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Cup-products in Lq,p-cohomology:

discretization and quasi-isometry invariance

Pierre Pansu∗

February 14, 2017

Abstract

We relate Lq,p-cohomology of bounded geometry Riemannian man-
ifolds to a purely metric space notion of ℓq,p-cohomology, packing co-
homology. This implies quasi-isometry invariance of Lq,p-cohomology
together with its multiplicative structure. The result partially ex-
tends to the Rumin Lq,p-cohomology of bounded geometry contact
manifolds.
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1 Introduction

Lq,p cohomology is a quantitative variant of de Rham cohomology for
Riemannian manifolds: differential forms are required to belong to Lp

spaces, i.e. to decay at infinity. It has proven its usefulness in various
parts of geometry and topology, [G2], [L], [BP], [BK].

Because of its topological origin, it is expected that Lq,p cohomol-
ogy be computable by many different means, and be quasi-isometry
invariant. This has been established over the years in many cases,
[G1], [F], [E], [BP], [D], [Ge]. In this paper, one completes the pic-
ture,

2



• by covering all remaining cases (limiting cases for exponents p
and q),

• by proving invariance of cup-products.

The new input is two-fold.

1. We exploit progress made in the 2000’s on the L1 analytic prop-
erties of the exterior differential, [BB2], [VS], [LS].

2. We use a definition of ℓq,p cohomology for metric spaces, packing
cohomology, which is well-suited to handle products.

Next we proceed to precise statements. Packing cohomology will
be defined in subsection 6.1.

Definition 1 Let X be a Riemannian n-manifold. Ωq,p,k(X) denotes
the space of Lq differential forms whose distributional exterior deriva-
tive is an Lp differential form. Define Lq,p cohomology by

Hq,p,k(X) = ker(d) ∩ Ωp,p,k(X)/dΩq,p,k−1(X).

Exact Lq,p-cohomology EHq,p,k(X) is the kernel of the forgetful map
Hq,p,k(X)→ Hk(X,R).

Definition 2 Say a metric space X has uniformly vanishing cohomol-
ogy up to degree k if, for every R, there exists R̃ such that for every j =
0, . . . , k and every x ∈ X, the map Hj(B(x, R̃),R)→ Hj(B(x,R),R)
induced by inclusion B(x,R) ⊂ B(x, R̃) vanishes.

Theorem 1 Assume that 1 ≤ p ≤ q ≤ ∞ and 1
p −

1
q ≤

1
n . Consider

the class of Riemannian manifolds with the following properties.

1. Dimension equals n.

2. Bounded geometry: there exist M > 0 and r0 > 0 and for every
point x an M -bi-Lipschitz homeomorphism of the unit ball of Rn

onto an open set containing B(x, r0).

3. Uniform vanishing of cohomology up to degree k − 1.

If p = 1, q = n/n − 1 and k = n, one should replace Ln/n−1,1-
cohomology with Ln/n−1,H1

-cohomology, to be defined in subsection
2.2. If p = n, q =∞ and k = 1, one should replace L∞,n-cohomology
with LBMO,n-cohomology, to be defined in subsection 2.2 as well.

For X in this class, and up to degree k − 1, Lq,p-cohomology
and packing ℓq,p-cohomology of X at all sizes are isomorphic as vec-
torspaces. Furthermore, in degree k, the exact Lq,p-cohomology and
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exact packing ℓq,p-cohomology of X at all sizes are isomorphic. Fi-
nally, these spaces, together with their multiplicative structure, are
quasi-isometry invariant.

If (p, q) 6= (1, n
n−1), or (n,∞), the isomorphisms are topological,

they arise from homotopy equivalences of complexes of Banach spaces.

Along the way, we shall establish an analogue of Theorem 1 (ex-
cept its multiplicative content) for contact manifolds equipped with
bounded geometry Carnot-Carathéodory metrics and the Rumin com-
plex. This relies on recent L1 analytic results for invariant operators
on Heisenberg groups, [CVS], [BFP]. It would be nice to extend this
result to larger classes of equiregular Carnot manifolds. The machin-
ery developped here would yield it provided the needed analytical
properties of Rumin’s complex were known. Unfortunately, Rumin’s
complex does not form a differential algebra, so it cannot capture the
multiplicative structure of cohomology.

1.1 Plan of the paper

Section 2 collects the needed Euclidean Poincaré inequalities. Section
3 recalls Leray’s proof of de Rham’s theorem relating de Rham to Čech
cohomology. Section 4 presents a new variant of Leray’s method,
which is far less demanding in terms of properties of coverings and
Poincaré inequalities. The loss on domains in Poincaré inequalities
that it allows is crucial in two ways,

1. It feeds on existing, perhaps suboptimal in terms of domains,
analytical inequalities.

2. It allows to jump from one scale to a much larger one, under a
mere global topological assumption.

This is illustrated in section 5, where the ℓp cohomology of a simpli-
cial complex with uniformly vanishing cohomology is shown to coin-
cide with that of its Rips complex at arbitrary scales. In section 6,
this result is reformulated in terms of Alexander-Spanier cochains and
packing cohomology, a theory which is quasi-isometry invariant by na-
ture. Note that the main output of sections 5 and 6 (functoriality of
ℓq,p-cohomology of simplicial complexes under coarse embeddings) is
valid with no other restriction on (q, p) than 1 ≤ p ≤ q ≤ +∞). Sec-
tion 7 details the analogous result for contact sub-Riemannian mani-
folds. Some extra analytical difficulties arise since the adapted exterior
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differential, due to M. Rumin, is a second order operator in middle
dimension.

2 Analytical input

2.1 Poincaré inequalities

We shall use the following results, which can be found in [BFP].

Theorem 2 (Baldi-Franchi-Pansu) Assume that 1 ≤ p ≤ q ≤ ∞

and
1

p
−

1

q
≤

1

n
. Let λ > 1. Let B = B(0, 1) and B′ = B(0, λ) be

concentric balls of Rn.
Assume first that (p, q, k) /∈ {(1, n/n − 1, n), (n,∞, 1)}. There ex-

ists a constant C = C(λ) such that for every closed differential k-
form ω on B′, there exists a differential k − 1-form φ on B such that
dφ = ω|B and

‖φ‖Lq(B) ≤ C ‖ω‖Lp(B′). (Poincareq,p(k))

If p = 1, q = n/n − 1 and k = n, inequality (Poincareq,p(k)) is
replaced with

‖φ‖Ln/n−1(B) ≤ C ‖ω‖H1(B′). (Poincaren/n−1,H1(n))

If p = n, q =∞ and k = 1, inequality (Poincareq,p(k)) is replaced
with

‖φ‖BMO(B) ≤ C ‖ω‖Ln(B′). (PoincareBMO,n(1))

Similar inequalities hold for λ large enough on Heisenberg balls, with
exterior differential d replaced with Rumin’s differential dc, see 8.

Remark 1 Note that inequalities (Poincaren/n−1,1(n)) and
(Poincare∞,n(1)) fail.

2.2 LBMO and LH
1

norms

To cover the exceptional configurations p = 1, q = n/n−1 and k = n,
on one hand, and p = n, q = ∞ and k = 1, on the other hand, one
needs switch from Lebesgue spaces to mixed Lebesgue-Hardy spaces.
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Definition 3 Let X be a bounded geometry Riemannian manifold.
For a differential forms ω on X, define

‖ω‖LBMO = sup
x∈X
‖ω‖BMO(B(x,1)), ‖ω‖

LH1 =

∫

X
‖ω‖H1(B(x,1)) dx.

These are the norms used in the definition of LBMO,n and Ln/n−1,H1

-
cohomology, required only in degrees 1 and n respectively. One does
not need modify the definition of packing ℓ∞,n and ℓn/n−1,1-cohomology.

2.3 Lπ-cohomology

For the proofs, it will be necessary to deal with a whole complex at
the same time.

Notation 1 Let π = (p0, · · · , pn), where 1 ≤ pk ≤ ∞ for k =
0, . . . , n. Ωπ,k(X) denotes the space of Lpk differential forms whose
distributional exterior derivative is an Lpk+1 differential form. The
norm there is

|ω|pk + |dω|pk+1
.

The exterior differential d is a bounded operator on

Ωπ,·(X) :=
n

⊕

k=0

Ωπ,k(X).

It constitutes a complex whose cohomology

Hπ,·(X) = ker(d) ∩ Ωπ,·(X)/dΩπ,·(X)

is called the Lπ-cohomology of X. Reduced Lπ-cohomology H̄π,·(X)
is obtained by modding out by the closure of the image of d.

