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DEFINITIONS AND STATEMENT

This note deals with some properties of the classical Nevanlinna class consisting of the holomorphic functions in the unit disk D for which log + |f | has a positive harmonic majorant. We denote by Har + (D) the set of non-negative harmonic functions in D. Equivalently,

N = f ∈ Hol(D) : lim r→1 1 2π 2π 0 log + |f (re iθ )| dθ < ∞ .
Definition. A discrete sequence of points Λ in D is called interpolating for N (denoted Λ ∈ Int N ) if the trace space N|Λ is ideal, or equivalently, if for every v ∈ ℓ ∞ there exists f ∈ N such that f (λ n ) = v n , n ∈ N.

Interpolating sequences for the Nevanlinna class were first investigated by Naftalevitch [START_REF] Naftalevič | On interpolation by functions of bounded characteristic (Russian), Vilniaus Valst[END_REF]. A rather complete study was carried out much later in [START_REF] Hartmann | Interpolation in the Nevanlinna and Smirnov classes and harmonic majorants[END_REF]. Let Other properties and characterizations of Nevanlinna interpolating sequences have been given recently in [START_REF] Hartmann | Finitely generated Ideals in the Nevanlinna class[END_REF]. In these terms Λ ∈ Int N when for every sequence ω(Λ) ∈ N (Λ) there exists f ∈ N such that f (λ) = ω(λ), λ ∈ Λ. In terms of the restriction operator

R Λ : N -→ N (Λ) f → {f (λ)} λ∈Λ ,
Λ is interpolating when R Λ (N ) = N (Λ).

Definition 1.1. Let Λ be a discrete sequence in D and ω a function given on Λ. The pseudohyperbolic divided differences of ω are defined by induction as follows

∆ 0 ω(λ 1 ) = ω(λ 1 ) , ∆ j ω(λ 1 , . . . , λ j+1 ) = ∆ j-1 ω(λ 2 , . . . , λ j+1 ) -∆ j-1 ω(λ 1 , . . . , λ j ) b λ 1 (λ j+1 ) j ≥ 1.
For any n ∈ N, denote

Λ n = {(λ 1 , . . . , λ n ) ∈ Λ× n ⌣ • • • ×Λ : λ j = λ k if j = k},
and consider the set X n-1 (Λ) consisting of the functions defined in Λ with divided differences of order n -1 uniformly controlled by a positive harmonic function H i.e., such that for some

H ∈ Har + (D), sup (λ 1 ,...,λn)∈Λ n |∆ n-1 ω(λ 1 , . . . , λ n )|e -[H(λ 1 )+•••+H(λn)] < +∞ . Lemma 1.2. Let n ∈ N. For any sequence Λ ⊂ D, we have X n (Λ) ⊂ X n-1 (Λ) ⊂ • • • ⊂ X 0 (Λ) = N (Λ).
Proof. Assume that ω(Λ) ∈ X n (Λ), that is,

sup (λ 1 ,...,λ n+1 )∈Λ n+1 ∆ n-1 ω(λ 2 , . . . , λ n+1 ) -∆ n-1 ω(λ 1 , . . . , λ n ) b λ 1 (λ n+1 ) e -[H(λ 1 )+•••+H(λ n+1 )] < ∞ .
Then, given (λ 1 , . . . , λ n ) ∈ Λ n and taking λ 0 1 , . . . , λ 0 n from a finite set (for instance the n first λ 0 j ∈ Λ different of all λ j ) we have

∆ n-1 ω(λ 1 , . . . , λ n ) = ∆ n-1 ω(λ 1 , . . . , λ n ) -∆ n-1 ω(λ 0 1 , λ 1 , . . . , λ n-1 ) b λ 0 1 (λ n ) b λ 0 1 (λ n )+ + ∆ n-1 ω(λ 0 1 , λ 1 , . . . , λ n-1 ) -∆ n-1 ω(λ 0 2 , λ 0 1 , . . . , λ n-2 ) b λ 0 2 (λ n-1 ) b λ 0 2 (λ n-1 ) + • • • + ∆ n-1 ω(λ 0 n-1 , . . . , λ 0 1 , λ 1 ) -∆ n-1 ω(λ 0 n , . . . , λ 0 1 ) b λ 0 n (λ 1 ) b λ 0 n (λ 1 ) + ∆ n-1 ω(λ 0 n , . . . , λ 0 1 )
Since ω ∈ X n-1 (Λ) there exists H ∈ Har + (D) and a constant K(λ 0 1 , . . . , λ 0 n ) such that λn) , and the statement follows.

