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Abstract

Purpose. The exposure index is an important measure used in digital radio-
graphy to control the dose at the detector. This value should be computed in
regions of interest that are adapted to each patient’s anatomy and pose.
Material and methods. We propose to define automatically these regions
based on anatomical landmarks in the main structures of interest (head, tho-
racic spine, lungs, lumbar spine, pelvis, femurs, knees, tibiae). This task is
achieved by combining the global information on the size and the positions of
the anatomical structures on the one hand, with local analysis on the other
hand.
Results. Experimental results, on a varied database of 82 full-body acquisi-
tions, demonstrate the interest of the proposed approach, with less errors than
existing approaches, in particular on frontal view acquisitions. The method is
also robust to variations in patient’s conditions and to the potential presence of
metallic objects.
Conclusion. The approach proposed in this paper allows consistently esti-
mating exposure index values associated with different X-ray acquisitions. This
suggests that the application of the proposed method to clinical practice is
promising.

Keywords: Automatic anatomical landmark detection, Digital Radiography,
Exposure Index.

1. Introduction

Digital radiography has many advantages over screen-film detectors. For ex-
ample, digital systems are able to generate well contrasted images at wider dose
ranges than analogical ones (Shepard et al., 2009). Indeed, in screen-film imag-
ing, the quality totally depends on acquisition conditions because the image is
not post-processed. Overexposed images tend to look too dark and underex-
posed ones are too bright. On the other hand, digital systems allow obtaining
images that are well balanced in terms of contrast by using post-processing
methods. However, the relationship between image quality and X-ray dose is
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lost. This was the reason of the exposure creep in digital X-ray radiography. Ba-
sically, since the noise level is the only image quality measurement that changes
according to the amount of dose, the users may tend to prefer overexposed im-
ages that have better signal to noise ratio (SNR) than correctly exposed one.
Nevertheless, this choice is clearly in conflict with the ALARA principle that
strongly suggests clinicians to optimize the amount of X-ray exposure As Low

As Reasonably Achievable according to the purpose of the exam.
The Exposure Index (EI) is a standardized image quality measure that has

been proposed thanks to a joint initiative of the International Electrotechnical
Commission (IEC 62494-1, 2008) and of the American Association of Physicists
in Medicine (Shepard et al., 2009) in order to specifically address this issue.
The EI quantifies the amount of dose at the detector, and, hence it must not be
mistaken with patient radiation dose. Nevertheless, since it is proportional to
the squared SNR (Seibert and Richard, 2011), it can be used to define the lower
limit of radiation exposure depending on the intended use of the exam and the
maximum acceptable amount of noise for clinicians.

Table 1: Exposure index measurements in anatomical regions of a full-body frontal view exam
acquired with the EOS system.

Exposure index value
Head 33.0

Thoracic spine 38.3
Lungs 104.5

Lumbar spine 25.4
Pelvis 28.8
Femurs 41.5
Knees 67.5
Tibiae 77.6

The standard IEC 62494-1 (2008) is extremely clear on the procedure to
follow in order to estimate EI values from image gray levels and we refer to it for
any information about, for example, X-ray beam characterization. Nevertheless,
the manufacturers are free to choose a method to define the region of interest
(ROI) where the EI is computed. It is worth noting that this aspect is not only
important as the EI value depends on the selected ROI, but also not trivial to
address.

It is then important to define the ROI used to compute the EI in such a
way that the comparison between acquisition protocols on different patients is
consistent. Furthermore, the variations of patients’ poses or the presence of
multiple anatomical structures in the field of view make it very challenging to
get significant EI measurements. This is even more important for clinical ex-
ams requiring a full-body analysis of the musculoskeletal apparatus (Illés and
Somoskeöy, 2012). As a typical example, we consider in our experiments images
acquired with EOS system, which is dedicated to this type of analysis. Table 1
provides an example of EI measurements computed from an EOS frontal view
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acquisition of the full body. The values given in this example show how hetero-
geneous is the information. For example, the EI value behind the lung region
is four times higher compared with the measurement behind the lumbar spine,
which is a region at higher density than the chest. As a consequence, a unique
EI value computed at the center of the image gives a poor description of the
image quality of an exam. It is therefore necessary to detect the anatomical
regions of interest that appear in the image.

Irrera et al. (2015) have recently proposed a landmark-based approach that
allows addressing the aforementioned issues. However, the evaluation of the
method was conducted from manually annotated landmarks. In this work we
propose an unsupervised approach that automatically detects these landmarks.
Multiple aspects make anatomical structures detection challenging on planar 2D
radiographic images: the image quality significantly changes from an exam to
another, there are rotational issues due to the projection of the 3D volume on a
2D plane and the intensity values inside the same structure are not homogeneous
given tissue superposition. The proposed method should then be able to address
all these challenges while being efficient in terms of computational time because
the EI has to be immediately displayed on the processed image. The validation
is another significant contribution of this work as we consider eight anatomical
regions, two acquisition views, patients of different ages and morphotypes, and
acquisition protocols at several X-ray exposition levels.

The paper is organized as follows. Section 2 starts by introducing the EI al-
gorithm and by presenting the method for computing EI values with a landmark-
based approach (Irrera et al., 2015). We then present the proposed landmark
detection approach and describe our clinical database. Section 3 evaluates the
proposed method and discusses the obtained results. Section 4 concludes the
paper, and summarizes the achieved objectives and perspectives.

2. Materials and Methods

2.1. Exposure index

The exposure index is a standardized measure that represents the amount
of dose at the detector in a region that is of interest for the undergoing clinical
exam (ROI). The amount of dose measured in Gy is estimated from intensity
image values by means of a calibration function that depends on the system
(IEC 62494-1, 2008).

The input to the exposure index algorithm is the acquired image corrected
in offset, gain and dead pixel. It is worth noting that any further operation
on the image that changes intensity values or noise distribution, for example
contrast enhancement, must be avoided as the exposure index describes the
image quality at the acquisition. The input image is denoted by u. A ROI
Ψ ⊂ Ω, where Ω is the whole pixel space, indicates the region of the image that
is considered meaningful for the undergoing exam. The ROI selection methods
presented in the standard IEC 62494-1 (2008) and by Shepard et al. (2009) are
based on gray level histogram thresholding, positioning of rectangular or circu-
lar shapes at the center of the envelop of the patient or a combination of these
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two techniques. The ROI selection may be problematic because of the presence
of metallic objects, unexpected positions of body parts and variations in the
patient thickness especially in case of full body images. Given the mentioned
issues, the techniques used to define the ROIs are just given as examples and are
not imposed by the standard IEC 62494-1 (2008). Moreover, the manufacturer
is invited to give users the possibility of validating and, eventually, of modifying
the automatically selected ROI. Therefore, according to the original formula-
tion, the EI should rely on user-interaction to validate the measures, which can
be seen as a remedy to the aforementioned issues related to the ROI definition.
Nevertheless, our experience on the use of the EI in clinical routine invalidates
this assumption: the users collect the EI and the corresponding deviation index
values (Mothiram et al., 2013), whereas the control on the automatically com-
puted ROIs is, to the best of our knowledge, neglected. It is then important to
compute exposure index values without requiring user interaction.

