
HAL Id: hal-01467861
https://hal.science/hal-01467861

Submitted on 14 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Autonomy through knowledge: how IoT-O supports the
management of a connected apartment

Nicolas Seydoux, Khalil Drira, Nathalie Jane Hernandez, Thierry Monteil

To cite this version:
Nicolas Seydoux, Khalil Drira, Nathalie Jane Hernandez, Thierry Monteil. Autonomy through knowl-
edge: how IoT-O supports the management of a connected apartment. Semantic Web Technologies
for the Internet of Things (SWIT), Nov 2016, Kobe, Japan. �hal-01467861�

https://hal.science/hal-01467861
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Autonomy through knowledge: how IoT-O
supports the management of a connected

apartment

Nicolas Seydoux1,2,3, Khalil Drira2,3, Nathalie Hernandez1, Thierry Monteil2,3

1 IRIT Maison de la Recherche, Univ. Toulouse Jean Jaurès,
5 allées Antonio Machado, F-31000 Toulouse

{nseydoux,hernande}@irit.fr
2 CNRS, LAAS, 7 avenue du Colonel Roche,

F-31400 Toulouse, France
{nseydoux,khalil,monteil}@laas.fr

3 Univ de Toulouse, INSA, LAAS, F-31400, Toulouse, France

Abstract. The IoT is a domain in exponential growth: both the num-
ber of connected devices and the quantity of data they produce are in-
creasing. The heterogeneity of technologies involved, and the diversity
of domains impacted raise interoperability concerns. The semantic web
principles and technologies help tackling these interoperability issues,
and ontologies like SSN have been used in several IoT projects. However,
many existing IoT ontologies fail to comply with the good practices of the
semantic web. After detailing such good practices, this paper proposes
IoT-O, a modular core-domain IoT ontology. IoT-O is then showcased
in a home automation use case: it is used to semantically describe the
devices of the system, and to guide the decisions of an autonomic agent.

1 Achieving semantic interoperability in the IoT

Connected devices, forming a so-called Internet of Things (IoT), are becoming
part of our everyday lives: it is estimated that up to 50 billion of them will be
exchanging data by the next five to ten years [1]. Such an increase in the number
of devices, combined to the heterogeneity of applications domains (agriculture,
domotics, smart cities, e-health...) and technologies, raises interoperability issues
in the IoT. These issues can be divided in two main classes: syntactic and seman-
tic, brought respectively by the diversity of domains and data models [2]. Two
systems are semantically interoperable when they attribute the same meaning
to the data they exchange, and it is this type of interoperability that is ad-
dressed in this paper. Initiatives such as [3] show the importance of semantic
interoperability in the development of the IoT.

Semantic interoperability requires the use of shared, unambiguous, machine-
understandable vocabularies that allow to transform raw data issued by sensors
to be transformed into self-sufficient, interoperable knowledge. Such vocabular-
ies can be defined using semantic web principles and technologies, and if they

are expressed with specific formalisms are called ontologies. Among semantic
web principles are good practices that should be followed in order to create
semantic models that can be reused in various use cases, that can be extended
according to needs discovered a posteriori, that can be maintained over time,
and that are compatible with existing ontologies at the time of design. Be-
ing essential to semantic interoperability, many ontologies have been built within
IoT projects, and are not always compliant with the aforementioned guidelines.
This is why we propose IoT-O4, an IoT core-domain modular ontology engi-
neered for reusability and extensibility. IoT-O is available on the LOV5, and
based on the initial contribution of [4].

In the remainder of this paper, section 2 introduces a motivating use case
that will serve to instantiate portions of IoT-O. Section 3 presents the design
process of IoT-O, and gives an overview of the ontology. Section 4 details how
IoT-O is instantiated in the use case, and finally section 5 concludes this paper
and provides some insight about future works.

2 Motivating use case

The automation of the home, or domotics, is a domain of the IoT with direct
impact on citizens. At LAAS-CNRS, the ADREAM project6 aims at conducting
research thanks to an instrumented, energy-positive building. This building is
equipped with more than 4500 sensing devices, producing up to 500,000 mea-
sures a day. Inside the building, there is a mock-up apartment equipped with
commercial devices from diverse vendors. Deployed devices include sensors (tem-
perature, luminosity, humidity, pressure), actuators (fan, space heater, diverse
lamps), which communicate using different technologies (phidget, ethernet, zig-
bee) with gateways connected to a central server (see fig. 1).

