Tsubasa Tanaka
email: tsubasa.tanaka@ircam.fr

Brian Bemman

David Meredith

Constraint programming approach to the problem of generating Milton Babbitt's all-partition arrays

Keywords: Babbitt, all-partition array, computational musicology, constraint programming

was a composer of twelve-tone serial music noted for creating the all-partition array. One part of the problem in generating an all-partition array requires finding a covering of a pitch-class matrix by a collection of sets, each forming a region containing 12 distinct elements and corresponding to a distinct integer partition of 12. Constraint programming (CP) is a tool for solving such combinatorial and constraint satisfaction problems. In this paper, we use CP for the first time to formalize this problem in generating an allpartition array. Solving the whole of this problem is difficult and few known solutions exist. Therefore, we propose solving two sub-problems and joining these to form a complete solution. We conclude by presenting a solution found using this method. Our solution is the first we are aware of to be discovered automatically using a computer and differs from those found by composers.

Introduction

Milton Babbitt (1916Babbitt (-2011)) was a composer of twelve-tone serial music noted for developing highly constrained and often complex musical structures. Many of his pieces are organized according to one such structure known as the allpartition array [START_REF] Babbitt | Since Schoenberg[END_REF]. An all-partition array is a covering of a matrix of pitch-class integers by a collection of sets, each of which forms a region in this matrix containing 12 distinct pitch classes from consecutive elements in its rows and that corresponds to a distinct integer partition of 12 (to be clarified in the next section). This unique structure imposes a strict organization on the pitch classes in his works, and it serves as both a method of musical composition and musical form. Moreover, the all-partition array allowed Babbitt one of many ways to achieve maximal diversity in his music. 3In this paper, we formulate one part of the problem in generating an allpartition array, beginning from a given matrix of pitch-class integers, using constraint programming (CP) and with a particular focus on its mathematical aspects. Using our model and a method for dividing this matrix into smaller, sub-problems, we obtained a solution, which, we believe, is the first to be discovered automatically using a computer and differs from those found by composers. CP is a programming paradigm that has been successfully applied to the solving of various constraint satisfaction problems in music [START_REF] Anders | Strasheela: Design and Usage of a Music Composition Environment Based on the Oz Programming Model[END_REF][START_REF] Laurson | A constraint based approach to musical textures and instrumental writing[END_REF][START_REF] Carpentier | Solving the Musical Orchestration Problem using Multiobjective Constrained Optimization with a Genetic Local Search Approach[END_REF][START_REF] Chemillier | Two musical CSPs[END_REF][START_REF] Puget | Solving the All Interval Problem[END_REF]. It seems natural then, that CP could be used in the problem we address here. Moreover, having such a model could, for example, be used as a basis for generating new musical works.

The structure of an all-partition array

In this section, we describe the structure of an all-partition array in a way that assumes the reader has a basic understanding of pitch class set theory. Constructing an all-partition array begins with the construction of an I × J matrix, A, whose elements are pitch-class integers, 0, 1, . . . , 11, where each row contains J/12 twelve-tone rows. The dimensions of this matrix constrain the most important requirement of the structure of an all-partition array, however, Babbitt generally limited himself to sizes of 4 × 96, 6 × 96, and 12 × 72 [START_REF] Mead | An Introduction to the Music of Milton Babbitt[END_REF]. In this paper, we consider only matrices where I = 4 and J = 96, as matrices of this size figure prominently in Babbitt's music [START_REF] Mead | An Introduction to the Music of Milton Babbitt[END_REF]. This results in a 4 × 96 matrix of pitch classes, containing 32 twelve-tone rows from the possible 48 related by any combination of transposition, inversion and retrograde (i.e., reversal). In other words, A will contain an approximately uniform distribution of 32 occurrences of each of the integers from 0 to 11. 4 On the musical surface, rows of this matrix become expressed as 'musical voices', typically distinguished from one another by instrumental register [START_REF] Mead | An Introduction to the Music of Milton Babbitt[END_REF].

