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Abstract. Milton Babbitt (1916–2011) was a composer of twelve-tone
serial music noted for creating the all-partition array. One part of the
problem in generating an all-partition array requires finding a covering
of a pitch-class matrix by a collection of sets, each forming a region
containing 12 distinct elements and corresponding to a distinct integer
partition of 12. Constraint programming (CP) is a tool for solving such
combinatorial and constraint satisfaction problems. In this paper, we
use CP for the first time to formalize this problem in generating an all-
partition array. Solving the whole of this problem is difficult and few
known solutions exist. Therefore, we propose solving two sub-problems
and joining these to form a complete solution. We conclude by presenting
a solution found using this method. Our solution is the first we are aware
of to be discovered automatically using a computer and differs from those
found by composers.

Keywords: Babbitt · all-partition array · computational musicology ·
constraint programming

1 Introduction

Milton Babbitt (1916–2011) was a composer of twelve-tone serial music noted
for developing highly constrained and often complex musical structures. Many
of his pieces are organized according to one such structure known as the all-
partition array [1]. An all-partition array is a covering of a matrix of pitch-class
integers by a collection of sets, each of which forms a region in this matrix
containing 12 distinct pitch classes from consecutive elements in its rows and
that corresponds to a distinct integer partition of 12 (to be clarified in the next
section). This unique structure imposes a strict organization on the pitch classes
in his works, and it serves as both a method of musical composition and musical
form. Moreover, the all-partition array allowed Babbitt one of many ways to
achieve maximal diversity in his music.3

3 Maximal diversity is the presentation of as many musical parameters in as many
different ways as possible [2].
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In this paper, we formulate one part of the problem in generating an all-
partition array, beginning from a given matrix of pitch-class integers, using
constraint programming (CP) and with a particular focus on its mathemati-
cal aspects. Using our model and a method for dividing this matrix into smaller,
sub-problems, we obtained a solution, which, we believe, is the first to be discov-
ered automatically using a computer and differs from those found by composers.
CP is a programming paradigm that has been successfully applied to the solving
of various constraint satisfaction problems in music [3–7]. It seems natural then,
that CP could be used in the problem we address here. Moreover, having such a
model could, for example, be used as a basis for generating new musical works.

1.1 The structure of an all-partition array

In this section, we describe the structure of an all-partition array in a way
that assumes the reader has a basic understanding of pitch class set theory.
Constructing an all-partition array begins with the construction of an I × J
matrix, A, whose elements are pitch-class integers, 0, 1, . . . , 11, where each row
contains J/12 twelve-tone rows. The dimensions of this matrix constrain the
most important requirement of the structure of an all-partition array, however,
Babbitt generally limited himself to sizes of 4×96, 6×96, and 12×72 [2]. In this
paper, we consider only matrices where I = 4 and J = 96, as matrices of this
size figure prominently in Babbitt’s music [2]. This results in a 4× 96 matrix of
pitch classes, containing 32 twelve-tone rows from the possible 48 related by any
combination of transposition, inversion and retrograde (i.e., reversal). In other
words, A will contain an approximately uniform distribution of 32 occurrences
of each of the integers from 0 to 11.4 On the musical surface, rows of this matrix
become expressed as ‘musical voices’, typically distinguished from one another
by instrumental register [2].

A complete all-partition array is a covering of matrix, A, by K sets, each of
which is itself a partition of the set {0, 1, . . . , 11} whose parts (1) contain con-
secutive row elements from A and (2) have cardinalities equal to the summands
in one of the K distinct integer partitions of 12 (e.g., 6 + 6 or 5 + 4 + 2 + 1)
containing I or fewer summands greater than zero.5 Figure 1 shows a 4 × 12
excerpt from a 4 × 96 pitch-class matrix, A, and two such sets forming regions
in A each containing every pitch class exactly once and corresponding to two
distinct integer partitions, whose exact “shapes” are more precisely represented
as the integer compositions, IntComp12(4, 4, 4, 0) and IntComp12(0, 6, 3, 3).6

4 For a more detailed description of the constraints governing the organization of
matrices in Babbitt’s music, see [2, 8].