From the distribution of the gray levels of the pixels xi ∈ Ψ, a value of
interest (VOI) v is extracted. Since v has to represent the central tendency
of the histogram of u, that we denote with q, it is equal to the median of
q(xi), xi ∈ Ψ (Shepard et al., 2009). The EI value is then computed as follows:

EI = c0g(v) (1)

where c0 is a constant fixed at 100µGy−1 according to the standard IEC 62494-
1 (2008) and g(.) is a calibration function. The value returned by g(v) is the
Kerma in the air at the receptor associated with the ROI Ψ and it is expressed
in µGy. The function g(.) depends on the X-ray system and must be defined in
the X-ray standard beam geometry and calibration conditions specified in the
standard IEC 62494-1 (2008). The definition of this function for EOS system is
not addressed in this paper as it is beyond our original scope.

The EI value on its own is not really significant as what really matters is
to assess if the amount of noise in a given image is tolerable according to the
anatomical region of interest and the medical purposes of the exam. The manu-
facturers are in charge of defining target exposure (EIt) index values according
to ideal ALARA dose conditions. However, the users must be given the possi-
bility to update these target values. The deviation index (DI) from the correct
exposure EIt is then computed as follows:

DI = 10 log10

(

EI

EIt

)

(2)

where DI < 0 and DI > 0 respectively indicate underexposure and overex-
posure. In practice, the acquisition setting would need to be adjusted only if
|DI| > 1, i.e. if the estimated EI value increases by +25% and decreases by 20%
with respect to the target EI value.

2.2. Estimation of exposure index values from anatomical landmarks

Irrera et al. (2015) have proposed to replace the ROI definition with a land-
mark based approach by associating a set of anatomical landmarks with struc-
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tures of interest. We summarize here how EI values are computed from these
sets of points.

A local EI measure can be computed considering the distribution of gray
levels at the pixels xi ∈ Pi, where Pi is a patch centered at the landmark li.
Circular patches of radius equal to 128 pixels are used, i.e. about 23 mm on an
EOS image. Note that on an adult patient such a patch approximately covers
the area of a vertebra. The circle has to be large enough to avoid the measure to
be excessively affected by noise and, at the same time, small enough to guarantee
the gray level distribution to be approximately mono-modal. In this way the
median value of a distribution will describe in a more representative way the
actual amount of signal and, hence, of the EI value in a region. Therefore, local
measures are much less biased by presence of outliers than those extracted from
the histogram of the whole image.

Formally, we denote a ROI by Ar. In this ROI, the landmark detection
method described next provides a cluster Lr of landmarks lj (lj ∈ Lr). Then the
corresponding values of interest v(lj) and the local EI values e(lj) are computed
using Equation 1. Finally, the EI value in the ROI Ar is computed by using the
following weighted sum of local EI values:

EIr =

∑

lj∈Lr

ω(lj)e(lj)

∑

lj∈Lr

ω(lj)
(3)

where the weights ω(lj) assess the accuracy of the measure provided by the
landmark lj ∈ Lr by giving higher importance to e(lj) values that are computed
from homogeneous gray level distributions because the corresponding value v(lj)
better represents the overall level of X-ray absorption in the region inside the
patch Pj . The entropy is used to define the weights ω(lj). The entropy of a
random variable X is defined as follows:

H(X) =
∑

x∈SX

−P (x)log(P (x))

where SX is the set of elements of the discrete distribution that are taken into
account to compute the entropy and, here, corresponds to the gray levels at the
pixels xi ∈ Pj where Pj is the patch centered at the landmark lj. Then, the
weights are defined by using the following exponential function:

ω(lj) = exp

(

−
H(lj)

αH

)

(4)

where H(lj) is the entropy computed at the landmark lj ∈ Lr and αH is a
constant smoothing parameter set to 2 in our experiments.

This approach presents two advantages with respect to the ROI detection
methods presented in the standard IEC 62494-1 (2008). First, it takes into
account the presence of different anatomical structures in the field of view,
which is important for clinical studies that cover large fields of view, such as the
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spine. Second, by exploiting redundancy of local estimates, the landmark-based
approach is robust to detection errors.

In (Irrera et al., 2015) landmarks were positioned manually and errors were
simulated in order to show the interest of the method. In this paper, we propose
a technique to detect these landmarks, and, hence, to automatically compute
exposure index values. The considered anatomical ROIs are the following ones:
head (L1), thoracic spine (L2), lungs (L3), lumbar spine (L4), pelvis (L5),
femurs (L6), knees (L7) and tibiae (L8).

2.3. Salient points

The landmarks to be detected occupy only a small portion of the whole pixel
space. Therefore, an exhaustive search for landmark occurrences is unnecessary
and time consuming. To reduce the search space, the detection and recognition
task is initialized from a set of sparse points that we call salient points.

From a very abstract point of view, the information in X-ray images can be
associated with changes in the intensity levels as related to tissues of different
densities. Therefore, when we look at an EOS image, the attention is essen-
tially captured by these variations of signal. For example, in the abdomen, we
first look at the lumbar vertebrae and then at the surrounding tissues because
the bones absorb more signal and have irregular shapes. As a consequence, the
relevant information can be associated with differences of intensity levels. More-
over, the information is scale-dependent and, hence, the search for salient points
should be led at a scale that contains the features of interest. For example, a
coarse scale could be sufficient to capture the envelop of the spine, whereas an
analysis at finer scales would be required if the goal is to capture the internal
structures of the vertebrae.

In practice, given the observed image u of size R×C, non-overlapping sub-
images ki of size S×C are considered, where S ≪ R, extracted from each vertical
positions yi ∈ {1, 2, . . . , R}. A sub-image ki is then projected to a 1D signal k̂i
where each element corresponds to the column-wise average. Afterwards, the
signal is smoothed by using a linear average kernel of size S. This sequence of
operations encodes the information related to X-ray absorption as a function of
the sub-window height S that gives the information of scale. It is worth noting
that if S = 1, a signal k̂i simply coincides with the horizontal profile of the
image u at line yi.

The salient information is expressed by means of local maxima or minima of
the function k̂i that are associated with peaks of signal at the detector and of
absorption, respectively. The salient information of each sub-image ki will be
then linked with a set of point Pi, where the x-coordinates xj are the positions

of salient points on k̂i and yj = 0.5(yi + yi+1), ∀j, i.e. the y-coordinates are
simply the centers of the sub-images ki.

Figures 1a and 1b show two examples of functions k̂i that capture the same
region but at different scales, i.e. S = 128 and S = 64, respectively. In this
example we consider the region nearby the vertebra T1 (extracted from the
image in Figure 2b), the relevant information is hence located at the center

6



(a) (b)

Figure 1: A signal k̂i that encodes region nearby the vertebra T1 on a frontal view image at
different scales: (a) S = 128 (see salient points P(h,128) in Figure 2b) ; (b) S = 64 (see salient
points P(h,64) in Figure 2c). The scale has an impact on the amount of captured information
and outliers.