Note that, for k = 0, . . . , n, Hpk−1,pk,k(X) = Hπ,k(X) for any
sequence π containing (pk−1, pk) as a subsequence.

3 Leray’s acyclic coverings theorem

Let X be a Riemannian manifold. Let U = (Ui)i∈I be an open cover-
ings of X. Assuming that Poincaré’s inequality holds as in Proposition
2 for all pairs (Ui, Ui) and all intersections Ui1...ik := Ui1 ∩ · · · ∩ Uik

with uniform constants, we shall show that Lπ-cohomology of X is
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isomorphic to the Lπ-cohomology of the nerve T , of U , i.e. the sim-
plicial complex which has a vertex i for each open set Ui and a face
i1 . . . ik each time the intersection Ui1...ik 6= ∅. We shall furthermore as-
sume that the nerve is locally bounded (every Ui intersects a bounded
number of other Uj ’s), and we shall need a partition of unity (χi)
subordinate to U such that the gradients ∇χi are uniformly bounded.

Recall that simplicial cochains are skew-symmetric functions on
oriented simplices.

3.1 Closed 1-forms and 1-cocycles

Let us first explain the argument for LπH1(X).
Given a closed 1-form ω on X, let us view the collection ω̃ of its

restrictions ωi = ω|Ui
as a 0-cochain with values in 1-forms, ω̃ ∈ C0,1.

It is a 0-cocycle,

δω̃ij := ωi|Uij
− ωi|Uij

= 0.

By assumption, dω̃ = 0. Poincaré inequalities provide us, for each Ui,
with a primitive φi of ωi, dφi = ωi. This forms a 0-cochain φ̃ = (φi)i∈I
with values in 0-forms, φ̃ ∈ C0,0. These 0-forms need not match on
intersections, i.e. δφ̃ij := φi|Uij

− φj |Uij
need not vanish. Note that

κ̃ := δφ̃ is a 1-cochain with values in 0-forms, κ̃ ∈ C1,0. Furthermore,
dκ̃ = dδφ̃ = δdφ̃ = δω̃ = 0. This means that each function κ̃ij is
constant, one can view κ as a real valued 1-cochain of the nerve. It is
a cocycle, since δκ = δδφ̃ = 0.

Assume that ω ∈ Lp1(X). Poincaré inequalities state that prim-
itives φi have L

p0-norms controlled by local Lp1 norms of ω, so φ̃ ∈
ℓp1(Lp0). The coboundary is bounded, so κ̃ = δφ̃ ∈ ℓp1(Lp0). Since
each κi is constant, κ ∈ ℓ

p1 .
If different choices of primitives φ′i are made, φ′i = φi + ui, then

ui’s form a 0-form valued cochain ũ such that φ̃′ = φ̃+ ũ. Therefore
κ̃′ = κ̃+ δũ. Since dũ = 0, one can view ũ as a real valued 1-cochain
of the nerve, and κ′ = κ + δu. Again, each (constant) ui is bounded
by ‖ω‖Lp1 (Ui), so u ∈ ℓ

p1 . Since p0 ≥ p1, ℓ
p1 ⊂ ℓp0 , thus u ∈ ℓp0 . This

shows that the cohomology class [κ] ∈ LπH1(T ) does not depend on
choices.

If ω = dφ is exact, with φ ∈ Lp0(X), one can choose φi = φ|Ui
, δφ̃ =

0, thus κ = 0. Therefore we get a bounded linear map LπH1(X) →
LπH1(T ).
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Conversely, given a 1-cocycle κ of the nerve, i.e. a collection of
real numbers κij such that δκ = 0, we first view it as a 1-cocycle κ̃
with values in (constant) 0-forms. We set

φi :=
∑

ℓ

κiℓχℓ.

This defines a 0-form valued 0-cocycle φ̃ ∈ C0,0. The map ǫ : C1,0 →
C0,0 that we just defined, is an inverse for δ on cocycles. Indeed,

(δφ̃)ij =
∑

ℓ

κiℓχℓ|Uij
−

∑

ℓ

κjℓχℓ|Uij

=
∑

ℓ

(κiℓ + κℓj + κji + κij)χℓ|Uij

=
∑

ℓ

(δκ̃iℓj + κij)χℓ|Uij

= κij,

since δκ̃ = 0.
Its exterior differential ω̃ := dφ̃ satisfies δω̃ = δdφ̃ = dδφ̃ = dκ̃ = 0,

therefore it defines a global closed 1-form ω. If κ ∈ ℓp1 , ω ∈ Lp1 as
well. If κ = du where u is an ℓq 0-cochain, the corresponding 0-form
valued 0-cochain φ̃ satisfies

φi =
∑

ℓ

(ui − uℓ)χℓ = ui − ψ

where

ψ := ǫ(u) =
∑

ℓ

uℓχℓ

is a global Lq 0-form. Furthermore, ω̃ = dφ̃ = −dψ, so ω = −dψ. Thus
we have a well-defined bounded linear map LπH1(T )→ LπH1(X).

The maps just defined in cohomology are inverses of each other.
Indeed, all we have used is ǫ which inverts δ and Poincaré inequalities
which allow to invert d. The map in one direction is δ ◦ d−1; in the
opposite direction, it is d ◦ ǫ = d ◦ δ−1.

To sum up, the argument uses spaces of differential forms on open
sets Ui’s and intersections Uij’s, the operators d and δ, the inverse ǫ
of δ provided by a partition of unity, the possibility to invert d locally.
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The procedure δ ◦ d−1 amounts to finding b that relates a globally
defined closed 1-form ω and a scalar 1-cocycle κ via

(d+ δ)b = ω̃ + κ̃,

revealing the role played by the complex ±d+ δ. Incidentally, we see
that the inclusion ℓp ⊂ ℓq when p ≤ q plays a role.

3.2 The general case

A bit of notation will help. Let T be a simplicial complex, with a Ba-
nach space Bi0...ih attached at each simplex. Let Ch(T,B) denote the
set of cochains, i.e. skew-symmetric functions κ on oriented simplices
with values in B (i.e. κ(i0 . . . ih) is a vector in Bi0...ih for each simplex
i0 . . . ih). Denote by

Kπ,h = {κ ∈ Ch(T,B) ; |κ| ∈ ℓph and |δκ| ∈ ℓph+1}.

Let Ch,k denote the space of h-cochains with values in k-forms,
equipped with the Kph+k,h(Ωπ,k)-norm (here, Bi0...ih = Ωπ,k(Ui0...ih)).
It has two bounded differentials, d′ = δ and d′′ = (−1)hd, which anti-
commute, thus d′ + d′′ is again a complex. Note that the space of
globally defined, Lpk k-forms, is Ωπ,k(X) = C0,k ∩ ker(d′) and that
the space of ℓph scalar valued h-cochains coincides with Ch,0∩ker(d′′).
The choice of exponent ph+k in the definition of Ch,k, constant along
diagonals of the bi-complex, makes it possible to iterate δ ◦ d−1 and
d ◦ ǫ and relate Lpk and ℓpk cohomologies.

Say a complex of Banach spaces (C ·, d) is acyclic up to degree L
if its cohomology vanishes in all degrees up to L.

We show that lines and columns of our bi-complex are acyclic.

Lemma 1 If p ≤ q, then ‖ · ‖ℓq ≤ ‖ · ‖ℓp .

Proof If xi ≥ 0 and
∑

xi = 1, then all xi are ≤ 1, whence
∑

x
q/p
i ≤ 1.

Applying this to

xi =
|ai|

p

∑

|aj|p

yields
∑

(|ai|
p)q/p ≤ (

∑

|aj |
p)q/p,

whence the announced inequality.
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Lemma 2 Let U = (Ui)i be a open covering of a Riemannian mani-
fold. Assume that the volumes of Ui’s are bounded, and that U admits
a partition of unity (χi)i with uniformly bounded Lipschitz constants.
Given φ ∈ Ch,k, i.e. φ is the data of a differential k-form on each
Ui0...ih , set

ǫ(φ)i0...ih−1
=

∑

j

χjφji0...ih−1
.

Then ǫ : Ch,k → Ch−1,k is bounded and 1 = ǫδ + δǫ.

