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Abstract. Smart objects are now present in our everyday lives, and
the Internet of Things is expanding both in number of devices and in
volume of produced data. These devices are deployed in dynamic ecosys-
tems, with spatial mobility constraints, intermittent network availability
depending on many parameters (e.g. battery level or duty cycle), etc. To
capture knowledge describing such evolving systems, open, shared and
dynamic knowledge representations are required. These representations
should also have the ability to adapt over time to the changing state
of the world. That is why we propose IoT-O, a core-domain modular
IoT ontology proposing a vocabulary to describe connected devices and
their relation with their environment. First, existing IoT ontologies are
described and compared to requirements an IoT ontology should be com-
pliant with. Then, after a detailed description of its modules, IoT-O is
instantiated in a home automation use case to illustrate how it supports
the description of evolving systems.

1 Semantic interoperability, a challenge for the IoT

The Internet of Things (IoT) is gaining more and more traction: some projec-
tionists predict up to 50 billion devices connected in the next five to ten years [1].
The Things of the IoT allow to connect the physical world and virtual representa-
tions. IoT applications are based on very heterogeneous devices and technologies,
and are deployed in domains as diverse as agriculture, domotics4, smart cities
or e-health. Two types of interoperability issues can be identified: syntactic and
semantic, brought by the variety of domains and data models[2]. This paper fo-
cuses on semantic interoperability, the ability of systems to attribute the same
meaning to the data they exchange.

Semantic interoperability is based on shared, unambiguous, machine-under-
standable vocabularies, which is why semantic web principles and technologies
are seen as semantic interoperability providers, as [3] expresses for the specific
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domain of IoT. Knowledge expressed in open formats can be shared and reused,
and ontologies can evolve to adapt to new contexts or usages. To ensure the
reusability of semantic models across projects and domains, good practices in
ontology design have been proposed. In IoT projects, many ontologies have been
built, but not always according to these guidelines, hence limiting their reusabil-
ity (see section 3). This is why we propose IoT-O5, an IoT core-domain modular
ontology engineered for reusability and extensibility. IoT-O is also available on
the LOV6, and based on the initial contribution of [4].

IoT systems are strongly bound to their environment, because they are com-
posed of devices in contact with the physical world. Sensors collect data about
their environment, and actuators are devices performing actions that have a di-
rect impact on the world: light bulbs, motors, air conditioning, etc. This paper
aims at showing how IoT-O can be used as an ontology to semantically describe
devices and data in order to make systems aware of their environment, its evo-
lution, and the changes they can bring to it. Such a description allows smart
agents to transform their environment thanks to connected actuators, according
to the perceptions they have of it through connected sensors.

In the remainder of this paper, section 2 introduces a motivating use case
that will serve to instantiate portions of IoT-O. Section 3 presents the design
process of IoT-O, and gives an overview of the ontology. Finally, section 4 details
how IoT-O is instantiated in the use case.

2 Motivating use case

IoT technologies can have a direct impact on the everyday life of citizens, since
it connects their physical environment to virtual applications. That is especially
relevant in the case of domotics, where the home can be equipped with multi-
ple low-power devices to provide new services. At LAAS-CNRS, the ADREAM
project7 aims at conducting research on smart buildings thanks to an instru-
mented, energy-positive building. It is equipped with more than 4500 sensing
devices, producing up to 500,000 measures a day. Inside the building, there is
a mock-up apartment equipped with commercial devices from various vendors.
Deployed devices include sensors (temperature, luminosity, humidity, pressure),
actuators (fan, space heater, multiple lamps), which communicate using different
technologies (phidget, ethernet, zigbee) with gateways connected to a server.

