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Abstract

A multiplex network has links of different types, allowing it to express many overlapping types of relationships.
A core task in network analysis is to evaluate and understand group cohesion; that is, to explain why groups of
elements belong together based on the underlying structure of the network. We present Detangler, a system that
supports visual analysis of group cohesion in multiplex networks through dual linked views. These views feature
new data abstractions derived from the original multiplex network: the substrate network and the catalyst network.
We contribute two novel techniques that allow the user to analyze the complex structure of the multiplex network
without the extreme visual clutter that would result from simply showing it directly. The harmonized layout visual
encoding technique provides spatial stability between the substrate and catalyst views. The pivot brushing interac-
tion technique supports linked highlighting between the views based on computations in the underlying multiplex
network to leapfrog between subsets of catalysts and substrates. We present results from the motivating applica-
tion domain of annotated news documents with a usage scenario and preliminary expert feedback. A second usage
scenario presents group cohesion analysis of the social network of the early American independence movement.

Categories and Subject Descriptors (according to ACM CCS): Visualization [Human-centred computing]: Visual-
ization Techniques—Graph drawings

1. Introduction

In the exploratory visual analysis of network data, the high-
level task of detecting structural patterns often involves the
lower-level abstract task of understanding groups. Under-
standing and explaining the reasons that elements of the
same group belong together can be framed as many related
questions: What makes a group a whole? Why are these enti-
ties tied together? How do different groups compare to each
other? Are all groups equally homogeneous?

Our motivation to address this problem came from work-
ing with archivists at INA, the French national institute
responsible for archiving and reselling all news material
broadcast within France over the past several decades. They
must create groups of documents in response to requests
from a diverse set of potential users including television and
print journalists, documentary filmmakers, and contempo-
rary talk show creators. These groups are based on many
possible criteria, including people, places, and topics. The
archivists need to validate that the proposed groups are a

good match with these requests, and thus are interested in
examining the group structure in detail.

For example, in a collection of news documents such as
newspaper articles and TV news excerpts, links between
documents can be inferred if they share similar content.
There are several different ways to group documents to-
gether: according to whether they concern the same people,
or describe the same places, or are about the same topics.
Each of these ways of grouping them yields a different set
of link relationships. To precisely capture the full structure
of the relationships between documents, the network should
have multiple layers, where the links induced by sharing
one kind of similarity are assigned to a different layer than
those for a different similarity measure. This kind of net-
work, where there are links of different types, is called a
multiplex network [DDSRC∗13].

The task of analyzing group cohesion is difficult with
multiplex networks because they express many overlapping
types of relationships simultaneously. This problem is well
suited for interactive visual analysis through a combination
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2 B. Renoust & G. Melançon & T. Munzner / Detangler

of interactive exploration initiated by the user and sophisti-
cated computational support; in short, visual analytics. The
combination of the data abstraction of multiplex networks
and the task abstraction of group cohesion analysis arises
in many domain contexts from bioinformatics to digital hu-
manities. In this paper we present two usage scenarios: an
annotated news document example from the archivists who
originally piqued our interest in this problem, and a social
network analysis example using data from the early Ameri-
can independence movement.

The first contribution of this paper is the design and imple-
mentation of Detangler, a system to support the interactive
visual analysis of multiplex networks. A second contribution
is the new data abstraction of two networks derived from the
original multiplex network: the substrate network contains
the entities that are the focus of exploration, and the catalyst
network captures the connections between these entities. In
the motivating example above, the substrates are documents,
and they are linked through catalyst topics. The third con-
tribution is a visual encoding technique that supports spatial
stability between the views of the substrate and catalyst net-
works through harmonized layout. The fourth contribution
is an interaction technique that allows users to leapfrog be-
tween the substrate and catalyst views by pivoting across a
selection in one view to see linked highlighting in the other
based on computations carried out in the underlying multi-
plex network.

2. Multiplex Networks

To illustrate the ideas behind multiplex networks, Figure 1(a)
has the concrete example of a bibliographic dataset com-
posed of papers, authors, and keywords that describe paper
topics. A simple way to model this network would be the
traditional monoplex network where all links are of a sin-
gle type, such as the co-authorship network shown in Fig-
ure 1(b) where nodes are authors and links are papers; thus,
people who have published a paper together are connected.

