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ABSTRACT

Milton Babbitt (1916–2011) was a composer of twelve-
tone serial music noted for creating the all-partition array.
The problem of generating an all-partition array involves
finding a rectangular array of pitch-class integers that can
be partitioned into regions, each of which represents a dis-
tinct integer partition of 12. Integer programming (IP) has
proven to be effective for solving such combinatorial prob-
lems, however, it has never before been applied to the prob-
lem addressed in this paper. We introduce a new way of
viewing this problem as one in which restricted overlaps
between integer partition regions are allowed. This permits
us to describe the problem using a set of linear constraints
necessary for IP. In particular, we show that this problem
can be defined as a special case of the well-known prob-
lem of set-covering (SCP), modified with additional con-
straints. Due to the difficulty of the problem, we have yet
to discover a solution. However, we assess the potential
practicality of our method by running it on smaller similar
problems.

1. INTRODUCTION

Milton Babbitt (1916–2011) was a composer of twelve-
tone serial music noted for developing complex and highly
constrained music. The structures of many of his pieces
are governed by a structure known as the all-partition ar-
ray, which consists of a rectangular array of pitch-class
integers, partitioned into regions of distinct “shapes”, each
corresponding to a distinct integer partition of 12. This
structure helped Babbitt to achieve maximal diversity in
his works, that is, the presentation of as many musical pa-
rameters in as many different variants as possible [13].

In this paper, we formalize the problem of generating an
all-partition array using an integer programming paradigm
in which a solution requires solving a special case of the
set-covering problem (SCP), where the subsets in the cover
are allowed a restricted number of overlaps with one an-
other and where the ways in which these overlaps can oc-
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cur is constrained. It turns out that this is a hard combina-
torial problem. That this problem was solved by Babbitt
and one of his students, David Smalley, without the use
of a computer is therefore interesting in itself. Moreover, it
suggests that there exists an effective procedure for solving
the problem.

Construction of an all-partition array begins with an
I × J matrix, A, of pitch-classes, 0, 1, . . . , 11, where each
row contains J/12 twelve-tone rows. In this paper, we only
consider matrices where I = 6 and J = 96, as matri-
ces of this size figure prominently in Babbitt’s music [13].
This results in a 6 × 96 matrix of pitch classes, contain-
ing 48 twelve-tone rows. In other words, A will contain an
approximately uniform distribution of 48 occurrences of
each of the integers from 0 to 11. On the musical surface,
rows of this matrix become expressed as ‘musical voices’,
typically distinguished from one another by instrumental
register [13]. A complete all-partition array is a matrix,
A, partitioned into K regions, each of which must contain
each of the 12 pitch classes exactly once. Moreover, each
of these regions must have a distinct “shape”, determined
by a distinct integer partition of 12 (e.g., 2+2+2+3+3
or 1+2+3+1+2+3) that contains I or fewer summands
greater than zero [7]. We denote an integer partition of an
integer, L, by IntPartL(s1, s2, . . . , sI) and define it to be
an ordered set of non-negative integers, 〈s1, s2, . . . , sI〉,
where L =

∑I
i=1 si and s1 ≥ s2 ≥ · · · ≥ sI . For exam-

ple, possible integer partitions of 12 when I = 6, include
IntPart12(3, 3, 2, 2, 1, 1) and IntPart12(3, 3, 3, 3, 0, 0).
We define an integer composition of a positive integer,
L, denoted by IntCompL(s1, s2, . . . , sI), to also be an
ordered set of I non-negative integers, 〈s1, s2, . . . , sI〉,
where L =

∑I
i=1 si, however, unlike an integer partition,

the summands are not constrained to being in descending
order of size. For example, if L = 12 and I = 6, then
IntComp12(3, 3, 3, 3, 0, 0) and IntComp12(3, 0, 3, 3, 3, 0)
are two distinct integer compositions of 12 defining the
same integer partition, namely IntPart12(3, 3, 3, 3, 0, 0).

