r e H. (2.31)

Since |82y mp ()| < Jan! [|zms' ey mp ()| and ez ] < am|]s'z5 ],
we deduce the estimate (2.16) from (2.28), (2.30) and (2.31). This finishes the proof
of the Lemma. O

The following Lemma is the analogue of Lemma 4.2 of ([Ar3]).

2.5 Lemma. Let S be a maximal torus of H and let x,, € kg. Then, there is a
positive integer k with the property that, for any given compact subset ) of G, there
exists a positive constant Cq such that, for all v € S, with x,, v € G, and all
x1, 79 in H satisfying x7 2, yx € Q, one has

inf | (27,1, 525)| < Col Ao (275"

Proof :

Let F’ be a finite extension of E such that S splits over F. Recall that we can write
T = hpmay, with by, € H and a,, € S,. Thus we may and will choose F’ such that
hm € H(F') and a,, € S, (F'). For convenience of lecture, if J is an algebraic variety
defined over F, we set J' := J(F’).

By the previous Lemma 2.4, it is enough to prove the existence of a positive
integer k satisfying the property that for any compact subset €2 of G779 there
exists Cq > 0 such that

inf (|52, 15221 < Corl A ()" (2.32)

for all 1,25 € H' and v € S, satisfying ,,7 € G and z 'z, yze € .

Let B" = S’N’ be a Borel subgroup of H’ containing S’ and K’ be a com-
pact subgroup of H’ such that H = S'N'K' = N'S’K’. We can also write
H' = (hpS'hy Y (hyo N'h ) (B K'RY). By (1.21), one can reduce the proof of the
statement for xy € (h,S'h ) (hy, N'h 1) and 25 € S'N’.

Let xy = hpsinih,! and x5 = s159mp with 1,5, € S” and ny,ny € N’. Since
Ty = hpay,, we have x,s12," = hysih !, hence for s’ € S/, we have s’z 'z, =
selrmsiz thynih,t = s'syx thy,nih . We obtain

dnf (Is'z @ [[ls'z2])) = i (1" Bl s ss]).

Notice that xflxmya:g = hmnl_lh;nll’mSl_ll’;nll’m’}/Sngng = hmnflh;nlmeSQng.
Therefore, we are reduced to prove (2.32) for z; = h,nh,! with n; € N’
Ty = Song with ny € N', s € S" and v € S, such that z,,v is o-regular and
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r7 2, yrs € Q. By the properties of the norm, there is some positive constant C’
such that

inf (Js'ayal'za]) < Clllsallnal. @1 = homihyl e = somp. (2:33)
We want to estimate |[ni||||sz2||ne] when z; = h,nih,! and 2o = syng satisfy

x7 2, vy € . For this, we use the isomorphism ¥ from G’ to H' x H' defined
in (1.26). If z € H' then ¥(z) = (x,7) and if y € G satisfies y~! = o(y) then
U(y) = (y,y~1). We set (y1,92) := V(2] '@mya2). Then, we have

Y1 = hmnl_lam'yn%g? = hm(”l_lam'yn2<am7>_l>(am732)7

and
Yo = hpnyta 'y ' nasy = hoy (nfla;f’y’lngfyam) (am7y) *so.

Since H' = N'S’K’, the condition z]'z,, vz, € € implies that there exist two
compact subsets Qy < N’ and Qg < S’ depending only on €’ such that

—1 -1 1 —1_—1
ny apyne(a,y)” € Qn, and nya, Y noya, € Qn,

amys2 € Qg,  and  (any) 'sy € Qg.

We deduce from the second property that sy and v must lie in compact subsets of
S’. We set

vi(y,n1,n2) 1= n tamyne(any)™t and  va(7y,n1,ng) = 0y Hamy)  ngamy.

We consider the map ¢ from N’ x N’ into itself defined by 1 (ny,n2) = (v, ).
Recall that ®(5’, ") denotes the set of roots of S’ in the Lie algebra ' of H' (cf.
1.27). Let v’ be the Lie algebra of N’. For a € ®(5,h'), we denote by X, € n’
the root vector in b’ corresponding to .. Then (a,,7) acts on X, by a, := (a,7)*.
The differential d(,, ,,)¢ of 1 at (n1,n2) € N’ x N’ is given by dn, n) (X1, X2) =
(Ad(amVngl(amV)_l)Yla Ad((am’Y)_lnglam7>Y2) where

Y1 = —Ad(n1) X5 + Ad(amy)Ad(n2) X2

and
ng = —Ad(nl)Xl + Ad(a,m’}/)ilAd(ng)Xg

The map (X;,X3) — (Y1,Y2) is the composition of the map (X, X;) —
(Ad(n1) X1, Ad(ng)Xs), whose determinant is equal to 1, with d.i) where e is the
neutral point of N’ x N’. We deduce that the jacobian of ¥ at (n, ng) is independent
of (ny,n9). At the neutral point e € N’ x N’, we have d.¢)(X,,0) = (—X,, —X,)
and d (0, X,) = (aaXa,a_oXs). Hence, the jacobian of ¢ is equal to

‘ 1_[ aa(l—a,2a>‘pl = |det(Ad(amfy))b//5/\F/]det(l—Ad(am'y)ﬂ)h//y|F/ = |DH,((am’y)*2)|F/.
aed(S’,h)
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Recall that x,,7 is assumed to be o-regular. Thus, by (1.29), one has A, (z,,7) =
Dyi(a,;2y?) # 0 . Then, arguing as in ([HC2] proof of Lemma 10 and Lemma 11),
we deduce that the map ¢ is an F’-rational isomorphism of N x N to itself whose
inverse (v, 1) — (ny,n2) 1= (n1(v, v1,v2), n2(7y, V1, 1)) is rational. Moreover, there
is a positive integer k such that the map