The more complete way to model this dataset is as a
multiplex network, where links can have different types.
Alternate names for this kind of network include het-
erogeneous [ABHR∗13], multilayer [HD11], and multi-
modal [GKL∗13]. In our bibliographic example, families of
links correspond to keywords in common between specific
coauthors, as shown in Figure 1(c). A straightforward way to
visually encode these networks is to visually distinguish the
different link types with colors, resulting in superimposed
visual layers. This approach has at least two challenges in
terms of scalability. The upper limit on the number of link
types is around ten because of the well-known limits on the
distinguishability of small regions of non-contiguous col-
ors [Mun14][Section 10.3.1]. The upper limit for the number
of nodes and links is not as crisply defined, but visual clutter
can be problematic even with dozens of items; the represen-
tation does not scale to hundreds of items.

In the new data abstraction that we propose, the visual en-
coding and interaction takes place via two networks derived
from this multiplex network, as shown in Figure 1(d). The
substrates are the nodes in the original multiplex network,
and any pair of nodes that is connected in the multiplex net-
work is connected with a single link in the substrate net-
work. This simple example has a fully connected substrate
network, but in general any structure is possible.

The catalysts are created from the multiplex links, and
can be considered as nodes in a new network. Catalysts are
linked in this network if there are co-occurring links of the
same type between two nodes in the original multiplex net-
work, as shown in Figure 1(e). Catalysts can be understood
as the reasons why substrates are linked to one another.

A single node in this catalyst network corresponds to all
links of the same type in the original multiplex network,
which would be a visually complex layer in the obvious
representation. Our proposed abstraction thus has a simi-
lar spirit to the scagnostics abstraction for exploring scat-
terplot matrices [WAG05], where each node in the meta-
scatterplot represents an entire scatterplot in the original
dataset. It also shares the spirit of the PivotGraph represen-
tation [Wat06], where the catalyst graph acts as a visually
compact roll-up of a complex structure. The full power of
this dual-network abstraction is unleashed with carefully de-
signed interaction techniques so that the user can quickly
drill down by leapfrogging between different subsets of in-
terest, as described in Section 4.

This data abstraction allows the general questions about
group membership that we identified above to be expressed
as more specific questions about these two new networks:
How do the substrates interact? How much do the catalysts
interact? What is the shape of the catalyst network? How do
these two networks fit together?

2.1. Entanglement Measures

We build on the previous work of three entanglement mea-
sures proposed by Renoust et al. [RMV14]. One of these op-
erates on individual catalysts: the entanglement index for
each catalyst indicates how well each catalyst mixes with
others. The other two operate on an entire subgraph of any
size, up to the entire network. The entanglement intensity
of an entire subgraph indicates how much all of the catalysts
in that group mix together. Roughly speaking, group cohe-
sion is more intense when substrates are all connected for the
same reasons – that is, via catalysts of the same type – than if
they are connected through catalysts of different types. The
analysis of cohesion should also consider whether catalysts
are invoked equally within a group. The entanglement ho-
mogeneity of an entire subgraph indicates how balanced the
mix of all catalysts together is across the whole group.
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Figure 1: Network abstractions. (a) Bibliographic example with papers, authors, and keywords. (b) Monoplex network with
papers as the only link type. (c) Multiplex network with multiple link types, one for each keyword. (d) Deriving substrates and
catalysts. (e) Catalyst network where keywords are linked if they co-occur as multiplex links. (f) Bipartite networks handles
nodes of two types, for example authors and keywords, but lose information. (b) Mapping this bipartite representation back into
a multiplex network introduces incorrect links.

2.2. Comparison to Other Abstractions

Our abstraction distinguishes substrate nodes from catalyst
nodes. The abstraction of a bipartite network is a well-known
way to model networks with two types of nodes, and an ob-
vious question is whether a bipartite representation would
suffice for the group cohesion analysis task. It would not
suffice because simply projecting a multiplex network down
into a bipartite network loses crucial information. The bi-
partite network shown in Figure 1(f), where one node type
is authors and the other node type is keywords, illustrates
the problem: its multiplex equivalent is not equivalent to the
original multiplex network, as shown in Figure 1(g). The
multiplex network that is reconstructed from this bipartite
network contains incorrect links: Elmo and Azrael have not
co-authored a paper, even though they each have written pa-
pers on the topic of cats. These two representations are only
equivalent in the case where the association between sub-
strates and catalysts is fully symmetric, for example if the
links correspond to similarity between nodes. Many inter-
esting use cases have asymmetric links, including this bibli-
ographic example.

Our abstraction also is more powerful than simply pro-
jecting the multiplex network into a weighted monoplex net-
work. While these networks are much easier to visualize,
they also lose a great deal of crucial information. Figure 2
shows an example of two different multiplex networks that
project to identical substrate networks but have completely
different catalyst network topologies: ring vs. star.