Figure 1 shows a 6×12 excerpt from a 6×96 pitch-class
matrix, A, and a region determined by the integer composi-
tion, IntComp12(3, 2, 1, 3, 1, 2), containing each possible
pitch class exactly once. Note, in Figure 1, that each sum-
mand (from left to right) in IntComp12(3, 2, 1, 3, 1, 2),
gives the number of elements in the corresponding row of
the matrix (from top to bottom) in the region determined
by the integer composition. We call this part of a region



Figure 1: A 6×12 excerpt from a 6×96 pitch-class matrix
with the integer composition, IntComp12(3, 2, 1, 3, 1, 2)
(in dark gray), containing each pitch class exactly once.

Figure 2: A 6 × 12 excerpt from a 6 × 96 pitch-class
matrix with a region whose shape is determined by the
integer composition, IntComp12(3, 3, 3, 3, 0, 0) (in light
gray), where three elements (in bold) are horizontal inser-
tions of pitch classes from the previous integer partition
region. Note that the two indicated regions represent dis-
tinct integer partitions.

in a given row of the matrix a summand segment. For
example, in Figure 1, the summand segment in the first
row for the indicated integer partition region contains the
pitch classes 11, 4 and 3. On the musical surface, the dis-
tinct shape of each integer composition helps contribute
to a progression of ‘musical voices’ that vary in textural
density, allowing for relatively thick textures in, for ex-
ample, IntComp12(2, 2, 2, 2, 2, 2) (with six participating
parts) and comparatively sparse textures in, for example,
IntComp12(11, 0, 1, 0, 0, 0) (with two participating parts).

There exist a total of 58 distinct integer partitions of 12
into 6 or fewer non-zero summands [13]. An all-partition
array with six rows will thus contain K = 58 regions,
each containing every pitch class exactly once and each
with a distinct shape determined by an integer composi-
tion representing a distinct integer partition. However, the
number of pitch-class integers required to satisfy this con-
straint, 58 × 12 = 696, exceeds the size of a 6 × 96
matrix containing 576 elements, by 120. In order to sat-
isfy this constraint, additional pitch-classes therefore have
to be inserted into the matrix, with the added constraint
that only horizontal insertions of at most one pitch class
in each row are allowed for each of the 58 integer parti-
tion regions. Each inserted pitch class is identical to its
immediate neighbor to the left, this being the right-most
element of a summand segment belonging to a previous
integer partition region. This constraint ensures that the or-
der of pitch classes in the twelve-tone rows of a given row
of A is not altered [13]. Figure 2 shows a second integer
partition region, IntComp12(3, 3, 3, 3, 0, 0), in the matrix
shown in Figure 1 (indicated in light gray), where three
of its elements result from horizontal insertions of pitch
classes from the previous integer partition region. Note, in

Figure 2, the three horizontal insertions of pitch-class inte-
gers, 3 (in row 1), 7 (in row 2), and 10 (in row 4), required
to have each pitch class occur exactly once in the second
integer partition region. Not all of the 58 integer partitions
must contain one or more of these insertions, however, the
total number of insertions must equal the 120 additional
pitch classes required to satisfy the constraint that all 58
integer partitions are represented. Note that, in order for
each of the resulting integer partition regions to contain
every pitch class exactly once, ten occurrences of each of
the 12 pitch classes must be inserted into the matrix. This
typically results in the resulting matrix being irregular (i.e.,
“ragged” along its right side).

In this paper, we address the problem of generating an
all-partition array by formulating it as a set of linear con-
straints using the integer programming (IP) paradigm. In
section 2, we review previous work on general IP problems
and their use in the generation of musical structures. We
also review previous work on the problem of generating
all-partition arrays. In section 3, we introduce a way of
viewing insertions of elements into the all-partition array
as fixed locations in which overlaps occur between con-
tiguous integer partition regions. In this way, our matrix
remains regular and we can define the problem as a special
case of the well-known IP problem of set-covering (SCP),
modified so that certain overlaps are allowed between the
subsets. In sections 4 and 5, we present our IP formula-
tion of this problem as a set of linear constraints. Due to
the difficulty of the problem, we have yet to discover a so-
lution using our formulation. Nevertheless, in section 6,
we present the results of using our implementation to find
solutions to smaller versions of the problem and in this
way explore the practicality of our proposed method. We
conclude in section 7 by mentioning possible extensions to
our formulation that could potentially allow it to solve the
complete all-partition array generation problem.