5 We denote an integer partition of an integer, L, by IntPartL(s1, s2, . . . , sI) and define
it to be an ordered set of non-negative integers, 〈s1, s2, . . . , sI〉, where L =

∑I
i=1 si

and s1 ≥ s2 ≥ · · · ≥ sI .
6 We define an integer composition of a positive integer, L, denoted by

IntCompL(s1, s2, . . . , sI), to also be an ordered set of I non-negative integers,
〈s1, s2, . . . , sI〉, where L =

∑I
i=1 si.
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Fig. 1: A 4 × 12 excerpt from a 4 × 96 pitch-class matrix with two distinct
integer partition regions represented precisely by the integer compositions,
IntComp12(4, 4, 4, 0) (in dark gray) and IntComp12(0, 6, 3, 3) (in light gray), each
containing every pitch class exactly once.

Note, in Figure 1, that each summand (from left to right) in IntComp12(4, 4, 4, 0),
gives the number of elements in the corresponding row of the matrix (from top
to bottom) in this region. Unlike common tiling problems using, for example,
polyominoes, these regions need not have connected interiors, as demonstrated
by the second region in Figure 1 between rows 3 and 4. On the musical surface,
the distinct shape of each region helps contribute to a progression of ‘musical
voices’ that vary in textural density, allowing for relatively thick textures in, e.g.,
IntComp12(3, 3, 3, 3) (with four participating parts) and comparatively sparse
textures in, e.g., IntComp12(11, 0, 1, 0) (with two participating parts).

There exist a total of 34 distinct integer partitions of 12 into 4 or fewer
non-zero summands [2]. An all-partition array with four rows will thus contain
K = 34 regions, each containing every pitch class exactly once and each with a
distinct “shape” determined by an integer composition defining a distinct integer
partition. However, the number of pitch classes required to satisfy this constraint,
34×12 = 408, exceeds the size of a 4×96 matrix containing 384 elements, by 24.
In order to satisfy this constraint, contiguous regions may share pitch classes,
with the added constraint that only horizontal overlaps of at most one pitch class
in each row are allowed for each of the 34 integer partition regions. Figure 2 shows
a third region, IntComp12(5, 1, 0, 6) (in medium gray), in the matrix shown in
Figure 1, where two of its elements result from overlapped pitch classes from
previous regions. Note, in Figure 2, the two horizontal overlaps of pitch class, 7

Fig. 2: A 4 × 12 excerpt from a 4 × 96 pitch-class matrix with a third integer
composition, IntComp12(5, 1, 0, 6) (in medium gray), sharing one pitch class from
each of the two previous regions.

(in row 1 and belonging to the first region) and 8 (in row 4 and belonging to the
second region), required to have each pitch class occur exactly once in the third
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integer partition region. This means that while contiguous regions may share
pitch classes, such regions need not be necessarily adjacent in sequence.

Composers have primarily relied on constructing all-partition arrays by hand
and at least some of their methods have been published [1,9,10]. Algorithms for
automating this task have also been proposed [8,11]. However, generating an all-
partition array is a large combinatorial problem and satisfying the constraints
of its structure is difficult. To date, none of these algorithms have been able
to solve this problem automatically. This observation motivates our decision
here to look for alternative programming paradigms and methods for possibly
better addressing this problem. In section 2, we present our CP constraints
for implementing the problem of generating an all-partition array from a given
matrix. As solving for the entire matrix directly is difficult, in section 3, we
present a method of dividing this matrix into two smaller matrices, choosing
integer partitions based on how frequently they appear in solutions to one of
these smaller matrices, and re-joining them to form a complete solution. We
conclude here with a solution discovered using this method.