3. Related Work

Some previous work on multiplex network visualization uses
straightforward visual encoding approaches based on layer-
ing and partitioning that do not scale. For example, Schreurs

Figure 2: Weighted projections also lose information; these
two multiplex networks have identical projected substrate
networks but very different catalyst network topologies.

et al. [STF∗13] propose distinguishing between multiplex
link types with color coding, leading to the problems dis-
cussed in Section 2; the unfiltered view suffers from extreme
visual clutter and the filtered view shows only a tiny fraction
of the available information. De Domenico et al. [DDPA14]
propose partitioning the network into multiple layers on
tilted 3D planes, leading to the well-known problems asso-
ciated with the use of 3D space for abstract data such as net-
works [Mun14][Section 6.3]. These approaches do not pro-
vide interaction support for the group cohesion analysis task.

Some previous systems focus on the task of comparison
between multiplex networks; while they feature carefully
designed visual encodings, they still do not support group
cohesion analysis. Alper et al. [ABHR∗13] propose the use
of weighted projections visually encoded as both node-link
views and adjacency matrix views for analyzing brain con-
nectivity. They focus on comparing multiple groups to un-
derstand how they differ, whereas we focus on looking at
one group to understand what makes it cohesive. Hascoet et
al. [HD11] emphasize the combination of superimposed and
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side-by-side layers, but again with a focus on comparison
between groups rather than cohesion.

Riche et al. propose several scalable techniques for inter-
acting with densely connected graphs [RDLC12], including
networks with multiple link types. Our approach handles the
problem at the data abstraction level by introducing the cat-
alyst networks, where a single node corresponds to an entire
visual layer with many links in the full multiplex network,
rather than at the level of interaction techniques applied to
that original network.

Several authors have proposed interaction techniques
that rely on pivoting between different representations,
as does our leapfrog interaction technique. While both
NetLens [KPLB07] and GraphTrail [DHRL∗12] rely on
pivot-based interaction, they do not provide node-link views
and thus do not support tasks that require topological un-
derstanding, such as the graph cohesion analysis task. The
RelEx system [SFMB12] does support pivoting between dif-
ferent node-link views, but it is highly focused on a specific
task of overlay network traffic optimization, and does not
support the graph cohesion analysis task.

The previous work that comes closest to addressing the
group cohesion analysis task is a design study from Ghani et
al. [GKL∗13]: this task is alluded to as an interesting open
problem at the end of the paper. They focus on analyzing
multiplex networks that arise in social network analysis, but
emphasizing the problem of multiple node types more than
of multiple link types. The multiplex network is represented
a k-partite network, leading to the information loss problems
that we characterize in Section 2; moreover, global topolog-
ical understanding is not supported because node-link views
are limited to local neighborhoods.

4. Interaction

The design of the Detangler visual analytics system encom-
passes both interaction and visual encoding techniques. We
present the interaction design in this section, and then cover
visual encoding in Section 5.

Detangler features interaction techniques designed to sup-
port cohesion analysis for the groups that occur within the
underlying multiplex network by supporting drill-down for
interactively chosen subsets of items by pivoting between the
substrate and catalyst networks. We call the result of pivoting
back and forth between these views a leapfrog interaction.

4.1. Pivoting From Substrates

Mapping subsets of items between the substrate and catalyst
networks in a way that reflects the true structure of the under-
lying multiplex network requires careful interaction and al-
gorithm design. The complexity of the problem is due to the
fact that the association between these networks is neither

transitive nor symmetric. Catalysts are associated with mul-
tiplex network edges. Specifically, a catalyst corresponds to
the combination of multiplex edges of a particular type and
the nodes that they connect in the multiplex network.

Figure 3 shows an example of the pivot pipeline mapping
from substrates to catalysts. The user initiates the pivot by
selecting a subset of the substrate nodes. The system then
finds the subgraph of the underlying multiplex network in-
duced by those nodes; that is, finding all multiplex edges that
directly connect any pair of these nodes in the multiplex net-
work. New entanglement measures are computed based on
that multiplex subgraph. The group entanglement measures
of homogeneity and intensity are computed for that sub-
graph. Conveniently, the catalyst subgraph that corresponds
to that multiplex subgraph is also extracted as a side effect
of that computation without any further computational over-
head. Moreover, the individual measure of the entanglement
index for every single catalyst in the network is computed
with respect to that multiplex subgraph, and those new val-
ues are used to update all of the node sizes in the catalyst
view. When no subgraph is selected, the node sizes show en-
tanglement index values computed with respect to the entire
multiplex network.