∆ n-1 ω(λ 1 , . . . , λ n ) ≤ e H(λ 0 1 )+H(λ 1 )•••+H(λn) ρ(λ 0 1 , λ n ) + e H(λ 0 1 )+H(λ 0 2 )•••+H(λ n-1 ) ρ(λ 0 2 , λ n-1 )+ + • • • + e H(λ 0 1 )+•••+H(λ 0 n )+H(λ 1 ) ρ(λ 0 n , λ 1 ) + ∆ n-1 ω(λ 0 n , . . . , λ 0 1 ) ≤ K(λ 0 1 , . . . , λ 0 n ) e H(λ 1 )+•••+H(
The main result of this note is modelled after Vasyunin's description of the sequences Λ in D such that the trace of the algebra of bounded holomorphic functions H ∞ on Λ equals the space of pseudohyperbolic divided differences of order n (see [START_REF] Vasyunin | Traces of bounded analytic functions on finite unions of Carleson sets (Russian). Investigations on linear operators and the theory of functions[END_REF], [START_REF] Vasyunin | Characterization of finite unions of Carleson sets in terms of solvability of interpolation problems (Russian). Investigations on linear operators and the theory of functions[END_REF]). Similar results hold also for Hardy spaces (see [START_REF] Bruna | A note on interpolation in the Hardy spaces of the unit disc[END_REF] and [START_REF] Hartmann | Une approche de l'interpolation libre gnralise par la thorie des oprateurs et caractrisation des traces H p |Λ. (French) [An approach to generalized free interpolation using operator theory and characterization of the traces H p |Λ[END_REF]) and the Hörmander algebras, both in C and in D [START_REF] Massaneda | Traces of Hörmander algebras on discrete sequences[END_REF]. The analogue in our context is the following.

Main Theorem. The identity N |Λ = X n-1 (Λ) holds if and only if Λ is the union of n interpolating sequences for N .

GENERAL PROPERTIES

Throughout the proofs we will use repeatedly the well-known Harnack inequalities: for H ∈ Har + (D) and z, w ∈ D,

1 -ρ(z, w) 1 + ρ(z, w) ≤ H(z) H(w) ≤ 1 + ρ(z, w) 1 -ρ(z, w) .
We shall always assume, without loss of generality, that H ∈ Har + (D) is big enough so that for z ∈ D(λ, e -H(λ) ) the inequalities 1/2 ≤ H(z)/H(λ) ≤ 2 hold. Actually it is sufficient to assume inf{H(z) : z ∈ D} ≥ log 3.

We begin by showing that one of the inclusions of the Main Theorem is inmediate.

Proposition 2.1. For all n ∈ N, the inclusion N |Λ ⊂ X n-1 (Λ) holds.

Proof. Let f ∈ N . Let us show by induction on j ≥ 1 that there exists H ∈ Har + (D) such that

|∆ j-1 f (z 1 , . . . , z j )| ≤ e H(z 1 )+•••+H(z j )
for all (z 1 , . . . , z j ) ∈ D j .

As f ∈ N , there exists

H ∈ Har + (D) such that |∆ 0 f (z 1 )| = |f (z 1 )| ≤ e H(z 1 ) , z 1 ∈ D.
Assume that the property is true for j and let (z 1 , . . . , z j+1 ) ∈ D j+1 . Fix z 1 , . . . , z j and consider z j+1 as the variable in the function

∆ j f (z 1 , . . . , z j+1 ) = ∆ j-1 f (z 2 , . . . , z j+1 ) -∆ j-1 f (z 1 , . . . , z j ) b z 1 (z j+1 ) .
By the induction hypothesis, there exists H ∈ Har + (D) such that

|∆ j f (z 1 , . . . , z j+1 )| ≤ 1 ρ(z 1 , z j+1 ) e H(z 2 )+•••+H(z j+1 ) + e H(z 1 )+•••+H(z j ) . If ρ(z 1 , z j+1 ) ≥ 1/2 we get directly |∆ j f (z 1 , . . . , z j+1 )| ≤ 4e H(z 1 )+•••+H(z j+1 ) ,
and choosing for instance H = H + log 4 we get the desired estimate.