However, small highly distributed devices usually have a limited processing
power, which restrict the range of applications they can support. More complex
agents can interact with these devices to collect their data and perform advanced
processing to provide a higher level service. In our use case, centered on an elderly
healthcare scenario, the complex agent is a robot. It is present in the house, and
performs tasks such as helping the person in case of fall, moving heavy objects,
pushing a wheelchair, fetching objects and bringing medications. Some of these

5 http://www.irit.fr/recherches/MELODI/ontologies/IoT-O
6 http://lov.okfn.org/dataset/lov/vocabs/ioto
7 http://www.laas.fr/public/en/adream



tasks require the robot to know where the person is in the apartment. To
have this information, the robot can move around the apartment, scan it with
its embedded cameras, and through image processing figure out where the person
is. However, it requires the robot either to follow the person around all the time,
or to scan the apartment completely each time it has to find the person. To
make the robot more acceptable to the person, the house can be equipped with
an IoT system, collecting information useful to the robot, such as information
given by presence sensors. Moreover, the connected devices can provide new
functionalities to the robot: he can easily interact with connected light switches
or sensors. Our use case is composed of two scenarios: the robot must bring pills
at fixed hours to the person using the presence sensors to locate her, and the
robot must control the temperature in the apartment using temperature sensors
and connected fans to improve the comfort of the person.

Fig. 1. PR2, the companion robot

In this use case, both syntactic and semantic interoperability are required,
among the devices and between the devices and the robot. Syntactic interop-
erability is ensured using OM2M8, an open-source horizontal integration plat-
form implementing the oneM2M9 standard. On top of OM2M, another platform,
SemIoTics, enriches the collected data with semantic descriptions, and makes
them available to the robot through a REST interface. SemIoTics is driven by a
knowledge base capturing knowledge about the devices of the system represented
according to our core-domain IoT ontology, and about the environment shared
by the robot and the devices (here, the apartment). It is a Java software devel-
oped to showcase the role of semantic web technologies in IoT data management,
based on Apache Jena. The robot itself is also a semantically enabled agent, it
uses a ”common sense” ontology and a knowledge base to reason about its 3D
environment, as described in [5]. The knowledge specific to the robot relies on

8 om2m.org
9 http://onem2m.org/



ontologies out of the scope of this paper, but its knowledge base can be extended
with any ontology, including IoT-O (as it is done in this paper).

That is why the knowledge described in this paper is implemented in a ded-
icated knowledge base using IoT-O, ADREAM-Robot10: the ontology is shared
by the robot and SemioTics, and each system has its own knowledge base. The
synchronization between the knowledge bases of the different agents is out of the
scope of this paper. The use case focuses on home automation, but IoT-O and
our approach are generic enough to be adapted to other domains. For instance,
it could be used to support an air quality monitoring system in a smart city,
by describing the sensors that collect the data and the services the citizens can
subscribe to. The usage of IoT-O and its module in the use case is double: it
is used to model the observations about modifications of the apartment, allow-
ing the robot to keep an up-to-date representation of its environment, but also
to model the changes the robot wants to make into the apartment through its
actions and through the connected devices.

3 IoT-O, not just another IoT ontology

The design of IoT-O is compliant with the NeOn methodology, presented in [6].
The first step of the NeOn process is to define requirements. We split them

in two types: conceptual, regarding the concepts that should be present in
the ontology (detailed in section 3.1), and functional, regarding the ontology
structure and design principles (detailed in section 3.2).

These requirements are used to analyze existing IoT ontologies: Semantic
Sensor Network (SSN)11, Smart Appliance REFerence (SAREF)12, iot-ontology
13, IoT-lite 14, Spitfire 15, IoT-S16, SA17 and the oneM2M base ontology18.
These ontologies are IoT ontologies for which we have found information on
the web. Further details are available on the Linked Open Vocabularies for the
IoT (LOV4IoT)19, a recent initiative that lists IoT ontologies, even if they are
not referenced on the LOV because they fail to comply with its requirements re-
called in [2]. Ontologies related to specific domains impacted by IoT (domotics,
agriculture, smart cities...) are out of the scope of this study.