A complete all-partition array is a covering of matrix, A, by K sets, each of which is itself a partition of the set {0, 1, . . . , 11} whose parts (1) contain consecutive row elements from A and (2) have cardinalities equal to the summands in one of the K distinct integer partitions of 12 (e.g., 6 + 6 or 5 + 4 + 2 + 1) containing I or fewer summands greater than zero. 5 Figure 1 shows a 4 × 12 excerpt from a 4 × 96 pitch-class matrix, A, and two such sets forming regions in A each containing every pitch class exactly once and corresponding to two distinct integer partitions, whose exact "shapes" are more precisely represented as the integer compositions, IntComp 12 (4, 4, 4, 0) and IntComp 12 (0, 6, 3, 3). 6 4 For a more detailed description of the constraints governing the organization of matrices in Babbitt's music, see [START_REF] Mead | An Introduction to the Music of Milton Babbitt[END_REF][START_REF] Bemman | Generating Milton Babbitt's all-partition arrays[END_REF]. 5 We denote an integer partition of an integer, L, by IntPartL(s1, s2, . . . , sI) and define it to be an ordered set of non-negative integers, s1, s2, . . . , sI , where L = I i=1 si and s1 ≥ s2 ≥ • • • ≥ sI . 6 We define an integer composition of a positive integer, L, denoted by IntComp L (s1, s2, . . . , sI), to also be an ordered set of I non-negative integers, s1, s2, . . . , sI , where L = I i=1 si. Note, in Figure 1, that each summand (from left to right) in IntComp 12 (4, 4, 4, 0), gives the number of elements in the corresponding row of the matrix (from top to bottom) in this region. Unlike common tiling problems using, for example, polyominoes, these regions need not have connected interiors, as demonstrated by the second region in Figure 1 between rows 3 and 4. On the musical surface, the distinct shape of each region helps contribute to a progression of 'musical voices' that vary in textural density, allowing for relatively thick textures in, e.g., IntComp 12 (3, 3, 3, 3) (with four participating parts) and comparatively sparse textures in, e.g., IntComp 12 (11, 0, 1, 0) (with two participating parts).

There exist a total of 34 distinct integer partitions of 12 into 4 or fewer non-zero summands [START_REF] Mead | An Introduction to the Music of Milton Babbitt[END_REF]. An all-partition array with four rows will thus contain K = 34 regions, each containing every pitch class exactly once and each with a distinct "shape" determined by an integer composition defining a distinct integer partition. However, the number of pitch classes required to satisfy this constraint, 34 × 12 = 408, exceeds the size of a 4 × 96 matrix containing 384 elements, by 24. In order to satisfy this constraint, contiguous regions may share pitch classes, with the added constraint that only horizontal overlaps of at most one pitch class in each row are allowed for each of the 34 integer partition regions. Figure 2 shows a third region, IntComp 12 (5, 1, 0, 6) (in medium gray), in the matrix shown in Figure 1, where two of its elements result from overlapped pitch classes from previous regions. Note, in Figure 2, the two horizontal overlaps of pitch class, 7 (in row 1 and belonging to the first region) and 8 (in row 4 and belonging to the second region), required to have each pitch class occur exactly once in the third integer partition region. This means that while contiguous regions may share pitch classes, such regions need not be necessarily adjacent in sequence.

Composers have primarily relied on constructing all-partition arrays by hand and at least some of their methods have been published [START_REF] Babbitt | Since Schoenberg[END_REF][START_REF] Starr | A general theory of combinatoriality and the aggregate, part 1[END_REF][START_REF] Starr | A general theory of combinatoriality and the aggregate, part 2[END_REF]. Algorithms for automating this task have also been proposed [START_REF] Bemman | Generating Milton Babbitt's all-partition arrays[END_REF][START_REF] Bazelow | A combinatorial problem in music theory: Babbitt's partition problem (I)[END_REF]. However, generating an allpartition array is a large combinatorial problem and satisfying the constraints of its structure is difficult. To date, none of these algorithms have been able to solve this problem automatically. This observation motivates our decision here to look for alternative programming paradigms and methods for possibly better addressing this problem. In section 2, we present our CP constraints for implementing the problem of generating an all-partition array from a given matrix. As solving for the entire matrix directly is difficult, in section 3, we present a method of dividing this matrix into two smaller matrices, choosing integer partitions based on how frequently they appear in solutions to one of these smaller matrices, and re-joining them to form a complete solution. We conclude here with a solution discovered using this method.