If ρ(z 1 , z j+1 ) ≤ 1/2 we apply the maximum principle and Harnack's inequalities

|∆ j f (z 1 , . . . , z j+1 )| ≤ sup ξ:ρ(ξ,z j+1 )=1/2 |∆ j f (z 1 , . . . , z j , ξ j+1 )| ≤ sup ξ:ρ(ξ,z j+1 )=1/2 4e H(z 1 )+•••+H(z j )+H(ξ) ≤ 4e 2[H(z 1 )+•••+H(z j )+H(z j+1 )] .
Choosing here H = 2H + log 4 we get the desired estimate.

Definition 2.2. A sequence Λ is weakly separated if there exists H ∈ Har + (D) such that the disks D(λ, e -H(λ) ), λ ∈ Λ, are pairwise disjoint. Remark 2.3. If Λ is weakly separated then X 0 (Λ) = X n (Λ), for all n ∈ N.
By Lemma 1.2, to see this it is enough to prove (by induction) that X 0 (Λ) ⊂ X n (Λ) for all n ∈ N.

For n = 0 this is trivial. Assume now that X 0 (Λ) ⊂ X n-1 (Λ) and take ω(Λ) ∈ X 0 (Λ). Since ρ(λ 1 , λ n+1 ) ≥ e -H 0 (λ 1 ) for some H 0 ∈ Har + (D) we have

|∆ n ω(λ 1 , . . . , λ n+1 )| = ∆ n-1 ω(λ 2 , . . . , λ n+1 ) -∆ n-1 ω(λ 1 , . . . , λ n ) b λ 1 (λ n+1 ) ≤ e H 0 (λ 1 ) e H(λ 2 )+•••+H(λ n+1 ) + e H(λ 1 )+•••+H(λn)
for some H ∈ Har + (D). Taking H = H + H 0 we are done. 

sup λ∈Λ #[Λ ∩ D(λ, e -H(λ) )] ≤ n . (c) X n-1 (Λ) = X n (Λ).
Proof. (a) ⇒(b). This is clear, by the weak separation. (b) ⇒(a). We proceed by induction on j = 1, . . . , n. For j = 1, it is again clear by the definition of weak separation. Assume the property true for j -1.

Let H ∈ Har + (D) , inf{H(z) : z ∈ D} ≥ log 3, be such that sup λ∈Λ #[Λ∩D(λ, e -H(λ) )] ≤ j. We split the sequence Λ = Λ a ∪Λ b where Λ a = {λ∈Λ:#(Λ∩D(λ,e -10H(λ) ))=j} (Λ ∩ D(λ, e -10H(λ) )) Λ b = Λ \ Λ a
Now, for every λ ∈ Λ b , we have #(Λ∩D(λ, e -10H(λ) )) ≤ j -1, and by the induction hypothesis, Λ b splits into j -1 separated sequences Λ 1 , . . . , Λ j-1 .

In the case λ ∈ Λ a , there is obviously no point in the annulus D(λ, e -H(λ) ) \ D(λ, e -10H(λ) ) which means that the j points in D(λ, e -10H(λ) )) are far from the other points of Λ. So we can add each one of these j points in a weakly separated way to one of the sequences Λ 1 , . . . , Λ j-1 , and the j-th point in a new sequence Λ j (which is of course weakly separated since the groups Λ ∩ D(λ, e -10H(λ) ) appearing in Λ a are weakly separated).

(b)⇒(c). It remains to see that X n-1 (Λ) ⊂ X n (Λ). Given ω(Λ) ∈ X n-1 (Λ) and points (λ 1 , . . . , λ n+1 ) ∈ Λ n+1 , we have to estimate ∆ n ω(λ 1 , . . . , λ n+1 ). Under the assumption (b), at least one of these n + 1 points is not in the disk D(λ 1 , e -H(λ 1 ) ). Note that Λ n is invariant by permutation of the n + 1 points, thus we may assume that ρ(λ 1 , λ n+1 ) ≥ e -H(λ 1 ) . Using the fact that ω(Λ) ∈ X n-1 (Λ), there exists H 0 ∈ Har + (D) such that

|∆ n ω(λ 1 , . . . , λ n+1 )| ≤ |∆ n-1 ω(λ 2 , . . . , λ n+1 )| + |∆ n-1 ω(λ 1 , . . . , λ n )| ρ(λ 1 , λ n+1 ) ≤ e H(λ 1 ) e H 0 (λ 2 )+•••+H 0 (λ n+1 ) + e H 0 (λ 1 )+•••+H 0 (λn) ≤ 2e H(λ 1 ) e H 0 (λ 1 )+•••+H 0 (λ n+1 ) .
Taking H = H 0 + H + log 2 we get the desired estimate. (c)⇒(b). We prove this by contraposition. Assume that for all H ∈ Har + (D) there exists λ ∈ Λ such that