(i.e. xj ≃ 1000) while some outliers associated with the shoulders appear in

the leftmost and rightmost sides of the signals k̂i. We consider as outliers the
salient points that are associated with regions that are not covered by any of
the anatomical clusters Lr taken into account. By setting S = 128, only one
value is detected at the center of the cervical spine, whereas, by using S = 64,
two points inside the vertebra are found. Therefore, coarser scales have the
advantage of being sparser and, hence, present less outliers, but may fail in
capturing some relevant details. On the other hand, the finer the scale the
more precise the analysis is, but the number of outliers also increases. As a
consequence, the choice of the value S should depend on the estimated minimal
degree of precision that is required to well describe a structure of interest. In
the given example, S = 128 is the preferable setting because there is no need to
associate two points with the vertebra, for applications to EI estimation. The
scale values associated with the anatomical structures to capture have been
empirically defined in the method that is described in the following sections.

Figure 2 shows some examples of salient points on the frontal and lateral
view acquisitions for a given exam at different scales S. The red stars indicate
salient points pj ∈ P(l,s) associated with peaks of signal at the detector (index
l) and computed at the scale S (index s), whereas the green circles are the
salient points pj ∈ P(h,s) that correspond to strong absorption regions (index
h) at the scale S (index s). Note that the salient points are computed over the
raw image u, but in Figure 2 we display the points on the output image, where
the gray levels are inverted with respect to u, i.e. high and low intensity values
correspond to strong and low absorption, respectively.

On frontal acquisitions, the points pj ∈ P(l,s) are mainly located in the lungs
with a limited amount of outliers in the region that surrounds the groin. Note
that a quite good approximation of the anatomical cluster L3 is obtained at
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(a) (b) (c) (d) (e) (f)

Figure 2: Sets of salient points P(l,s) (red) and P(h,s) (green) on a frontal view acquisition at
(a) S = 256; (b) S = 128; (c) S = 64 and on the corresponding lateral view at (d) S = 256;
(e) S = 128; (f) S = 64. See colors on the on-line version.

scale S = 128. On the other hand, P(l,256) does not give a precise enough
description and many points pj ∈ P(l,64) are located in the spine and the pelvis,
but peaks of signal in these regions are not robust as they mainly depend on
the morphotype.

The points pj ∈ P(h,s) cover the whole field of view as peaks of absorption are
mostly due to the presence of bone tissues. The majority of the points pj ∈ P(h,s)

well fits the spine and the bones in the legs both with S = 256 and S = 128,
which implies that the clusters Lr with r 6= 3, 5 (i.e. all the ROIs except the lungs
and the pelvis) could be well estimated by regularizing these salient points. On
the other hand, it is more complicated to get a proper initialization in the pelvic
region because in strong absorption regions the signal tends to be homogeneous.
In this case, it is preferable to rely on an over-complete representation such as
the one obtained by setting S to 64 .

On lateral acquisitions, the salient points pj ∈ P(l,s) do not provide useful
information. They are indeed randomly concentrated in the lung and cardiac
regions that we do not include in our analysis of lateral view images. On the
contrary, all the landmarks lj ∈ Lr, with r 6= 2 (i.e. except for the thoracic
spine) are well initialized by using the salient points pj ∈ P(h,128), that offer the
best compromise between completeness of the representation and reduction of
outliers. Furthermore, note that the salient points pj ∈ P(h,128) in the chest well
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respond to the rib cage, which helps defining the cluster of landmarks associated
with this region.

These remarks are valid for all the patients in our database (see Section 2.7)
and, furthermore, no noticeable change of trend has been observed on patients
with high body mass index or on acquisitions at very low amount of dose.

2.4. Control points

(a) (b) (c)

Figure 3: According to the manually annotated landmarks on the frontal view acquisition
(a), 6 horizontal lines (b) can be identified to initialize the method (from top to bottom): T1
(green); T12 (yellow); L5 (magenta); proximal femur (cyan); knees (red); ankles (green). This
initialization is also valid on the corresponding lateral view acquisition (c). See colors on the
on-line version.

Once the salient points have been detected, they need to be classified ac-
cording to the anatomical regions of interest in order to compute the exposure
index values. This can be achieved by roughly separating the field of view into
disjoint sub-windows according to the considered anatomical ROIs Ar. The
coarse identification of these areas helps to both narrow the search space for
the landmarks lj ∈ Lr and to verify if an estimated solution is coherent with
the spatial relations between clusters. The manually annotated landmarks on
frontal view acquisitions (Figure 3a) indirectly provide the ideal division into
sub-windows (Figure 3b). For example, the thorax is identified as the region be-
tween the upper and lower landmarks of the cluster L2. In order to initialize the
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detection on full body images, it is then necessary to identify 6 horizontal lines
that pass through the following control points ci: the vertebra T1, the vertebra
T121, the vertebra L5, the proximal femur, the distal femur and the ankle. The
problem is initialized by simply estimating the y-coordinates yj of the control
points cj ∈ C, i.e. the projection Cy on y-axis where C is a set composed by
the 6 control points. Since the image is subdivided along the vertical direction,
which is the common axis between the frontal and lateral acquisitions, the same
initialization can be used on the two views.

Figure 3b shows that the control points can be described by simple spatial
relations such as relative position (e.g. the vertebra T1 is above the vertebra
T12) and distance. The relative positions of the control points is fixed, but,
in order to encode the distances, a subset of 9 full-body EOS exams is used
for learning. These samples well represent the variability of a bigger database
composed by 82 patients, and the 9 patients have different ages, genders and
morphotypes. In this section we describe an approach that allows defining the
distances with respect to two already detected control points. In the following
section we are going to describe how to label a subset of salient points to the
control points.

Table 2: Rough estimation of yj ∈ Cy for the proximal femur (y4), L5 (y3), T12 (y2) and the
distal femur (y5) by considering proportions ̺j from neighbors (see Equation 5). The values
for T1 (y1) and the ankle (y6) are assumed to be known.

y4 | {y1, y6} y3 | {y1, y4} y2 | {y1, y3} y5 | {y4, y6}
¯̺j 0.43 0.72 0.55 0.51

σ(̺j) 0.02 0.02 0.02 0.01
min(̺j) 0.41 0.70 0.53 0.49
max(̺j) 0.45 0.75 0.58 0.53

αj 0.39 0.67 0.51 0.47
βj 0.47 0.77 0.60 0.55

‖βj − αj‖ 11.39 cm 4.96 cm 3.49 cm 6.43 cm

The position of a target control point will be intuitively more stable to
changes in the data by exploiting the fact that the human body parts are ap-
proximately proportionate to each others. Formally, a horizontal line at yj can
be described according to the proportion between the distances from two other
horizontal lines of known positions. For example, let us assume that y1 and
y6 have already been identified, and that y4 has to be found. The following
proportionality factor can then be associated with y4:

̺4 =
y4 − y1
y6 − y1

. (5)

1We do not strictly need to associate a control point with an exact vertebra but rather to
distinguish the chest from the abdomen. Therefore, the control point T12 may correspond to,
for example, T10, without any consequence on the results.
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Table 2 reports the average (κ̄j), standard deviation (σ(κj)), minimal (min(κj))
and maximal (min(κj)) relative distances between two given horizontal lines
yj ∈ Cy, that are assumed to be already detected (e.g. T1 and ankle), and a
third one, computed over the training database. Then, each control point cj is
associated with an interval [αj , βj ] that constrains the position of cj on a new
test image according to the manually annotated data of the training set. In
particular, the width of the ranges is computed as follows:

‖β4 − α4‖ = ̺4 max
i

(yi6 − yi1) (6)

where yij is the y-coordinate of the control point cj on the patient i of the training
set. The extension of the interval refers then to the worst case scenario, i.e. the
maximal distance between the two referential horizontal lines over the training
set. This implies that αj = min(̺j)− σ(̺j) and βj = max(̺j) + σ(̺j). These
values indicate that by exploiting the proportionality principle the initialization
of the problem is more precise, i.e. a local analysis to define the exact position of
the control points will be limited to a small region compared with the whole pixel
space. This helps increasing then both efficiency and robustness. Quantitatively,
by relying on the proportions ̺j , the same control points will be searched in
areas that cover 11.33 cm, 4.96 cm, 6.43 cm and 3.49 cm. The problem can then
be initialized by using the learned proportionality factors given the upper and
lower control points, i.e. the vertebra T1 and the ankle. Section 2.5 describes
how to detect these two points.

Some spatial relations in the horizontal direction can also be used to facilitate
the localization of some landmarks lj ∈ Lr. For example, the clusters in the
left and right lungs constrain the position of the landmarks lj ∈ L2 (thoracic
spine). Similarly, the clusters L4 (lumbar spine) and L6 (femurs) help defining
the landmarks in the pelvic region.

The initialization from the frontal view is straightly used on the correspond-
ing lateral view. However, it would be also useful to get the rough position of the
most prominent points of the kyphotic and lordotic curves in the spine (see the
clusters L2 and L4 in the image in Figure 3c). By computing the proportionality
factor in this case, the interval associated with the most prominent point in the
lumbar spine is equal to [−0.01, 0.71] which indicates that the initialization is
highly uncertain. This is due to the posture of the patient that influences the
position of the most prominent point. Similarly, the changes in the posture do
not allow for a significant initialization on the horizontal direction and, thus,
the lateral acquisition can only rely on information extracted from the frontal
view to initialize the positions of the control points.

2.5. Control point detection

The control points are sequentially detected among the salient points by
taking into account the spatial relations (Section 2.4). The procedure starts
by identifying two main control points that are the vertebra T1 and the ankle.
These points are chosen among the others not only because they are located at
the upper and bottom extrema limits of the image, but mostly because they are
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the easiest ones to detect in a completely unsupervised way. It is worth noting
that this logic requires the input images to contain the whole body of a patient.

We present here only the principles for the detection of control points. Please
refer to (Irrera, 2015) for a complete description of the mathematical steps that
allow extracting the control points.

The frontal view image is used in order to localize the control point for
T1. This relies on two principal information: the position of patient’s central
vertical axis and the salient points associated with peaks of signal. The central
vertical axis does not necessarily pass through the center of the image because
the image may have been collimated2. However, by relying on the values of
the collimation limits, the position of the patient’s central vertical axis in the
image space is straightly deduced. This allows retaining the salient points that
roughly correspond to the spine. In order to select the salient point associated
with the control point T1, the second information is exploited, i.e. the salient
points at peaks of signal roughly correspond with the cluster of landmarks lj ∈
L3. Finally, T1 is detected by exploiting the following spatial relation: T1 is
immediately over the lungs, and between the left and right lung.

The ankle landmark is the next to be detected, and, as for T1, the frontal
view is used too. The junction between the lower bound of the tibia and the
ankle cavity causes a strong horizontal discontinuity which can be well captured
by a gradient-based descriptor. In practice, we compute the following gradient
based measure, associated with each salient point pj ∈ P(h,128):

gj =
∑

(xi,yi)∈Pj

‖∆h(xi, yi)‖

|Pj |
(7)

where ∆h(xi, yi) is the horizontal component of the Sobel operator at the pixel
of coordinates (xi, yi) that belongs to a circular patch Pj of radius equal to S/2
centered at the point pj . The size of the patch is chosen such that the measure
associated with a given point is independent from the ones computed at nearby
points. Considering the width of the human leg, by setting S = 128 only
one landmark on each S horizontal line is obtained and, then, the measure gj
computed at the landmark lj can be expressed as a function of its y-coordinate
yj. In other words, the measures gj computed at the anatomical landmarks
lj ∈ (L6 ∪ L7 ∪ L8) that belong to one leg can be represented as a mono-
dimensional function of the y-coordinate yj . The control point for the ankle is
located at the position of the last peak of the gradient-based measures.

The same measure is used to define the control point for distal femur be-
cause this structure also presents a strong horizontal discontinuity. The search
area is in this case constrained by the position of the proximal femur and the
ankle according to the relative distances presented in Section 2.4. This requires
detecting the control point at proximal femur.

2The collimation in this case consists in narrowing the width of the field of view. This
allows limiting the irradiated area to regions of interest for the undergoing clinical study. The
collimation limits can be extracted from DICOM metadata fields.
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The proximal femur is the most difficult control point in the leg to detect
because of the proximity to another anatomical region, the pelvis, and of the
X-ray absorption due to tissue superposition that is much higher compared
with that in the knees and ankles. We consider a set of points T0 ⊂ P(h,128)

composed, for each line yf , f = 1, . . . , |Py|, by the leftmost and rightmost points
of x-coordinates xl and xr, respectively. The extrema are retained because they
most probably correspond to the legs. Formally, xl and xr for a given yf are
defined as follows:

xl = min{xj | pj ∈ Pyf
} xr = max{xj | pj ∈ Pyf

} (8)

where Pyf
is the set of points pj ∈ P that lie on the line defined by y = yf . The

y-coordinate of the control point c4 is then defined as follows:

y4 = arg max
yj∈Py

(d (t(xl, yj), t(xr , yj))) , (9)

which means that the proximal femur is on the line yj where the points t(xl, yj)
and t(xr, yj) are the most distant from each other, which is coherent with the
assumption made for the manual annotations. Nevertheless, the distribution of
the points may change depending on the morphotype or the presence of metallic
objects. Therefore, the position of the proximal femur is estimated multiple
times, i.e. one time for each considered scale S. According to multiple tests
conducted on part of the database, we remarked that either the estimates are
similar regardless the chosen scale or two estimates are close and one is wrong.
As a consequence, the final position is computed as the median of the estimates
at the three considered scales, which is a basic way of exploiting information
at multiple scales, but good enough according to the tests and application of
interest.

The control points in the spine, except for the vertebra T1, are the most
difficult ones to precisely define on frontal view acquisitions and, hence, are
reserved for the last step. The difficulty comes from the complexity in distin-
guishing between a vertebra and another one, and consistent features are not
trivial to define considering the rotational issues, the low contrast to noise ratio
and the tissue superposition. According to our tests, the definition of consistent
features that allow capturing the vertebra L5 (c3), despite changes in morpho-
type and entrance dose, remains an open question, but, for the EI application,
this does not cause a significant problem for two reasons. First, according to
the values in Table 2, the interval where to look for c3 is relatively narrow,
i.e. 4.96 cm in the worst case scenario. Secondly, the EI values associated with
the lumbar spine and pelvis are similar and, hence, potential misplacement of c3
would only slightly affect the exposure indicators (Irrera et al., 2015). Finally,
the position of L5 is just roughly inferred from the vertebra T1 and the proximal
femur by using a proportionality factor equal to 0.72, i.e. at the center of the
interval given by the model.