Proof Computing

((ǫδ + δǫ)φ)i0...ih =
∑

j

χj(δφ)ji0...ih +
∑

ℓ

(−1)ℓ(ǫφ)i0...îℓ...ih

=
∑

j

χj(φi0...ih +
∑

ℓ

(−1)ℓ+1φji0...îℓ...ih)

+
∑

ℓ

(−1)ℓ
∑

j

χjφji0...îℓ...ih

=
∑

j

χjφi0...ih

= φi0...ih ,

shows that ǫδ + δǫ = 1.
Multiplying a differential k-form φi0...ih−1j with χj does not in-

crease its Lpk -norm. For its differential,

‖d(χjφi0...ih−1j)‖Lpk+1 (Ui0...ih−1j
) ≤ ‖dφi0...ih−1j‖Lpk+1(Ui0...ih−1j

)

+L‖φi0...ih−1j‖Lpk+1 (Ui0...ih−1j
).

where L is a Lipschitz bound on χj. By Hölder’s inequality, since
pk+1 ≤ pk, the second term is bounded above by ‖φi0...ih−1j‖Lpk (Ui0...ih−1j

)

times a power of the volume of Uj , which is assumed to be bounded
above. Thus multiplication with χj is continuous in local Ωπ,k norms.

Since χj has compact support in Uj, χjφi0...ih−1j extends by 0 to
Ui0...ih−1

without increasing its Ωπ,k norm. Therefore ǫ is bounded
from ℓph(Ωπ,k) to ℓph(Ωπ,k), and thus from ℓph(Ωπ,k) to ℓph−1(Ωπ,k) by
Lemma 2. With the identity 1 = ǫδ + δǫ, this shows that ǫ : Ch,k →
Ch−1,k is bounded.

Corollary 1 Under the asumptions of Lemma 2, the horizontal com-
plexes (C ·,k, δ) are acyclic.
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Lemma 3 Assume that π satisfies 1 < ph < ∞ for all h. Assume
that the open covering U satisfies the following uniformity property,
for some constant M : for each nonempty intersection Ui0...ih , there
is a M -bi-Lipschitz homeomorphism of Ui0...ih to the unit ball of Rn.
Then the vertical complexes (Ch,·, d) are acyclic.

Proof We use the fact that inequality (Poincareq,p(k)) is valid for
λ = 1 (no loss on the size of domain) if p > 1 and q <∞. This is due
to Iwaniec and Lutoborsky, [IL]: Cartan’s formula provides an explicit
inverse to d on bounded convex domains, which is bounded from Lp,
p > 1, to Lq, q <∞, provided 1

p −
1
q ≤

1
n .

Lemma 4 Let (Ch,k, d′, d′′) be a bi-complex of Banach spaces indexed
by N × N. Assume that the horizontal complexes (C ·,k, d′) all are
acyclic up to degree L. Then the inclusion of (C0,· ∩ ker(d′), d′′) into
(C ·,·, d′ + d′′) induces an isomorphism in cohomology up to degree L.

Proof Let us replace Ch,k with Ch,k ∩ ker(d′) when h + k = L and
by 0 when h+ k > L. This does not affect the conclusion in degree L,
and allows to assume acyclicity in all degrees.

If a ∈ C ·,·, let am denote the sum of the components of a of h-
degree equal to m. For an integer ℓ, let

Aℓ := {a ∈ C ·≤ℓ,· ; (d′ + d′′)a ∈ C ·≤ℓ,·}

= {a ∈ C ·≤ℓ,· ; d′aℓ = 0}.

Then (Aℓ, d′ + d′′) is a subcomplex.
One shows that for all ℓ, the inclusion of Aℓ into Aℓ+1 induces an

isomorphism in cohomology. If a ∈ Aℓ+1 is d′+d′′-closed, by acyclicity,
there exists b ∈ C ·≤ℓ,· such that d′b = aℓ+1. Then a

′ = a− (d′+d′′)b ∈
C ·≤ℓ,·, it is d′ + d′′-closed, so a′ ∈ Aℓ. This shows that the inclusion
Aℓ → Aℓ+1 is onto in cohomology. Let a ∈ Aℓ ∩ ker(d′ + d′′). Assume
that there exists b ∈ Aℓ+1 such that a = (d′+d′′)b. By acyclicity, there
exists c ∈ C ·≤ℓ,· such that d′c = bℓ+1. Then b

′ := b−(d′+d′′)c ∈ C ·≤ℓ,·.
Since

(d′ + d′′)b′ = (d′ + d′′)b = a ∈ C ·≤ℓ,·,

b′ ∈ Aℓ. Since a = (d′+d′′)b′, this shows that the inclusion Aℓ → Aℓ+1

is injective in cohomology.
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Corollary 2 Under the asumptions of Lemmas 2 and 3, Lπ-cohomology
of differential forms and ℓπ-cohomology of simplicial cochains of the
nerve coincide.

Proof Apply Lemma 4 twice, once with d′ = δ and d′′ = ±d, once
with d′ = d, d′′ = ±δ.

Remark 2 Assume an even stronger form of Poincaré inequality holds:
up to degree L, there exist bounded linear operators e : Ωπ,k(Ui0...ih)→
Ωπ,k−1(Ui0...ih) with uniformly bounded norms such that 1 = de + ed.
Then the conclusion is stronger: there exists a homotopy of complexes
Ωπ,·(X)→ Kπ,·(T ) up to degree L.

4 A customized version of Leray’s acyclic

coverings theorem

The above argument has the following drawbacks:

• It requires Poincaré inequalities without loss on the size of do-
main, which are not known in all cases.

• It makes strong assumptions on coverings, see Lemma 3.

Fortunately, a modification of the homological algebra allows for weaker
assumptions on coverings and for weaker Poincaré inequalities, allow-
ing loss on the size of domain, as stated in Theorem 2.

4.1 Existence of uniform coverings

Definition 4 Let X be a metric space. A uniform sequence of nested
coverings is a sequence U0, . . . ,UL of open coverings of X with the
following properties, for some constants M > 0, r > 0 and some
model pair of metric spaces Z ′ ⊂ Z,

1. Nesting: for each i and all j = 1, · · · , L, U j−1
i ⊂ U j

i .

2. Bounded size: the diameters of UL
i ’s are bounded; each U0

i con-
tains a ball of radius r, and these balls are disjoint.

3. Bounded multiplicity: every point of X is contained in at most
M open sets UL

i .

4. Bounded partition of unity: U0 has a partition of unity with
bounded Lipschitz constants.

12



5. Contractibility: each U0
i is contractible within U1

i .

6. Model: for each pair (U j−1
i0...ih

, U j
i0...ih

) such that U0
i0...ih

is nonempty,
there is an M -bi-Lipschitz map φi0...ih,j : Z → X such that

φi0...ih,j(Z) ⊂ U
j
i0...ih

and U j−1
i0...ih

⊂ φi0...ih,j(Z
′).

With some lead over Section 7, let us define bounded geometry in
the contact sub-Riemannian case.

Definition 5 Let X be a contact manifold equipped with a sub-Rieman-
nian metric. Say that X has bounded geometry if there exist M > 0
and r0 > 0 and for every point x a smooth contactomorphism φx of
the unit ball of Hm to an open subset of X, mapping the origin to x,
and such that B(x, r0) ⊂ φx(B(1)), and φx is M -bi-Lipschitz.

Proposition 1 Let X be a bounded geometry Riemannian or contact
manifold. Then X admits uniform sequences of nested coverings of
arbitrary length, where the models are pairs of concentric Euclidean
(resp. Heisenberg) balls whose ratio of radii can be chosen arbitrarily.

Proof Fix λ > 1. Let r0 be the radius occurring in the definition
of bounded geometry. Let r = (λM)−2Lr0. Pick a maximal packing
of X by disjoint r-balls. Let U0 be the collection of twice larger balls
U0
i = B(xi, 2r), and U j

i = B(xi, 2(λM)2jr). The nesting, size and
multiplicity requirements are satisfied. The partition of unity can be
constructed from the distance function to xi, it is uniformly Lipschitz.

If U0
i0...ih

is nonempty, then all xiℓ belong to B(xi0 , 4r), thus

B(xi0 , ((λM)2j − 4)r) ⊂ U j
i0...ih

.

Consider given chart φxi0
: B(1) → X, whose image contains UL

i0...ih
by construction. Then

φxi0
(B(

1

M
((λM)2j − 4)r)) ⊂ B(xi0 , ((λM)2j − 4)r) ⊂ U j

i0...ih
.

On the other hand,

φ−1
xi0

(B(xi0 , (λM)2j−2r)) ⊂ B(M(λM)2j−2r),

thus

U j−1
i0...ih

⊂ B(xi0 , (λM)2j−2r) ⊂ φxi0
(B(M(λM)2j−2r)).