(y7 V1, V2> — Dﬁ(y)k(nl(ya V1, V2>an2(y7yla VZ))

is defined by an F’-rational morphism between the algebraic varieties S x N x N
and N x N. Since vq,15 and v lie in compact subsets depending only on €, one
deduces that there exists a constant Cqy > 0 such that

[(na (1, v2), ma(y, 11, 1)) | < Cor | D (a2 )5 = Carl Ao () [

The Lemma follows from (2.33) and the fact that s, lies in a compact set. O

2.4 Proof of Theorem 2.3

Our goal is to prove that |[KT(f)—J7(f)| is bounded by a function which approaches
0 as T approaches infinity. By definition, K7 (f) and J7(f) are finite linear combina-
tions of SS(, KT (2,7, f)dy and SSU JY (2,7, f)dy respectively, where M € L(Ay),
S is a maximal torus of M satisfying Ag = Ay and z,, € kg (cf. (2.8) and (2.13)).

We fix M € L(Ap) and a maximal torus S of M such that As = Ap. Let
Tm € Kg. To obtain our result, it is enough to establish the estimate (2.15) for
So. [KT(@m; 7, f) = " (2,7, T)|dy. This will be done in the Corollary 2.9 below.

For € > 0, we define
Sy(e,T) = {7 € Sp;0 < |Ag(zpy)|r < e~=IT1}, (2.34)

2.6 Lemma. 1. There exists g > 0 such that the map v — |Ag(zpy)|p™ is
locally integrable on S, .

2. Let € > 0. Let B be a bounded subset of S, and p be a nonnegative integer.
Then, there is a positive constant Cg, depending on B and p, such that

_ el

| Noglas @iy < Cape
So(e,T)nB

Proof :

1. The proof follows those of the group case, we use the similar statement on Lie
algebras and the exponential map. We denote by s the Lie algebra of S. For X € s,
we set (X)) = |det(adX|ps)|p. By ([HC3] Lemma 44), there exists ¢g > 0 such that
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X — n(X)7?° is locally integrable on 5. To obtain the result, it is sufficient to
prove that

for each g € S,, there exists a compact neighborhood Uy of 1 such that

the integral J |Ag(Zmy0y)|p " dy converges. (2.35)

Ug

If z,,7 is o-regular, there is a compact neighborhood U, of 1 in S, such that
|As(mY07)|F = |As(zmy0)|r # 0 for all v € Uy. Hence (2.35) is clear.

We assume that x,,79 is not o-regular. We choose an extension F’ of E such that
S splits over F” and p(z,,) € S, (F'). We use notation of (1.27). Let ®, be the set of
root v in ®(S’, g') such that p(zm0)* = 1. We set

V(’y) = H |1 - ("L‘m'YO) 20C|12W'

aed(S!,¢')—Do

We have A, (2m707) = Dar(p(xmy0)y™?) = det(1 — Adp(2my0)7~?)jg/s and each root
of (S, ¢') has multiplicity 2. Hence, we obtain

|Ag (Zm0Y) e = v(y H 11—y
OzECDO
We choose a compact neighborhood W of 1 in S, such that v(y) = v(1) # 0 for
~veW. Let B = sup 1_[ |1 —~y~2*|%,. Then, for v € W, we have
TEW aed(SL,g")—do
Bl (@myo)e = Br(1) [ [ 11 =77 = v(1)|A(7)]er-
OlECI’o

Consider the exponential map, there exist two open neighborhoods w and U of 0
and 1 in s and S, respectively, such that the map X — exp(7X) is well-defined on
w and is an isomorphism and an homeomorphism onto U. For X € w, we have

A (exp(7X)| 1) [ 11— e2reX)|g,
n(X) wcoig gy UX)lE

We can choose a compact neighborhood wy < w of 0 in s such that this product
is a positive constant ¢ and Uy := exp(Twp) is contained in W. We deduce that

[ iz < () o - (42) | oo

The right hand side of this inequality is finite by our choice of £y3. Hence, we have
proved (2.35).

2. Let g >0 asin 1. We set I, = f | log |Aa($m7)|§1|pd7-
Sq(e,T)nB
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If p is a positive integer, then there is positive constant C” such that |logy|P <
C'y=/% for all y > 1. Since |Ay(z,7)|z" = €17l = 1 for all v € S, (g, T), we obtain

L<C| ) < O [ Ay
Sq(e,T)nB B
If p = 0 then by definition of S, (&, T), one has

Iy = J A (2 ) 52| Ag (2y) [20dry < el J A, () [0 dy.
SU(E,T)HB 5

In the two cases, the result follows from 1. O

2.7 Lemma. Let g > 0 as in Lemma 2.6. Given € > 0, we can choose a constant
¢ > 0 such that for any T € apr, one has

_e=0lT
4

f (KT (@ )]+ 1T (@ )y < ce
So(e,T)

Proof :
We recall that

KT @ 1, f) = | Do (27) V2 f F (0 Tmrs)

diag(AM)\Hx H Liag(AA{)\HX H

X f2(371_193m7932)UM(ZU1, Y1, T2, Y2, T)d(z1, 22)d(y1, Y2)
where

un (@1, Y1, 2, Yo, T) = J u(yy taxy, T)u(y; 'axs, T')da.
Ag\Anm

We first establish an estimate of uy;. Let z,y € H and a € Ay. According to
(1.11) applied to H, we can write y tax = kjagky with ki, ks € K and ag € Ag. By
definition of the norm, there is a positive constant Cj such that

log [y~ az| < Co([lha,(ao)| +1).