As for the control point T12 (c2), it can be much more easily detected on
the lateral view acquisition. The position of the control point for the vertebra

13



T12 (c2) can be refined by analyzing the landmarks lj ∈ (L2∪L4). The passage
from L2 to L4 is marked by a strong reduction of the local EI estimate due to
a higher density in the lumbar region than in the chest. Therefore, the local EI
estimates e(lj) are computed at the landmarks lj ∈ (L2 ∪L4), and the following
function is defined from these values:

δ(yj) = e(lj+1)− e(lj), j = 1, . . . , (|L2 ∪ L4| − 1) (10)

where δ(.) depends on yj because there is one point for each line in the set
L2 ∪ L4. Since each element of the function quantifies how much consecutive
local EI values change, the y-coordinate of the control point for T12 is estimated
as follows:

y = arg min
yj∈Ym

(δ(yj)) (11)

where Ym is the set of values that constrain the position of y = y2 according to
the model of global relations (see Table 2).

The position of the control points allow classifying the salient points into
landmark clusters Lr that will be used to compute exposure indices as explained
in Section 2.2. The position of the points lj ∈ Lr can be refined by relying
on models of the corresponding anatomical regions. It is out of the scope of
this paper to detail how landmark clusters are refined for each of the eight
anatomical regions on both views, and the concepts presented above represent
the core of the hierarchical detection and recognition algorithm. Details can be
found in (Irrera, 2015).

Figure 4: Hierarchical detection on frontal view acquisition images.

Figure 4 summarizes the described steps to hierarchically detect the anatomi-
cal landmarks on frontal view acquisition images. The inputs are the anatomical
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constraints between the structures and the salient points positions. The land-
marks in the upper part of the body and in the legs are first detected and then
the definition of the control points for T12 and distal femur allows separating
them into L1-L2-L3-L4 and L6-L7-L8, respectively. The cluster L5 at the last
step because it is the most difficult region for the definition of consistent salient
points. It is worth noting that some operations can be executed in parallel
because they concern different anatomical regions. The detection on lateral
view acquisition images consists in sequentially narrowing the solution space as
on frontal view acquisitions. Moreover, control points are not re-detected (see
Section 2.4). Only T1 is refined as previously explained.

(a) (b)

Figure 5: Example of automatic landmark detection: (a) frontal view; (b) lateral view.

Figure 5 provides an example of landmark detection that shows how the
method is able to project the whole pixel space to a set of labeled landmarks
while being robust to bone distortion such as thoracic scoliosis.

2.6. Landmark cluster from the patient’s envelop

The proposed method that combines salient points with control points (Sec-
tions 2.3 and 2.5) is compared to an easier detection technique. The latter
consists in a landmark-based formulation of the classical method that considers
ROIs at the center of the image. A transposition of this idea into the landmark-
based formulation leads to place the landmarks bj ∈ Br at the center of the
mask. Given the patient’s envelop (Figure 6a), the Euclidean distance trans-
form (Figure 6b) is computed. The values of this map increase with the distance
from the borders of the mask and are equal to zero outside of it. On each line,
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(a) (b) (c)

Figure 6: Landmarks defined from the patient’s envelop: (a) patient’s envelop; (b) Euclidean
distance map; (c) landmarks bj ∈ Br .

the position of the maximum of the Euclidean distance transform profile on a
line yj corresponds to the x-coordinate of a landmark bj. Two points per line,
i.e. two local maxima, may also be considered if symmetrical to the central
vertical axis of the mask (e.g. the legs on frontal view acquisitions). Figure 6c
shows an example of the resulting landmarks. Note that the landmarks in the
lungs (bj ∈ B3) are located proportionally to the positions of those in the tho-
racic spine (bj ∈ B2) and of the borders of the patient. Formally, if pf is the
nearest point on the border at the left (right) of the landmarks bf ∈ B2 on a
line y = yf , the landmark bj ∈ B3 in the left (right) lung will be placed at the
coordinates 0.5(pf + bf). Finally, the landmarks are assigned to the specific
anatomical structures depending on the positions of the control points. This
simpler approach is compared to the other one in Section 3 in order to quantify
the meaningfulness of the initialization by means of salient points.

2.7. Database

We evaluate the method explained in the previous sections according to the
DI values computed as follows:

DI = 10 log10

(

EI

EIgt

)

(12)

This is very similar to Equation 2, which compares the exposure index value
to a previously recorded target. The difference is that Equation 12 assesses the
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accuracy of the automatically estimated EI values with respect to the ground
truth values, i.e. those computed from manually annotated landmarks. The
precision in terms of positions of the landmarks is not discussed here because,
as justified in Section 2.2, the proposed landmark-based approach allows for a
certain degree of localization error.

The database is composed by 82 full-body anonymous exams that are cate-
gorized into the following subsets:

• Da: 24 diagnostic exams of adult patients aged between 54 and 82.

• Db: 29 diagnostic exams of young patients aged between 8 and 16.

• Dc: 29 preview exams of the patients in the subset Db.

This database is representative of the variety of types of patients that undergo
an imaging system dedicated to osteoarticular disorders, such as EOS. For ex-
ample, 13 of the 29 young patients in our database are affected by idiopathic
scoliosis. Moreover, many patients in our database contain metallic objects.
Indeed, 30 of the 53 patients have at least one of the following metallic objects:
gonad shields, spine rods (post spine surgery exams) and hip prosthesis (total
hip arthroplasty exams). It is important to take into account metallic objects
as, if not neglected during the computation, they cause an underestimation of
exposure index values. Finally, the computed exposure index values should well
represent the morphotype of patient. We then consider both normal and over-
weight patients. Since the DICOM field weight was not filled in the exams that
compose our database, we cannot provide precise Body Mass Index (BMI) val-
ues. Nevertheless, we use a quantitative approach to establish the amount of
over-weight patients in our database (BMI > 30). Given that all the patients
in the same category of age (adolescents or adults) are scanned with default
acquisition parameters, we can use the ground truth exposure index values in
order to identify overweight patients. We take the median of the exposure index
values associated with the pelvis of the frontal view as reference values, one for
each group of age. We label as overweight the patients for which the deviation
index, computed as in Equation 2, is lower than -1. Following this approach,
we count 4 on 29 and 8 on 24 overweight patients among the adolescents and
adults, respectively.