CP constraints for the problem of generating an all-partition array from a given matrix

We begin the discussion of our CP constraints for generating an all-partition array, with a given matrix found in one of Babbitt's works based on the allpartition array. 7 Let (A i,j) be this (4, 96)-matrix whose elements are the pitchclass integers, 0, 1, . . . , 11. We denote the number of rows and columns by I and J, respectively. Let x i,j,k (1 ≤ i ≤ I, 1 ≤ j ≤ J) be a binary variable corresponding to each location (i, j) in A and a subset (i.e., a region) identified by the integer k, where 1 ≤ k ≤ K and K = 34. There are then 34 sets of 384 such variables. Each of these variables will indicate whether or not a location (i, j) belongs to a candidate set, which we denote, C k , for the kth position in the sequence of 34 regions. For C k to be a candidate set, it must form a region in A (as described in section 1), by satisfying two conditions, consecutiveness and containment, which we will introduce below. Having satisfied these conditions, C k will be a candidate set in a possible solution to our problem, in which its elements correspond to 12 distinct pitch classes in A and whose "shape" is defined by an integer composition. Additional constraints e.g., ensuring that each of these candidate sets is then a distinct integer partition and that their overlaps do not exceed one in each row, will then complete our formulation of this problem.

Consecutiveness

The condition of consecutiveness states that pitch classes belonging to the same region and row in A must lie adjacent to one another with no gaps between. We ensure this is the case by placing constraints on the strings of 0's and 1's that are allowed in the rows formed by x i,1,k , x i,2,k , . . . , x i,J,k for each (i, k). If, for example, the string . . . , 0, 1, . . . appears in the ith row for some k, then there can be no 1 occurring before 0. This is expressed by the following:

∀i ∈ [1, I], ∀j ∈ [3, J], ∀k ∈ [1, K], (x i,j-1,k = 0 ∧ x i,j,k = 1) =⇒ j-2 ∧ j =1 (x i,j ,k = 0). (1)
On the other hand, if . . . , 1, 0, . . . appears in this row, then there can be no 1 after 0. This is expressed by the following:

∀i ∈ [1, I], ∀j ∈ [1, J -2], ∀k ∈ [1, K], (x i,j,k = 1 ∧ x i,j+1,k = 0) =⇒ J ∧ j =j+2 (x i,j ,k = 0). (2)
In other words, all 1's in x i,1,k , x i,2,k , . . . , x i,J,k for each (i, k) must be consecutive, with any 0's lying to the left or right end points of this string.

Containment

The condition of containment states that regions in A must contain 12 distinct pitch classes. Let B p (0 ≤ p ≤ 11) be the set of all locations (i, j) of pitch class p in matrix A. From this, we can express the condition of containment by the following: ∀p ∈ [0, 11], ∀k ∈ [1, K],

(i,j)∈Bp

x i,j,k = 1, (3)
where for each k, x i,j,k is equal to 1 at one and only one location (i, j) whose pitch class is p in A. When this is the case, C k will contain one of each pitch class.

Covering all (i, j) in A

A solution to our problem requires that every one element in A is covered by at least one of the regions, C k . We can express this condition by the following constraint:

∀i ∈ [1, I], ∀j ∈ [1, J], K ∨ k=1 (x i,j,k = 1). (4
)

Restrictions on the left-to-right order of candidate sets and their overlaps

As discussed in section 1, adjacent regions need not be contiguous in each row in A, however, there are restrictions on their left-to-right order and allowed overlaps. The number of overlaps in each row between these regions must not exceed 1. We can express this restriction by the following constraint:

∀i ∈ [1, I], ∀j ∈ [2, J], ∀k ∈ [1, K -1], (x i,j,k = 1) =⇒ K ∧ k =k+1 (x i,j-1,k = 0). (5
)
When combined with the constraint of consecutiveness, constraint 5 means that if x i,j,k is equal to 1, the ith row of C k , whose k is greater than k, is either (1) located at the right-hand side of (i, j) without overlapping the ith row of C k or (2) has only one overlap at the right-most element of the ith row of C k .

Candidate sets as all different integer partitions

In order to determine that the integer composition "shape" of C k is a distinct integer partition, we introduce two variables, y i,k,l and z k,l . Let y i,k,l be a binary variable that indicates whether or not the length of the ith row of C k is greater than or equal to l (1 ≤ l ≤ L, L = 12), by introducing the following two constraints:

∀i ∈ [1, I], ∀k ∈ [1, K], J j=1 x i,j,k = L l=1 y i,k,l (6)
∀i ∈

[1, I], ∀k ∈ [1, K], ∀l ∈ [2, L], (y i,k,l = 1) =⇒ (y i,k,l-1 = 1). (7
)
Equation 6 states that the sum of all elements in y i,k,1 , y i,k,2 , . . . , y i,k,L is equal to the length of the ith row of C k while Equation 7states that its elements equal to 1 begin in the first position and are consecutive. For example, when the length of the ith row of C k is 3, y i,k,1 , y i,k,2 , . . . , y i,k,L is 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 . The total number of rows in C k whose lengths are greater than or equal to l is given by I i=1 y i,k,l . Let z k,l (0 ≤ z k,l ≤ I) be an integer variable that is equal to