As recommended by NeOn, reusable ontologies that are compliant with parts
of the requirements are integrated in our design process. They are analyzed and
presented in section 3.3. The core-domain ontology we propose is then described
in section 3.4.
10 https://www.irit.fr/recherches/MELODI/ontologies/Adream-Robot
11 http://purl.oclc.org/NET/ssnx/ssn
12 http://sites.google.com/site/smartappliancesproject/ontologies
13 http://ai-group.ds.unipi.gr/kotis/ontologies/IoT-ontology
14 http://iot.ee.surrey.ac.uk/fiware/ontologies/iot-lite
15 http://sensormeasurement.appspot.com/ont/sensor/spitfire.owl
16 http://personal.ee.surrey.ac.uk/Personal/P.Barnaghi/ontology/OWL-IoT-S.owl
17 http://sensormeasurement.appspot.com/ont/sensor/hachem onto.owl
18 http://www.onem2m.org/ontology/Base Ontology/
19 http://www.sensormeasurement.appspot.com/?p=ontologies



3.1 The core concepts of IoT

Conceptual requirements These requirements come from an analysis of the
IoT domain, driven by the home automation use case introduced in section 2, but
not limited to it: the use case is not seen as an end per se, but as an instantiation
of the general domain of the IoT. To be reusable in a wide scope of domains, an
IoT ontology should contain a set of key concepts. These are representative of
IoT systems with no regard to the application domain. This approach facilitates
the merging of data collected in different domains for horizontal applications, and
allows the ontology to be an extendable core-domain ontology. We distinguish
namely:
– ”Device” and ”software agent” constitute the two basic components of

an IoT system, composed of both physical and virtual elements. The devices
can be of two principle types, not mutually exclusive, that are listed below.

– ”Sensor” are devices acquiring data, and ”observation” describe the ac-
quisition context and the data collected by the system. These concepts cap-
ture the perception the system has of the evolutions of its environment.

– ”Actuator” are the devices that enable the system to act on the physical
world, and ”action” represents what they can perform. These concepts
capture the knowledge the system has on its own abilities to impact its
environment, and to make it evolve.

– ”Service”: In many cases, the IoT and the programmable web are very
close. Connected devices can be seen as service providers and consumers,
and by specifying a notion of service, every aspect of an IoT system can be
represented.

– ”Energy”: In the paradigm of pervasive computing, many distributed Things
perform computations. Most of these Things being physical devices, a com-
plete modelling of the system will include a description of their energy con-
sumption. Energy management is a crucial topic in IoT systems.

– ”Lifecycle”: Be it data, devices or services, IoT components are all included
in different scales of lifecycles. Devices are switched on and off, services
are deployed or updated, pieces of data become outdated... The evolution
through a set of discrete states representing a lifecycle is an important con-
cept for IoT systems.

Concept coverage by existing ontologies Table 1 sums up the assessment
of existing IoT ontologies regarding the presence of key concepts. One star means
that the concept is superficially represented (coarse-grained specialization, few
data/object properties), two stars that the requirement is covered, and stars be-
tween parentheses indicate that the requirement is met by an included ontology.
IoT-O, the ontology we propose, is also included for comparison. Note that we
focus on connected device ontologies, and exclude, on purpose, the ontologies
SSN is based on, since they are only focused on sensors and observation, which
is only a subset of the identified key concepts. We can observe that some of the
IoT ontologies cover most of the key concepts but none of them covers them
all. Moreover, the different concepts are not represented with the same level



of expressivity. In iot-ontology and SAREF, key concepts such as Actuator or
Action are present but their representation is limited. For example, an actua-
tor is defined as a device that modifies a property. This is less expressive than
what can be expressed for a sensor with SSN which proposes a deep modeling
of the sensors and the property they observe, but also of the relations between
the sensors and their observations, and of the observations themselves. In eDI-
ANA20, an ontology referenced by SAREF, some specializations of actuator are
given, but the mappings from these specializations to the saref:Actuator concept
are not available directly. This analysis highlights the fact that an ontology for
Actuators and Actions is needed (c.f. section 3.3). This analysis also highlights
the failure of existing IoT ontologies in representing correctly all IoT key con-
cepts. As these concepts are not limited to the IoT domain, reusing ontologies
dedicated to them (such as SSN for sensor) could help gain in expressivity, as is
shown in section 3.2.