Fig. 1. The connected appartment inside ADREAM

4 http://www.irit.fr/recherches/MELODI/ontologies/IoT-O
5 http://lov.okfn.org/dataset/lov/vocabs/ioto
6 http://www.laas.fr/public/en/adream

Our use case is defined as follows: the user should be able to define simple
high-level policies to manage its environment (”the temperature in the living
room should stay between 19oC and 25oC”), without having to select specific
sensors or actuators to perform the task. He should also be able to extend the
capabilities of the apartment by adding devices without restarting the system.

To fulfill these requirements, both syntactic and semantic interoperability
among devices are required. Syntactic interoperability is ensured using OM2M7,
an open-source horizontal integration platform implementing the oneM2M stan-
dard. On top of OM2M, another platform, SemIoTics, is in charge of ensuring
semantic interoperability and of implementing the policies defined by the user.
SemIoTics is guided by a knowledge base containing information about the de-
vices, described with our ontology, IoT-O. This use case is applied to home
automation and is described in a dedicated knowledge base extending IoT-O,
ADREAM-Model8, but the genericity of IoT-O makes it relevant to any domain
impacted by the IoT.

3 IoT-O, an IoT ontology designed in a
requirement-driven process

To ensure the respect of good practices, IoT-O design is compliant with the NeOn
methodology, presented in [5]. Its first step is to define ontology requirements.
We split these in two categories: conceptual, regarding the concepts that should
be present in the ontology (detailed in section 3.1), and functional, regarding
the ontology structure and design principles (detailed in section 3.2).

These requirements are used to analyze existing IoT ontologies: Semantic
Sensor Network (SSN)9, Smart Appliance REFerence (SAREF)10, iot-ontology
11, IoT-lite 12, Spitfire 13, IoT-S14, SA15 and the oneM2M base ontology16.

Had one of these ontologies matched all the requirements, we would not have
proposed a new ontology. Even more, ontologies compliant with parts of the
requirements and covering concepts useful to IoT-O are reused to limit redefini-
tion, as it is recommanded in NeOn. Details about such ontologies are given in
section 3.3.

Studied ontologies are the ones for which we have found information on
the web. Further details are available on the Linked Open Vocabularies for the
IoT (LOV4IoT)17, a recent initiative that lists IoT ontologies, even if they are

7 om2m.org
8 http://www.irit.fr/recherches/MELODI/ontologies/Adream-Model
9 http://purl.oclc.org/NET/ssnx/ssn

10 http://sites.google.com/site/smartappliancesproject/ontologies
11 http://ai-group.ds.unipi.gr/kotis/ontologies/IoT-ontology
12 http://iot.ee.surrey.ac.uk/fiware/ontologies/iot-lite
13 http://sensormeasurement.appspot.com/ont/sensor/spitfire.owl
14 http://personal.ee.surrey.ac.uk/Personal/P.Barnaghi/ontology/OWL-IoT-S.owl
15 http://sensormeasurement.appspot.com/ont/sensor/hachem onto.owl
16 http://www.onem2m.org/ontology/Base Ontology/
17 http://www.sensormeasurement.appspot.com/?p=ontologies

not referenced on the LOV because they fail to comply with its requirements
recalled in [2]. Ontologies related to specific domains impacted by IoT (domotics,
agriculture, smart cities...) are out of the scope of this study.

3.1 Identifying IoT core concepts

Conceptual requirements The conceptual requirements aim at capturing
knowledge that should be present in an IoT ontology. They are deduced from
a bottom-up analysis of the IoT domain. Even if a typical IoT application is
presented in section 2, IoT-O is not be limited to this use case. To be reusable in a
wider scope, an IoT ontology should necessarily contain some identified concepts
tightly associated to the IoT, independently of the applicative context. This
approach makes the ontology horizontal and core-domain to the IoT, and suitable
for applications in different domains of the IoT that can extend it accordingly.
We distinguish namely:
– ”Device” and ”software agent” constitute the two basic components of

an IoT system, composed of both physical and virtual elements. The devices
can be of two principle types, not mutually exclusive, that are listed below.