13



Thus one can set φi0...ih,j = φxi0
precomposed with dilation (in Eu-

clidean space or Heisenberg group) by factor M(λM)2j−2. The pair
Z ′ = B(r), Z = B(λr) of concentric balls serves as a model. Indeed,
the ratio of radii

1
M (λM)2j − 4

M(λM)2j−2
= λ2 −

4

λ2j−2M2j−1
≥ λ2 −

4

M
≥ λ,

provided M ≥ 2 and λ ≥ 2.
The contractibility requirement follows from the existence of model,

since model balls are contractible.

Remark 3 By definition, in a uniform sequence of nested coverings,
Poincaré inequalities as in Theorem 2 hold with uniform constants for
all pairs (U j−1

i0...ih
, U j

i0...ih
) such that U0

i0...ih
is nonempty.

Indeed, pull-back by M -bi-Lipschitz diffeomorphisms (resp. contacto-
morphisms) expands or contracts Lp norms of differential forms (resp.
Rumin forms) by at most a power of M . This is also true for BMO
and H1, [BN].

4.2 Closed 1-forms and 1-cocycles

Let U0 and U1 be nested open coverings, i.e. for all i, U0
i ⊂ U1

i . One
assumes that Poincaré inequality applies to each pair (U0

i , U
1
i ). One

introduces the two bi-complexes C ·,·,0 and C ·,·,1 associated with the
two coverings. The simplicial complexes T 0 and T 1 share the same
vertices, but T 0 has less simplices. Without change in notation, let
us associate the trivial vectorspace to simplices of T 1 which do not
belong to T 0. Let r : C ·,·,1 → C ·,·,0 denote the restriction operator
(which vanishes for empty intersections U0

i0...ih
). It commutes with d

and δ.
Using covering U1, a globally defined closed 1-form ω on X de-

fines an element ω̃1 ∈ C0,1,1. The primitive φ̃0 ∈ C0,0,0 provided
by local Poincaré inequalities satisfies dφ̃0 = r(ω̃1). κ̃0 = δ(φ̃0) de-
fines a 1-cocycle of U0. The inverse procedure, from 1-cocycles of
U0 to closed 1-forms, is unaffected by covering U1. Both procedures,
when precomposed with the restriction operator r, coincide with the
procedures defined earlier, i.e. provide the required cohomology iso-
morphism relative to covering U0.

To sum up, only one simplicial complex is needed, the nerve of the
covering U0 by small open sets.
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4.3 General case

One starts with a uniform sequence (U j)j=0,...,L of nested coverings.
Let C ·,·,j denote the bi-complex of cochains of T 0 with values in differ-
ential forms on intersections U j

i0...ih
(this differs from the bi-complex

associated to U j). There are restriction maps r : C ·,·,j → C ·,·,j−1

which commute with d and δ. Poincaré inequalities state that a form
of acyclicity holds: r induces the 0 map in cohomology.

Definition 6 Let (r : C ·,j → C ·,j−1, d) be a commutative diagram of
complexes. Say the diagram is r-acyclic up to degree L if r induces
the 0 map in cohomology up to degree L.

Lemma 4 is replaced with

Lemma 5 Let (r : C ·,·,j → C ·,·,j−1, d′, d′′) be a commutative diagram
of bi-complexes. Assume that all horizontal diagrams (r : C ·,k,j →
C ·,k,j−1, d′), are r-acyclic up to degree L. Let ιj denote the cohomology
map induced by the inclusion of (C0,·,j∩ker(d′′), d′) into (C ·,·,j, d′+d′′).
Then up to degree L, the image of ι0 contains the image of rL, and
the kernel of ιL is contained in the kernel of rL.

Proof As before, one may assume that the bi-complex has finitely
many terms and is r-acyclic in all degrees. Denote by Aℓ,j the sub-
complexes introduced in the proof of Lemma 4, relative to the j-th
complex, i.e.

Aℓ,j := {a ∈ C ·≤ℓ,·,j ; (d′ + d′′)a ∈ C ·≤ℓ,·,j}.

The same argument as in the proof of Lemma 4 shows that, for all ℓ,

1. for all closed a ∈ Aℓ+1,j, there exists a′ ∈ Aℓ,j−1 such that ra−
a′ ∈ (d′ + d′′)(Aℓ+1,j).

2. if a ∈ Aℓ,j belongs to (d′+d′′)(Aℓ+1,j), then ra ∈ (d′+d′′)(Aℓ,j−1).

It suffices to iterate L times to obtain the claimed statement. Indeed,
each time d′ is inverted, degree decreases by 1, so at most L inversions
are required.

Corollary 3 Let X be a bounded geometry Riemannian manifold.
Pick a uniform sequence of nested coverings of length 2L. Assume
that Lπ-cohomology is modified as prescribed in Theorem 1 for excep-
tional values of (p, q, k). Then Lπ-cohomology of differential forms and

15



ℓπ-cohomology of simplicial cochains of the nerve of U0 are isomorphic
as vectorspaces. The isomorphism maps the exact cohomology of X to
the exact cohomology of the nerve.

Proof The following diagram commutes.

H ·(C0,·,0 ∩ ker(d′′))
ι0−−−−→ H ·(C ·,·,0)

ι′0←−−−− H ·(C ·,0,0 ∩ ker(d′))

ρL
x




≃ RL

x



 ρ′L
x




≃

H ·(C0,·,L ∩ ker(d′′))
ιL−−−−→ H ·(C ·,·,L)

ι′L←−−−− H ·(C ·,0,L ∩ ker(d′))

ρL
x





≃ RL

x




ρ′L

x





≃

H ·(C0,·,2L ∩ ker(d′′))
ι2L−−−−→ H ·(C ·,·,2L)

ι′
2L←−−−− H ·(C ·,0,2L ∩ ker(d′))

For clarity, we used different notations, ρ, R and ρ′, for the cohomology
maps induced by r for the 3 different complexes.

1. The d′′ = δ complexes are r-acyclic (in fact, acyclic in the usual
sense, but we do not need this favourable circumstance). The complex
C ·,0,j ∩ ker(d′) consists of scalar simplicial cochains of the nerve T 0,
restriction r has no effect on them. Therefore the cohomology map ρ′

between consecutive levels is an isomorphism. From Lemma 5, it fol-
lows that the image I ′0 of ι

′
0 : H

·(C ·,0,0∩ker(d′), d′′)→ H ·(C ·,·,0, d′+d′′)

composed with ρ′L contains the image I of RL : H ·(C ·,·,L, d′ + d′′)→
H ·(C ·,·,0, d′+d′′). Also, ι′L : H ·(C ·,0,L∩ker(d′), d′′)→ H ·(C ·,·,L, d′+d′′)
is injective. Let I ′L ⊂ H

·(C ·,·,L, d′ + d′′) denote its image.
2. Thanks to Theorem 2, the d′ = ±d complexes are r-acyclic.

The complex C0,·,j ∩ ker(d′′) consists of globally defined differential
forms, restriction r has no effect on them. Therefore the cohomology
map ρ between consecutive levels is an isomorphism. Lemma 5 implies
that the image I0 of ι0 : H ·(C0,·,0 ∩ ker(d′′), d′) → H ·(C ·,·,0, d′ + d′′)
composed with ρL contains I, and that ιL : H ·(C0,·,L ∩ ker(d′′), d′)→
H ·(C ·,·,L, d′ + d′′) is injective. Let IL ⊂ H ·(C ·,·,L, d′ + d′′) denote its
image.

3. Since RL ◦ ιL ◦ (ρ
−1)L = ι0, I0 = im(ι0) ⊂ im(RL) = I. We

conclude that I0 = I. Similarly, I = I ′0, hence I0 = I ′0. For the same
reason, using the bottom part of the diagram, IL = I ′L.

Therefore (ι′L)
−1 ◦ ιL is a bijection

LπH ·(X) = H ·(C0,·,L ∩ ker(d′′))→ H ·(C ·,0,L ∩ ker(d′)) = ℓπH ·(T 0).
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4. The construction provides an isomorphism between quotients of
spaces of forms/cochains of finite norms, but also between quotients of
larger spaces of forms/cochains without any decay condition. There-
fore the isomorphism is compatible with forgetful maps Hq,p,k → Hk

to ordinary (un-normed) cohomology, it maps kernel to kernel, exact
cohomology to exact cohomology.

Remark 4 Since d′′ = δ has a bounded linear inverse ǫ, i.e. 1 = δǫ+
ǫδ, the map ι′L has a continuous inverse, hence the linear isomorphism
(ι′L)

−1 ◦ ιL is continuous. If ℓπH ·(T 0) is Hausdorff, so is LπH ·(X)
and both are isomorphic as Banach spaces.