I i=1 y i,k,l (1 ≤ l ≤ L) with the following constraint: ∀k ∈ [1, K], ∀l ∈ [1, L], z k,l = I i=1 y i,k,l . (8)
The ordered set of twelve values z k,l (1 ≤ l ≤ L) will then identify the type of integer partition corresponding to C k . For example, when z k,l is 4, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 , C k is IntPart 12 (5, 3, 2, 2). We denote this set z k,l corresponding to an integer partition n by P n = P n,1 , P n,2 , . . . P n,L (1 ≤ n ≤ N, N = 34), where integer partitions appear in reverse lexicographical order, meaning that those containing the fewest parts and largest part lengths appear first. For example, P 1 is IntPart 12 (12, 0, 0, 0) and P 34 is IntPart 12 [START_REF] Anders | Strasheela: Design and Usage of a Music Composition Environment Based on the Oz Programming Model[END_REF][START_REF] Anders | Strasheela: Design and Usage of a Music Composition Environment Based on the Oz Programming Model[END_REF][START_REF] Anders | Strasheela: Design and Usage of a Music Composition Environment Based on the Oz Programming Model[END_REF][START_REF] Anders | Strasheela: Design and Usage of a Music Composition Environment Based on the Oz Programming Model[END_REF]. From this, we determine the integer composition shape of C k to be the integer partition n by the following constraint:

∀k ∈ [1, K], ∀n ∈ [1, N], (w k = n) ⇐⇒ L ∧ l=1 (z k,l = P n,l), (9)
where w k (1 ≤ w k ≤ N) is an integer variable that indicates to which P n C k corresponds. We can now express the condition that all integer partitions are distinct by the constraint, AllDifferent(w 1 , w 2 , . . . , w K).

Solution

In order to confirm that our formulation of this problem is accurate, we implemented our constraints described in section 2 and supplied these to a CP solver (Sugar v2-1-0 [12,[START_REF] Naoyuki | Sugar: A CSP to SAT Translator Based on Order Encoding[END_REF]). We first tried to solve for the whole matrix directly, however, we were unable to obtain a solution after a day of calculation. We decided instead, to divide the matrix into two, equally-sized halves and try solving for each in such a way that their re-joining would form a complete solution to the original problem. We made this division of the original matrix at [1,

I] × [1, J/2].
Columns 1 to (J/2) then correspond to the first smaller matrix we denote by A 1 and columns (J/2) + 1 to J correspond to the second smaller matrix we denote by A 2 . We allocated 34/2 = 17 integer partitions to be found in each.

With little modification, our constraints can be adapted to the solving of these sub-problems. These changes include modifying B p (in equation 3) to contain only the locations of pitch classes in either A 1 or A 2 , setting K to be the new number of partitions in each (i.e., 17) and J to be their new column lengths 96/2 = 48. Solutions to A 1 and A 2 in which no integer partition is used more than once and contains only pitch classes from one or the other matrix (but not both), collectively form a solution to the original problem. Due to its smaller size, we were able to find solutions beginning with A 1 over the course of a day, in which 506 were found. Naturally, solving for A 1 makes finding a solution in A 2 more difficult as the number of available partitions is now fewer, and in fact, all 506 solutions to A 1 made A 2 unsatisfiable. We noticed, however, that certain partitions in these 506 solutions e.g., IntPart 12 [START_REF] Anders | Strasheela: Design and Usage of a Music Composition Environment Based on the Oz Programming Model[END_REF][START_REF] Anders | Strasheela: Design and Usage of a Music Composition Environment Based on the Oz Programming Model[END_REF][START_REF] Anders | Strasheela: Design and Usage of a Music Composition Environment Based on the Oz Programming Model[END_REF][START_REF] Anders | Strasheela: Design and Usage of a Music Composition Environment Based on the Oz Programming Model[END_REF] and IntPart 12 (4, 3, 3, 2) occurred far less frequently than others. It would be reasonable then to conclude that solutions in A 1 which contain the greatest number of these less frequently occurring partitions will make solving for A 2 more likely, as the fewer available partitions in A 2 now consist of a proportionally greater number of frequently occurring partitions. Therefore, we solved again for A 1 , this time by arbitrarily restricting the domain of w k to exclude the top 6 most frequently occurring partitions and include the top 5 least frequently occurring partitions.