4.2. Pivoting From Catalysts

An analogous operation of pivoting from catalysts to sub-
strates can be defined, but it is not identical because of the
asymmetry in the data abstractions. A single catalyst node
corresponds to multiple edges within the multiplex network,
so the new set of substrate nodes is generated by traversing
these edges within the multiplex network and finding the set
of nodes that they connect. Detangler supports two different
selection modes, AND and OR, as shown in Figure 4. The
rest of the computation is similar, including the entangle-
ment computation.

4.3. Leapfrogging

The combination of pivoting from substrates to catalysts and
then pivoting from catalysts to substrates results in a leapfrog
interaction, as shown in Figure 5. In a leapfrog, the catalysts
corresponding to the group of selected substrates is used as
the new selection in the catalyst network. We then obtain a
new set of substrates that are connected within the multi-
plex network by those catalysts. We call this loop a leapfrog
to emphasize the asymmetric nature of back to back pivot
interaction: the set of substrates selected at the end of the
leapfrog is not the same as the initial set. For example, when
we pivot from a group of authors to the set of keywords
in their co-authored papers, we may then want to ask the
follow-up question Who else is publishing papers with these
same keywords?

Leapfrogging using the AND operator tends to quickly
converge to the empty set where no substrates are selected
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Figure 3: Pivoting from substrates to catalysts. The user selects nodes in the substrate view. Detangler retrieves the correspond-
ing multiplex nodes and creates the induced subgraph of edges that connect them in the multiplex network. It computes the
two group entanglement measures of homogeneity and intensity for this subgraph, and along the way finds the corresponding
subgraph in the catalyst network. It also computes new individual entanglement index measures for each catalyst node with
respect to this subgraph.

Figure 4: The two modes of pivoting from catalysts. The
more restrictive AND operator yields only the substrate
nodes connected through all of the designed catalysts; the
more expansive OR mode yields the substrates nodes con-
nected through any of the catalyst links.

Figure 5: Leapfrogging between substrates and catalysts
through back-to-back pivots.

after a small number of pivots, whereas leapfrogging with
the OR operator converges to the whole set of all possible
substrates after a few pivots.

5. Visual Encoding

The Detangler interface is shown in Figure 6. It features two
main side-by-side views with coordinated node-link layouts:
the substrate network on the left and the catalyst network on
the right. Two supporting views are on the far left: an inter-
action menu on the bottom and a detail view for the entan-
glement measures for the current selection on the top.

Our choice of node-link layouts was guided by the two

criteria from Ghoniem et al. [GFC04]. From a task point
of view, we identify topological structure analysis tasks as
a building block of our motivating group cohesion analysis
task. From a data point of view, both of these derived net-
works are considerably more sparse in terms of edge density
than the underlying multiplex network, so the visual com-
plexity is manageable. The node positions are determined
by our new harmonized layout technique, as discussed in
detail in Section 5.3. To emphasize the difference between
the views, substrate nodes are encoded as squares and cata-
lyst nodes as circles. Node size in the catalyst view encodes
the catalyst entanglement index with respect to the current
selection set.

5.1. Lasso

The two derived network views are coordinated with linked
highlighting, where the pivot correspondence between views
is computed as described in Section 4. The selection itself
is handled using the lasso technique proposed by McGuf-
fin and Jurisica [MJ09] that supports fluid selection of ei-
ther irregularly shaped or rectangular areas. Once drawn, the
lasso can be dragged as a brush. Whenever the lasso cap-
tures a new node, it is highlighted as a selected node with
red fill, and a new entanglement analysis is triggered on the
fly. Corresponding nodes in the other view are highlighted
with red outlines for the nodes and red coloring for the links.
All catalyst nodes are immediately resized according to the
newly computed entanglement indices. To emphasize the
highlighted items, the other items are dimmed to a trans-
parency level of 50%. Lasso selection can occur in either
view. In the discussion below, we will refer to the view used
to select, in which we draw the lasso, as the source view; the
other view is called the target view.

The two global entanglement measures, namely inten-
sity and homogeneity, are directly visually encoded onto the
lasso using color. These values are normalized to the same
domain, ranging from 0 to 1. Figure 6b shows our sequential-
segmented color ramp. The main sequence region combines
three hues in order of monotonically decreasing luminance.
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(a) (b)

Figure 6: The Detangler interface. (a) The four views are annotated in orange and labelled. The current source is the substrate
view on the left with a rectangular lasso showing the user’s selection, and the target is the catalyst view on the right showing
corresponding highlighting. The two secondary views are on the left: the entanglement measure detail view and the menu panel.
(b) Sequential-segmented color ramp. The bottom segment is white; the main sequence has three hues with monotonically
decreasing luminance; the top segment is bright purple, with discrete change of hue and luminance for maximal contrast.