#[Λ ∩ D(λ, e -H(λ) )] > n . (2) 
Consider the partition of D into the dyadic squares

Q k,j = z = re iθ ∈ D : 1 -2 -k ≤ r < 1 -2 -k-1 , j 2π k ≤ θ < (j + 1) 2π k ,
where k ≥ 0 and j = 0, . . .

2 k -1. Let Λ k,j = Λ ∩ Q k,j and r k,j = inf{r > 0 : ∃λ ∈ Λ k,j : #(Λ ∩ D(λ, r)) ≥ n + 1}. Take α k,j ∈ Λ k,j such that #(Λ ∩ D(α k,j , r k,j )) ≥ n + 1. Claim: For all H ∈ Har + (D), inf k,j r k,j e -H(α k,j ) = 0 .
To see this assume otherwise that there exist H ∈ Har + (D) and η > 0 with r k,j e -H(α k,j ) ≥ η .

In particular, by Harnack's inequalities,

(3) log 1 r k,j ≤ 3H(z) + log( 1 η ), z ∈ Q k,j .
Let H := log(2/η) + 4H ∈ Har + (D). By the hypothesis (2) there exist k 0 ≥ 0, j 0 ∈ {0, . . . ,

2 k 0 -1}, λ k 0 ,j 0 ∈ Λ k 0 ,j 0 such that # Λ ∩ D(λ k 0 ,j 0 , e -H(λ k 0 ,j 0 ) ) ≥ n + 1 .
In particular, by definition of r k,j , we have r k 0 ,j 0 ≤ e -H(λ k 0 ,j 0 ) , that is

log 1 r k 0 ,j 0 ≥ H(λ k 0 ,j 0 ) = log( 2 η ) + 4H(λ k 0 ,j 0 ),
which contradicts (3). Now take a separated sequence L ⊂ {α k,j } k,j for which the disks D(α, r α ), α ∈ L, are disjoint, where for α = α k,j ∈ L we denote r α = r k,j . Given α ∈ L, let λ α 1 , . . . , λ α n be its n nearest (not necessarily unique) points, arranged by increasing distance. Notice that ρ(α, λ α n ) = r α .

In order to construct a sequence ω(Λ)

∈ X n-1 (Λ) \ X n (Λ), put    ω(α) = n-1 j=1 b α (λ α j ), for all α ∈ L ω(λ) = 0 if λ ∈ Λ \ L.
To see that ω(Λ) ∈ X n-1 (Λ) let us estimate ∆ n-1 ω(λ 1 , . . . , λ n ) for any given (λ 1 , . . . , λ n ) ∈ Λ n . By the separation conditions on L, we know that none of the λ α j is in L. Hence, we may assume that at most one of the points is in L. On the other hand, it is clear that ∆ n-1 ω(λ 1 , . . . , λ n ) = 0 if all the points are in Λ \ L. Thus, taking into account that ∆ n-1 is invariant by permutations, we will only consider the case where λ n is some α ∈ L and λ 1 , . . . , λ n-1 are in Λ \ L. In that case,

|∆ n-1 ω(λ 1 , . . . , λ n-1 , α)| = |ω(α)| n-1 j=1 ρ(α, λ j ) -1 = n-1 j=1 ρ(α, λ α j ) ρ(α, λ j ) ≤ 1,
as desired.

On the other hand, a similar computation yields

|∆ n ω(λ α 1 , . . . , λ α n , α)| = |ω(α)| n j=1 ρ(α, λ α j ) -1 = ρ(α, λ α n ) -1 = r -1 α .
The Claim above prevents the existence of H ∈ Har + (D) such that

r -1 α = |∆ n ω(λ α 1 , . . . , λ α n , α)|e -(H(λ α 1 )+•••+H(λ α n )+H(α))
≤ C , since otherwise, again by Harnack's inequalities, we would have

r -1 α ≤ e 3(n+1)H(α) , α ∈ L .
It is clear from the characterization (1) of interpolating sequences for N that such sequences must be weakly separated. The previous result gives another way of showing it.