2. PREVIOUS WORK

Babbitt himself laid the foundations for the construction
of what would become the all-partition array during the
1960s, and he would continue to use the structure in nearly
all of his later works [1–4]. Subsequent composers made
use of the all-partition array in their own music and further
developed ways in which its structure could be formed and
used [5,6,11,12,14,15,17,18,21]. Most of these methods
focus on the organization of pitch classes in a twelve-tone
row and how their arrangement can make the construction
of an all-partition array more likely. We propose here a
more general purpose solution that will take any matrix and
attempt to generate a successful structure. Furthermore,
many of these previous methods were music-theoretical in
nature and not explicitly computational. Work by Bazelow
and Brickle is one notable exception [5, 6]. We agree here
with their assessment that ‘partition problems in twelve-
tone theory properly belong to the study of combinatorial
algorithms’ [6]. However, we differ considerably in our
approach and how we conceive of the structure of the all-
partition array.



More recent efforts to automatically analyze and gen-
erate all-partition arrays have been based on backtracking
algorithms. [7–9]. True to the structure of the all-partition
array (as it appears on the musical surface) and the way
in which Babbitt and other music theorists conceive of
its structure, these attempts to generate an all-partition ar-
ray form regions of pitch classes according to the pro-
cess described in section 1, where horizontal repetitions
of pitch-classes are added, resulting in an irregular matrix.
While these existing methods have further proposed vari-
ous heuristics to limit the solution space or allow for in-
complete solutions, they were unable to generate a com-
plete all-partition array [7–9].

In general, for difficult combinatorial problems, more
efficient solving strategies than backtracking exist. One
such example is integer programming (IP). IP is a compu-
tationally efficient and practical paradigm for dealing with
typically NP-hard problems, such as the traveling sales-
man, set-covering and set-partitioning problems, where
these are expressed using only linear constraints (i.e.,
equations and inequalities) and a linear objective func-
tion [10, 16]. One benefit of using IP, is that it allows for
the separation of the formulation of a problem by users and
the development by specialists of an algorithm for solving
it. Many of these powerful solvers dedicated to IP prob-
lems have been developed and used particularly in the field
of operations research. Compared to approximate compu-
tational strategies, such as genetic algorithms, IP formu-
lations and their solvers are suitable for searching for so-
lutions that strictly satisfy necessary constraints. For this
reason, we expect that the IP paradigm could provide an
appropriate method for approaching the problem of gener-
ating all-partition arrays.

In recent work, IP has been applied to problems of anal-
ysis and generation of music [19, 20]. This is of impor-
tance to the research presented here as it demonstrates the
relevance of these traditional optimization problems of set-
covering (SCP) and set-partitioning (SPP), to general prob-
lems found in computational musicology, where SPP has
been used in the segmentation of melodic motifs and IP
has been used in describing global form. In the next sec-
tion, we address the set-covering problem (SCP) in greater
detail and show how it is related to the problem of gener-
ating all-partition arrays.

3. SET-COVERING PROBLEM FORMULATION
OF ALL-PARTITION ARRAY GENERATION

The set-covering (SCP) problem is a well-known prob-
lem in computer science and operations research that can
be shown to be NP-hard [10]. Let E be a set whose el-
ements are {E1, E2, · · · , E#E} (where #E denotes the
number of elements in E), F be a family of subsets of E,
{F1, F2, · · · , F#F }, and S be a subset of F . By assign-
ing a constant cost, cs, to each Fs, the objective of the

Figure 3: A 6×12 excerpt from a 6×96 pitch-class matrix
with two integer compositions, IntComp12(3, 2, 1, 3, 1, 2)
(in dark gray and outlined) and IntComp12(3, 3, 3, 3, 0, 0)
(in light gray), that form distinct integer partition regions.
Note, that the second composition overlaps three fixed lo-
cations in the first.

set-covering problem (SCP) is to

Minimize
S⊂F

∑
Fs∈S

cs

subject to
⋃

Fs∈S
Fs = E.