At the bottom of the range, low values are shown with low
salience as high-luminance yellow, for a subtle luminance
change against the white background. The middle of the
range is a mid-luminance green hue, and the top of the se-
quence is a low-luminance dark blue. The scale is segmented
at the bottom to white and at the top with a discrete change of
both hue and luminance to bright purple, emphasizing max-
imum values in a salient way compared to the dark blue val-
ues near the top of the range.

The entanglement homogeneity value is mapped to the
thick perimeter of the lasso, and the entanglement intensity
value is shown by the lasso’s interior fill color. The entan-
glement view in the upper left displays these values numer-
ically, and also encodes them as colors in its own perimeter
and interior to provide a visual association between the lasso
and this secondary view. Figure 6 shows a rectangular lasso,
while Figures 7, 9, and 10 show irregularly shaped lassos.
The lower left control panel has tabs with additional buttons
that allow users to switch the catalyst correspondence oper-
ator between AND and OR modes.

5.2. Leapfrogging

Leapfrogging is performed by double-clicking on a lasso se-
lection, turning the target nodes into the source nodes and
changing the visual encoding changes accordingly. This se-
quence of operations requires four states that must be distin-
guishably visually encoded. The normal state for items that
are not selected in the source view is blue nodes and light
grey links. Selected nodes in the source view are red. In the
target view, the highlighted state is that nodes are outlined in
red and links are red, and the dimmed state reduces the other

items in that view with 50% transparency. Figure 7 shows
these encodings in a leapfrog sequence example.

Figure 7: Leapfrog sequence showing visual encoding
changes between pivot steps, with Detangler screenshots
rather than the schematic diagram in Figure 5.

5.3. Harmonized layout

We introduce a harmonized layout technique designed to
limit the cognitive load of manipulating multiple views by
providing spatial stability so that users can easily match up
corresponding items between the two views. Since the two

submitted to Eurographics Conference on Visualization (EuroVis) (2015)



B. Renoust & G. Melançon & T. Munzner / Detangler 7

views contain different entities, designing a layout to sup-
port this correspondence requires explicit algorithmic sup-
port. Figure 8 illustrates the algorithm. The high-level se-
quence of operations is:

1. Create a layout for only the catalyst network, and then
remove the links between the catalyst nodes, as in Fig-
ure 8(a).

2. Divide the catalysts into two classes: low entanglement
and high entanglement. The intent is that substrates
should be kept close to low-entanglement catalysts that
refer to a limited number of specific substrates. In con-
trast, because they are linked to many substrates, high-
entanglement catalysts are only used to resolve ambigui-
ties rather than as primary magnets to avoid hairballs.

3. Add substrate nodes in the layout. Anchor substrates with
temporary links to all low-entanglement catalysts that
they are connected to. If there are no low-entanglement
catalyst to which they can be attached, connect them to
all their high-entanglement catalysts, as in Figure 8(b).

4. Pin the catalyst nodes and run a layout algorithm that only
moves the anchored substrates, as shown in Figure 8(c).
Our implementation uses a standard force directed algo-
rithm in both Steps 1 and 4, but other layouts are also
possible.

5. Use the harmonized node positions in the layouts in the
separate substrate and catalyst views. The substrate nodes
share spatial stability with their significant catalysts, as
shown in Figure 9.

6. Implementation

Detangler is implemented on top of two visualization frame-
works. We use Tulip [AAB∗14] for network and layout com-
putations, and D3 [BOH11] in conjunction with jquery-ui as
a front end for rendering the visual objects. The coordina-
tion between the two servers is built on top of a server-client
architecture.

Detangler benefits from the full suite of Tulip’s graph ma-
nipulation capabilities, including the ability to use differ-
ent metrics for layout and coloring, and to carry out graph-
theoretic grouping operations such as finding induced sub-
graphs. It also benefits from all of the interaction and imme-
diate deployment capabilities of D3.

Detangler provides interactive frame rates for multiplex
networks containing dozen or hundreds of catalysts and hun-
dreds of substrates. The current scalability bottlenecks are
SVG rendering and communication with the server. Achiev-
ing further algorithmic scalability would be straightforward
by using a different rendering architecture that uses WebGL,
such as Tulip itself. The focus with Detangler is the percep-
tual scalability provided by the dual-view abstraction, where
a single visual object captures information that would re-
quire an entire visual layer of many objects in previous work.

Detangler is publicly available at http:

//myfoodomain.webcv.info/ (temporary URL for
blind review).