Corollary 2.5. If Λ is an interpolating sequence, then it is weakly separated.

Proof. If Λ is an interpolating sequence, then N |Λ = X 0 (Λ). On the other hand, by Proposition 2.1, N |Λ ⊂ X 1 (Λ). Thus X 0 (Λ) = X 1 (Λ). We conclude by the preceding lemma applied to the particular case n = 1.

The covering provided by the following result will be useful.

Lemma 2.6. Let Λ 1 , . . . , Λ n be weakly separated sequences. There exist

H ∈ Har + (D), positive constants α, β, a subsequence L ⊂ Λ 1 ∪ • • • ∪ Λ n and disks D λ = D(λ, r λ ), λ ∈ L, such that (i) Λ 1 ∪ • • • ∪ Λ n ⊂ ∪ λ∈L D λ , (ii) e -βH(λ) ≤ r λ ≤ e -αH(λ) for all λ ∈ L, (iii) ρ(D λ , D λ ′ ) ≥ e -βH(λ) for all λ, λ ′ ∈ L, λ = λ ′ .
(iv) #(Λ j ∩ D λ ) ≤ 1 for all j = 1, . . . , n and λ ∈ L.

Proof. Let H ∈ Har + (D) be such that

(4) ρ(λ, λ ′ ) ≥ e -H(λ) , ∀λ, λ ′ ∈ Λ j , λ = λ ′ , ∀j = 1, . . . , n .
We will proceed by induction on k = 1, . . . , n to show the existence of a subsequence

L k ⊂ Λ 1 ∪ • • • ∪ Λ k such that: (i) k Λ 1 ∪ • • • ∪ Λ k ⊂ ∪ λ∈L k D(λ, R k λ ), (ii) k e -β k H(λ) ≤ R k λ ≤ e -α k H(λ) , (iii) k ρ(D(λ, R k λ ), D(λ ′ , R k λ ′ )) ≥ e -β k H(λ) for any λ, λ ′ ∈ L k , λ = λ ′ . Then it suffices to chose L = L n , α = α n , β = β n , r λ = R n λ .
The weak separation and the fact that r λ < e -H(λ) /3 implies that #Λ j ∩ D(λ, r λ ) ≤ 1, j = 1, . . . , k, hence the lemma follows.

For k = 1, the property is clearly verified with L 1 = Λ 1 and R 1 λ = e -CH(λ) , with C big enough so that (iii) 1 holds (C = 3, for instance). Properties (i) 1 , (ii) 1 follow immediately.

Assume the property true for k and split

L k = M 1 ∪ M 2 and Λ k+1 = N 1 ∪ N 2 ,
where

M 1 = {λ ∈ L k : D(λ, R k λ + 1/4 e -β k H(λ) ) ∩ Λ k+1 = ∅}, N 1 = Λ k+1 ∩ λ∈L k D(λ, R k λ + 1/4 e -β k H(λ) ), M 2 = L k \ M 1 , N 2 = Λ k+1 \ N 1 .
Now, we put L k+1 = L k ∪ N 2 and define the radii R k+1 λ as follows:

R k+1 λ =      R k λ + 1/4 e -β k H(λ) if λ ∈ M 1 , R k λ if λ ∈ M 2 , 1/8 e -β k H(λ) if λ ∈ N 2 .
It is clear that (i) k+1 holds:

Λ 1 ∪ • • • ∪ Λ k+1 ⊂ λ∈L k+1 D(λ, R k+1 λ ) .
Also, by the induction hypothesis,

1 8 e -β k H(λ) ≤ R k+1 λ ≤ e -α k H(λ) + 1 4 e -β k H(λ) .
Thus, to see (ii) k+1 there is enough to choose α k+1 , β k+1 such that

e -α k H(λ) + 1/4 e -β k H(λ) ≤ e -α k+1 H(λ) ,
for instance α k+1 = α k -1, and

(5)

1/8 e -β k H(λ) ≥ e -β k+1 H(λ) , that is β k+1 H(λ) ≥ β k H(λ) + log 8.
Assuming without loss of generality that H(λ) ≥ log 8, there is enough choosing