2 CP constraints for the problem of generating an
all-partition array from a given matrix

We begin the discussion of our CP constraints for generating an all-partition
array, with a given matrix found in one of Babbitt’s works based on the all-
partition array.7 Let (Ai,j) be this (4, 96)-matrix whose elements are the pitch-
class integers, 0, 1, . . . , 11. We denote the number of rows and columns by I
and J , respectively. Let xi,j,k (1 ≤ i ≤ I, 1 ≤ j ≤ J) be a binary variable
corresponding to each location (i, j) in A and a subset (i.e., a region) identified
by the integer k, where 1 ≤ k ≤ K and K = 34. There are then 34 sets of 384
such variables. Each of these variables will indicate whether or not a location
(i, j) belongs to a candidate set, which we denote, Ck, for the kth position in the
sequence of 34 regions. For Ck to be a candidate set, it must form a region in
A (as described in section 1), by satisfying two conditions, consecutiveness and
containment, which we will introduce below. Having satisfied these conditions,
Ck will be a candidate set in a possible solution to our problem, in which its
elements correspond to 12 distinct pitch classes in A and whose “shape” is defined
by an integer composition. Additional constraints e.g., ensuring that each of these
candidate sets is then a distinct integer partition and that their overlaps do not
exceed one in each row, will then complete our formulation of this problem.

2.1 Consecutiveness

The condition of consecutiveness states that pitch classes belonging to the same
region and row in A must lie adjacent to one another with no gaps between. We

7 Examples of this matrix can be found in Babbitt’s My Ends are My Beginnings
(1978) and Beaten Paths (1988), among others.
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ensure this is the case by placing constraints on the strings of 0’s and 1’s that
are allowed in the rows formed by 〈xi,1,k, xi,2,k, . . . , xi,J,k〉 for each (i, k). If, for
example, the string 〈. . . , 0, 1, . . .〉 appears in the ith row for some k, then there
can be no 1 occurring before 0. This is expressed by the following:

∀i ∈ [1, I],∀j ∈ [3, J ],∀k ∈ [1,K],

(xi,j−1,k = 0 ∧ xi,j,k = 1) =⇒
j−2
∧

j′=1
(xi,j′,k = 0). (1)

On the other hand, if 〈. . . , 1, 0, . . .〉 appears in this row, then there can be no 1
after 0. This is expressed by the following:

∀i ∈ [1, I],∀j ∈ [1, J − 2],∀k ∈ [1,K],

(xi,j,k = 1 ∧ xi,j+1,k = 0) =⇒
J
∧

j′=j+2
(xi,j′,k = 0). (2)

In other words, all 1’s in 〈xi,1,k, xi,2,k, . . . , xi,J,k〉 for each (i, k) must be consec-
utive, with any 0’s lying to the left or right end points of this string.

2.2 Containment

The condition of containment states that regions in A must contain 12 distinct
pitch classes. Let Bp (0 ≤ p ≤ 11) be the set of all locations (i, j) of pitch class
p in matrix A. From this, we can express the condition of containment by the
following:

∀p ∈ [0, 11],∀k ∈ [1,K],
∑

(i,j)∈Bp

xi,j,k = 1, (3)

where for each k, xi,j,k is equal to 1 at one and only one location (i, j) whose
pitch class is p in A. When this is the case, Ck will contain one of each pitch
class.

2.3 Covering all (i, j) in A

A solution to our problem requires that every one element in A is covered by
at least one of the regions, Ck. We can express this condition by the following
constraint:

∀i ∈ [1, I],∀j ∈ [1, J ],
K
∨

k=1
(xi,j,k = 1). (4)

2.4 Restrictions on the left-to-right order of candidate sets and
their overlaps

As discussed in section 1, adjacent regions need not be contiguous in each row
in A, however, there are restrictions on their left-to-right order and allowed
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overlaps. The number of overlaps in each row between these regions must not
exceed 1. We can express this restriction by the following constraint:

∀i ∈ [1, I],∀j ∈ [2, J ],∀k ∈ [1,K − 1],

(xi,j,k = 1) =⇒
K
∧

k′=k+1
(xi,j−1,k′ = 0). (5)

When combined with the constraint of consecutiveness, constraint 5 means that
if xi,j,k is equal to 1, the ith row of Ck′ , whose k′ is greater than k, is either (1)
located at the right-hand side of (i, j) without overlapping the ith row of Ck or
(2) has only one overlap at the right-most element of the ith row of Ck.