In other words, a solution S is a cover of E that allows for
the same elements to appear in more than one subset, Fs.
In this section, we suggest that our problem can be viewed
as an SCP with additional constraints.

3.1 All-partition array generation as a set-covering
problem (SCP) with additional constraints

When viewing the all-partition array in the context of⋃
Fs∈S Fs = E above, E is the set that consists of all loca-

tions (i, j) in the matrix, A, and Fs are the sets of locations
(i, j) that correspond to the “shapes” of integer composi-
tions. We call each Fs a candidate set. A candidate set Fs

is characterized by two conditions that we call containment
and consecutiveness. Containment means that the elements
(i.e., locations (i, j)) of Fs correspond to twelve distinct
integers, 0, 1, . . . , 11, in A. Consecutiveness means that
each of its elements belonging to the same row in A are
consecutive. In this sense, F includes all sets found in A
that satisfy the conditions of consecutiveness and contain-
ment.

As the expression
⋃

Fs∈S Fs = E implies, a candidate
set is allowed to share elements with another candidate set.
Similarly, the pitch classes in A (i.e., corresponding to el-
ements in E) that become insertions in the original prob-
lem can be instead regarded as shared elements or overlaps
between contiguous integer composition regions, with the
result that the matrix remains regular. Figure 3 shows how
these overlaps would occur in the two integer composition
regions shown in Figure 2.

Viewed in this way, a solution to the problem of gen-
erating an all-partition array thus satisfies the basic cri-
terion of an SCP, namely, the condition for set-covering,⋃

Fs∈S Fs = E. However, this criterion alone fails to ac-
count for the unique constraints under which such a cover-
ing is formed in an all-partition array. In the original SCP,
there are no constraints on the order of subsets, the order
of their elements or the number of overlaps and the ways in



which they can occur. On the other hand, an all-partition
array must satisfy such additional conditions. We denote
the constraints for satisfying such additional conditions by
Add. Conditions.

Add. Conditions includes the conditions in the all-
partition array governing (1) the left-to-right order of con-
tiguous candidate sets, (2) permissible overlaps between
such sets, and (3) the distinctness of sets in S. This last
condition of distinctness ensures that the integer composi-
tions used in a cover, S, define every possible integer par-
tition once and only once. On the other hand, the condi-
tions for set-covering,

⋃
Fs∈S Fs = E, are conditions of

(1) candidate sets (which satisfy containment and consec-
utiveness) and (2) covering, meaning that each element in
E is covered no less than once.

We can now state that our problem of generating an all-
partition array is to

Minimize
S⊂F

∑
Fs∈S

cs

subject to
⋃

Fs∈S
Fs = E,

Add. Conditions.

where the associated cost, cs, of each Fs, can be inter-
preted as a preference for one integer composition or an-
other. It is likely that, in the interest of musical expression,
Babbitt may have preferred the shapes of some integer par-
tition regions over others [13]. However, as his preference
is unknown, we can regard these costs to have the same
value for each Fs.

Due to the condition of distinctness (just described),
|S| can be fixed at 58. This feature, combined with the
equal costs of each Fs, means that the objective function,∑

Fs∈S cs, for this problem, is constant. For these reasons,
the above formulation is a constraint satisfaction problem.
This motivates our discussions in sections 6 and 7 on pos-
sible alternative objective functions.

In the next two sections, we implement the constraint
satisfaction problem defined above using integer program-
ming (IP). In particular, section 4 addresses the conditions
for set-covering,

⋃
Fs∈S Fs = E, and section 5 addresses

those in Add. Conditions. It is because of our new way
of viewing this problem, with a regular matrix and over-
laps, that we are able to introduce variables for use in IP to
describe these conditions.

4. IP IMPLEMENTATION OF CONDITIONS FOR
SET-COVERING IN ALL-PARTITION ARRAY

GENERATION

In this section, we introduce our set of linear constraints
for satisfying the general conditions for set-covering,⋃

Fs∈S Fs = E, in the generation of an all-partition ar-
ray. Before we introduce these constraints, we define the
necessary variables and constants used in our implemen-
tation of the conditions for set-covering. We begin with
a given matrix found in one of Babbitt’s works based on

the all-partition array. Examples of the matrices used in
this paper can be found in Babbitt’s Arie da Capo (1974)
and None but the Lonely Flute (1991), among others. Let
(Ai,j) be a (6, 96)-matrix whose elements are the pitch-
class integers, 0, 1, . . . , 11. We denote the number of rows
and columns by I and J , respectively.