β k+1 ≥ β k + 1.
In order to prove (iii

) k take now λ, λ ′ ∈ L k+1 , λ = λ ′ . Notice that ρ(D(λ, R k+1 λ ), D(λ ′ , R k+1 λ ′ )) = ρ(λ, λ ′ ) -R k+1 λ -R k+1 λ ′ . Split into four different cases: 1. λ, λ ′ ∈ L k .
Assume without loss of generality that H(λ) ≤ H(λ ′ ). Then, by the definition of R k+1 λ , we see that

ρ(D(λ, R k+1 λ ), D(λ ′ , R k+1 λ ′ )) = ρ(λ, λ ′ ) -R k λ -R k λ ′ - 1 4 e -β k H(λ) - 1 4 e -β k H(λ ′ ) .
By inductive hypothesis

ρ(λ, λ ′ ) -R k λ -R k λ ′ = ρ(D(λ, R k λ ), D(λ ′ , R k λ ′ )) ≥ e -β k H(λ)
. Thus, by [START_REF] Massaneda | Traces of Hörmander algebras on discrete sequences[END_REF],

ρ(D(λ, R k+1 λ ), D(λ ′ , R k+1 λ ′ )) ≥ e -β k H(λ) - 1 2 e -β k H(λ) = 1 2 e -β k H(λ) ≥ e -β k+1 H(λ) . 2. λ, λ ′ ∈ N 2 . Assume also H(λ) ≤ H(λ ′ ). Condition (4) implies ρ(λ, λ ′ ) ≥ e -H(λ) , hence ρ(D(λ, R k+1 λ ), D(λ ′ , R k+1 λ ′ )) ≥ e -H(λ) - 1 4 e -β k H(λ) . If β k ≥ 2, by (5) we have ρ(D(λ, R k+1 λ ), D(λ ′ , R k+1 λ ′ )) ≥ e -2H(λ) ≥ e -β k H(λ) ≥ e -β k+1 H(λ) . 3. λ ∈ M 1 , λ ′ ∈ N 2 By definition of M 1 there exists β ∈ N 1 such that ρ(λ, β) ≤ R k λ + 1 4 e -β k H(λ) .
Then, using (4) on β, λ ′ ∈ Λ k+1 , we have, by Harnack's inequalities (if

β k ≥ 4), ρ(λ, λ ′ ) ≥ ρ(β, λ ′ ) -ρ(λ, β) ≥ e -H(β) -R k λ - 1 4 e -β k H(λ) ≥ e -2H(λ) - 5 4 e -β k H(λ) ≥ e -4H(λ) ≥ e -β k H(λ) ≥ e -β k+1 H(λ) . 4. λ ∈ M 2 , λ ′ ∈ N 2 . Taking into account the definition of R k+1 λ , R k+1 λ ′ we have ρ(D(λ, R k+1 λ ), D(λ ′ , R k+1 λ ′ )) = ρ(λ, λ ′ ) -R k λ - 1 8 e -β k H(λ) Since ρ(λ, λ ′ ) -R k λ ≥ ρ(D(λ, R k λ ), D(λ ′ , R k λ ′ ))
, by inductive hypothesis and by ( 5)

ρ(D(λ, R k+1 λ ), D(λ ′ , R k+1 λ ′ )) ≥ 1 4 e -β k H(λ) - 1 8 e -β k H(λ) ≥ e -β k+1 H(λ) .
All together, it is enough to start with C > n, define α 1 = β 1 = C, and then define α k , β k inductively by

α k+1 = α k -1 = • • • = C -k , β k+1 = β k + 1 = • • • = C + k .

PROOF OF MAIN THEOREM. NECESSITY

Assume N |Λ = X n-1 (Λ), n ≥ 2. Using Proposition 2.1, we have X n-1 (Λ) = X n (Λ), and by Lemma 2.4 we deduce that Λ = Λ 1 ∪• • •∪Λ n , where Λ 1 , . . . , Λ n are weakly separated sequences. We want to show that each Λ j is an interpolating sequence.

Let ω(Λ j ) ∈ N (Λ j ) = X 0 (Λ j ). Let ∪ λ∈L D λ be the covering of Λ given by Lemma 2.6. We extend ω(Λ j ) to a sequence ω(Λ) which is constant on each D λ ∩ Λ j in the following way:

ω |D λ ∩Λ = 0 if D λ ∩ Λ j = ∅ ω(α) if D λ ∩ Λ j = {α} .
We verify by induction that the extended sequence is in X k-1 (Λ) for all k ≤ n. It is clear that it belongs to X 0 (Λ).