– ”Sensor” are devices acquiring data, and ”observation” describe the ac-
quisition context and the data collected by the system.

– ”Actuator” are the devices that enable the system to act on the physical
world, and ”action” represents what they can perform.

– ”Service”: In many cases, the IoT and the programmable web are very
close. Connected devices can be seen as service providers and consumers,
and by specifying a notion of service, every aspect of an IoT system can be
represented.

– ”Energy”: In the paradigm of pervasive computing, many distributed Things
perform computations. Most of these Things being physical devices, a com-
plete modelling of the system will include a description of their energy con-
sumption. Energy management is a crucial topic in IoT systems.

– ”Lifecycle”: Be it data, devices or services, IoT components are all included
in different scales of lifecycles. Devices are switched on and off, services
are deployed or updated, pieces of data become outdated... The evolution
through a set of discrete states representing a lifecycle is an important con-
cept for IoT systems.

Concept coverage by existing ontologies Table 1 sums up the assessment of
existing IoT ontologies regarding the presence of key concepts. One star means
that the concept is superficially represented (few specializations, data/object
properties), two stars that the requirement is covered, and stars between paren-
theses indicate that the requirement is met by an included ontology. IoT-O, the
ontology we propose, is also included for comparison. Note that we focus on con-
nected device ontologies, and exclude, on purpose, the ontologies SSN is based
on, since they are only focused on sensors and observation, which is only a subset
of the identified key concepts. We can observe that some of the IoT ontologies

cover most of the key concepts but none of them covers them all. Moreover, the
different concepts are not represented with the same level of expressivity. In iot-
ontology and SAREF, key concepts such as Actuator or Action are present but
their representation is limited. For example, an actuator is defined as a device
that modifies a property. This is less expressive than what can be expressed for a
sensor with SSN which proposes a deep modeling of the sensors and the property
they observe, but also of the relations between the sensors and their observa-
tions, and of the observations themselves. In eDIANA18, an ontology referenced
by SAREF, some specializations of actuator are given, but the mappings from
these specializations to the saref:Actuator concept are not available directly.
This analysis highlights the fact that an ontology for Actuators and Actions is
needed (c.f. section 3.3). This analysis also highlights the failure of existing IoT
ontologies in representing correctly all IoT key concepts. As these concepts are
not limited to the IoT domain, reusing ontologies dedicated to them (such as
SSN for sensor) could help gain in expressivity, as shown in section 3.2.

Table 1. Key concept coverage in IoT ontologies

Actuator Action Service Sensor Observation Energy Lifecycle Device Software agent

iot-ontology * * ** (**) (**) (*) (**) **

saref * * ** * ** ** **

OWL-IoT-S (**) (**) (**) (*) (**)

SA * * (**) (**) (**) (**) (**)

iot-lite * * (*) (*)

spitfire (*) (*) ** (*)

ssn ** ** * **

oneM2M ** *

IoT-O ** ** (**) (**) (**) (**) (**) (**) *

3.2 Designing ontologies according to good practices

Functional requirements The functional requirements aim at capturing good
practices for ontology design and general semantic web guidelines.

Reusability: One of the most important aspects of an ontology in such a broad
domain as IoT is reusability: if an ontology is ad-hoc to a project, the work done
in its definition will not benefit further projects. It is a critical issue that can be
solved by different, non-mutually exclusive approaches:
– Modularization: as stated in [6], designing ontologies in separated modules

makes them easier to reuse and/or extend. IoT applications are related to
many various domains, and it is difficult to capture all these application
domains in the same ontology. Modular ontologies can be combined together
according to specific needs, which is a more scalable approach.

– Ontology Design Patterns: were introduced in [7]. Designing ontologies
that respect Ontology Design Pattern (ODP) increases reusability and their
potential for alignment, as shown in [8]. ODPs capture modelling efforts:
using them is a way to capitalize on previous work, and to take advantage
of the maturity of the semantic web compared to the IoT.

18 https://sites.google.com/site/smartappliancesproject/ontologies/ediana-ontology

– Reuse of existing sources: avoids redefinition, and prevents from having
to align a posteriori the redefined concepts to the existing sources for inter-
operability. It is a key requirement for interoperability, which is a real issue
in heterogeneous systems.