If u(ytax) # 0, then, by definition of u(-,T) (cf. (2.7)), the projection of
ha,(ag) in ag\aps belongs to the convex hull in ag\ay of the W (H, Ag)-translates
of T'. Thus, there is a constant C; > 0 such that

inf log |y~ 'zaz|| < C1(|T] + 1). (2.36)
ZEAH

We assume that |7 > 1. Taking Cy = max(2Cy, 1) and using the property
(1.17) of the norm, we obtain
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Jnf log|za < ([T + log ] +log y[)- (2.37)

We apply this to (z1,11) and (29, ys) such that u(y; ‘axy, T)u(y, 'axy, T) # 0.
Hence, we deduce that

Jnf log |za]| < Co(|T]| + log |1 ]| + log [y +log |12 + log [lyz)-

As |z| < |zwm||z 2| and 1 < T, taking the integral over a € Ax\Ay, we
deduce the following inequality

unr (21,91, 22, 42, 1) < ([T +log [, ]| +log |2,y | +log |2 +log 2 ]),  (2.38)
for all x1,y;, 22 and y5 in H.

The function wups(x1, y1, e, y2, T) is invariant by the diagonal (left) action of Ay,
on (x1,z2) and (y;,y2) respectively. Since z,, commutes with Ag = Ay (cf.
Lemma 1.1), we can replace log |z, x| + log|z2| and log |z, 'yi| + log|y:| by

inf log|(ax, 'z, axs)| and inf log|(az; 'y1,ays)| respectively. By assumption,
acAps acApnr

the quotient Ay/\S is compact, then, using (1.21), one has

-1
m

-1

inf |(ax twosa’)|, x2’ € H.

AV IPSE
o Wazi'a, )] ~ g (o2

Therefore, as ||T'| = 1, the inequality (2.38) gives
unr (21, Y1, 02,92, T) < |T'|+log ilgg | (s, 21, 5222) ] +1og }s}gg | (s, 592) |, 21, 91, 9, 92 € H.

In other words, this means that there are a positive constant C'; and a positive
integer d such that, for all xq,y,,xs and y € H, one has

up (21, Y1, T2, 42, T) < Cs(|T|| + log ng |(sx,, w1, sz9)| + log }92; (s yn, sya) )7

Let €2 be a compact set containing the support of f; and f,. By Lemma 2.5,
there is a positive integer k (independent of Q) and a positive constant Cgq such
that, if 2,,7 € 2,5, is a o-regular point with f1(y; 'zmyys2) f2(2] 'Tmyzs) # 0 for
some x1,T9,y; and yo in H then

unt (21, Y1, 22,42, T) < Col|T| + log [Ag (7)]7F)".

This inequality and the expression of K7 (z,,,7, f) give

K" (@m, 7, £l < Ca(IT] +log | Ay (zmy) )M (f1) (@my) M(f2) (2], (2.39)
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where M(f;) is the orbital integral of f; defined in (1.34). By Theorem 1.2, these
orbital integrals are bounded by a constant Cy on (z,,5,) NnG?~"%9. Hence, we obtain

[K" (@m, 7, )l < CaC3(|T] + log A () 7).

Let B be the set of v in S, such that KT (x,,,7, f) # 0. Then B is bounded by
Theorem 1.2 and (2.39). Using Lemma 2.6, we can find a constant C' > 0 such that

_e=lT]
4

f |K" (2,7, f)ldy < Ce (2.40)
So(e,T)

If |[T| <1, then (2.36) implies that if u(z 'ay) # 0 then

inf log |zal| < 2C} + log [z| + log [y|.
ZGAH

The same arguments to obtain (2.38) imply that there is a positive constant C such
that

unr (21, Y1, 2, 42, T) < (CF + log |, ]| +log 2, g1 | + log [z + log 2]), (2.41)

for x1,y1,x2 and yo in H. Replacing |7 by C] in the reasoning after (2.38), we

deduce that | K" (2,7, f)|dy is bounded. Hence, one obtains (2.40) for
So(e,T)
) <1.

We will now establish a similar estimate when K7 is replaced by J?. For this,
it is enough to prove that the weight function v); have an estimate like (2.38). We

will see that this follows easily from the definition of vy,;. Indeed, for 1, ¥y, x2 and
Yo in H, one has by definition

’UM(fl'l, Y1, T2, Y2, T) = J UM(hM<a>a yM(ith Y1, T2, Y2, T))d@
Ap\An

where o/ (-, Yar (21,41, 2, Y2, T')) is a bounded function which vanishes in the com-
plement of the convex hull Syr(Vas(x1,y1, 22,92, T)) of the (H, M)-orthogonal set
Y (x1,y1, 0, y2,T) (cf. (2.5)). Since Va(x1,y1,%2,y2,T) is the set of points
Ip = ian(Tp + hp(yl) — hﬁ(l‘l),Tp + hp(yg) — hﬁ(!)ﬁg)) for P € P(M) (Cf (211)),
if o (X, Yo (21, 91,22, y2, 1)) # 0 then | X | < || Zp|| for P € P(M). By definition of
Tp, one has ||Tp| < |T.