If we denote the subset of integers from [START_REF] Babbitt | Since Schoenberg[END_REF]34] corresponding to the partitions found in this solution to A 1 , S, then the domain of w k for possible solutions to A 2 becomes [1, 34] \ S. We then tried solving for A 2 , under the assumption that its proportionally greater number of more frequently occurring partitions would make finding a solution easier. While this means we exclude possible solutions e.g., ones in which a rarely occurring partition occurs in A 2 or where a partition contains pitch classes from both A 1 and A 2 , we were able to generate a complete solution in this way. Solving for A 1 took approx. 4 minutes while solving for A 2 took approx. 28 minutes. Table 1 shows the complete solution found using this method of re-joining A Table 1: A generated all-partition array corresponding to a complete solution to our problem, represented in the way used by music theorists [START_REF] Mead | An Introduction to the Music of Milton Babbitt[END_REF]. Each column contains the elements in A belonging to C k , where a dash indicates those that overlap. Note, that partitions are denoted using a shorthand notation, e.g., 4 3 , where the base indicates the length of a part and the exponent denotes its number of occurrences. For clarity, the integers 10 and 11 have been replaced by the letters t and e, respectively.

Conclusion

In this paper, we have introduced a novel formulation of one part of the problem of generating an all-partition array, beginning from a given matrix, using constraint programming (CP). Solving for the whole of this matrix directly proved too difficult using our constraints. Therefore, we introduced a method of dividing the matrix into two halves, solving for each and then re-joining them to form a complete solution. Using this method, we were able to discover a solution. This solution is the first we are aware of to be automatically generated by a computer. Moreover, it is an all-together new all-partition array from those previously discovered by Babbitt and other composers. In future work, we hope to examine in more detail how to make finding solutions in larger matrices possible and without excluding potential solutions.

Fig. 1 :

 1 Fig. 1: A 4 × 12 excerpt from a 4 × 96 pitch-class matrix with two distinct integer partition regions represented precisely by the integer compositions, IntComp 12 (4, 4, 4, 0) (in dark gray) and IntComp 12 (0, 6, 3, 3) (in light gray), each containing every pitch class exactly once.

Fig. 2 :

 2 Fig. 2: A 4 × 12 excerpt from a 4 × 96 pitch-class matrix with a third integer composition, IntComp 12 (5, 1, 0, 6) (in medium gray), sharing one pitch class from each of the two previous regions.

7

 Examples of this matrix can be found in Babbitt's My Ends are My Beginnings (1978) and Beaten Paths (1988), among others.

 1 and A 2 .

	et37 62	4581 90			7	t6e	23510498 -867 2t	e31 -1094
	8940 15	32e6t7				859410t23		e67	549 10	-0	8te27365
	2516 9t	0	87e4365t 219	e	03847		1t2 9653 784
		74830e 9	12	t56e07348 6	5291 t	03e -e478 t6592
	4 3	62 3	641 2	82 2		93	91 3		543	831	3 4 4 2 2 2 53 2 1	84
	85637		-72e t8	01945 32			7et6890 514	-4e2	-2t36795481
			-58 49013 -3et276 450891et7 26	3		-30	-0
	-4e09t -t5126 430 7e	8	6	95t1 -124	0e3872 16t9578 e
	-21	4380e79 -9t16 -625			304e87 5		9t6
	5 2 2	75	43 2 2 532 2	651	921	642	731 2	63 2	732	10 1 2
	023t67e		-e	9				8504 1	2e3t76 48	9501
	9185	42673te10598 -84	67			-7	t3e29 -908145 73	26et
	4			0396t5 -5		21		e3	40785	619t20e 837 4
				127	83e0421t -t5964738e0 2t916 -6	5	4	380e79t1625
	741		12	6321	821 2	10 2		5421 5 2 1 2	6 2	72 2 1 4 2 31	11 1

Maximal diversity is the presentation of as many musical parameters in as many different ways as possible[START_REF] Mead | An Introduction to the Music of Milton Babbitt[END_REF].

Acknowledgments. The work of Tsubasa Tanaka reported in this paper was supported by JSPS Postdoctoral Fellowships for Research Abroad. The work of Brian Bemman and David Meredith was carried out as part of the project Lrn2Cre8, which acknowledges the financial support of the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under FET grant number 610859.