7. Results

We present two different usage scenarios for group cohesion
analysis with Detangler: our motivating application of anno-
tated news documents from the INA, and an example from
social network analysis. (The supplemental video and mate-
rials walk through an interactive session in more detail.) We
also present results from an expert feedback session midway
through our iterative refinement process.

7.1. Usage Scenario: Road Safety

Our first usage scenario is a small network of annotated INA
documents that resulted from the query road safety. In this
multiplex network, the substrates are documents, and the cat-
alysts are annotations on these documents in the form of key-
words. The set of 19 documents and 19 keywords are con-
nected through 334 multiplex links, as shown in Figure 9.

This scenario demonstrates how the combination of har-
monized layout and pivoting can answer the questions: Is
this group homogeneous? If there are subgroups within it,
how cohesive are they they?

Before the user selects any items, the entanglement de-
tail view displays global entanglement measures of 0.52 for
homogeneity and 0.33 for intensity, clearly indicating that
the group is not very cohesive at all. The topology of the
catalyst network shows two clusters separated by two bridge
nodes: the catalysts speed and accidentPrevention. The
cluster on the left consists of 9 catalyst keywords, includ-
ing prison. Lassoing this group reaches 4 documents in the
substrate view, and the blue lasso interior reflects the high
entanglement values of 0.93/0.72 showing that the corre-
sponding documents form a more cohesive subgroup. Read-
ing these documents showed that they report on a specific
news story about a bad driver condemned to prison due to
subsequent offenses of exceeding the speed limit.

7.2. Usage Scenario: Paul Revere

The second usage scenario presents the 18th century social
network of the American independence movement [Fis94].
In this multiplex network, the substrates are people, and
the catalysts are societies. Figure 10 shows the 917 multi-
plex links connecting 49 people and 7 societies. Following
Healy’s analysis from a royalist intelligence analyst point of
view [Hea13], we refer to these as terrorist cells.

This scenario demonstrates the use of leapfrogging to find
people and societies that present specific behaviors. We note
that Paul Revere is famous to most American schoolchil-
dren, but many of these societies are not. We use Detangler
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Figure 8: Harmonized layout illustration. (a) Lay out the catalyst network. (b) Remove edges. Assign substrates to catalysts
according to two groups based on their entanglement measures. (c) Lay out the substrates without moving the catalysts, prior to
separating catalysts and substrates into different views.

Figure 9: INA dataset of documents concerning speed and road safety. The right catalyst view shows two clusters of topics
connected by the bridge nodes accident prevention and speed. The user has lassoed the cluster on the left as source
nodes; the blue interior color shows high entanglement values, indicating that the group is cohesive. The left substrate view
shows four documents highlighted as target nodes. The harmonized layout provides spatial stability between these two views.

to analyze the questions Does the multiplex network struc-
ture reveal Paul Revere’s importance? Does it reveal influ-
ences between these societies?

In Figure 10(a) the user has lassoed Paul Revere. We
can observe that he is connected to five societies. A single
leapfrog from him through these societies back to the sub-
strate network using the OR operator illustrates that he can
reach every other person in the network – as he did in his
famous night-long ride – because they are all highlighted
with red outlines. Figure 10(b) instead shows the result of
leapfrogging with AND operator: he is the only person still
selected, showing that nobody else could have done this long
night ride. The multiplex network structure does indeed re-
veal the basis for Revere’s enduring fame.

7.3. Expert feedback session

We ran a preliminary experiment with expert users on an
early prototype of Detangler, with a focus on qualitative im-
pressions for formative rather than summative evaluation.
We did not conduct quantitative measurements of time and
error; a controlled experiment to validate Detangler’s utility
remains as future work.

We gathered feedback from four experts, archivists from
INA, with a separate 3-hour session for each participant. We
asked each participant to analyze 12 different INA document

group datasets. Each dataset was composed of between 20
and 80 substrate documents, annotated by between 20 and
150 catalyst keywords. The participants used three differ-
ent interfaces: Detangler, a Microsoft Excel spreadsheet with
title and keywords, and a monoplex network view of doc-
uments with edges representing keywords implemented in
Tulip. All participants had extensive prior experience with
spreadsheet usage and were given a 20-minute training ses-
sion on the two network-based interfaces. Participants were
asked to carry out 4 main tasks: find specific subgroups of
documents, find outlier documents, indicate how cohesive
the group of documents is, and tell the story of the doc-
ument group. The experiment was thus within-subjects for
tasks and interfaces, with dataset ordering counterbalanced
between participants.