Let us prove that for P € P(M), one has

|hp(z)| <1+log|z|, zeH. (2.42)

We first compare |m| and |hy(m)| for m e M. Let M = K AoKys be the Cartan
decomposition of M where K, is a suitable compact subgroup of M. Then, each
m € M can be written m = ka(m)k’ with k, k' € Kj; and a(m) € Ag. Since Ky is
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compact, the property (1.21) gives |m| ~ |a(m)|, m € M and this property does
not depend on our choice of a(m). By (1.25), we have |a| ~ el q € A,.
Hence, there are a positive constant C' and a nonnegative integer d such that
elfao@m)l < C|m||¢ for all m e M. By (1.8) applied to (M, Ay), if a € Ay then
har(a) is the orthogonal projection of ha,(a) onto aps, thus |[hy(a)| < |ha,(a)l.
Since hpr(m) = hp(a(m)) for m € M, we obtain that there is a positive constant
(" such that

[har(m)| < [hag(a(m))| < C'(1 +log |ml), me M. (2.43)

By definition (cf. (1.13), (1.14)), we have hp(x) = hy(mp(z)) for x € H and by
(1.22), we have |mp(z)| < |z|,z € H. Thus, our claim (2.42) follows from (2.43).

Therefore, there are a positive C; and a positive integer d such that if
O-M(hM(a’%yM(xl?ylaany%T)) 7 07 then

[har(a)] < | Zp| < Cu(|T] + log 1] + log [y | + log 2] + log [lya])*.

Since ||z| < |||z, x| for z € H, this gives the following estimates of vy, analogous
to (2.38) and (2.41):

If |7 > 1 then
v (@1, Y1, 2, Yo, T) < | T +log |, w1 [ +log |2,y | +1og [z +1og |y, (2.44)
T1,Y1,T2,Y2 € H7

and

there is a positive constant C4 such that for |7’ < 1, one has
v (@1, Y1, @2, 2, T) < Chtlog o || +1og a7y +log 2o +log [ya]l,  (2.45)
T1,Y1,%2,Y2 € H.

Arguing exactly as above for KT, we deduce that there is a positive constant C”
such that

_e=lT]

j T (@, Pldy < Cle=™
So(e,T)

This finishes the proof of the Lemma. O

2.8 Lemma. Fiz § > 0. Then, there exist positive numbers C,e1 and 9 such that,
for all T with d(T) = §|T|, and for all x1,y1,x2 and yy in the set H., := {x €
H; ||z < eI}, one has

|UM($17?/1a51327y27T) - UM(xhylva’yz?T” < Ce_ngTH‘ (246)
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Proof :

If |T| remains bounded then, by (2.38), (2.41), (2.44) and (2.45), the functions u,
and vy, are bounded and the result (2.46) is trivial. Thus we have to prove the
Lemma for |7'|| sufficiently large and d(T") = §|T|.

By (5.8) of [Ar3], we can choose €5 such that d(Vys(z,y,T)) > 0 forall x,y € H.,.
By the discussion of l.c. bottom of page 38 and top of page 39, there is a constant
Co > 0 such that, for T with d(T) = §|T| and |T| > Cy, for x,y € H., and
a € Ag\Axr, one has

u(y tax, T) = op(ha(a), Vo (z,y,T)).

By Lemma 2.2, for X € ays, we have

UM(Xa yM<x17y17$27y27T)> = UM(X7 yM(xhylaT))O-M(Xa yM(x27y27T))'

Thus, one deduces that

on(har(a), Yar (w1, y1, 72,42, T)) = U(yflath)u(yz_lax% T),
for a € Ag\Ay. Hence, for d(T) = 0||T| = §Cy, and x;,y; in H.,, we have

UM(Ibythay%T) = UM(I17?J1,$2,?J27T)-

This finishes the proof of the Lemma. O

Theorem 2.3 follows from the corollary below.

2.9 Corollary. Fix 6 > 0.There exist two positive numbers ¢ and ¢ > 0 such that,
for all T with d(T) = 6T, one has

f KT (2,7, f) = T @y, )] dy < eI, (2.47)
YESs

Proof :

By Lemma 2.7, it is enough to prove that we can find positive numbers ¢, ¢’ and Cy
such that

f K" (0,7, ) = T (@, 7, ldy < Coe= 17 (2.48)
v€S6—Ss(e,T)

where S,(¢,T) is defined in (2.34).

Let € > 0. Let € be a compact subset of G which contains the support of f; and
fo. We will estimate |ups (21, y1, T2, y2, T') — vpr (21, Y1, T2, Y2, T)| for xq, 29,1 and ys
in H satisfying o7 2,,v22 € Q and y; '2,,vy2 € Q for some v € S, — S,(e,T) with
Tmy € G779, For this, we will use the invariance of the functions w,; and vy, by
the diagonal left action of Ay on (x1,z5) and (yi, ys) respectively.
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By Lemma 2.5, there are a positive integer k£ and a positive constant Cgq, (de-
pending only on ) such that, for all v € S, — S,(¢,T) with z,,y € G " and for
all z;,9; in H, i = 1,2 with 27 'z, v2o and y; 'z,myye in Q, we have

ing |(sz ey, 5)]| < Colg(zmy) ™" < Coekel?l (2.49)
se

and
ing H(S'I;Llyb Sy2)H < CQAo<xm7)7k < CQ@kE”T”.
s€

Since Ap\S is compact, we deduce from (1.21) and (2.49) that there is a constant
C{, > 0 such that

inf ||(ax,'71,axy)| < C&eksl\Tll'
aEA]W

Thus, for n > 0, there is ag € Ajs such that

lagz oy ||| aozs| < Coer<ITl + 1. (2.50)
Since Ay = Ag, the point ap commutes with z,, by (1.28) and we have |agz;| <
|zl 25 a0z .