Table 1. Key concept coverage in IoT ontologies

Actuator Action Service Sensor Observation Energy Lifecycle Device Software agent

iot-ontology * * ** (**) (**) (*) (**) **

saref * * ** * ** ** **

OWL-IoT-S (**) (**) (**) (*) (**)

SA * * (**) (**) (**) (**) (**)

iot-lite * * (*) (*)

spitfire (*) (*) ** (*)

ssn ** ** * **

oneM2M ** *

IoT-O ** ** (**) (**) (**) (**) (**) (**) *

3.2 Good practices for ontology design

Functional requirements These requirements capture ontology design guide-
lines and general semantic web good practices in a domain-agnostic fashion.

Reusability: One of the most important aspects of an ontology in such a broad
domain as IoT is reusability: if an ontology is ad-hoc to a project, the work done
in its definition will not benefit further projects. It is a critical issue that can be
solved by different, non-mutually exclusive approaches:
– Modularization: as stated in [7], designing ontologies in separated modules

makes them easier to reuse and/or extend. IoT applications are related to
many various domains, and it is difficult to capture all these application
domains in the same ontology. Modular ontologies can be combined together
according to specific needs, which is a more scalable approach.

– Ontology Design Patterns: were introduced in [8]. Designing ontologies
that respect Ontology Design Pattern (ODP) increases reusability and their
potential for alignment, as shown in [9]. ODPs capture modelling efforts:

20 https://sites.google.com/site/smartappliancesproject/ontologies/ediana-ontology



using them is a way to capitalize on previous work, and to take advantage
of the maturity of the semantic web compared to the IoT.

– Reuse of existing sources: avoids redefinition, and prevents from having
to align a posteriori the redefined concepts to the existing sources for inter-
operability. It is a key requirement for interoperability, which is a real issue
in heterogeneous systems.

– Alignment to upper ontologies: Upper-level ontologies define very ab-
stract concepts in a horizontal manner. They articulate very diverse domain-
specific ontologies, which is crucial for broad domains like IoT.

– Compliance with the LOV requirements: The LOV21 is an online vo-
cabulary register that increases visibility of vocabularies, and favours reuse
by ensuring the respect of good practices listed in [2].

Level of formalism: To use the full advantages of the semantic description of
devices and data, the description should enable reasoning and inference. This
choice is motivated by the possibilities it opens:
– Applied to data, it is a way to bring context-awareness, as presented in [10]
– Applied to devices, it enables Thing discovery or self-configuration [11]
– Applied to services it enables automatic composition as in [12]

However, for concrete applications, the model should also by decidable, and
in reasonable time, which de facto excludes an OWL-full model: OWL-DL is
therefore the best choice. All surveyed ontologies are expressed in OWL-DL.

Table 2. Reusability of IoT ontologies

Structured
by ODP

Modular
Reuses external

ontologies
Aligned with

upper ontologies
One the LOV Available online

iot-ontology * ** N Y

saref ** * Y Y

OWL-IoT-S (*) * ** * N Y

SA (*) * ** ** N N

iot-lite N Y

spitfire * ** Y N

ssn ** ** * ** Y Y

oneM2M N Y

IoT-O (**) ** ** ** Y Y

Assessment of existing IoT ontologies Table 2 shows that the semantic
web best practices for reusability are not always followed: some ontologies are
not available online, and the majority is not compliant with the requirements
of the LOV. External ontologies are generally not reused, with the exception of
SSN. OWL-S, a service ontology is reused in only one case. The other surveyed
ontologies propose redefinitions of the service concept. For example, SAREF
redefines the concepts present in multiple ontologies, and proposes alignments in
an external, textual document. Design patterns have only been used in ontologies

21 http://lov.okfn.org



importing SSN. Upper ontologies used are DUL22 (especially used by SSN) and
SWEET23 (for SA). The limited reuse of ontologies shows a lack of federating
ontologies, apart from SSN. SSN being a modular ontology compliant with the
semantic web good practices, it is possible to say that these guidelines favour
reuse. Section 3.3 focuses on such good practices.