Sections 3.1 and 3.2 analyze the results corresponding to frontal and lateral
view acquisitions, respectively. The descriptions are conducted by referring to
the anatomical ROIs Ar. The accuracy of the estimated EI values is evaluated
according to the root mean square error (RMSE) defined as follows:

RMSEAr
=

√

√

√

√

√

√

Np
∑

z=1

(DIr,z)
2

Np

(13)

where Np is the number of patients in a given database and DIr,z is the DI
value obtained for the patient z and the region Ar according to Equation 12.
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The ideal result is a DI equal to zero, but a margin of error is accepted
and different degrees of errors are, thus, considered: |DI| ∈ [0, 0.25), |DI| ∈
[0.25, 0.5), |DI| ∈ [0.5, 0.75), |DI| ∈ [0.75, 1) and |DI| ∈ [1,+ inf) mean, re-
spectively, negligible, low, medium, high and extreme errors. We then measure
the percentages ε0, ε1, ε2, ε3 and ε4 that indicate the amount of samples in the
database whose estimation errors are negligible, low, medium, high and severe,
respectively, when compared with the ground truth values. We will use ε0 + ε1
as a measure of the amount of acceptable errors. Furthermore, specific obser-
vations are made on the three subsets Da, Db and Dc in order to understand if
the quality of the estimation may change depending on the age of the patient
or the amount of radiation exposure.

Sections 3.3 and 3.4 deal with cases that, according to the state of the art,
make it difficult to obtain consistent EI measures, i.e. particular conditions of
the patient and presence of metallic objects, respectively.

The proposed method is very efficient as the analysis is limited to some
salient points that are sparsely distributed on the pixel space: by running our
MATLAB code on a conventional machine (Intel Core 2.20 GHz, 4 GB RAM),
it takes about 6.50 s and 3.50 s at most to detect and recognize the landmarks
on both frontal and lateral full-body acquisitions views, respectively.

3. Results and Discussion

3.1. Quantitative evaluation of frontal view acquisition

Tables 3 and 4 report the results corresponding to all the frontal view ac-
quisitions in the database and to the three subsets Da, Db and Dc, respectively.

Table 3 shows that the estimation of the sets of EI values on frontal view
acquisitions with the proposed approach is very robust and overcomes some
drawbacks of the method where the landmarks are detected depending on the
position with respect to the borders of the patient envelop.

The improvement is particularly significant in the thoracic spine (A2), lung
(A3) and femur (A6) regions of interest. In particular, as we will better explain
in Section 3.3, the proposed detection technique allows respecting the curve of
the spine when the patient is side-bending or in presence of a scoliosis, which
is not the case if the landmarks are simply placed on the central vertical axis.
This allows reducing of 50% the RMSE when the set of points L2 is used instead
of B2. Moreover, while by using the cluster B2 the amount of acceptable errors
(ε0+ε1) gets to 52.4%, the proposed approach allows reaching 93.9%. The same
conclusion results from the analysis of error measurements associated with the
lung area. This is due to the fact that a distorted thoracic spine directly affects
the shape of the lungs. In the femur region the reduction of estimation error is
particularly significant due to the robustness of the proposed method to changes
in patient morphotype. This assessment is justified in Section 3.3.

The two methods perform similarly in the other tested regions. In the lumbar
spine (A4) and pelvis (A5) the detection errors poorly affect the EI estimation
because of the high density (Irrera et al., 2015). In the head (A1), knee (A7)
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Table 3: Evaluation on frontal view acquisitions in the whole database: comparison of the
automatic EI estimates associated with the clusters Br and Lr, r = 1, . . . 8, in terms of RMSE
and percentages of negligible (ε0), low (ε1), medium (ε2), high (ε3) and severe (ε4) estimation
errors.

Frontal RMSE ε0 ε1 ε2 ε3 ε4

A1
B1 0.32 65.9% 25.6% 4.9% 1.2% 2.4%
L1 0.29 67.1% 26.6% 4.9% 1.2% 1.2%

A2
B2 0.61 20.7% 31.7% 28.0% 13.4% 6.1%
L2 0.30 61.0% 32.9% 4.9% 1.2% 0.0%

A3
B3 0.56 45.1% 30.5% 15.9% 3.7% 4.9%
L3 0.27 85.4% 9.8% 2.4% 1.2% 1.2%

A4
B4 0.11 96.3% 3.7% 0.0% 0.0% 0.0%
L4 0.09 97.6% 2.4% 0.0% 0.0% 0.0%

A5
B5 0.35 73.2% 18.3% 4.9% 1.2% 2.4%
L5 0.25 86.6% 8.5% 2.4% 1.2% 1.2%

A6
B6 0.68 39.0% 36.6% 8.5% 3.7% 12.2%
L6 0.19 86.6% 13.4% 0.0% 0.0% 0.0%

A7
B7 0.16 65.9% 25.6% 4.9% 1.2% 2.4%
L7 0.12 85.4% 14.6% 0.0% 0.0% 0.0%

A8
B8 0.09 100.0% 0.0% 0.0% 0.0% 0.0%
L8 0.06 100.0% 0.0% 0.0% 0.0% 0.0%

and tibiae (A8) the anatomical structures are mostly at the center of the envelop
as shown by the results.

Table 4 reveals that the estimation accuracy does not depend on the patient
age (subset Da versus Db) nor on the amount of dose (subset Db versus Dc).
Nevertheless, in the head region, the accuracy is higher on Da (RMSE equal to
0.11) than on Db (RMSE equal to 0.33). This can be related to the position
of the head for the patients in the databases Db and Dc, which is bent forward
by hence leading to a partial superposition of the head with the neck. As it
will become more evident from the analysis on the lateral view acquisitions
(Section 3.2), the partial occlusion of an anatomical structure by another one
can cause some problems for the estimation of the EI values. In any case, a
RMSE error equal to 0.33 is still a low error and, thus, this practically is a
marginal issue.

3.2. Quantitative evaluation of lateral view acquisition

Tables 5 and 6 report the results associated with all the lateral view acqui-
sitions in the database and the three subsets Da, Db and Dc, respectively.

The results on lateral view acquisitions indicate that a level of accuracy
similar to that registered on frontal view acquisitions can only be obtained in
the regions A4 and A5.

Table 6 shows that in the regionA1 the results are biased by bad performance
for the subsets Db and Dc. Indeed, on the subset Da the method performs well,
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Table 4: Evaluation over the frontal view acquisitions in the subsets Da, Db and Dc: com-
parison of the automatic EI estimates associated with the clusters Br and Lr, r = 1, . . . 8 in
terms of RMSE.

Frontal RMSE
Da Db Dc

A1
B1 0.11 0.36 0.37
L1 0.11 0.33 0.35

A2
B2 0.69 0.62 0.51
L2 0.28 0.32 0.28

A3
B3 0.33 0.60 0.67
L3 0.28 0.19 0.33

A4
B4 0.11 0.10 0.13
L4 0.06 0.09 0.10

A5
B5 0.17 0.46 0.32
L5 0.15 0.16 0.36

A6
B6 0.59 0.78 0.65
L6 0.19 0.18 0.19

A7
B7 0.12 0.10 0.22
L7 0.09 0.06 0.17

A8
B8 0.09 0.07 0.10
L8 0.07 0.04 0.08

with RMSE equal to 0.12, and high errors are only found in the subsets Db and
Dc. This is not due to the change of morphotype but rather to the fact that, in
these subsets, the scans start from half the head and, hence, the low amount of
landmarks make the estimation unstable. Moreover, in some exams, the hands
of the patients are placed on the neck and interfere then with the structures of
interest. On the contrary, the images in the subset Da are acquired from over
the top of the head and there is no occlusion with the hands, which are the
conditions that allow for a robust estimation of the EI values. Therefore, the
ROI A1 should be taken into account only if it is important for the exam and,
hence, acquired with the patient positioned in a suitable way.