If |T| remains bounded, then |agx;||,7 = 1,2 are bounded by a constant inde-
pendent of |T'||. By the same arguments, there is a; € Ay such that |ajyl,i = 1,2
are bounded by a constant independent of |T|. Using the invariance of wys
and vy by the left action of diag(Ays) on (x1,z2) and (y1,ys) respectively and
the estimates (2.38), (2.41) , (2.44) and (2.45) for wuy, and vy, we deduce that
lung (21, y1, T2, Y2, T) — var (21, y1, T2, y2, T)| is bounded by a constant independent of
T and of x;,y;. Recall that by Theorem 1.2, the constant

Cy = J M) () M fol) )y

is finite. We deduce that § o o o [KT (2,7, f) = J"(2m, 7, f)|d7 is bounded,
hence we obtain (2.48).

We assume that ||7] is not bounded. Let £1,¢9 and C as in Lemma 2.8. Taking
|T| to be sufficiently large and e such that ke is smaller than the constant 5, we
can assume by (2.50) that

lagzi| < e=I"!, i=1,2.

The same arguments are valid for [ly;[|, ¢ = 1,2. Thus, there is a; € Aj; such that

|layy;| < eIl i =1,2.
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Using Lemma 2.8 and the invariance of uy; and vy, by the left action of the diagonal
of Ay on (x1,29) and (y1,ys) respectively, we deduce that, for all T with d(T) >
3| 7|, one has

\wunr (@1, Y1, T2, Y2, T) — vpr (@1, Y1, T2, Yo, T)| < CeTl

Hence, we obtain

J (KT (2,7, f) = T (@, 7, T)| < CCre==I71,
S—S5(e,T)

where Oy = §o M(|fi])(@my)M(|fo])(xmy)dy. This finishes the proof of the
Corollary. O

2.5 The function J7(f)

The goal of this section is to prove that J7(f) is of the form

N
Z (T, f)esT (2.51)
where & = 0,&1,...,&y are distinct points in iaf and each pi (7, f) is a polynomial

function of T'. Moreover, the constant term J(f) := po(0, f) is well-defined and is
uniquely determined by KT(f). Except for one detail, our arguments and calcula-
tions are the same as those of section 6 of [Ar3]. We give the details of proof for
convenience of the reader.

Recall that J7(f) is a finite sum of the distributions

1/2 _
T o) = 8o ) | | A v02)
diag(Alw)\HXH diag(A]u)\HXH

x fo(x7 T my@a)on (21, Y1, T2, yo, T)d(21, 22)d(y1, yo)
where M € L(Ap), S is a maximal torus of M such that As = Ay, x, €
ks and vy (T1,y1, 02,42, T) = SAH\AM or(har(a), Yar (21, y1, 22,92, T))da where
Y (x1,y1, a9, y2, T) is defined in (2.11).

We first study the weight function vy, as a function of 7. We fix M € L(Ap) and
x1,Y1, e and yo in H.

Let %y = (apF + am)/apg and gM := (@pmr + ag)/ag be the projection in
aprr/ap of the lattices ap r and apr respectively. By (1.10), one has

avp/0pr = Gup/aue O ag ~ L. (2.52)
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For M = Ay, we replace the subscript Ag by 0. We denote by £V := Hom(.%, 2wiZ)
the dual lattice of a lattice .Z.
Let P € P(M). We introduce the following sublattice of .Z),. For k € N, we set

Ha g = klog(q)d,a e Ap,
where ¢ is the order of the residual field of F, and

fM,k = Z Z/v‘a,k-
OéEAp
Then %, is a lattice in af; ~ apr/ag independent of P and by ([Ar2] §4), one can

find k£ € N* such that for all M € L£(Ay), one has
G%M,k c ;?M

The set of points ), . Ap Yok With Y, €] —1,0] is a fundamental domain of %)
which we denote by Day .

For X € L/ Ly, and Y € ay/ay, we denote by Xp(Y') the represen-

tative of X in £ such that Xp(Y) —Y € Dy (2.53)
For A € aj ¢, we set
QPJC(A) = Uol(aﬁ/$M7k)_l H (]_ _ e_k(l‘a,k))‘ (254)

aEAP

We fix T € app. By definition of oy (cf. (2.4)), the function vy, depends only
on the image of Tp in .£),. Hence we can assume that T lies in the lattice %,. For
P e P(M), the map T — Tp sends surjectively %5 onto the intersection of %, with
the closure a}, of the chamber associated to P. Thus, we may restrict T to lie in
the intersection of % with suitable regular points in some positive chamber ag of
ap\ao. Then the points Tp range over a suitable regular points in £, N a;.

We recall that Yy, (x1, y1, 2, Y2, T) is the set of points Zp := Zp (1, y1, T2, Yo, T')
defined in (2.10). Thus, we can write

Zp = Tp + Zlog with ZIOJ = ian(hp(yl) - hﬁ(l’l), hp(yg) - hf(l’g)) (255)

Notice that the points Z% do not necessarily belong to the lattice Z;. It is the
only difference with [Ar3] section 6 in what follows.