– Alignment to upper ontologies: Upper-level ontologies define very ab-
stract concepts in a horizontal manner. They articulate very diverse domain-
specific ontologies, which is crucial for broad domains like IoT.

– Compliance with the LOV requirements: The LOV19 is an online vo-
cabulary register that increases visibility of vocabularies, and favours reuse
by ensuring the respect of good practices listed in [2].

Level of formalism: To use the full advantages of the semantic description of
devices and data, the description should enable reasoning and inference. This
choice is motivated by the possibilities it opens:
– Applied to data, it is a way to bring context-awareness, as presented in [9]
– Applied to devices, it enables Thing discovery or self-configuration [10]
– Applied to services it enables automatic composition as in [11]

However, for concrete applications, the model should also by decidable, and
in reasonable time, which de facto excludes an OWL-full model: OWL-DL is
therefore the best choice. All surveyed ontologies are expressed in OWL-DL.

Table 2. Reusability of IoT ontologies

Structured
by ODP

Modular
Reuses external

ontologies
Aligned with

upper ontologies
One the LOV Available online

iot-ontology * ** N Y

saref ** * Y Y

OWL-IoT-S (*) * ** * N Y

SA (*) * ** ** N N

iot-lite N Y

spitfire * ** Y N

ssn ** ** * ** Y Y

oneM2M N Y

IoT-O (**) ** ** ** Y Y

Assessment of existing IoT ontologies Table 2 shows that the semantic
web best practices for reusability are not always followed: some ontologies are
not available online, and the majority is not compliant with the requirements
of the LOV. External ontologies are generally not reused, with the exception of
SSN. OWL-S, a service ontology is reused in only one case. The other surveyed
ontologies propose redefinitions of the service concept. For example, SAREF
redefines the concepts present in multiple ontologies, and proposes alignments in
an external, textual document. Design patterns have only been used in ontologies
importing SSN. Upper ontologies used are DUL20 (especially used by SSN) and
SWEET21 (for SA). The limited reuse of ontologies shows a lack of federating

19 http://lov.okfn.org
20 http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
21 http://sweet.jpl.nasa.gov/

ontologies, apart from SSN. SSN being compliant with the semantic web good
practices, it is possible to say that these guidelines favour reuse.

Both concept coverage and compliance with the functional requirements of
existing ontologies fail to match the requirements we expect from an IoT ontol-
ogy, which provides the motivation for our proposal of IoT-O.

3.3 Integrating existing ontologies in IoT-O

Identification of existing ontologies is part of the NeOn process. Some concepts,
which are part of the conceptual requirements, are defined by existing ontologies
that are imported in IoT-O to avoid redefinition. SSN is a widely used W3C
recommended ontology for sensors and observations. However, no ontology de-
scribes the concept of actuator the way SSN describes the concept of sensor.
This is why we propose Semantic Actuator Network (SAN)22, the Semantic Ac-
tuator Network ontology. Actuators are devices that transform an input signal
into a physical output, making them the exact opposite of sensors. SAN is built
around Action-Actuator-Effect (AAE)23, a design pattern we propose, inspired
from the Stimulus Sensor Observation (SSO) design pattern described in [12].

To define the notion of service, IoT-O imports Minimal Service Model (MSM),
a lightweight service ontology which is generic enough to represent both REST
and WSDL services (contrary to OWL-S24). The notion of energy consump-
tion dedicated to the IoT is specified in PowerOnt, an ontology referenced by
SAREF. The concepts of lifecycle are described using Lifecycle25, a lightweight
vocabulary defining state machines. We extended Lifecycle in the IoT-lifecycle26

ontology with classes and properties specific to the IoT. Finally, to maximize
extensibility and reusability, IoT-O imports DUL27, a top-level ontology, and
aligns all its concepts and imported modules with it.

3.4 IoT-O, a modular core-domain IoT ontology

IoT-O, the core-ontology we propose is composed of several modules. IoT-O’s
architecture is summarized in figure 2. The names of the resources created from
scratch are in red and highlighted, the names of the reengineered resources are
underlined, and the arrows show dependencies. Solid arrows represent imports,
and dashed arrows the reuse of concepts without import.