At the end of the session, participants rated each inter-
face on Likert scales from 1 to 5 with respect to five cri-
teria: usage, namely clarity of how to use the system; con-
ciseness, namely whether the interface avoids presenting un-
necessary information that leads to cognitive overload; read-
ability, namely whether the participant could clearly see the
important information; interaction, namely whether the in-
teraction was sufficiently fluid to keep participants in a state
of flow; and understanding, namely whether the interface
allowed a good understanding of the group’s composition.
They were also asked to indicate how confident they felt in
conducting an analysis with each tool, as an arbitrary per-
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Figure 10: American independence movement dataset. The right catalyst view shows terrorist cells, and the left substrate view shows terrorists
such as Paul Revere. (a) Lassoing Paul Revere and then leapfrogging with the AND operators shows that he can reach every other terrorist
in the network, as he did in his famous ride. (b) In contrast, leapfrogging with the OR operator shows that he is the only person with connections
to all others, and is thus the only person who could have done that ride.

centage. We finished with semi-structured interviews with
open-ended qualitative questions.

Figure 11 shows the results, portrayed by Berti-
fier [PDF14]. U1 had no previous experience with visual-
ization and was rather skeptical about it, and was the only
participant who felt more confident with spreadsheets over-
all. Both U2 and U3 had some previous experience with net-
work and tree visualizations, and U4 had extensive previous
experience with using network visualization from a previ-
ous project; these three had more confidence analyzing with
Detangler than with the other interfaces.

The Usage results provide some preliminary confirmation
that multiplex network analysis with Detangler was useable.
The pattern for Interaction and Understanding was low rat-
ings for spreadsheets, medium for monoplex networks, and
high for multiplex networks. We do note that the Under-
standing criterion is particularly biased in favor of Detangler,
which was designed specifically for the objective of group
cohesion analysis.

All participants gave positive feedback during the inter-
views on the utility of side by side network views, the ease
of use of the leapfrog interaction, the informativeness of the
catalyst network view, and the match of the entanglement

Figure 11: Subjective ratings and overall confidence.

measures to their mental models of group cohesion. U2 and
U4 noted the readability of the harmonized layout, and U4
noted that analysis with Detangler was particularly useful
for the open-ended storytelling task. Quotes include (English
translations):

• U1: I did not know much about graph visualization, but even if
the system is complex, I like that it is intuitive to learn.

• U2: I like that we can associate the documents from the terms.[...]
The catalyst view summarizes well what happens in the docu-
ments.

• U3: It is like a word-cloud but better because it gives a sense of
a hierarchy between terms.

• U4: The catalyst view makes it easy to isolate the different con-
cepts concerning the group of documents.

Some negative feedback about limitations was subse-
quently addressed in our iterative refinement process, includ-
ing better label management (all) and a more fluid way to
trigger leapfrogging (U3). Some feature requests were not
addressed, including displaying more descriptive statistics
(U1, U2, U3) and better workflow integration with export
and history support (U4).

8. Conclusion and Future Work

We have presented Detangler, a visual analytics system for
group cohesion analysis. Our novel data abstraction supports
scalable analysis with the derived data of substrate and cata-
lyst networks; they are linked together through entanglement
computations on the underlying multiplex network. All links
of the same type, which are traditionally represented as a
full visual layer with complex structure, are rolled up into
a single node in the derived catalyst network. Our harmo-
nized layout technique provides spatial stability between the
substrate and catalyst networks, and our leapfrog interaction
technique connects them through asymmetric pivoting be-
tween selected subsets in each.
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An interesting open question is how to extend our ap-
proach from the analysis of single-multiplex to multiple-
multiplex networks, where there is still a single set of sub-
strates but multiple categories of catalysts, as requested by
one of the expert feedback session participants. Another
open problem is the management of dynamic multiplex net-
works, with specific interaction designed to support the ex-
ploration of time-related information.

References
[AAB∗14] AUBER D., ARCHAMBAULT D., BOURQUI R., DE-

LEST M., DUBOIS J., PINAUD B., LAMBERT A., MARY P.,
MATHIAUT M., MELANÇON G.: Tulip III. In Encyclopedia of
Social Network Analysis and Mining, Alhajj R., Rokne J., (Eds.).
Springer, 2014, pp. 2216–2240. 7

[ABHR∗13] ALPER B., BACH B., HENRY RICHE N., ISEN-
BERG T., FEKETE J.-D.: Weighted graph comparison tech-
niques for brain connectivity analysis. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems
(CHI) (2013), ACM, pp. 483–492. 2, 3

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D3: Data-
driven documents. IEEE Transactions on Visualization and Com-
puter Graphics 17, 12 (2011), 2301–2309. 7