2.10 Lemma. There is a positive integer N independent of M and polynomial
functions q¢(T) for & € (%‘ZOV)/‘,%V (depending on x1,y1, o and ys ), such that
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om (21, Y1, T2, 42, T) = 2 qe(T)esT).
e(N 20/ %y

Moreover, the constant term Upr(x1,y1, T2, y2) = qo(0) of var(z1,y1, 22,2, T) is
given by
~ . _ X 0 _
O (21,91, T2, Y2) :}XIL%( Z L) Lar s Z AXPZRDg, L (A)7Y).
PeP(M) XeZy /L k
Proof :

The kernel of the surjective map hy @ Ag\Ay — ayp/apr is a compact group
which has volume 1 by our convention of choice of measure. Thus, using (2.52), we
can write

om (21, Y1, T2, Y2, T) 1= Z om (X, Vi (w1, y1, 22, 42, T)).
XE,?M

For our study, it is convenient to take a sum over .£);. The finite quotient .:2\2]\} Y
can be identified with the character group of .Zy;/-%y under the pairing

(v, X) € L)Ly x Lur) g — .
Hence, by inversion formula on finite abelian groups, we obtain

,UM(xlaylax%yQaT) = |'=§/ﬂM/‘=§/ﬂM’71 Z Z O-M(Xv yM(xlvylax%yQ’T))ey(X)'
ve 2y Ly, X€4m

Coming back to the definition of oy, (cf. (2.4)), we fix a small point A € (ap/an)E
whose real part Ay is in general position. One has

O'M(X7 yM($1,y17$27y27T)) = Z (_1)|A’A)|<P%(X - ZP)
PeP(M)
= lim Y (—1)APOR(X — Zp)et ™).

A—0
PeP(M)

By definition of ¢, the function X ~— e*X) is rapidly decreasing on the support

of X — (X — Zp). Hence, the product of these two functions is summable over
X € Zy;. Therefore, we can write

var (1, y1, o, Y2, T) = Z /1\1% Z FE(A) (2.56)

Vel )Ly PeP(M)

where N A
FEN) = | L/ L Z (—1)APA (X — Zp)eM ),

XGX]M
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The above discussion implies that
the map A — Y ppy F5(A) is analytic at A = 0. (2.57)

We fix P e P(M). We want to express F%(A) in terms of a product of geometric
series. For this, we write

FI(A) i= | L/ Lo Z Z DABOA (X + X' — Zp)eM X +X),
XeZLy /L X' €Lk
(2.58)

Let X € Zy /% k- Recall that Xp(Y) is the representative of X in .%), such that
XP(Y) —Ye DMJg. We set

XpY) = Xp(Y) + ) tak

A
aeAp

Thus X5(Y) is also a representative of X in .%),. Taking Y := Zp, we can set
Pp(X + X'~ Zp) = pp(Xp(Zp) + X'~ Zp)

n (2.58). The set of points X’ € £ such that this characteristic function equals
to 1 is exactly the set

{ Z Nollak — Z Naltaks Na € N}

A A
OLGAP OCEAP_AP

Therefore, a simple calculation as in [Ar3] top of page 45 gives
( 1)|A | Z SO/]E(X + X/ o ZP)e(A-H/)(X-i-X/)
X’Ef]v[yk

e(AJFV)(XP(ZP))( H (1 _ e*(/\ﬂ’)(#a,k))*l_

OéEAP

(2.59)

We have fixed the Haar measure on a¥, ~ ays/ac with the property that the quotient

of apr/ag by the lattice .:?M has volume 1. Thus, we have

L/ Ll [T (1= e et = | 2y By Op (A + )7

aEAp

By the above equality, (2.58) and (2.59), we obtain

FEA) = | L/ Sarsl ™ D) e R @00 (A + ) (2.60)
XeLn /L ke
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Let X € L/ Lk We recall that Tp belongs to £y for P € P(M) and
Zp = Tp+7% (cf. (2.55)). By definition (cf. (2.53)), the point Xp(Zp) is the unique
representative of X in £y such that Xp(Zp) —Tp — Z% € Dary and (X — Tp) p(Z3)
is the unique representative of X —Tp in £y such that (X — Tp)p(Z%)—Z € Dyr .
Hence, we deduce that

Xp(Zp) = (X —Tp)p(Z%) + Tp. (2.61)
Replacing X by X — Tk in (2.60), we obtain

Fp(N)' = | L/ Larp DY) eI Xe @0 (A +0)t (2.62)
XGgM/gM,k

where Xp(Z%) is independent of T. Thus by (2.56), we have established that
om (21, Y1, 2, Y2, T) is equal to

> lim ( o /LT Y, eI IR g (A ).

ve 2y | Ly PeP (M) XeLyv /L k
(2.63)

Recall that the expression in the brackets is analytic at A = 0 (cf. (2.57)). To
analyze this expression as function of T', we argue as in ([W1] p.315). We give the
details for convenience of lecture. We replace A by zA. The map z — 0py(zA+v)~!
may have a pole at z = 0. Let r denotes the biggest order of this pole when P runs
P(M). Then, using Taylor expansions, one deduces that

/1\1_1% ( Z |$M/$M,k|_1 Z <A+l/Tp+Xp 6 (A + l/)_l) _

PEP(M) XGKXM/KZA{JQ

om _ or—m
Z Z c. 2 a_m(e<zA+1/,TpJrXP(Z%)>)[Z:O]a (Z Hpk(ZA + I/) 1>[z=0]’
m= OPEP M) Xefwj/fjuk z 2

where (), = o '|gM/ng| 1
But we have
6m z v X P m v,
82:_’”(€< A+ ,TP+XP(ZP)>)[Z_ o= (<ANTp+ Xp(Z%) >)me= Tp+Xp(Zp)>
and ————(2"0p(2A + v)~").—q) is independent of Tp.