2.5 Candidate sets as all different integer partitions

In order to determine that the integer composition “shape” of Ck is a distinct
integer partition, we introduce two variables, yi,k,l and zk,l. Let yi,k,l be a bi-
nary variable that indicates whether or not the length of the ith row of Ck is
greater than or equal to l (1 ≤ l ≤ L,L = 12), by introducing the following two
constraints:

∀i ∈ [1, I],∀k ∈ [1,K],

J∑
j=1

xi,j,k =

L∑
l=1

yi,k,l (6)

∀i ∈ [1, I],∀k ∈ [1,K],∀l ∈ [2, L], (yi,k,l = 1) =⇒ (yi,k,l−1 = 1). (7)

Equation 6 states that the sum of all elements in 〈yi,k,1, yi,k,2, . . . , yi,k,L〉 is equal
to the length of the ith row of Ck while Equation 7 states that its elements equal
to 1 begin in the first position and are consecutive. For example, when the length
of the ith row of Ck is 3, 〈yi,k,1, yi,k,2, . . . , yi,k,L〉 is 〈1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0〉.
The total number of rows in Ck whose lengths are greater than or equal to l is
given by

∑I
i=1 yi,k,l. Let zk,l (0 ≤ zk,l ≤ I) be an integer variable that is equal

to
∑I

i=1 yi,k,l (1 ≤ l ≤ L) with the following constraint:

∀k ∈ [1,K],∀l ∈ [1, L], zk,l =

I∑
i=1

yi,k,l. (8)

The ordered set of twelve values zk,l (1 ≤ l ≤ L) will then identify the
type of integer partition corresponding to Ck. For example, when zk,l is
〈4, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0〉, Ck is IntPart12(5, 3, 2, 2). We denote this set zk,l
corresponding to an integer partition n by Pn = 〈Pn,1, Pn,2, . . . Pn,L〉 (1 ≤ n ≤
N,N = 34), where integer partitions appear in reverse lexicographical order,
meaning that those containing the fewest parts and largest part lengths ap-
pear first. For example, P1 is IntPart12(12, 0, 0, 0) and P34 is IntPart12(3, 3, 3, 3).
From this, we determine the integer composition shape of Ck to be the integer
partition n by the following constraint:

∀k ∈ [1,K],∀n ∈ [1, N ], (wk = n)⇐⇒
L
∧
l=1

(zk,l = Pn,l), (9)
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where wk (1 ≤ wk ≤ N) is an integer variable that indicates to which Pn Ck

corresponds. We can now express the condition that all integer partitions are
distinct by the constraint, AllDifferent(w1, w2, . . . , wK).

3 Solution

In order to confirm that our formulation of this problem is accurate, we imple-
mented our constraints described in section 2 and supplied these to a CP solver
(Sugar v2-1-0 [12,13]). We first tried to solve for the whole matrix directly, how-
ever, we were unable to obtain a solution after a day of calculation. We decided
instead, to divide the matrix into two, equally-sized halves and try solving for
each in such a way that their re-joining would form a complete solution to the
original problem. We made this division of the original matrix at [1, I]× [1, J/2].
Columns 1 to (J/2) then correspond to the first smaller matrix we denote by A1

and columns (J/2) + 1 to J correspond to the second smaller matrix we denote
by A2. We allocated 34/2 = 17 integer partitions to be found in each.