Let xi,j,k (1 ≤ i ≤ I , 1 ≤ j ≤ J) be a binary vari-
able corresponding to each location (i, j) in A and a sub-
set (i.e., integer partition) identified by the integer k, where
1 ≤ k ≤ K and K = 58. Here, we consider the case
where I = 6 and J = 96, so there are 58 sets of 576 such
variables. Each of these variables will indicate whether
or not a location (i, j) belongs to a candidate set for the
kth position in the sequence of 58 integer partition regions.
We denote the set of locations (i, j) whose corresponding
value for xi,j,k is 1, to be Ck. Subject to conditions for
consecutiveness and containment, Ck will be a candidate
set.

Let (Bp
i,j) (0 ≤ p ≤ 11) be constant matrices, equal

in size to A, where Bp
i,j = 1 if and only if Ai,j = p and

Bp
i,j = 0 otherwise. The locations (i, j) whose values of

Bp
i,j equal 1, correspond to the locations of pitch-class p in

A.

4.1 Conditions for Ck to contain twelve distinct
integers in A (condition of containment)

A condition for Ck to satisfy the condition of containment
is that its number of elements is 12 and each corresponds to
a distinct pitch-class in A. These conditions are expressed
by the following two equations:

∀k ∈ [1,K],

I∑
i=1

J∑
j=1

xi,j,k = 12, (1)

∀p ∈ [0, 11],∀k ∈ [1,K],

I∑
i=1

J∑
j=1

Bp
i,j · xi,j,k = 1. (2)

Because xi,j,k equals 1 if (i, j) is included in Ck and 0
if it is not, Equation 1 means that there are 12 elements
in Ck. In Equation 2, we ensure that each corresponding
pitch-class integer p for the elements in Ck, appears once
and only once.

4.2 Conditions for Ck to be integer compositions in A
(condition of consecutiveness)

Let Ck,i be the ith-row part of Ck (i.e., the summand seg-
ment of composition k for row i). Let si,k be an integer
variable corresponding to the x-coordinate of a ‘starting
point’, which lies at the left side of the leftmost component
of Ck,i. The value of si,k is then equal to the column num-
ber of the leftmost component of Ck,i, minus 1. The origin
point of this coordinate lies along the left hand side of the
matrix A, and we set the width of each location (i, j) to be
1. Similarly, let ei,k be an integer variable corresponding
to the x-coordinate of an ‘ending point’, which lies at the
right side of the rightmost component belonging to Ck,i.
The value of ei,k is then equal to the column number of the



(a) Ck,i contains pitch classes
11, 4, 3 (j = 1, 2, 3) and satisfies
consecutiveness.

(b) Ck,i contains pitch classes
11, 4, 5 (j = 1, 2, 4) and does
not satisfy consecutiveness.

Figure 4: Two Ck,i and corresponding si,k and ei,k from
Figure 3 when k = 1 and i = 1. Shaded elements indicate
xi,j,k = 0 and unshaded elements indicate xi,j,k = 1.

rightmost component of Ck,i. Figure 4 shows an example
of two possible Ck,i from Figure 3. If there is no compo-
nent in Ck,i (k ≥ 2), we define si,k to be ei,k−1 and ei,k to
be si,k. If there is no component in C1,i, we define si,k and
ei,k to be 0. Then, si,k and ei,k are subject to the following
constraint of range:

∀i ∈ [1, I],∀k ∈ [1,K], 0 ≤ si,k ≤ ei,k ≤ J. (3)

The condition under which Ck (k ∈ [1,K]) forms an inte-
ger composition—that is, satisfies the condition of consec-
utiveness, is expressed by the following three constraints:

∀i ∈ [1, I],∀j ∈ [1, J ],∀k ∈ [1,K], (4)

j · xi,j,k ≤ ei,k,

∀i ∈ [1, I],∀j ∈ [1, J ],∀k ∈ [1,K], (5)