Assume that ω ∈ X k-2 (Λ), k ≥ 2, and consider (α 1 , . . . , α k ) ∈ Λ k . If all the points are in the same D λ then ∆ k-1 ω(α 1 , . . . , α k ) = 0, so we may assume that α 1 ∈ D λ and α k ∈ D λ ′ with λ = λ ′ . Then we have, for some H 0 ∈ Har + (D),

ρ(α 1 , α k ) ≥ e -βH 0 (α 1 ) , k = 1.
With this and the induction hypothesis it is clear that for some H ∈ Har + (D),

|∆ k-1 ω(α 1 , . . . , α k )| = ∆ k-2 ω(α 2 , . . . , α k ) -∆ k-2 ω(α 1 , . . . , α k-1 ) b α 1 (α k ) ≤ e βH 0 (α 1 ) e H(α 2 )+•••+H(α k ) + e H(α 1 )+•••+H(α k-1 )
.

Taking for instance H = H + βH 0 + log 2 we get

|∆ k-1 ω(α 1 , . . . , α k )| ≤ e H(α 1 )+•••+ H(α k ) , thus ω(Λ) ∈ X k-1 (Λ).
By assumption there exist f ∈ N interpolating the values ω(Λ). In particular f interpolates ω(Λ j ).

PROOF OF THE MAIN THEOREM. SUFFICIENCY Assume

Λ = Λ 1 ∪ • • • ∪ Λ n
, where Λ j ∈ Int N , j = 1, . . . , n, and denote Λ j = {λ (j) k } k∈N . Denote also by B j the Blaschke product with zeros on Λ j . We will use the following property of the Nevanlinna interpolating sequences (see Theorem 1.2 in [START_REF] Hartmann | Finitely generated Ideals in the Nevanlinna class[END_REF]). 

|B(z)| ≥ e -H 1 (z) ρ(z, Λ) z ∈ D .
According to Proposition 2.1 we only need to see that

X n-1 (Λ) ⊂ N |Λ. Let then ω(Λ) ∈ X n-1 (Λ) and split it {ω(λ)} λ∈Λ = {ω (1) k } k∈N ∪ • • • ∪ {ω (n) k } k∈N , where ω (j) k = ω(λ (j)
k ), j = 1, . . . , n, k ∈ N. By Lemma 1.2 and the hypothesis {ω

(1) k } k∈N ∈ X 0 (Λ 1 ), hence there exists f 1 ∈ N such that f 1 (λ (1) k ) = ω (1) k , k ∈ N .
In order to interpolate also the values {ω

(2) k } k consider functions of the form f 2 (z) = f 1 (z) + B 1 (z)g 2 (z) . Immediately f 2 (λ (1) k ) = f 1 (λ (1) k ) = ω (1)
k , k ∈ N, and we will have f 2 (λ

(2) k ) = ω (2)
k as soon as we find g 2 ∈ N such that

g 2 (λ (2) k ) = ω (2) k -f 1 (λ (2) k ) B 1 (λ (2) k ) , k ∈ N .
Since Λ 2 ∈ Int N such g 2 will exist as soon as the sequence in the right hand side is majorized by a sequence of the form {e

H(λ (2) k ) } k . Given λ (2) k ∈ Λ 2 pick λ (1) k such that ρ(λ (2) k , Λ 1 ) = ρ(λ (2) k , λ (1) 
k ). There is no restriction in assuming that ρ(λ

(2) k , λ (1) 
k ) ≤ 1/2. Then, by Lemma 4.1 there exists

H 1 ∈ Har + (D) such that |B 1 (λ (2) k )| ≥ e -H 1 (λ (2) k ) ρ(λ (1) 
k , λ

k ) k ∈ N. Now, since f 1 (λ (2) 
k ) = ω (1) 
k we have

ω (2) k -f 1 (λ (2) k ) B 1 (λ (2) k ) ≤ ω (2) k -ω (1) k B 1 (λ (2) k ) + f 1 (λ (1) k ) -f 1 (λ (2) k ) B 1 (λ (2) k ) ≤ ∆ 1 (ω (1) k , ω (2) k ) + ∆ 1 (f 1 (λ (1) k ), f 1 (λ (2) k )) e H 1 (λ (2) k ) .
By hypothesis, and since f 1 ∈ N , there exists H 2 ∈ Har + (D) such that