3.3 Reused ontologies for IoT-O

Identification of existing ontologies is included in the NeOn process. Some con-
cepts, which are part of the conceptual requirements are defined by existing
ontologies that are imported in IoT-O to avoid redefinition. SSN is a widely
used W3C recommended ontology for sensors and observations. To define the
notion of service, IoT-O imports Minimal Service Model (MSM), a lightweight
service ontology which is generic enough to represent both REST and WSDL
services (contrary to OWL-S24). The notion of energy consumption dedicated
to the IoT is specified in PowerOnt, an ontology referenced by SAREF. The
concepts of lifecycle are described using Lifecycle25, a lightweight vocabulary
defining state machines. We extended Lifecycle in the IoT-lifecycle26 ontology
with classes and properties specific to the IoT. Finally, to maximize extensibil-
ity and reusability, IoT-O imports DUL27, a top-level ontology, and aligns all its
concepts and imported modules with it.

Focus on SAN: However, no ontology describes the concept of actuator the
way SSN describes the concept of sensor. This is why we propose the Seman-
tic Actuator Network (SAN)28 ontology. Actuators are devices that transform
an input signal into a physical output, making them the exact opposite of sen-
sors. SAN is built around Action-Actuator-Effect (AAE)29, a design pattern we
propose, inspired from the Stimulus Sensor Observation (SSO) design pattern
described in [13]. Fig. 2 shows a representation of both the AAE and the SSO
design patterns. SSN models the state of the world through stimuli converted by
sensors into abstract observations, making the system able to be aware of the
evolution of its environment. SAN is complementary: it models the transforma-
tion of abstract actuations by actuators into real-world effects, leading to the
representation of the evolution the system brings into its environment. Further
details of the main classes of SAN are provided in section 4.4.

3.4 IoT-O, a modular core-domain IoT ontology

IoT-O, the core-ontology we propose is composed of several modules. IoT-O’s
architecture is summarized in figure 3. The names of the newly created resources

22 http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
23 http://sweet.jpl.nasa.gov/
24 https://www.w3.org/Submission/OWL-S/, more dedicated to WSDL-based services
25 http://vocab.org/lifecycle/schema
26 https://www.irit.fr/recherches/MELODI/ontologies/IoT-Lifecycle
27 http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
28 https://www.irit.fr/recherches/MELODI/ontologies/SAN
29 http://ontologydesignpatterns.org/wiki/Submissions:Actuation-Actuator-Effect



Fig. 2. The SSO and the AAE design patterns, structruring respectively SSN and SAN

are in red and highlighted, the names of the reengineered resources are under-
lined, and the arrows show dependencies. Solid arrows represent imports, and
dashed arrows the reuse of concepts without import.

The modules of IoT-O:
– The Sensing module describes the input data. Its main classes come from

SSN: ssn:Sensor and ssn:Observation. ssn:Device and its characteristics (ssn:-
OperatingRange, ssn:Deployment...) provide a generic device description.

– The Acting module describes how the system can interact with the physical
world. Its main classes come from SAN: san:Actuator and san:Actuation. It
also reuses SSN classes that are not specific to sensing, such as ssn:Device.

– The Lifecycle module models state machines to specify system life cycles
and device usage. Its main classes are lifecycle:State and lifecycle:Transition.

– The Service module represents web service interfaces. Its main classes
come from MSM: msm:Service and msm:Operation. Services produce and
consume msm:Messages, and RESTful services can be described with hRest.