With little modification, our constraints can be adapted to the solving of
these sub-problems. These changes include modifying Bp (in equation 3) to con-
tain only the locations of pitch classes in either A1 or A2, setting K to be the
new number of partitions in each (i.e., 17) and J to be their new column lengths
96/2 = 48. Solutions to A1 and A2 in which no integer partition is used more
than once and contains only pitch classes from one or the other matrix (but not
both), collectively form a solution to the original problem. Due to its smaller
size, we were able to find solutions beginning with A1 over the course of a day,
in which 506 were found. Naturally, solving for A1 makes finding a solution in
A2 more difficult as the number of available partitions is now fewer, and in fact,
all 506 solutions to A1 made A2 unsatisfiable. We noticed, however, that certain
partitions in these 506 solutions e.g., IntPart12(3, 3, 3, 3) and IntPart12(4, 3, 3, 2)
occurred far less frequently than others. It would be reasonable then to conclude
that solutions in A1 which contain the greatest number of these less frequently
occurring partitions will make solving for A2 more likely, as the fewer available
partitions in A2 now consist of a proportionally greater number of frequently
occurring partitions. Therefore, we solved again for A1, this time by arbitrar-
ily restricting the domain of wk to exclude the top 6 most frequently occurring
partitions and include the top 5 least frequently occurring partitions.

If we denote the subset of integers from [1, 34] corresponding to the partitions
found in this solution to A1, S, then the domain of wk for possible solutions to
A2 becomes [1, 34] \ S. We then tried solving for A2, under the assumption that
its proportionally greater number of more frequently occurring partitions would
make finding a solution easier. While this means we exclude possible solutions
e.g., ones in which a rarely occurring partition occurs in A2 or where a partition
contains pitch classes from both A1 and A2, we were able to generate a complete
solution in this way. Solving for A1 took approx. 4 minutes while solving for A2

took approx. 28 minutes. Table 1 shows the complete solution found using this
method of re-joining A1 and A2.
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et37 62 4581 90 7 t6e 23510498 -867 2t e31 -1094
8940 15 32e6t7 859410t23 e67 549 10 -0 8te27365
2516 9t 0 87e4365t 219 e 03847 1t2 9653 784

74830e 9 12 t56e07348 6 5291 t 03e -e478 t6592

43 623 6412 822 93 913 543 831 34 4222 5321 84

85637 -72e t8 01945 32 7et6890 514 -4e2 -2t36795481
-58 49013 -3et276 450891et7 26 3 -30 -0

-4e09t -t5126 430 7e 8 6 95t1 -124 0e3872 16t9578 e
-21 4380e79 -9t16 -625 304e87 5 9t6

522 75 4322 5322 651 921 642 7312 632 732 10 12

023t67e -e 9 8504 1 2e3t76 48 9501
9185 42673te10598 -84 67 -7 t3e29 -908145 73 26et
4 0396t5 -5 21 e3 40785 619t20e 837 4

127 83e0421t -t5964738e0 2t916 -6 5 4 380e79t1625

741 12 6321 8212 10 2 5421 5212 62 7221 4231 11 1

Table 1: A generated all-partition array corresponding to a complete solution to
our problem, represented in the way used by music theorists [2]. Each column
contains the elements in A belonging to Ck, where a dash indicates those that
overlap. Note, that partitions are denoted using a shorthand notation, e.g., 43,
where the base indicates the length of a part and the exponent denotes its
number of occurrences. For clarity, the integers 10 and 11 have been replaced by
the letters t and e, respectively.

4 Conclusion

In this paper, we have introduced a novel formulation of one part of the problem
of generating an all-partition array, beginning from a given matrix, using con-
straint programming (CP). Solving for the whole of this matrix directly proved
too difficult using our constraints. Therefore, we introduced a method of dividing
the matrix into two halves, solving for each and then re-joining them to form
a complete solution. Using this method, we were able to discover a solution.
This solution is the first we are aware of to be automatically generated by a
computer. Moreover, it is an all-together new all-partition array from those pre-
viously discovered by Babbitt and other composers. In future work, we hope to
examine in more detail how to make finding solutions in larger matrices possible
and without excluding potential solutions.
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