∆ 1 (ω (1) 
k , ω

k ) + ∆ 1 (f 1 (λ (1) k ), f 1 (λ (2) k )) ≤ e H 2 (λ (1) k )+H 2 (λ (2) 
k ) , and therefore, by Harnack's inequalities, ω

k -f 1 (λ (2) k ) B 1 (λ (2) k ) ≤ e H 2 (λ (1) k )+H 2 (λ (2) (2) 
k ) e H 1 (λ (2) k ) ≤ e 3(H 1 +H 2 )(λ (2) k ) ,

In general, assume that we have f n-1 ∈ N such that

f n-1 (λ (j) k ) = ω (j) k
k ∈ N, j = 1, . . . , n -1 .

We look for a function f n ∈ N interpolating the whole Λ of the form

f n = f n-1 + B 1 • • • B n-1 g n .
We need then g n ∈ N with g n (λ

(n) k ) = ω (n) k -f n-1 (λ (n) k ) B 1 (λ (n) k ) • • • B n-1 (λ (n) k ) , k ∈ N .
Let us see that the sequence of values in the right hand side of this identity have a majorant of the form {e H(λ (n) k ) } k . Pick λ (j) k ∈ Λ j , j = 1, . . . , n -1 such that ρ(λ

(n) k , Λ j ) = ρ(λ (n) k , λ (j) k ).
There is no restriction in assuming that ρ(λ

(n) k , λ (j) k ) ≤ 1/2. Since f n-1 (λ (j) k ) = ω (j)
k , j = 1, . . . , n -1, an immediate computation shows that

ω (n) k -f n-1 (λ (n) k ) = ∆ n-1 (ω (1) k , . . . , ω (n-1) k , ω (n) k )- -∆ n-1 (f n-1 (λ (1) k ), . . . , f n-1 (λ (n-1) k ), f n-1 (λ (n) k )) b λ (1) k (λ (n) k ) • • • b λ (n-1) k (λ (n) k ) .
Again by Lemma 4.1, there exists H 1 ∈ Har + (D) such that |B j (λ

(n) k )| ≥ e -H 1 (λ (n) k ) ρ(λ (j) k , λ (n) 
k ) , k ∈ N, j = 1, . . . , n -1. Hence, by hypothesis and the fact that f n-1 ∈ N there exists H ∈ Har + (D) such that

ω (n) k -f n-1 (λ (n) k ) B 1 (λ (n) k ) • • • B n-1 (λ (n) k ) ≤ [|∆ n-1 (ω (1) k , . . . , ω (n) k )|+|∆ n-1 (f n-1 (λ (1) k ), . . . , f n-1 (λ (n) k ))|] e (n-1)H 1 (λ (n) k ) ≤ e H(λ (1) k )+•••+H(λ (n-1) k )+H(λ (n) k )+(n-1)H 1 (λ (n) k ) .
Finally, by Harnack's inequalities, this is bounded by e 2n(H(λ (n) k )+H 1 (λ

(n) k )) .

1 )

 1 B denote the Blaschke product associated to a Blaschke sequence Λ. Let b λ (z) = zλ 1 -λz and B λ (z) = B(z) b λ (z) . Let's also consider the pseudohyperbolic distance in D, defined as ρ(z, w) = zw 1zw , and the corresponding pseudohyperbolic disks D(z, r) = {w ∈ D : ρ(z, w) < r}. According to [4, Theorem 1.2] Λ ∈ Int N if and only if there exists H ∈ Har + (D) such that (|B λ (λ)| = (1 -|λ|)|B ′ (λ)| ≥ e -H(λ) , λ ∈ Λ . Moreover in such case the trace space is N (Λ) = {ω(λ)} λ∈Λ : ∃H ∈ Har + (D) , log + |ω(λ)| ≤ H(λ), λ ∈ Λ .

Lemma 2 . 4 .

 24 Let n ≥ 1. The following assertions are equivalent: (a) Λ is the union of n weakly separated sequences, (b) There exist H ∈ Har + (D) such that

Lemma 4 . 1 .

 41 Let Λ ∈ Int N and let B the Blaschke product associated to Λ. There exists H 1 ∈ Har + (D) such that
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