The modules of IoT-O:
– The Sensing module describes the input data. Its main classes come from

SSN: ssn:Sensor and ssn:Observation. ssn:Device and its characteristics (ssn:-
OperatingRange, ssn:Deployment...) provide a generic device description.

22 https://www.irit.fr/recherches/MELODI/ontologies/SAN
23 http://ontologydesignpatterns.org/wiki/Submissions:Actuation-Actuator-Effect
24 https://www.w3.org/Submission/OWL-S/, more dedicated to WSDL services
25 http://vocab.org/lifecycle/schema
26 https://www.irit.fr/recherches/MELODI/ontologies/IoT-Lifecycle
27 http://www.ontologydesignpatterns.org/ont/dul/DUL.owl

Fig. 2. Overview of IoT-O’s architecture

– The Acting module describes how the system can interact with the physical
world. Its main classes come from SAN: san:Actuator and san:Actuation. It
also reuses SSN classes that are not specific to sensing, such as ssn:Device.

– The Lifecycle module models state machines to specify system life cycles
and device usage. Its main classes are lifecycle:State and lifecycle:Transition.

– The Service module represents web service interfaces. Its main classes
come from MSM: msm:Service and msm:Operation. Services produce and
consume msm:Messages, and RESTful services can be described with hRest.

– Energy module: IoT-O’s energy module is defined by PowerOnt. It pro-
vides the poweront:PowerConsumption class, and a set of properties to ex-
press power consumption profiles for appliances.

The core of IoT-O: IoT-O28 is both the name of the ontology and of the top
module. It gives a conceptualization of the IoT domain, independent of the appli-
cation, providing classes and relationships to link the underlying modules. Since
many concepts are already defined in the modules, IoT-O’s core is limited: it de-
fines 14 classes (out of 1126 including all modules), 18 object properties (out of
249) and 4 data properties (out of 78). IoT-O key class is iot-o:IoT Thing, which
can be either an ssn:Device or an iot-o:SoftwareAgent. The power consumption
of ssn:Devices is associated to lifecycle:State and poweront:PowerConsumption.
iot-o:IoT Thing is a provider of msm:Service, and an msm:Operation can have
an iot-o:ImpactOnProperty on an ssn:Property, linking abstract services to the
physical world through devices.

28 http://www.irit.fr/recherches/MELODI/ontologies/IoT-O.owl

As a core domain ontology, IoT-O is meant to be extended regarding specific
applicative needs and real-life devices and services. This design, inspired by SSN,
makes IoT-O independent of the application.

4 Using IoT-O to manage a smart building

This section gives an overview of the technical choices to implement our use
case, and a detailed analysis of the scenario execution that instantiates IoT-O,
allowing to see the interest of our requirements.

4.1 Implementing the MAPE-K loop with SemIoTics

Autonomic computing is a programming paradigm proposed in [13] focused on
allowing a system to control an entity thanks to high-level policies and intro-
spective knowledge. A classic control structure in autonomic computing is the
MAPE-K loop (see fig. 3), separated in four steps : Monitoring, Analysis, Plan-
ning and Execution, all exchanging Knowledge with the same knowledge base.

Fig. 3. The MAPE-K loop, adapted to our use case

SemIoTics implements the MAPE-K loop to control the connected devices
in the apartment according to the policies fixed by the user. It is Java-based,
and uses Apache Jena to manage the knowledge base and query it in SPARQL.
The remainder of this section describes the usage of IoT-O at each step of the
MAPE-K loop representing the introductory use case, from the temperature
sensor measure to the actuator action.

4.2 Monitoring: Enrichment of sensor data into Observations

Monitoring is the collection of signals regarding the controlled entity, here the
apartment. The connected sensors collect observations, and produce raw data.
This data is enriched to become a reusable piece of knowledge. Enrichment of
sensor data is performed using the SSN ontology, which is in the Sensing module
of IoT-O, as well as upper ontologies like QUDT (for the units), and possibly
more sensor-specific domain ontologies, necessary due to the horizontal nature

of IoT-O and SSN. An application-dedicated extension is for instance proposed
in the Adream-Model module29.