– Energy module: IoT-O’s energy module is defined by PowerOnt. It pro-
vides the poweront:PowerConsumption class, and a set of properties to ex-
press power consumption profiles for appliances.

The core of IoT-O: IoT-O30 is both the name of the ontology and of the top
module. It gives a conceptualization of the IoT domain, independent of the appli-
cation, providing classes and relationships to link the underlying modules. Since
many concepts are already defined in the modules, IoT-O’s core is limited: it de-
fines 14 classes (out of 1126 including all modules), 18 object properties (out of
249) and 4 data properties (out of 78). IoT-O key class is iot-o:IoT Thing, which

30 http://www.irit.fr/recherches/MELODI/ontologies/IoT-O.owl



Fig. 3. Overview of IoT-O’s architecture

can be either an ssn:Device or an iot-o:SoftwareAgent. The power consumption
of ssn:Devices is associated to lifecycle:State and poweront:PowerConsumption.
iot-o:IoT Thing is a provider of msm:Service, and an msm:Operation can have
an iot-o:ImpactOnProperty on an ssn:Property, linking abstract services to the
physical world through devices.

As a core domain ontology, IoT-O is meant to be extended regarding specific
applicative needs and real-life devices and services. This design, inspired by SSN,
makes IoT-O independent of the application.

4 SemIoTics and the robot: using IoT-O for semantic
interoperability

4.1 Implementation of the MAPE-K loop by the robot and
SemIoTics

[14] describes the concept of autonomic computing, or the control of an entity by
an agent thanks to high-level policies and introspective knowledge: the control-
ling agent and the controlled entity form an autonomic system. The MAPE-K
loop is a classic control structure in autonomic computing (see fig. 4), separated
in four steps : Monitoring, Analysis, Planning and Execution. The K stands for
Knowledge, because the behaviour of the autonomic agent at each step of the



loop is guided by a knowledge base, in the general meaning of the term (including
but not restricted to the W3C’s formalisms of knowledge representation).

In this use case, SemIoTics is performing the Monitoring and the Execution
steps when connected devices are involved, and the robot performs the Analysis
and the Planning, as well as part of the Monitoring and Execution steps. The
robot and SemIoTics have distinct knowledge bases, even if in fig. 4, a unique
knowledge base is represented as the two systems exchange knowledge freely
through a rest interface. Consistence issues are not considered in this work, as
only one smart agent interacts with the system.

Fig. 4. A representation of the MAPE-K loop, split between the robot and SemIoTics

The process described in figure 4 structures the use case: data is first gath-
ered by the sensors, and enriched by SemIoTics. The enriched observations are
processed by the robot, which decides to perform actions represented as enriched
actuations. These actuations are sent to SemIoTics, which translates them into
raw commands for the actuators to perform. In complement to IoT-O, the do-
gont31 ontology is used to describe the apartment and the location of devices
inside it. Dogont is an ontology identified in the SAREF project, and it is im-
ported by Poweront. We aligned it to IoT-O to integrate it to the use case.

4.2 Monitoring, where raw sensor data become meaningful
observations

The first step of the MAPE-K loop is the monitoring of the controlled system.
In the apartment, sensors produce data reflecting their observations. This data
is enriched to become a reusable piece of knowledge. Enrichment of sensor data
is performed using the SSN ontology, which is in the Sensing module of IoT-O.
Each ssn:Sensor has an ssn:Observation stream composed of ssn:SensorOutput
whose value is described by ssn:ObservationValue. For provenance purposes, a

31 http://elite.polito.it/ontologies/dogont/dogont.html



ssn:SensorOutput can be linked to its original representation (before enrichment)
with the iot-o:hasRawRepresentation data property. The sensor’s characteristics
(ssn:MeasurementProperty, the ssn:Property of the ssn:FeatureOfInterest it ob-
serves) are used to enrich the observation as well. IoT-O and SSN are generic
ontologies, so they might need to be extended with application-specific mod-
ules to be fully functional. Such extension is proposed in the Adream-Robot
module32. The ssn:Observation allow the representation of a characteristic of
the environment at a given point in time.The temporality of the sensor mea-
sures (and of actuators actions) are represented by a san:hasDateTime rela-
tions with a http://w3c.org/2006/time#Instant, itself characterized by an iot-
o:hasTimestamp data property. All the observations related to the same point
in time are connected to the same individual, allowing the agent to have a timed
representation of its environment and of its evolution.