Remark 5 Assume a slightly stronger form of Poincaré inequality
holds: up to degree L, there exist bounded linear operators

e : Ωπ,k(U j
i0...ih

)→ Ωπ,k−1(U j−1
i0...ih

)

with uniformly bounded norms such that 1 = de + ed. Then the con-
clusion is stronger: there exists a homotopy of complexes Ωπ,·(X) →
Kπ,·(T ) up to degree L. In particular, the vectorspace isomorphism is
topological, it induces isomorphisms of reduced cohomology and tor-
sion.

The stronger assumption holds unless p = 1 and q = n
n−1 , or p = n

and q = ∞, [IL]. It fails if p = n, q = ∞ ([BB1], Proposition 2, for
k = n, [BB2], Proposition 9, for other values of k).

4.4 Limiting cases

To show that Lq,pHk(X) and its discretized version ℓq,pHk(T 0) are
isomorphic, one defines a vector π by p0 = · · · = pk−1 = q and pk = p.
If a limiting case arises, i.e. 1

p −
1
q = 1

n and either p = 1 or q =∞, it is
only in degree k that a limiting Poincaré inequality is required. This
is why the restrictions on (p, q, k) appearing in Theorem 2 are exactly
reflected in Theorem 1.

4.5 Multiplicative structure

Differential forms form a graded differential algebra: the wedge prod-
uct satisfies

d(α ∧ β) = dα ∧ β + (−1)deg(α)α ∧ dβ.
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Simplicial cochains do as well: the cup-product satisfies

δ(κ ⌣ λ) = δκ ⌣ λ+ (−1)deg(κ)κ ⌣ δλ.

The tensor product of two graded differential algebras inherits the
structure of a graded differential algebra (the algebra of differential
forms on the product of two manifolds illustrates this). Therefore, if
φ ∈ Ch,k and φ′ ∈ Ch′,k′, set

(φ ⌣ φ′)i0...ih+h′
=

(−1)kh
′

∑

σ∈Sh,h′

(−1)σ (φσ(i0)...σ(ih) ∧ φ
′
σ(ih)...σ(ih+h′ )

)|Ui0...ih+h′
,

where Sh,h′ denotes the set of permutations of {0, . . . , h + h′} which
are increasing on {0, . . . , h} and on {h, . . . , h+ h′}. Set

(d′ + d′′)φ = δφ+ (−1)hdφ.

The multiplication is continuous Lp⊗Lp′ → Lp′′ provided 1
p+

1
p′ =

1
p′′ .

It maps Lq⊗Lp′ → Lq′′ and Lq′⊗Lp → Lq′′ provided 1
p +

1
q′ =

1
q′′ and

1
p′ +

1
q = 1

q′′ .
This multiplication descends to cohomology and restricts to the

usual cup-product on de Rham and simplicial cohomology. Since the
isomorphisms of Lemmas 4 and 5 arise from multiplication preserving
inclusions, they preserve multiplication.

One concludes that, provided

1

p
+

1

p′
=

1

p′′
and

1

p
+

1

q′
=

1

q′′
=

1

p′
+

1

q
,

the cup-product

⌣: Hq,p,k(X) ⊗Hq′,p′,k′(X)→ Hq′′,p′′,k+k′(X)

is well-defined, and can be computed either using differential forms or
simplicial cochains.

From now on, we shall work with the simplicial complex T and its
0-skeleton Y .
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5 Leray’s theorem for simplicial com-

plexes

Next, we establish an analogue of Corollary 3 where manifolds are
replaced with simplicial complexes and differential forms with simpli-
cial cochains. The analytic point, Poincaré inequalities for differential
forms, turns out to be replaced with a purely topological fact.

In this section, radii R are integers. All simplicial complexes have
bounded geometry, i.e. every vertex belongs to a bounded number of
simplices. The exponent sequence p0 ≥ · · · ≥ pk ≥ · · · is nonincreas-
ing.

5.1 Uniform vanishing of cohomology

Definition 7 Say a simplicial complex X with 0-skeleton Y has uni-
formly vanishing cohomology up to degree L if for every R > 0, there
exists R̃(R) such that for every point y ∈ Y , the maps Hj(B(y, R̃))→
Hj(B(y,R)) induced by inclusion B(y,R) ⊂ B(y, R̃) vanish for all
j = 0, . . . , L.

Example 1 Assumption holds if X has vanishing cohomology up to
degree L and a cocompact automorphism group.

Indeed, by duality, the assumption is that homology vanishes. The
vectorspace of cycles in B(y,R) is finite dimensional. Pick a finite ba-
sis. Every element bounds a finite chain, all these chains are contained
in some ball B(y, R̃). Thus all maps Hj(B(y, R̃)) → Hj(B(y,R))
vanish. R̃ depends on R and y. If X has a cocompact automorphism
group, R̃ depends on R only.

5.2 Poincaré inequality for simplicial complexes

Lemma 6 Let X be a simplicial complex X with uniformly vanishing
cohomology up to degree L. Then Poincaré inequalities hold for all
pairs (B(y,R − 1), B(y, R̃(R))) up to degree L. For the subspace of
exact cocycles, Poincaré inequalities hold for all degrees. In both cases,
constants do not depend on y

Proof Let C(y,R) (resp. C ′(y,R)) be the union of simplices con-
tained in B(y,R) (resp. intersecting B(y, R̃)). As y varies, at most
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finitely many different pairs of complexes (C,C ′) are encountered. By
assumption, for each pair, the cohomology maps Hj(C ′) → Hj(C)
vanish if j ≤ L. If j > L, the cohomology maps EHj(C ′)→ EHj(C)
vanish by definition. Since simplicial cochains of C and C ′ form finite
dimensional vectorspaces, Poincaré inequality is nothing more than
this vanishing. Uniformity of constants arises from finiteness of the
collection of maps.

5.3 Vertical r-acyclicity

Using uniform vanishing of cohomology, one constructs nested cover-
ings as follows. Fix R ∈ N. The specifications are that all U0

i be

R-balls and each pair (U j
i0...ih

, U j+1
i0...ih

) such that U0
i0...ih

6= ∅ satisfies
Poincaré inequality.

Let R0 = R. Let covering U0 consist of subcomplexes C(y,R0),
y ∈ Y . Pick R1 = R̃(R0 + R) + R according to uniform cohomology
vanishing, and let covering U1 consist of subcomplexes C(y,R1), y ∈
Y , set R2 = R̃(R1 + R) + R, and so on. If y ∈ U0

i0...ih
, then the

centers of all U j
iℓ
, ℓ = 0, . . . , h, all j, belong to B(y,R), so U j

i0...ih
is

contained in B(y,Rj +R) and U j+1
i0...ih

contains B(y,Rj+1 −R). Since

Rj+1−R ≥ R̃(Rj+R), the pair (B(y,Rj+R), B(y,Rj+1−R)) satisfies

Poincaré inequality. This shows that all relevant pairs (U j
i0...ih

, U j+1
i0...ih

)
satisfy Poincaré inequality. All other boundedness properties follow
from the fact that X has bounded geometry.

We consider the bi-complexes Ch,k,j consisting of h-cochains of
the nerve of U0 with values in k-cochains of intersections of open sets
U j
i0...ih

of U j. We truncate it: if h + k > L + 1, we set Ch,k,j =

0 and replace
⊕

h+k=L+1C
h,k,j with its subspace of exact elements.

Here, d′ = δ is the covering coboundary, d′ = (−1)hd is the simplicial
coboundary of X. Let r : C ·,·,j → C ·,·,j−1 denote the restriction map.
From Lemma 6, vertical complexes are r-acyclic.

5.4 Horizontal acyclicity

Lemma 7 The horizontal complexes d′ : C ·,k,j → C ·+1,k,j are acyclic.

Proof The same operator ǫ which inverts δ will be used for all cov-
erings U j. It is made from a partition of unity (χi) for U0. Let ηi
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denote the function on Y which is 1 on Y ∩ Ui and 0 elsewhere. Set

χi =
ηi

∑

j ηj
.

If κ a k-cochain on T , view χi as a 0-cochain and use the unskewsym-
metrized cup-product to multiply χi with κ,

(χi ⌣ κ)y0...yk = χi(y0)κy0...yk .

If κji0...ih−1
is defined on Uji0...ih−1

, χj ⌣ κ extends by 0 to Ui0...ih−1
.