[DDPA14] DE DOMENICO M., PORTER M. A., ARENAS A.:
Multilayer analysis and visualization of networks. arXiv preprint
arXiv:1405.0843 (2014). 3

[DDSRC∗13] DE DOMENICO M., SOLÈ-RIBALTA A., COZZO
E., KIVELÄ M., MORENO Y., PORTER M. A., GÒMEZ S.,
ARENAS A.: Mathematical formulation of multi-layer networks.
arXiv preprint arXiv:1307.4977 physics.soc-ph (2013). 1

[DHRL∗12] DUNNE C., HENRY RICHE N., LEE B., METOYER
R., ROBERTSON G.: GraphTrail: Analyzing large multivariate,
heterogeneous networks while supporting exploration history. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI) (2012), ACM, pp. 1663–1672. 4

[Fis94] FISCHER D. H.: Paul Revere’s ride. Oxford University
Press, 1994. 7

[GFC04] GHONIEM M., FEKETE J.-D., CASTAGLIOLA P.: A
comparison of the readability of graphs using node-link and
matrix-based representations. In Proceedings of the IEEE Sym-
posium on Information Visualization (InfoVis) (2004), IEEE,
pp. 17–24. 5

[GKL∗13] GHANI S., KWON B. C., LEE S., YI J. S.,
ELMQVIST N.: Visual analytics for multimodal social network
analysis: A design study with social scientists. IEEE Transac-
tions on Visualization and Computer Graphics 19, 12 (2013),
2032–2041. 2, 4

[HD11] HASCOËT M., DRAGICEVIC P.: Visual comparison of
document collections using multi-layered graphs. Tech. rep.,
LIRMM-00601851, 2011. 2, 3

[Hea13] HEALY K.: Using metadata to find Paul Revere.
http://kieranhealy.org/blog/archives/2013/
06/09/using-metadata-to-find-paul-revere/,
2013. 7

[KPLB07] KANG H., PLAISANT C., LEE B., BEDERSON B. B.:
NetLens: iterative exploration of content-actor network data. In-
formation Visualization 6, 1 (2007), 18–31. 4

[MJ09] MCGUFFIN M. J., JURISICA I.: Interaction techniques
for selecting and manipulating subgraphs in network visualiza-
tions. IEEE Transactions on Visualization and Computer Graph-
ics 15, 6 (2009), 937–944. 5

[Mun14] MUNZNER T.: Visualization Analysis and Design. A K
Peters Visualization Series, CRC Press, 2014. 2, 3

[PDF14] PERIN C., DRAGICEVIC P., FEKETE J.: Revisiting
Bertin matrices: New interactions for crafting tabular visualiza-
tions. IEEE Transactions on Visualization and Computer Graph-
ics 20, 12 (2014), 2082–2091. 8

[RDLC12] RICHE N. H., DWYER T., LEE B., CARPENDALE
S.: Exploring the design space of interactive link curvature in
network diagrams. In Proceedings of the International Working
Conference on Advanced Visual Interfaces (AVI) (2012), ACM,
pp. 506–513. 4

[RMV14] RENOUST B., MELANÇON G., VIAUD M.-L.: Entan-
glement in multiplex networks: understanding group cohesion in
homophily networks. Social Network Analysis - Community De-
tection and Evolution XVIII, 274 (2014). 2

[SFMB12] SEDLMAIR M., FRANK A., MUNZNER T., BUTZ A.:
RelEx: Visualization for actively changing overlay network spec-
ifications. IEEE Transactions on Visualization and Computer
Graphics 18, 12 (2012), 2729–2738. 4

[STF∗13] SCHREURS B., TEPLOVS C., FERGUSON R.,
DE LAAT M., BUCKINGHAM SHUM S.: Visualizing social
learning ties by type and topic: rationale and concept demon-
strator. In Proceedings of the Third International Conference on
Learning Analytics and Knowledge (2013), ACM, pp. 33–37. 3

[WAG05] WILKINSON L., ANAND A., GROSSMAN R.: Graph-
theoretic scagnostics. In Proceedings of the IEEE Symposium
on Information Visualization (InfoVis) (2005), IEEE Computer
Society, pp. 157–164. 2

[Wat06] WATTENBERG M.: Visual exploration of multivariate
graphs. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI) (2006), ACM, pp. 811–819.
2

submitted to Eurographics Conference on Visualization (EuroVis) (2015)

http://kieranhealy.org/blog/archives/2013/06/09/using-metadata-to-find-paul-revere/
http://kieranhealy.org/blog/archives/2013/06/09/using-metadata-to-find-paul-revere/