The evaluation on the whole database indicates that the EI value in the ROI
A2 is not easy to estimate automatically. Indeed, the landmarks bj ∈ B2 pro-
duce a RMSE equal to 0.89, and 23.2% and 41.5% of samples whose estimation
errors are negligible and acceptable, respectively. The landmarks lj ∈ L2 im-
prove the performances given the RMSE equal to 0.64, and 41.5% and 58.6% of
samples whose estimation errors are negligible and acceptable, respectively, but
is not completely satisfying yet. Nevertheless, the results substantially change
according to the subset here too. In details, the landmarks bj ∈ B2 give a low
quality estimation regardless the morphotype and the amount of dose, whereas
the RMSE associated with the landmarks lj ∈ L2 for the exams in Da is very
low (0.22). Figures 7a and 7b show that the difference between the results asso-
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Table 5: Evaluation on lateral view acquisitions in the whole database, of the accuracy of the
automatic EI estimates associated with the clusters Br and Lr, r = 1, . . . 8, in terms of RMSE
and percentages of cases whose estimation errors are negligible (ε0), low (ε1), medium (ε2),
high (ε3) and severe (ε4).

Lateral RMSE ε0 ε1 ε2 ε3 ε4

A1
B1 0.68 62.7% 17.6% 5.9% 3.9% 9.8%
L1 0.57 66.7% 17.6% 2.0% 5.9% 7.8%

A2
B2 0.89 23.2% 18.3% 19.5% 13.4% 25.6%
L2 0.64 41.5% 17.1% 13.4% 14.6% 13.4%

A4
B4 0.16 90.2% 7.3% 2.4% 0.0% 0.0%
L4 0.16 86.6% 13.4% 0.0% 0.0% 0.0%

A5
B5 0.28 72.0% 22.0% 2.4% 2.4% 1.2%
L5 0.15 95.1% 3.7% 0.0% 1.2% 0.0%

A6
B6 0.44 50.0% 28.0% 14.6% 4.9% 2.4%
L6 0.42 62.2% 22.0% 7.3% 4.9% 3.7%

A7
B7 0.75 25.6% 18.3% 17.1% 19.5% 19.5%
L7 0.58 36.6% 22.0% 20.7% 11.0% 9.8%

A8
B8 0.47 56.1% 23.2% 13.4% 1.2% 6.1%
L8 0.45 58.5% 20.7% 13.4% 1.2% 6.1%

ciated with Da and Db (Dc) is not due to the morphotype but it rather depends
on the position of the arms: while for the patient in Figure 7a the arms cover
the heart but do not occlude the vertebrae, in Figure 7b the superior vertebrae
(T1-T4) are partially occluded by the shoulders. The thoracic spine is always a
region of interest and, thus, the estimation of the associated EI value should not
depend on the position of the arms. A possible solution may consist in attribut-
ing higher importance to the local estimates e(lj) associated with landmarks lj
placed in the inferior part of the thoracic spine.

Finally, the results are not good for any anatomical region in the leg. This is
mainly due to the fact that the leg nearer the detector is partially occluded by
the one nearer the X-ray source. Given these conditions, it is not sure that an
EI value estimation in this region from lateral view is actually meaningful given
the superposition of the legs in the image. The performance may be improved
by taking into account patient pose in exposure index estimation. This would
however require automatically detecting patient pose, which is out of the scope
of this work.

3.3. Robustness to patient conditions

We address in this section the challenges brought by the presence of deformed
anatomical structures (e.g. scoliosis) and by patient obesity. The measures
computed from the landmarks lj ∈ Lr and bj ∈ Br are compared.

Figure 8a displays the cluster L2 (green points) and B2 (red points) on the
anatomical region A2 of a patient affected by scoliosis. The landmarks bj ∈ B2
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Table 6: Evaluation on lateral view acquisitions in the subsets Da, Db and Dc, of the accuracy
of the automatic EI estimates associated with the clusters Br and Lr , r = 1, . . . 8 in terms of
RMSE.

Lateral RMSE
Da Db Dc

A1
B1 0.11 1.00 0.84
L1 0.12 0.83 0.70

A2
B2 1.16 0.72 0.79
L2 0.22 0.70 0.80

A4
B4 0.17 0.17 0.15
L4 0.11 0.19 0.16

A5
B5 0.21 0.34 0.27
L5 0.14 0.14 0.17

A6
B6 0.42 0.42 0.47
L6 0.35 0.40 0.48

A7
B7 0.50 0.91 0.75
L7 0.47 0.68 0.55

A8
B8 0.58 0.53 0.26
L8 0.59 0.46 0.25

generate a DI index value equal to 1.36 because the central axis does not cor-
respond to the thoracic spine but rather to the surrounding structures. On the
contrary, the landmarks lj ∈ L2 well respect the curvature of the spine and,
hence, the EI value is robustly estimated as shown by the DI value that is equal
to −0.16. In general, when a patient is affected by a scoliosis in the thoracic
region, the measure computed at bj ∈ B2 generates severe errors, whereas the
proposed method overcomes this issue. This analysis justifies the results pre-
sented in Table 3 for the anatomical ROI A2. On the other hand, if the scoliosis
affects the lumbar spine the EI value is not considerably biased.

Figure 8b shows the femoral region of a patient with high body mass in-
dex. Since the legs are joined, the envelop of the patient does not well describe
the underlying anatomy and the landmarks bj ∈ B6 start separating into two
branches only at half of the femur. As a consequence, the DI value rises up to
1.69. The proposed method does not depend on the morphology of the patient
and the EI value is perfectly estimated (DI equal to 0.01). These considera-
tions are coherent with the results presented in Table 3 corresponding to the
anatomical ROI A6.

3.4. Robustness to metallic objects

The metallic objects should be neglected in the estimation of the EI values
because they are not associated with anatomical information and significantly
bias the measure given the strong X-ray absorption. Therefore, they should be
removed from the whole pixel space Ω, just like the regions outside the body of
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(a) (b)

Figure 7: The detection of the landmarks lj ∈ L2 on lateral view images depends on patient’s
pose: (a) example from the subset Da; (b) example from the subset Db.

(a) (b)

Figure 8: Particular cases due to patient conditions. In Figure (a) the landmarks bj ∈ B2

(red points) do not follow the curvature of the spine due to scoliosis, whereas the landmarks
lj ∈ L2 (green points) allow overcoming this drawback. In Figure (b) as the legs are adjacent,
the landmarks bj ∈ B2 (red points) do not capture the femurs, whereas the landmarks lj ∈ L2

(blue points) well match the anatomical structures.

the patient where the X-rays are not attenuated. However, considering that the
EI value e(lj) is computed at a landmark lj, the non-anatomical objects do not
necessarily need to be segmented, but the weight ωj should be set to 0 if the
local estimate e(lj) corresponds to a metallic object. A local estimate e(lj) is an
outlier only if more than 50% of the circular patch Pj centered at lj is covered
by a metallic object. In other words, the presence of metallic objects in the field
of view does not necessarily imply that some of the local estimates e(lj) need
to be discarded and, even if it is the case, the number of outliers is most likely
low. According to these observations, a simple threshold-based method is used
to reject the contributions from potential metallic objects.