So the following k-cochain

(ǫκ)i0...ih−1
=

∑

j

χj ⌣ κji0...ih−1

is well-defined on Ui0...ih−1
. The identity ǫδ + δǫ = 1 is formal. The

formula

d(χj ⌣ κji0...ih−1
) = (dχj)⌣ κji0...ih−1

+ χj ⌣ (dκji0...ih−1
)

shows that the norm of (ǫκ)i0...ih−1
in ℓpk(Ui0...ih−1

) is controlled by
the norms of κji0...ih−1

and dκji0...ih−1
in ℓpk(Uji0...ih−1

). By Hölder’s
inequality, one can replace the latter by the norm of dκji0...ih−1

in
ℓpk+1(Uji0...ih−1

) (since the number of k + 1-simplices in Uji0...ih−1
is

bounded). This shows that ǫ is bounded in local Kπ,k-norms. Adding
terms up shows that ǫ is bounded from ℓph(Kπ,k) to ℓph(Kπ,k), and
thus from ℓph(Kπ,k) to ℓph−1(Kπ,k) by Lemma 2. With the identity
ǫδ + δǫ = 1, this shows that ǫ : Ch,k,j → Ch−1,k,j is bounded.

5.5 Coverings by large balls

Proposition 2 Let X be a bounded geometry simplicial complex with
uniformly vanishing cohomology up to degree L. Let Y be its 0-skeleton.
For every R ∈ N, R ≥ 1, consider the covering of Y by balls of radius
R, and its nerve TR. The inclusion X ⊂ TR induces a multiplicative
topological isomorphism in ℓπ-cohomology up to degree L, and in exact
ℓπ-cohomology in degree L+ 1.

Proof Lemma 5 applies as in the proof of Corollary 3. It provides an
isomorphism between cohomology at bi-degrees (h, 0) and (0, h) for
all h. In degrees ≤ L, it maps cohomology of X to cohomology of
the nerve. In degree L + 1, it maps exact cohomology of X to exact
cohomology of the nerve.

Remark 6 Here, the cohomology isomorphism arises from a homo-
topy of complexes.
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6 Quasi-isometry invariance

The above discussion suggests to use the similarity between ℓπ-cochains
of a covering and Alexander-Spanier cochains, a purely metric notion.

6.1 Alexander-Spanier cochains

Definition 8 Let X be a metric space. Given r > 0, the Rips com-
plex of size S TS of X is the simplicial complex whose vertices are all
points of X, and where a set of k+1 distinct vertices spans a k-simplex
if and only if it is contained in some ball of radius S. Its simplicial
cochains are called Alexander-Spanier cochains of size S.

The following definitions are taken from [P].

Definition 9 Let X be a metric space. Given 0 < R ≤ S < +∞ and
ℓ ≥ 1, a (ℓ,R, S)-packing is a collection of balls Bj such that

1. the radii belong to the interval [R,S],

2. the concentric balls ℓBj are pairwise disjoint.

Definition 10 Let κ be an Alexander-Spanier k-cochain of size S.
Its packing ℓp norm is defined by

‖κ‖p,ℓ,R,S = sup
(ℓ,R,S)−packings {Bj}





∑

j

sup
x0,...,xk∈Bj

|κ(x0, . . . , xk)|
p





1/p

.

This defines a Banach space ALp,k
ℓ,R,S(X).

Given π = (p0, . . . , pn, . . .), the spaces

ALπ,k
ℓ,R,S(X) = ALpk,k

ℓ,R,S(X) ∩ d−1(AL
pk+1,k+1
ℓ,R,S (X))

form a complex of Banach spaces, whose cohomology is the packing
ℓπ-cohomology of X. It has a forgetful map to ordinary cohomology,
whose kernel is the exact packing ℓπ-cohomology of X.
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6.2 Changing size

An Alexander-Spanier cochain of size S ≥ 1 determines an Alexander-
Spanier cochain of size 1, by restriction, whence a map AS·

ℓ,R,S(Y )→
AS·

1,1,1(Y ), where the domain only depends on S whereas parameters
ℓ ≥ 1 and R > 0 merely influence the norm.

Proposition 3 Let X be a simplicial complex with bounded geome-
try and uniformly vanishing cohomology up to degree L. Let Y be its
0-skeleton. For every integer S, every 0 < R ≤ S and ℓ ≥ 1, the
forgetful map AS·

ℓ,R,S(Y )→ AS·
1,1,1(Y ) induces a multiplicative topo-

logical isomorphism in ℓπ-cohomology up to degree L, and in exact
cohomology EHπ,L+1

ℓ,R,S (Y )→ EHπ,L+1
1,1,1 (Y ) in degree L+ 1.

Proof Cochains of size 1 coincide with simplicial cochains of X. The
counting ℓπ norm coincides with the packing ℓπ norm at size 1, up to
a multiplicative constant depending on the local geometry of X.

By construction, a collection of S-balls in Y has a nonempty in-
tersection if and only if their centers belong to the same S-ball. Thus
the Rips complex of size S coincides with the nerve of the covering
by S-balls coincide with Alexander-Spanier cochains of size S. Let us
compare norms. In nerve notation, the packing ℓp-norm reads

‖κ‖pp,ℓ,S,S = sup
J (ℓS)−separated subset of Y

∑

j∈J

sup
{i0,...,ih ; j∈Ui0,...,ih

}
|κ(i0, . . . , ih)|

p.

This is always less than

∑

j∈Y

∑

{i0,...,ih ; j∈Ui0,...,ih
}

|κ(i0, . . . , ih)|
p ≤ V (S)

∑

i0,...,ih

κ(i0, . . . , ih)|
p,

where V (S) is an upper bound for the number of vertices in an S-ball.
Indeed, a multi-index i0, . . . , ih arises in the sum at most as many
times as there are vertices in Ui0,...,ih , and this is less than V (S).
The same crude bound remains valid for ‖κ‖p,ℓ,R,S for all R ≤ S.
Conversely, pick, for each h-simplex i0, . . . , ih a j ∈ Y such that
i0, . . . , ih ⊂ B(j, S), denote it by j(i0, . . . , ih). Assume that Y can
be covered with at most N (ℓS)-separated subsets J . For each of
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them,
∑

{i0,...,ih ; j(i0,...,ih)∈J}

|κ(i0, . . . , ih)|
p

=
∑

j∈J

∑

{i0,...,ih ; j(i0,...,ih)=j}

|κ(i0, . . . , ih)|
p

≤ V (S)
∑

j∈J

sup
{i0,...,ih ; j∈Ui0,...,ih

}
|κ(i0, . . . , ih)|

p,

hence
∑

i0,...,ih

|κ(i0, . . . , ih)|
p ≤ NV (S)‖κ‖pp,ℓ,S,S ≤ NV (S)‖κ‖pp,ℓ,R,S .

To get an upper bound on N , let us construct inductively a colouring
of Y with values in {0, . . . , V (ℓS)}. Pick an origin o, and colour it
0. Assume a finite part A of Y has already been coloured, pick a
point y among the uncoloured points which are closest to o, choose its
colour among those which are not already used in B(y, ℓS) ∩A. This
is possible since |B(y, ℓS)| < V (ℓS)+1. In such a way, one colours all
of Y , and each set J of points of equal colour is (ℓS)-separated. So
N = V (ℓS) + 1 is appropriate.

This shows that the counting ℓπ norm on cochains of the covering
and the packing norm are equivalent, with constants depending only
on the geometry of X at scale S, i.e. on S only. Thus ℓπ-cohomology
of the nerve T S coincides with packing ℓπ-cohomology at size S, with
equivalent norms. The inclusion of nerves corresponds to the forgetful
map for cochains. Thus the statement is a reformulation of Proposi-
tion 2.

6.3 Invariance

Say a map f : X → X ′ between metric spaces is a coarse embedding
if for every T > 0, there exists T ′(T ) > 0 such that for every T -ball B
of X and every T -ball B′ of X ′, f(B) and f−1(B′) are contained in
T ′-balls. A quasi-isometry is a pair of coarse embeddings f : X → X ′

and g : X ′ → X such that f ◦g and g ◦f are a bounded distance away
from identity.

Packing cohomology is natural under coarse embeddings, up to a
loss on size. Furthermore, embeddings which are a bounded distance
away from each other induce the same morphism in packing cohomol-
ogy.
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Proposition 4 Let f : X → X ′ be a coarse embedding between metric
spaces. Then for every R > 0, R ≤ S < ∞ and ℓ′ ≥ 1, there exist
R′ > 0, S′ < ∞ and ℓ ≥ 1 such that f induces a multiplicative
morphism f∗ : Lπ

ℓ′,R′,S′H ·(X ′)→ Lπ
ℓ,R,SH

·(X).
If g : X → X ′ satisfies supx∈X d(f(x), g(x)) < +∞, then g is a

coarse embedding as well, and f∗ = g∗.