Therefore, we deduce that vy (x1,y1, 22, y2,T) is a finite sum of functions
aru(Tp)e" ), v e Zy) 2y, P e P(M),

where ¢gp, is a polynomial function on ay.
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~ Vv
Since £y < £, are lattices of same rank, one can find a positive integer N

such that N %V c 4. Therefore, by our choice of T" and the above expression,
we can write

v (@, g o2,y T) = >0 qe(T)efD,
te(y2) /Ly

where ¢¢(7') is a polynomial function of 7. This gives the first part of the Lemma.

Since the polynomials g¢¢(7") are obviously uniquely determined, the constant
term Oy (21, Y1, T2, Yo2) := qo(0) is well defined. To calculate it, we take the summand
corresponding to v = 0 in (2.63) and then set T'= 0. We obtain

Om (21, Y1, Ta, Y2) = }\if%( Z | L/ Lk 2 €<A’XP(Z?’)>9P,1¢(A>_1)-

PeP(M) XGXM/XJW’]Q

This finishes the proof of the Lemma. O

We substitute the expression we have obtained for vy, in Lemma 2.10 into the
expression for JT(x,,,v, f). Hence, we obtain the following similar decomposition

for JT(f).

2.11 Corollary. There is a decomposition

I = D pT. e, TeLnaf,
te(w %)%y

where N is positive integer and each pe(T, f) is a polynomial function of T. More-
over, the constant term J(f) := po(0, f) of JL(f) is given by

W= 5 e XN esan [ Temr it

MeL(Ao) SEThr TmEKS S

where

Tt f) = |Aa<xmv>|1/2f £ Twri)

diag(AM)\HxH Liag(A]\/[)\HXH

Xf2(951_133m7$2)?7M(x1; Y1, T2, ?J2)d($17 xQ)d(yh y2)-

A Appendix. Spherical character of a supercusp-
idal representation as weighted orbital integral
Let (m,V) be a unitary irreducible admissible representation of G. We say that 7

is H-distinguished if the space V* = Homy(r,C) of H-invariant linear forms on
V' is nonzero. In that case, a distribution mg ¢, called spherical character, can be
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associated to two H-invariant linear forms &, & on V' (cf. definition below). By ([Ha]
Theorem 1), spherical characters are locally integrable functions on G, which are
smooth on the set of o-regular points of G.

From now, we assume that Ay = {1}. We fix a H-distinguished supercuspidal
representation (7, V) of G. We denote by d(7) its formal degree.

The aim of this appendix is to deduce from our main results, the value me ¢ (g),
when g € G is o-regular and &,& € V*# | in terms of weighted orbital integrals of
a matrix coefficient of 7 (cf. Theorem A.2 ). This result is analogous to that of J.
Arthur in the group case ([Ar2]). Notice that this result of J. Arthur can be deduced
from his local trace formula ([Ar3]) which was obtained later.

Let (-,-) be a G-invariant hermitian inner product on V. Since 7 is unitary, it
induces an isomorphism ¢ : v — (-, v) from the conjugate complex vector space V of
V and the smooth dual V' of V, which intertwines the complex conjugate of 7 and
its contragredient 7. If ¢ is a linear form on V', we define the linear form EonV by
§(u) = &(u).

For & and & two nonzero H-invariant linear forms on V', we associate the spherical
character mg, ¢, defined to be the distribution on G given by

me, e, (f) = Y. &(r(fu)&(u),

ueB

where B is an orthonormal basis of V. Since 7(f) is of finite rank, this sum is
finite. Moreover, this sum does not depend on the choice of B. Indeed, let (7%, V*)
be the dual representation of 7. For f € CX(G), we set f(g) := f(g7"). By ([R]

Théoreme II1.3.4 and 1.1.2), the linear form 7%(f)¢ belongs to V. Hence we can
write ¢ (7*(f)€) = X5 (T*(f)€) (v) - v where (A, v) — X - v is the action of C on
V. Therefore we deduce easily that one has

me,e(f) = & (T (&) (1.1)

Since T is a supercuspidal representation, we can define the H x H-invariant pairing
LonV xV by

Clu,v) = JH(T(h)u, v)dh.
By ([Z] Theorem 1.5),

the map v — &, : u — L(u,v) is a surjective linear map from V onto (1.2)
Vel '

For v,w € V, we denote by ¢, the corresponding matrix coefficient defined by
Cow(g) = (T(g)v,w) for g € G.
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A.1 Lemma. Let £,& € V¥ and v,w e V. Then we have

ULSRS (év,w) = d(7)71£1 (U)W

Proof :

By (1.2), there exist v; and vy in V such that &; = &, for j = 1,2. By definition of
the spherical character, for f € CP(G) and B an orthonormal basis of V| one has

me e (f) = D f Fu, v1)dh L (r(h)u, vy)dh

ueB

- Z J;{ H(uv T(f)T(hl)Ul)(T(hg)vg, u)dhldh2

ueB
= JH H(T(hg)?)g,T(f)T(hl)'Ul)dhldhg

Hence we obtain

me, 52 J f f hlghg UQ,Ul)dgdhlth (13)
HxH

Let f(g) := ¢yw(g9) = (7(g9)w,v). By the orthogonality relation of Schur, for hy, hy €
H | one has

L(T(Q)T(hg)vz, 7(hi)or)(r(9)w,v)dg = d(7) ™" (1(ha)va, w) (v, T(h1)vr).
Thus, we deduce that

ULSRS (f) = d<7)71’5w(v2)£v1 (U) = d(T)ilfl (U)m O

For M € L(Ay), we define the weight function wy; on H x H by

(Y1, y2) = (1,91, 1, y2),

where 0y is defined in Lemma 2.10 and 1 is the neutral element of H. For f € C*(G),
we define the weighted orbital integral of f by

WM(f)(g) = ’Aa(g)\lﬂf Fyigy2)wa(yr, y2)dyrdys, g€ G779 n M.