In our use case, presence sensors and a temperature sensors produce raw ob-
servations in the form of XML documents standardized according to the oneM2M
Content Instance resource type. The enrichment process requires an approach
specific to the data, either by writing a dedicated enrichment script, or by using
semantic annotations in the data as in [15], where raw data is stored in relational
databases and the database schema is annotated for enrichment. SemioTics uses
a dedicated enrichment script that could in the future be extended by producing
annotated data.

The presence observation indicates the position of the person in the apart-
ment, and the temperature observation measures the temperature at a given
point in space and time, both in the form of ssn:ObservationValue instances.
This enriched information is accessed by the robot through SemIoTics’ REST
interface, and it is used to update the robot’s representation of the world. This
representation of the world is stored in the robots knowledge base, and used as
a context in the Analysis step.

4.3 Analysis: aggregation of observations in abstract symptoms

In the Analysis step, the robot processes his own representation of the world to
determine high-level symptoms that need to be addressed by actions.

In the medication scenario, the robot compares the present time to the time
when the medication is due to generate the symptom ”Medication must be de-
livered” if necessary.

In the temperature control scenario, user preferences are represented using
the concepts defined in yet another module: Autonomic33. ssn:Property of the
environment controlled by the robot within explicit boundaries expressed in the
form of autonomic:PropertyConstraints are classified as autonomic:Constrained-
Property. In our use case, the ssn:Property temperature of the ssn:FeatureOf-
Interest living room air has two constraints, instances of autonomic:Maximum-
Value (25oC) and autonomic:MinimumValue (19oC). The last ssn:Observation-
Value of the autonomic:ConstrainedProperty is out of the bounds defined by the

32 https://www.irit.fr/recherches/MELODI/ontologies/Adream-Robot
33 http://www.irit.fr/recherches/MELODI/ontologies/Autonomic



autonomic:PropertyConstraint (26oC instead of 25), so the temperature is clas-
sified by the reasoner as an autonomic:OutOfBoundsProperty thanks to custom
rules.

4.4 Planning, where symptoms are used to create a plan

In the planing phase, the autonomic agent uses the inferred symptoms and poli-
cies defined by the user or by the administrator beforehand to define a series of
actions that have to be implemented on the system.

In the medication scenario, the robot uses its representation of its environ-
ment to locate the person, as it is kept updated in the monitoring phase thanks
to the knowledge produced by the sensors and SemioTics. The robot will plan
a trajectory to fetch the medication and to reach the person. In this case, the
representation of the trajectory itself is ad-hoc to the robot, and isn’t linked
to IoT-O. The ontology is used to connect the robots internal representation of
the world with the observations collected by the sensors and enriched by SemI-
oTics, providing semantic interoperability between the robot and SemIoTics. If
the robot expresses its needs using the same ontology as SemIoTics, or if their
ontologies are aligned, it can seamlessly use elements measured by the sensors
to plan its trajectory.

