







# LOWERING KNOWLEDGE:

# MAKING CONSTRAINED DEVICES SEMANTICALLY INTEROPERABLE

Nicolas Seydoux<sup>1,2</sup>, Khalil Drira<sup>2</sup>, Nathalie Hernandez<sup>1</sup>, Thierry Monteil<sup>2</sup>

<sup>1</sup> IRIT, Maison de la recherche, Univ. Toulouse Jean Jaurès, 5 allées Antonio Machado, F-31000 Toulouse {nseydoux, hernande}@irit.fr

<sup>2</sup> LAAS-CNRS, Univ. de Toulouse, CNRS, INSA, Toulouse, France, {nseydoux, khalil, monteil}@laas.fr

# CONTEXT: INTEROPERABILITY, A CHALLENGE FOR THE IOT Interoperability stakeholders: consortiums, industrials, initiatives Interoperability issues causes: Number of devices, Silo-oriented approach Number of connected devices (Gartner) Smart city Energy IoT



#### WHY LOWERING IS NECESSARY

IoT devices are **constrained**, and richer knowledge necessary for interoperability is **heavy to process** 

## **RELATED WORKS:** DATA ENRICHMENT AND KNOWLEDGE LOWERING APPROACHES



## HYPOTHESES AND CONSTRAINTS ON THE TARGET FORMAT

#### Illustration with a fan command:



- The schema defines a tree-like structure
- The root is mapped to a RDF class
- Leaf relations are mapped to data properties
- Element inclusions are mapped to object properties

## VALIDATION OF THE REQUIREMENTS

- Context of the IoT
- Tree-like data (XML, JSON) with **explicit schemas**
- Existing applicable ontologies - Validation on different data sources
- Standards
- Online API repository

# 

## **CORE CONTRIBUTION:** REVERSING ENRICHMENT MAPPINGS VIA A PIVOT TREE



#### PRELIMINARY RESULTS

|  |                                        | Supported scenario          | Code<br>base | Execution time | Enables<br>reasoning | Flexibility | Supported schema types | Mapping required |
|--|----------------------------------------|-----------------------------|--------------|----------------|----------------------|-------------|------------------------|------------------|
|  | Direct schema transformation           | Transformation only         | Small        | Fast           | No                   | Low         | Any                    | None             |
|  | Schema<br>transformation<br>generation | Transformation only         | Large        | Fast           | No                   | Medium      | Annotated              | Two-way          |
|  | Two-way<br>mapping                     | Transformation and lowering | Large        | Slow           | Yes                  | Important   | Annotaated             | Two-way          |
|  | Mapping<br>reversal                    | Transformation and lowering | Large        | Slow           | Yes                  | Important   | Annotated              | One-way          |

#### WHAT IS THE BENEFIT OF OUR APPROACH?

Mapping work is cut in half for the developper, and constrained devices can be integrated in semantically enabled systems

#### **FUTURE WORKS**