Proof Given a size r > 0, by definition of a coarse embedding, there
exists r′(r) such that composition with f maps cochains of size r′ to
cochains of size at least r.

Given 0 < R ≤ S < +∞ and ℓ′ ≥ 1, let R′ = S′ = r′(S), let T =
2ℓ′S′ and ℓ = r′(T )/R. Then f maps (ℓ,R, S)-packings to (ℓ′, R′, S′)-
packings. Thus composition with f is bounded in suitable packing
norms. It commutes with d and with cup-product. Therefore it in-
duces a multiplicative morphism f∗ : Lπ

ℓ′,R′,S′H ·(X ′)→ Lπ
ℓ,R,SH

·(X).
Given simplices ∆ = {x0, . . . , xk} and ∆′ = {x′0, . . . , x

′
k} of TS(X),

the prism b(∆,∆′), obtained by triangulating the product of a simplex
and an interval, is defined by

b(x0, . . . , xk;x
′
0, . . . , x

′
k) =

k
∑

i=0

(−1)i(x0, . . . , xi−1, xi, x
′
i, x

′
i+1, . . . , x

′
k).

It satisfies

∂b(∆,∆′) = ∆′ −∆−
k

∑

j=0

(−1)jb(∂j∆, ∂j∆
′).

Assume that supx∈X d(f(x), g(x)) ≤ ǫ. If κ is a k-cochain of size S+ ǫ
and ∆ a simplex of size S, set (Bκ)(∆) = κ(b(f(∆), g(∆))). Then

dB +Bd = κ ◦ g − κ ◦ f.

For all ℓ ≥ 1,

‖B‖Lp
ℓ,R−ǫ,S+ǫ→Lp

ℓ,R,S
≤ (k + 1)1/p.

This shows that f∗ = g∗ on cochains of sufficiently large size.

6.4 Packing ℓπ-cohomology equals Lπ-cohomology

Let X be a bounded geometry Riemannian manifold. Pick a uniform
sequence of nested coverings U0, . . . ,UL. Up to rescaling once and for
all the metric on X, one can assume that coverings have the following
properties:
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1. Each U0
i contains a unit ball Bi, and these balls are disjoint.

2. Each U0
i is contractible in U1

i .

3. The diameters of U1
i are bounded.

Under these assumptions, the 0-skeleton Y of the nerve T of the cover-
ing U0 is quasi-isometric to X. Indeed, the map that sends vertices to
centers of balls Bi is bi-Lipschitz, its image is D-dense for some finite
D. The Rips complex of size 1 of Y coincides with T0, so packing
ℓπ-cohomology of Y at size 1 coincides with simplicial ℓπ-cohomology
of T 0 (packing norms for a uniformly discrete metric spaces are equiv-
alent to counting norms) at size 1. According to Corollary 3, this is
equal to de Rham Lπ-cohomology of X.

We can now proceed to the proof of Theorem 1. Since the covering
pieces are contractible in unions of boundedly many pieces), the natu-
ral map of X to the nerve, given by a partition of unity, is a homotopy
equivalence. Therefore uniform vanishing of cohomology passes from
X to the nerve.

By Corollary 3, Lπ-cohomology ofX is isomorphic to ℓπ-cohomology
of the nerve, which in turn coincides with packing ℓπ-cohomology of
Y at all sizes by Proposition 3.

The inclusion i : Y → X is a quasi-isometry. According to Propo-
sition 4, for all 0 < R ≤ S < ∞ and all ℓ′′, there exist ℓ, ℓ′ ≥ 1 and
R′, R′′ > 0, S′, S′′ <∞ such that i and its inverse induce maps up to
degree L

Lπ
ℓ′′,R′′,S′′H ·(Y )→ Lπ

ℓ′,R′,S′H ·(X)→ Lπ
ℓ,R,SH

·(Y ),

and in the reverse direction. The composition coincides with the for-
getful map (Proposition 4), which is an isomorphism, by Proposition
3. Therefore

i∗ : Lπ
ℓ′,R′,S′H ·(X)→ Lπ

ℓ,R,SH
·(Y )

is an isomorphism. This proves that de Rham and packing Lπ-cohomo-
logies of X are isomorphic up to degree L, and that forgetful maps
induce isomorphisms in the packing ℓπ-cohomology of X up to degree
L. In degree L + 1, the result persists provided one considers exact
Lπ-cohomology.

A quasi-isometry between manifolds f : X → X ′ gives rise to coho-
mology maps in both directions with a loss on size, whose compositions
coincide with forgetful maps. Since forgetful maps are isomorphisms,
f∗ is an isomorphism up to degree L, and an isomorphism on exact
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Lπ-cohomology in degree L+1. The isomorphism is topological unless
(p, q) = (1, n

n−1), or (n,∞), as observed in Remark 5.

6.5 (Lq, Lp + Lr)-cohomology

...TO DO...

7 Contact manifolds

7.1 Sub-Riemannian contact manifolds

A sub-Riemannian manifold is the data of a manifold M , a smooth
sub-bundle H ⊂ TM , and a smooth field of Euclidean structures on
H.

A smooth codimension 1 sub-bundle H ⊂ TM can be defined as
the kernel of a smooth 1-form θ. Up to a scale, the restriction of dθ
to H does not depend on the choice of θ. Say (M,H) is a contact
manifold if dθ|H is non-degenerate.

A sub-Riemannian metric on a 2m + 1-dimensional contact man-
ifold extends canonically into a Riemannian metric. Indeed, there is
a unique contact form θ such that 1

m!(dθ)
m

|H equals the Euclidean
volume form on H. This contact form is smooth, the kernel of dθ de-
fines a complement to H carrying the Reeb vectorfield ρ, normalized
so that 〈θ, ρ〉 = 1, hence the unique Riemannian metric which makes
ρ ⊥ H and |ρ|2 = 1.

Remark 7 A sub-Riemannian contact manifold has bounded geom-
etry (see Definition 5) if and only if the corresponding Riemannian
metric has bounded geometry.

7.2 Rumin’s complex

On a 2m+1-dimensional contact manifold, consider the algebra Ω· of
smooth differential forms, let I · denote the ideal generated by 1-forms
vanishing on H, let J · denote its annihilator. The exterior differential
descends (resp. restricts) to an operator dc : Ω·/I · → Ω·/I · (resp.
dc : J · → J ·). Note that Ih = 0 for h ≥ m + 1 and J h = 0 for
h ≤ m. In [R1], M. Rumin defines a second order linear differential
operator dc : Ωm/Im → Jm+1 which connects Ω·/I · and J · into a
complex (dc ◦ dc = 0) which can be used to compute cohomology.
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Ω·/I · and J · identify with spaces of smooth sections of bundles Eh
0 ,

h = 0, . . . , 2m + 1, which inherit Euclidean structures, therefore Lp

norms make sense.

Theorem 3 Assume that 1 ≤ p ≤ q ≤ ∞ and 1
p −

1
q ≤

1
2m+2 (to

be replaced with 1
p −

1
q ≤

2
2m+2 when degree m + 1 cohomology is

considered).
Consider the class of contact sub-Riemannian manifolds with the

following properties.

1. Dimension equals 2m+ 1.

2. Bounded geometry.

3. Uniform vanishing of cohomology up to degree k − 1.

If p = 2m+2, q =∞ and k = 1, one should replace L∞,p-cohomology
with LBMO,p-cohomology.

Assume that k ≤ m. For X in this class, and up to degree k−1, the
Lq,p-cohomology of Rumin’s complex and the packing ℓq,p-cohomology
of X at all sizes are isomorphic as vectorspaces. In degree k, it is
the exact Lq,p-cohomology of Rumin’s complex which is isomorphic to
packing ℓq,p-cohomology.

If k ≥ m+1, the same conclusion holds in non-limiting cases, i.e.
if either p > 1, q <∞ or 1

p −
1
q <

1
2m+2 (resp. 1

p −
1
q <

2
2m+2 in degree

m+ 1).

The given sub-Riemannian metric and the corresponding Rieman-
nian metric are quasi-isometric, so their packing ℓπ-cohomologies are
isomorphic. Therefore, under the assumptions of Theorem 3, the Ru-
min complex can be used to compute packing ℓπ-cohomology.