In the temperature control scenario, the description of the actions is per-
formed using SAN, the actuator ontology that also describes the actuators in the
system. The agent, with successive queries to the knowledge base, will look for
san:Actuator instances that san:actsOn the autonomic:OutOfBoundsProperty,
and which autonomic:ImpactOnProperty is coherent with the symptom. In the
example, since the temperature is too high, the adream-model:fan can be used,
but also the adream-model:spaceHeater, since its adream-model:turnOff oper-
ation has a adream-model:NegativeImpact on the temperature. The orchestra-
tion of these actions (if need be) are determined using the Lifecycle module of
IoT-O, which represents the devices as state machines by integrating the Ob-
jects with States (ows)34 ontology design pattern. ssn:Device (superclass of both
ssn:SensingDevice and san:ActuatingDevice) are objects that ows:hasState ex-
actly 1 ows:State, because objects should only be in one state at a time. The
ows:State is equivalent to the lifecycle:State (from the Lifecycle35 vocabulary,
extended by the IoT-Lifecycle36 ontology), and lifecycle:State are connected by
lifecycle:Transition instances. Thanks to this vision of state machines, state-
ful transitions (that are only available in certain states of the device) can be
represented. Only msm:Operation instances that iot-o:isGroundedBy a san:-
Actuation that iot-lifecycle:triggersTransition a lifecycle:Transition that is a life-
cycle:possibleTransition of the device current lifecycle:State can be called at a
given time. For instance, the fan adream-model:turnOff operation will only be
available if the space heater is on. In our example it is off, so the agent plans

34 http://delicias.dia.fi.upm.es/ontologies/ObjectWithStates.owl
35 http://vocab.org/lifecycle/schema
36 http://www.irit.fr/recherches/MELODI/ontologies/IoT-Lifecycle



to turn on the fan and creates the corresponding san:ActuationValue. The se-
lection of devices and their operations is driven by necessity (only the devices
impacting the right property are selected), but it can also be driven by policies
based on knowledge about the devices intrinsic characteristics expressed with
san:ActuatingCapability, composed of san:ActuatingProperty that create an ac-
tuator profile. It can be used to minimize energy consumption (combined with
the Energy module), to optimize reaction time...

4.5 Execution, where the plan is converted into actions

In the execution step, the robot implements the planned actions.
For the medication scenario, the robot fetches the medication and brings

it directly to the person, it doesn’t have to search for her in the apartment.
The MAPE-K loop can be repeated while the robot is moving to update the
trajectory if the person moves in the house.

For the temperature control scenario, the robot transmits the san:Actuation-
Value that it wants the system to implement to SemIoTics via a REST interface.
SemIoTics will handle the transformation of the knowledge into a representa-
tion that can be processed by the target device. This translation can be driven
by the semantic description of msm:Operations, or dedicated annotations as in
[16], where XML schemas are annotated for transformation from RDF to XML.
SemIoTics uses the semantic description of operations to perform lowering, and
perspectives for this technique are presented in section 5. This translation en-
ables the interaction with low-level, constrained devices that are not able to
process complex knowledge representations.

5 Conclusion and future works

This paper introduces IoT-O, a modular core-domain IoT ontology designed to
be compliant with identified requirements. After a detailed presentation of its
modules, an instantiation of IoT-O is presented in a home automation use case.
IoT-O is used to bring semantic interoperability between SemioTics, a platform
enabling semantic access to connected devices, and a robot. SemIoTics and the
robot implements the MAPE-K loop, an autonomic computing pattern, and
uses IoT-O at each step of the loop to describe knowledge about the connected
devices and about the data they produce and consume. The ontology describes
the evolving state of the robot’s environment through sensor observations, and
the capabilities the system offers to impact this environment through the devices.

In this paper, enrichment and lowering techniques (allowing the transfor-
mation back and forth from data to knowledge) have been overviewed. Such
techniques are essential to include constrained devices into the IoT: enriched
data is more reusable than raw data, but it is heavier to exchange and process,
so transformation is required between the end devices (sensors, actuators) and
the more powerful nodes of the IoT, e.g. gateways, servers and laptops. We are
currently working on such an approach. Other perspectives of our work will be
to manage data flows over time in order to learn from previous decisions and



their consequences to produce explicit knowledge and enrich policies, and syn-
chronization of the distributed knowledge bases of the smart agents: compared
to the use case, multiple agents should be able to exchange knowledge about
their environment and to maintain coherence between their representations of
the world.
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