HxH

A.2 Theorem. Let M € L(Ay) and S € Ty. Let xp € kg and v € S, be such that
Ty s o-reqular. Then, for v,w eV, we have

CMCS 2 VWM (Cv,w) (Tm7) = Mg, & (Tm7)-
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Proof :

Let fi be a matrix coefficient of 7 and fy € CP(G). We set f := fi ® fo. For z € G,
we define

)= | fitow) foluge)du,
el
so that
K¢(z,y) = [p(yz~")n](e).
If 7 is a unitary irreducible admissible representation of G, one has

m(p(yr)h) = f £ (2u) folugy)(g)dudg

GxG

= J f1(zu) fo(ug)m(u™ ugy ™ dudug = J fr(urh) fo(ug)m(uyzusy ™) dus dusg
GxG GxG

= w(f)m(@)m(fa)m(y ™).

Since 7 is supercuspidal and f; is a matrix coefficient of 7, we deduce that
W(p(yxfl)h) is equal to 0 if 7 is not equivalent to 7. Therefore, applying the
Plancherel formula ([W2] Théoreme VIIL1.1.) to [p(yz~')h], we obtain

Ky(x,y) = d(r)tr(r(fO)7 (@) (f)r(y™).

We identify V ® V with a subspace of Hilbert-Schmidt operators on V. Taking
an orthonormal basis Bys(V) of V. ® V for the scalar product (S,S5") := tr(S5™),
one obtains

Ki(z,y) = d(n)tx (r()r(@)7(L)rW)*) = dr)(r(F)r@)r(f2), 7))
—d(r) Y, (@), S ), 5)

SeBrs(V)

=d(r) > tr(r(@)7(f)ST(f)tr(r(»)S),

SeBrs(V)

where the sums over S are finite since 7(f) and 7(f;) are of finite rank. Therefore,
the truncated kernel is equal to

K'(f)=d(r) Y. PrFer(f)S)Pr(S)

SeBus(V)

where

T

PI(S) = L tr(r(h)S)u(h,T)dh, SeVV.
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For 5@u € V@V, one has tr(7(h)(6@v)) = c;,(h). Since ¢;, is compactly supported,
the truncated local period P (S) converges when [T approaches infinity to

P.(S) = f te(r(h)S) dh.
H
Therefore, we obtain

lim  K”(f) = d()mp, p, (f), (1.4)

IT]—+c0

where mp_ p, is the spherical character of the representation 7 ® 7 associated to the
Hx H -invariant linear form P, on V® V.

Recall that J(f) is the constant term of J7(f). We deduce from Theorem 2.15
that

d(r)mp, p.(f) = J(f). (1.5)

We now express mp, p, in terms of H-invariant linear forms on V. Let Vi be the
orthogonal of V* in V. Since &,(v) = &,(u) for u,v € V, the space V is the kernel
of v — &,. Let W be a complementary subspace of Vg in V. Then, the map v — &,
is an isomorphism from W to V*# and (u,v) — &,(u) is a nondegenerate hermitian
form on W. Let (ey,...,e,) be an orthogonal basis of W for this hermitian form.
We set & =&, for i = 1,...,n. Thus we have §;(e;) # 0.

We identify V and V by the isomorphism ¢. We claim that

= D

Indeed, we have P(v®u) = &,(u) = & (v). Hence, the two sides are equal to 0
onVVy+Vyg®V + Vg ®Vy and take the same value & (e;) on e ® e; for
k,l e {1,...n}. Hence, by definition of spherical characters, we deduce that

&®¢ (1.6)

mee(h@F) = Y, () @) en) Pueu)

u®ue 0.b.(VRV)

- Y S e SIS EE ).

u@vE 0.b. V®V 5,j=1

where 0.b.(V ® V) is an orthonormal basis of V ® V. By definition of £ for £ € V*H,
one has £(7(f1)u) = £(7(f1)). Therefore, we obtain

mp, p.(f1® f2) = Z (e mgi,gj(fl)mgi,gj(fz)- (1.7)

i,7=1 SJ 6]
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Let v and w in V. Let f; := Co,w SO that f; = Cow- - fve Vg orwe Vg, it follows
from Lemma A.1 that mg, ¢ (f1) = 0ford,j € {1,...,n}, hence mp, p (f1 ® f2) = 0.
Thus, we deduce from (1.5) that

j(cvyw ® fa) =0, wveVyorweVy. (1.8)

Let k,le{1,...,n}. Weset fi := c, ¢, hence fi = ¢¢,.,. By Lemma A1, one has
me, ¢ (f1) = d(7)7'&i(e1)€;(ex). Therefore, by (1.5) and (1.7) we obtain

J(Cek,ez ® f2) = mﬁl,£k<f2)' (1'9)
By sesquilinearity, ones deduces from (1.8) and (1.9) that one has
J(Com ® fo) = me, 6, (f2) v,weV. (1.10)

Let (J,)n be a sequence of compact open sugroups whose intersection is equal to
the neutral element of G. The characteristic function g, of J,x,,v.J, approaches the
Dirac measure at x,,y as n approaches +oo. Thus, if v,w € V then mg, ¢, (g,) con-
verges to me, ¢, (). By Corollary 2.11, the constant term J(c, ., ® g,) converges
to cprCs .z, WM (Cyw)(Tmy). We deduce the Theorem from (1.10). O
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