Example 2 If k ∈ {0, . . . , 2m+ 1}, 1 < p ≤ q <∞ satisfy

1

p
−

1

q
=

{

1
2m+2 if k 6= m+ 1,

2
2m+2 if k = m+ 1,

then Hq,p,k(Hm) = 0.

Indeed, the existence of global homotopy operators, Theorem ?? of
[BFP], implies that the cohomology of the Rumin complex vanishes,
and thus ℓq,p cohomology vanishes by Theorem 3.
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7.3 Cutting-off Rumin differential forms

The proof of Theorem 3 follows the same lines as Theorem 1. The
local model for 2m+1-dimensional sub-Riemannian contact manifolds
is the Heisenberg group H

m equipped with its left-invariant contact
structure and a left-invariant Euclidean structure on it. The local
ingredients are

1. An inverse of the analytic differential d on balls, possibly with a
loss on the domain: this is given by Poincaré inequalities. Ac-
cording to [BFP], Poincaré inequalities are valid in balls of Hm

with respect to Rumin’s differentials dc. The fact that Rumin’s
differential in degree m is second order allows the broader in-
equality 1

p −
1
q ≤

2
2m+2 in degree m+ 1.

2. An inverse of the combinatorial coboundary δ.

In Lemma 2, the following inverse ǫ was used,

ǫ(φ)i0...ih−1
=

∑

j

χjφji0...ih−1
.

It is bounded on Lp. One needs it to be bounded on Lq ∩ d−1
c Lp. In

Lemma 2, this relies on Leibniz’ formula

d(ζα) = dζ ∧ α+ ζdα.

A difficulty arises in the contact case since the middle dc is second
order: Leibniz formula reads

dc(ζα) = ζdc(α) + P (∇ζ,∇α) +Q(∇2ζ, α),

where Q does not differentiate α, so it is bounded on Lq, but P does
depend on all horizontal first derivatives of α, and is not expressible
in terms of dcα only. The solution consists in passing to a homotopy
equivalent complex of forms whose horizontal first derivatives are con-
trolled. This modification, needed only to handle degrees ≥ m + 1,
does not work in limiting cases yet.

7.4 The W 1,π-Rumin complex

Definition 11 Let M be a sub-Riemannian contact manifold. Let
W 1,p(M,Ek

0 ) denote the space of degree k Rumin forms which satisfy,
in the sense of distributions,

|α| ∈ Lp, |∇α| ∈ Lp.
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Given a vector of exponents π = (p0, . . . , p2m+1), let

Ωπ,k
c (M) = Lpk(M,Ek

0 ) ∩ d
−1
c (Lpk+1(M,Ek+1

0 )),

Ωπ,k
W (M) = W 1,pk(M,Ek

0 ) ∩ d
−1
c (W 1,pk+1(M,Ek+1

0 ))

denote the two complexes one can form with Rumin forms: the Lπ

Rumin complex and the W 1,π Rumin complex.

Multiplication with a smooth function maps Ωπ,·
W to Ωπ,·

c .
Here is the relevant Poincaré inequality. It is valid provided the

following inequalities hold.

1 ≤ p ≤ q ≤ ∞,
1

p
−

1

q
≤

{

1
2m+2 if k 6= m+ 1,

2
2m+2 if k = m+ 1,

(1)

We speak of a limiting case when 1
p −

1
q = 1

2m+2 (resp. = 2
2m+2 in

degree m+ 1) and one of p and q equals 1 (resp. ∞).

Lemma 8 (?? of [BFP]) Assume that (k, p, q) satisfy inequations
(1) above. There exists λ > 1 and C(λ) such that the following holds.
Let B = B(e, 1) and B′′ = B(e, λ) be concentric balls of Hn.

Assume first that (p, q, k) /∈ {(1, 2m+2
2m+1 , 2m + 1), (2m + 2,∞, 1)}.

For every closed differential k-form ω on B′′, there exists a differential
k − 1-form φ on B such that dφ = ω|B and

‖φ‖Lq(B) ≤ C ‖ω‖Lp(B′′). (H − Poincareq,p(k))

If p = 1, q = 2m+2
2m+1 and k = 2m+1, inequality (H−Poincareq,p(k))

is replaced with

‖φ‖
L

2m+2
2m+1 (B)

≤ C ‖ω‖H1(B′′). (H− Poincare 2m+2
2m+1

,H1(2m+ 1))

If p = 2m + 2, q = ∞ and k = 1, inequality (Poincareq,p(k)) is
replaced with

‖φ‖BMO(B) ≤ C ‖ω‖L2m+2(B′′). (H− PoincareBMO,2m+2(1))

In non-limiting cases, for every closed h-form α ∈ W 1,p(B′′, Eh
0 ),

there exists an h − 1-form β ∈ W 1,q(B,Eh−1
0 ) such that dcβ = α|B,

and

‖β‖W 1,q(B) ≤ C ‖α‖W 1,p(B′′).
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7.5 Back to the Lp Rumin complex

To overcome the fact that the inverse ǫ of the Čech coboundary δ
involves a loss of differentiability (it merely maps Ω1,π

W to Ω1,π
c ), we

shall use a local smoothing procedure, provided again by [BFP].

Lemma 9 (?? of [BFP]) Let B = B(e, 1) and B′ = B(e, 2) be con-
centric balls of Hm. There exist operators S and T from smooth forms
on B′ to smooth forms on B which satisfy S + dcT + Tdc = RB, the
restriction of forms to B. For every (k, p, q) satisfying inequations
(1) above, excluding limiting cases, and for every L ∈ N, these op-
erators extend to bounded operators T : Lp(B′, E·

0) → Lp(B,E·−1
0 )

and S : Lp(B′, E·
0) → WL,p(B,E·

0). Furthermore, T is bounded
W 1,p(B′, E·

0)→ W 1,q(B,E·−1
0 ).

Since the smoothing operator S is only locally defined, it does not
directly provide us with a homotopy equivalence Ω·,π

c → Ω·,π
W . We

must pass via the bi-complexes C ·,·,j
c , j = 0, . . . , L, associated to a

uniform sequence of nested coverings.
Proposition 1 allows to adjust the ratio of radii of the model Heisen-

berg balls Z ′ ⊂ Z. Choose this ratio to be ≥ 2, in order that Lemma
9 be applicable and yields operators r ◦ S and r ◦ T defined on the
Rumin bi-complex

rS, rT : C ·,·,j
c → C ·,·,j−1

c

constructed from the Lπ Rumin bicomplex. Here, d′ = δ is the Čech
coboundary, and d′′ = (−1)hdc is the Rumin differential (up to sign).
Let ǫ denote the operator defined in Lemma 2, which satisfies ǫδ+δǫ =
1. Let us compute

(d′ + d′′)(rSǫ+ (−1)hrT ) = d′rSǫ− rSd′ǫ+ rSd′ǫ+ d′′rSǫ

+(−1)hd′′rT + (−1)hd′′rT,

(rSǫ+ (−1)hrT )(d′ + d′′) = rSǫd′ + rSǫd′′

+(−1)hrTd′′ + (−1)hrTd′.

Since d′ǫ+ ǫd′ = 1 on Ch,k,j and rS + (−1)hd′′rT + (−1)hrTd′′ = r,

(d′ + d′′)(rSǫ+ (−1)hrT ) + (rSǫ+ (−1)hrT )(d′ + d′′) = r + U + V,

where

U = d′rSǫ− rSd′ǫ+ rSǫd′′ + d′′rSǫ
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is smoothing, and

V = (−1)h(d′rT + rTd′)

has bi-degree (1,−1). Denote by D = d′ + d′′, B = rSǫ + (−1)hrT
and W = U + V . Note that WD = DW . One can iterate identity
DB +BD = r +W as follows. Write

DBW +BWD = (DB +BD)W = rW +W 2,

DrB + rBW = r(DB +BD) = r2 + rW

and substract,

D(rB −BW ) + (rB −BW )B = r2 −W 2.

Ultimately, we find a polynomial P in r and W such that DBP +
BPD = rL− (−1)LWL. Since V has bi-degree (1,−1), V L = 0, hence
WL is a sum of words in U and V such that each term has at least
a U in it, hence is smoothing. This provides a homotopy of rL to a
bounded operator C ·,·,L

c → C ·,·,0
W .

Up to the cost of enlarging the number of nested coverings required
to L2, we can follow each use of ǫ with a use of WL, and return to the
bi-complexes C ·,·,j

W without changing homotopy types. This makes it
possible to apply Lemma 5 as in the proof of Corollary 3. This proves
Theorem 3.
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