Each ssn:Sensor produces ssn:Observation, themselves composed of ssn:-
SensorOutput whose value is described by ssn:ObservationValue. To maintain
provenance knowledge, a ssn:SensorOutput can be linked to its raw representa-
tion with the iot-o:hasRawRepresentation data property. The sensor’s character-
istics (ssn:MeasurementProperty, the ssn:Property of the measured ssn:Feature-
OfInterest) can lift the observation as well.

In the use case, the data initially observed by the sensor is standardized
according to oneM2M, and then enriched. The enrichment process is ad-hoc,
being performed by a dedicated enrichment script. For the example’s sake, the
sensor observes a temperature of 26oC, converted into a ssn:ObservationValue.
Once enriched, the observation is stored in the knowledge base to be used in the
Analysis step.

4.3 Analysis: Abstraction of Observations in symptoms

Analysis is the identification of observed signals as hiegher-level symptoms. In
the use case, enriched observations are processed and matched against rules rep-
resenting user preferences. These preferences are described using the concepts de-
fined in yet another module: Autonomic30. The user creates autonomic:Property-
Constraints (seamlessly through a graphical interface), transforming a ssn:-
Property into a autonomic:ConstrainedProperty. Specifically, the ssn:Property
temperature of the ssn:FeatureOfInterest living room air has two constraints,
instances of autonomic:MaximumValue (25oC) and autonomic:MinimumValue
(19oC). The last ssn:ObservationValue of the autonomic:ConstrainedProperty is
out of the bounds defined by the autonomic:PropertyConstraint (26oC instead
of 25), so the temperature is classified by the reasoner as an autonomic:Out-
OfBoundsProperty thanks to custom rules expressed in the Jena rule engine
language.

4.4 Planning: Deducing Actions from symptoms

Planing is the computation to an appropriate response to the monitored sys-
tem’s symptoms. To determine its actions, the autonomic agent relies on its
knowledge base, which contains a priori defined policies. For semIoTics, actions
to be implemented by the agent are described using SAN, the action and ac-
tuator ontology. The agent queries the knowledge base to look for san:Actuator
instances that san:actsOn the autonomic:OutOfBoundsProperty, and which san:-
receivesActuation an actuation that iot-o:hasImpact an autonomic:ImpactOn-
Property that is coherent with the symptom. In the example, since it is too hot,
the adream-model:fan can be used, but also potentially the adream-model:space-
Heater, since its adream-model:turnOff operation has a adream-model:Negative-
Impact on the temperature.

29 http://www.irit.fr/recherches/MELODI/ontologies/Adream-Model
30 http://www.irit.fr/recherches/MELODI/ontologies/Autonomic

If multiple, sequential actions have to be performed, they are orchestrated
using the Lifecycle module of IoT-O, which rrelies on the the Objects with
States (ows)31 ontology design pattern to represent devices as state machines.
ssn:Device (superclass of both ssn:SensingDevice and san:ActuatingDevice) are
objects that ows:hasState exactly 1 ows:State, because objects should only be
in one state at a time. The ows:State is equivalent to the lifecycle:State (from
the Lifecycle32 vocabulary, extended by the IoT-Lifecycle33 ontology), and life-
cycle:State are connected by lifecycle:Transition instances. This description of
devices allows for the representation of transitions only available in certain states
of the device. Only msm:Operation instances that iot-o:isGroundedBy a san:-
Actuation that iot-lifecycle:triggersTransition a lifecycle:Transition that is a life-
cycle:possibleTransition of the device current lifecycle:State can be called at a
given time. For instance, the space heater adream-model:turnOff operation will
only be available if the space heater is on. In our example it is off, so the agent
plans to turn on the fan and creates the corresponding san:ActuationValue.

The selection of devices and their operations is driven by necessity (only the
devices impacting the right property are selected), but it can also be driven by
policies based on knowledge about the system, to minimize energy consumption,
to optimize reaction time...

4.5 Execution: Transmitting the Actions to the actuators

Execution is the concrete implementation of the plan by the agent on the
controlled system. An san:Action can be executed if it iot-o:isGroundedBy an
msm:Operation. The agent converts the san:ActuationValue format that target
devices can process, here REST commands. The translation of knowledge into a
simpler data format (the opposite process of enrichment) can be driven by the
semantic description of Operations, or dedicated annotations as in [14], where
XML schemas are annotated for transformation from RDF to XML. This trans-
lation enables the agent to interact with low-level, constrained devices that are
not able to process complex knowledge representations. The example cycle is
complete: the agent calls the adream-model:turnOn operation, and the fan cools
the apartment.