J − si,k ≥ (J + 1− j) · xi,j,k,

∀i ∈ [1, I],∀k ∈ [1,K],

J∑
j=1

xi,j,k = ei,k − si,k. (6)

In Equation 4, each element of Ck,i must be located at col-
umn ei,k or to the left of column ei,k. Equation 5 states that
each element of Ck,i must be located at column si,k +1 or
to the right of column si,k +1. Equation 6, combined with
the previous two constraints, states that the length of Ck,i

must be equal to ei,k−si,k, implying that the column num-
bers j of the elements in Ck,i are consecutive from si,k+1
to ei,k, where Ck,i contains at least one element.

4.3 Condition for covering A

As every location (i, j) in A (i.e., E in our SCP) must be
covered at least once, we pose the following condition of
covering:

∀i ∈ [1, I],∀j ∈ [1, J ],

K∑
k=1

xi,j,k ≥ 1. (7)

Equation 1 states that for all K = 58 integer partitions,
there are 12 · K = 696 variables, xi,j,k, that will equal
1. A successful cover of A by Equation 7, however, states
that all of I · J = 576 places (i, j) in A, are covered once
or more than once. Collectively, these imply that there are
120 or less than 120 places (i.e., combinations of (i, j))

that are covered twice or more than twice. These 120 over-
laps correspond to the 120 insertions of pitch-class integers
used when constructing an all-partition array in its original
form. By satisfying all of the constraints above, each Ck

forms a candidate set (i.e., a member of F in our SCP) and
the condition for set-covering,

⋃
Fs∈S Fs = E, is satisfied.

5. IP IMPLEMENTATION OF ADDITIONAL
CONDITIONS IN ALL-PARTITION ARRAY

GENERATION

In this section, we introduce our set of additional linear
constraints beyond those required for satisfying the condi-
tion of set-covering in the SCP.

5.1 Left-to-right order of Ck and permissible overlaps

Ck must be located immediately to the right of Ck−1. This
is expressed by

∀i ∈ [1, I],∀k ∈ [2,K], ei,k−1 ≤ ei,k, (8)

Ck−1,i and Ck,i may overlap by no more than one element.
This is expressed by the following inequality:

∀i ∈ [1, I],∀k ∈ [2,K], ei,k−1− 1 ≤ si,k ≤ ei,k−1, (9)

meaning that si,k will be equal to ei,k−1 if there is no over-
lap and si,k will be equal to ei,k−1−1 if there is an overlap.

5.2 Conditions for Ck to be integer compositions
defining distinct integer partitions (condition of
distinctness)

Let yi,k,l be a binary variable that indicates whether or not
the length of Ck,i is greater than or equal to l (1 ≤ l ≤
L,L = 12), by introducing the following constraints:

∀i ∈ [1, I],∀k ∈ [1,K], ei,k − si,k =

L∑
l=1

yi,k,l, (10)

∀i ∈ [1, I],∀k ∈ [1,K],∀l ∈ [2, L], (11)

yi,k,l−1 ≥ yi,k,l.

Equation 10 states that the sum of all elements in
〈yi,k,1, yi,k,2, . . . , yi,k,L〉 is equal to the length of Ck,i,
while Equation 11 states that its elements equal to 1
begin in the first position and are consecutive (e.g.,
〈1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0〉, when the length of Ck,i is
3.)

The number of the lengths of Ck,i (1 ≤ i ≤ I) that
are greater than or equal to l is given by

∑I
i=1 yi,k,l. The

twelve values of
∑I

i=1 yi,k,l (1 ≤ l ≤ L) then, will pre-
cisely represent the type of partition. For example, if Ck

is IntComp12(3, 2, 1, 3, 1, 2), then yi,k,l (∀i ∈ [1, I],∀l ∈
[1, L]) would be

1,1,1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0,0,0
1,1,1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0,0,0



and
∑I

i=1 yi,k,l would be [6, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0].
We denote the number of all integer partitions by N

(N = K = 58) and denote a single integer parti-
tion n (1 ≤ n ≤ N) by Pn. We can express Pn as
[Pn,1, Pn,2, . . . , Pn,L] (1 ≤ n ≤ N), where Pn,l corre-
sponds to the twelve values