Formally, the minima of the local estimates min(e(lj)), for the landmarks
lj ∈ Lr, r ∈ {2, 4, 5, 6}, are computed. The median of these values is retained as
the reference value that corresponds to anatomical exposure in strong absorption
regions, which is why only the anatomical ROIs Ar, r ∈ {2, 4, 5, 6}, are taken
into account. The median value is computed because we assume that the outliers
are at most present in two of the anatomical ROIs Ar, r ∈ {2, 4, 5, 6}, as biased
local estimates due to metallic objects are rare. The threshold τm is fixed at 80%
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of the reference value, i.e. a DI¿-1 with respect to the reference is considered
as acceptable. The landmarks lj ∈ Lr, r = 1, . . . , 8, such as e(lj) < τm are
considered as outliers and, hence, their weights ω(lj) are fixed to zero.

(a) (b)

Figure 9: Robustness to the presence of the metallic objects. In Figure (a), among the
landmarks lj ∈ L5 (green points), the point that corresponds to the femoral prosthetic head
is labeled as outlier (red square) and then rejected. In Figure (b), none of the landmarks
lj ∈ L5 is detected as outlier, but this does not affect the EI measure (see text for details).

Figure 9 shows two sub-images extracted from the same image with a femoral
prosthesis. In details, Figure 9a displays the landmarks lj ∈ L5 on the pelvic
region and the one placed in the middle of the prosthetic femoral head (red
square) is rejected. The DI value with respect to the ground truth is then equal
to −0.07. Nevertheless, even if the outliers are taken into account, the measure
is not significantly affected as the DI value becomes −0.12, which shows how
the landmark-based method is practically not biased by the presence of outliers
as long as their number is limited. Figure 9b shows that the presence of metallic
objects does not necessarily imply presence of outliers. Indeed, the EI values
associated with the left and right legs are practically identical, i.e. 41.24 and
40.27, even if all the landmarks are taken into account. It is worth noting,
however, that in this example only 2 of the 5 landmarks placed in the prosthesis
give wrong EI estimates because, as for the others, the metallic object is not
represented by the median values of the local gray level distributions. As a
consequence, the number of outliers is too low to influence the EI estimated at
the femoral region. On the other hand, the proposed technique to reject outliers
could be useful when their number in a cluster Lr is relatively high with respect
to the number of landmarks |Lr|. This would be the case, for example, of the
estimation of the EI value associated with the anatomical region A7 in presence
of a knee prosthesis.

Finally, these results well summarize that our method is able to overcome
the issues due to the presence of metallic objects, which is one of the advantages
of the landmark-based formulation.

4. Conclusion

The exposure index can be computed by relying on clusters of landmarks
associated with anatomical regions (Irrera et al., 2015). According to this formu-
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lation, the image quality estimation becomes a matter of detection and recog-
nition of anatomical landmarks. We have proposed an unsupervised method
that addresses this task by combining the global information on the size and
the positions of the anatomical structures on the one hand, with local analysis
on the other hand. The search of the position of the landmarks is sparsely
conducted by visiting salient points that correspond to peaks of absorption or
signal at the detector. The results indicate that the EI values computed at the
automatically detected landmarks correspond very well to those associated with
manual annotations on frontal view acquisitions. On lateral view acquisitions,
the estimates in the thoracic spine may be biased by the superposition with the
shoulder in the superior part of the region. Therefore, in a next version of the
method, higher importance should be given to the contributions from the lower
thoracic vertebrae. An unstable estimation may also occur in the legs due to
their superposition in a lateral image. We should then check with the users
whether the estimation of the image quality in these regions is meaningful de-
spite the superposition or not. Note that the validation has been conducted on
a heterogeneous database composed by full-body images of patients of different
morphotypes, acquired at different radiation exposure amounts, and including
post-surgery and pathological cases. The proposed method has shown to be
very robust to all these different cases, except for the aforementioned structures
acquired from the lateral view for which the estimation needs to be improved.

The proposed detection method relies on the hypothesis that the anatomical
structures present in the image are known. This information can be normally
retrieved from the DICOM fields. For example, all the tested images cover the
full body. This allows initializing the method by detecting a set of control points
from which the search for the solution can be sequentially narrowed and then
locally refined. Nevertheless, in unusual cases, such as when the DICOM field
anatomical study is missing or wrong, the proposed method would not work.
A possible solution to make the method robust to these non-nominal cases
may consist in detecting the control points with a classification- or regression-
based supervised approach. The control points could be then located despite
the missing prior knowledge and the landmarks detected as proposed in our
method. For example, Gauriau et al. (2015) have proposed an approach that
combines cascade of supervised regressors to statistical shapes, which may be
adapted to the problem of control points detection. While this work is applied
to CT images, some recent works (Aubert et al., 2016; Ebrahimi et al., 2016)
have also investigated supervised structure detection on X-ray images acquired
with EOS system.

The detection is sequentially conducted in a predefined order. However, as
proposed by Fouquier et al. (2012), it may be preferable to conduct the search
according to information extracted from the image to process. Moreover, while
an already detected cluster of landmarks can constraint the sets corresponding
to other anatomical structures, our method does not offer a backward check on
the already detected landmarks. This option could however prevent potential
errors to propagate. The algorithm could also be improved by adaptive setting
of the parameters, such as the scale at which the salient points are computed.

25



Ethical statement

All procedures performed in studies involving human participants were in ac-
cordance with the ethical standards of the institutional and/or national research
committee and with the 1964 Helsinki declaration and its later amendments or
comparable ethical standards.

Disclosure statement

The authors have no conflicts of interest to disclose.

References

Aubert, B., Vazquez, C., Cresson, T., Parent, S., Guise, J. D., April 2016. Auto-
matic spine and pelvis detection in frontal x-rays using deep neural networks
for patch displacement learning. In: 2016 IEEE 13th International Sympo-
sium on Biomedical Imaging (ISBI). pp. 1426–1429.

Ebrahimi, S., Angelini, E., Gajny, L., Skalli, W., April 2016. Lumbar spine
posterior corner detection in x-rays using haar-based features. In: 2016 IEEE
13th International Symposium on Biomedical Imaging (ISBI). pp. 180–183.

Fouquier, G., Atif, J., Bloch, I., 2012. Sequential model-based segmentation and
recognition of image structures driven by visual features and spatial relations.
Computer Vision and Image Understanding 116 (1), 146 – 165.

Gauriau, R., Cuingnet, R., Lesage, D., Bloch, I., 2015. Multi-organ localiza-
tion with cascaded global-to-local regression and shape prior. Medical Image
Analysis 23, 70–83.

IEC 62494-1, 2008. Medical electrical equipement - Exposure index of digital
X-ray imaging systems - Part 1: Definitions and requirements for general
radiography.
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