5 Conclusion and future works

This paper introduces both functional and conceptual requirements to build an
IoT ontology usable in a wide scope of projects and compliant with the seman-
tic web good practices. These requirements drove the development of the core
contribution of the paper: IoT-O, a modular core-domain IoT ontology. IoT-O’s
modules are presented in details, to show their compliance with the requirements.
IoT-O is then used by semIoTics, a system implementing the MAPE-K loop, an

31 http://delicias.dia.fi.upm.es/ontologies/ObjectWithStates.owl
32 http://vocab.org/lifecycle/schema
33 http://www.irit.fr/recherches/MELODI/ontologies/IoT-Lifecycle

autonomic computing structure. SemIoTics is described in a home automation
use case that instantiates knowledge described using IoT-O’s modules.

In the IoT, data is produced raw by sensors, and needs to be enriched to
become reusable knowledge. However, enriched data is heavier to exchange and
process than raw data, making it unsuitable to be consumed by the more con-
strained devices (typically sensors and actuators). To allow these IoT nodes to
be semantically interoperable with more powerful ones (e.g. gateways, servers,
laptops), lowering techniques, transforming knowledge into raw data, are re-
quired. We are currently working on such an approach. Other perspectives of
our work will be to define an intuitive way to help end users/administrators
express constraints and policies to drive the system.

References

1. Ganz, F., Puschmann, D., Barnaghi, P., Carrez, F.: A Practical Evaluation of
Information Processing and Abstraction Techniques for the Internet of Things.
IEEE Internet of Things Journal 2(4) (2015) 340–354

2. Gyrard, A., Serrano, M., Atemezing, G.A.: Semantic web methodologies, best
practices and ontology engineering applied to Internet of Things. In: 2015 IEEE
2nd World Forum on Internet of Things (WF-IoT), IEEE (2015) 412–417

3. Murdock, P.: White paper: Semantic interoperability for the web of things (2016)
4. Ben-Alaya, M., Medjiah, S., Monteil, T., Drira, K.: Toward semantic interoper-

ability in oneM2M architecture. IEEE Communications Magazine 53(12) (2015)
5. del Carmen Suarez de Figueroa Baonza, M.: NeOn methodology for building

ontology networks : specification, sheduling and reuse. PhD thesis (2010)
6. Aquin, M.: Modularizing ontologies. Ontology engineering in a networked world

Springer B (2012) 9–34
7. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. History

3729(4) (2005) 262–276
8. Scharffe, F., Euzenat, J., Fensel, D.: Towards design patterns for ontology align-

ment. In: Proceedings of the 2008 ACM symposium on Applied computing - SAC
’08, New York, New York, USA, ACM Press (mar 2008) 2321

9. Henson, C., Sheth, A., Thirunarayan, K.: Semantic perception: Converting sensory
observations to abstractions. IEEE Internet Computing 16(2) (2012) 26–34

10. Chatzigiannakis, I., Hasemann, H., Karnstedt, M., Kleine, O., Kröller, A., Leggieri,
M., Pfisterer, D., Römer, K., Truong, C.: True Self-Configuration for the loT. In:
3rd International Conference on the Internet of Things (IOT). (2012)

11. Han, S.N., Lee, G.M., Crespi, N.: Towards Automated Service Composition Using
Policy Ontology in Building Automation System. In: 2012 IEEE Ninth Interna-
tional Conference on Services Computing. (2012) 685–686

12. Janowicz, K., Compton, M.: The Stimulus-Sensor-Observation Ontology Design
Pattern and its Integration into the Semantic Sensor Network Ontology. In: Pro-
ceedings of the 9th International Semantic Web Conference, 3rd International
Workshop on Semantic Sensor Networks. (2010) 7–11

13. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1) (jan
2003) 41–50

14. Kopecký, J., Vitvar, T., Bournez, C., Farrell, J.: SAWSDL: Semantic Annotations
for WSDL and XML Schema. IEEE Internet Computing 11(6) (2007) 60–67