∑I
i=1 yi,k,l (1 ≤ l ≤ L) de-

scribed above.
Then, by implementing the following expression:

∀k ∈ [1,K],∀n ∈ [1, N ],∀l ∈ [1, L], (12)

Pn,l · zk,n ≤
I∑

i=1

yi,k,l.

we can express whether Ck defines the integer partition n
or not by the binary variable zk,n. For example, if zk,n =
0, the value of Pn,l · zk,n = 0 constrains nothing, and thus
Ck cannot be the integer partition n (because of the next
equation). On the other hand, if zk,n = 1, Ck must be
the integer partition n. Accordingly, zk,n will equal 1 only
if the twelve values

∑I
i=1 yi,k,l correspond to Pn. From

this, determining whether or not all different partitions are
present can be expressed by the following equation:

∀n ∈ [1, N ],

K∑
k=1

zk,n = 1. (13)

6. EXPERIMENTS

In order to determine whether or not our formulation works
as intended, we implemented the constraints described in
sections 4 and 5 and supplied these to an IP solver based
on branch-and-bound (Gurobi Optimizer). As the objec-
tive function in our formulation amounts to a constant-cost
function (described in section 3), we replaced it with a
non-constant objective function,

∑
i,j,k ci,j,k ·xi,j,k, where

ci,j,k assumes a randomly generated integer for promoting
this process of branch and bound. When the first feasible
solution is found, we stop the search.

Although we first attempted to find a complete all-
partition array, we were unable to discover a solution after
one day of calculation. This highlights the difficulty of the
problem and reinforces those findings by previous methods
that were similarly unable to find a complete all-partition
array [7]. As the target of our current formulation is only
solutions which strictly satisfy all constraints, we opted to
try finding complete solutions to smaller-sized problems,
using the first j columns of the original matrix. Because
we cannot use all 58 integer partitions in the case K < N ,
a slight modification to Equation 13 was needed for this
change. Its equality was replaced by ≤ and an additional
constraint, ∀k ∈ [1,K],

∑N
n=1 zk,n = 1, for allocating

one partition to each Ck, was added.
Figure 5 shows the duration (vertical axis) of time spent

on finding a solution in matrices of varying size. The num-
ber of integer compositions, K, was set to (J+2)/2, where
J is an even number. This ensures that a given solution will
always contain 12 overlaps. These findings suggest that the
necessary computational time in finding a solution tends to

Figure 5: Duration of time spent on finding the first solu-
tion for each small matrix, whose column length is J(12 ≤
J ≤ 24, J ∈ 2N). K is set to (J + 2)/2, resulting in
12 overlaps. Note, that no feasible solution exists when
J = 14.

dramatically increase with an increase in J . However, this
increase fluctuates, suggesting that each small matrix rep-
resents a unique problem space with different sets of diffi-
culties (e.g., the case J = 14 was unfeasible). For this rea-
son, finding a solution in a complete matrix (6,96) within
a realistic limitation of time would be difficult for our cur-
rent method, even using a fast IP solver. This strongly mo-
tivates future improvements as well as the possibility of an
altogether different strategy.

7. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a novel integer-
programming-based perspective on the problem of gener-
ating Milton Babbitt’s all-partition arrays. We have shown
that insertions and the irregular matrix that results can be
replaced with restricted overlaps, leaving the regular ma-
trix unchanged. This view allows us to formulate the prob-
lem as a set-covering problem (SCP) with additional con-
straints and then implement it using integer programming.
Due to the difficulty of the problem, we have so far been
unable to find a solution. However, we have been able to
produce solutions in a practical running time (< 2500 sec-
onds) when the matrix is reduced in size to 24 columns or
less. These results motivate possible extensions to our for-
mulation. First, a relaxation of the problem is possible, for
example, by using an objective function that measures the
degree of incompleteness of a solution. This could allow
for approximate solutions to be discovered, such as those
found in previous work [7]. Second, it may be the case
that a solution to the full problem may be achievable by
combining solutions to smaller subproblems that we have
shown to be solvable in a practical running time.
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