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Abstract—The study of time series forecasting has progressed
significantly in recent decades. The progress is partially driven
by growing demand from different industry branches. Despite
recent advancements, there still exist several issues that need to
be addressed in order to improve the accuracy of the forecasts.
One of them is how to improve forecasts by utilizing potentially
extra information carried by other observed time series. This is
a known problem, where we have to deal with high dimensional
data and we do not necessarily know the relationship between
variables. To deal with this situation, the challenge is to extract
the most relevant predictors that will contribute to forecast each
target time series. In this paper, we propose a feature selection
algorithm specific to forecasting multivariate time series, based
on (i) the notion of the Granger causality, and on (ii) a clustering
strategy. Lastly, we carry out experiments on several real data
sets and compare our proposed method to some of the most
widely used dimension reduction and feature selection methods.
Experiments illustrate that our method results in improved
accuracy of forecasts compared to the evaluated methods.

Keywords–Multivariate Time Series Forecasting; Granger
Causality; Feature selection.

I. INTRODUCTION

Time series analysis incorporates a set of tools, methods,
and models in order to describe the evolution of data over time.
It has been developed primarily for the purposes of forecasting
and business analysis. Time series analysis is an important
component of any business intelligence system insofar as it
generates new, valuable data by combining trends, forecasts,
correlations, causalities etc. in intelligent ways. Consequently,
time series analysis produces original, exploitable information
that can then be used as a critical input to the decision-
making process and, ergo, can contribute to more intelligent
and effective decisions.

The first time series forecast models were introduced in the
1920s. These were followed shortly by the first application of
the univariate Auto-Regressive model [1]. Advanced versions
of these models are still in use today. Based on the Auto-
Regressive principle, those models take into account data
history in order to make forecasts. Nevertheless, despite their
innovativeness, these first models only consider a single time
series in their predictions and, thus, fail to utilize a significant
amount of potentially-exploitable data. With this in mind,
in the latter half of the last century, researchers began to
lend greater attention to refining forecast models that exploit
multiple time series [2]. Most of the algorithms used today
for multivariate time series forecasting, which includes the
algorithms most commonly used for economic forecasting, are
based on concepts developed during this period.

Multivariate analysis is increasingly preferred by data sci-
entists over univariate analysis. The latter is simpler than the
former as it only takes into account the previous values of a

respective time series. Multivariate models, on the other hand,
seek to understand the behavior and characteristics of the time
series in question by explaining each series based (i) on its
previously observed values, Iin addition to (ii) the previously
observed values of other series in the data set. This approach
is particularly important when handling financial data because,
indeed, the value of one variable often does not only depend
on its previous values, but also on the past values of other
variables in the same dataset. As such, in order to obtain the
most accurate outputs, it is necessary to factor in as inputs
all the relevant information from other variables when making
forecasts [3]. Unfortunately, utilizing all the existing variables
in a multivariate model in a way that achieves optimal results
has yet to be perfected: (i) in some cases, existing models are
simply not able to incorporate all variables; (ii) in other cases,
models may not, for reasons that we will discuss, produce more
accurate forecasts. For instance, the authors of [4], working
with real data from Australia and the United States, were not
able to improve accuracy of their forecasts when using more
than 30%− 60% of the existing predictors.

In this paper, we propose a feature selection method
specific to time series forecasting. We argue that our approach
handle relatively the problem of dependencies between vari-
ables, which is a major drawback of many exisiting methods.
Specifically, we are able to do so by explaining causalities
between variables (i) using the Granger causality graph [5],
and (ii) then clustering them. The proposed approach is
currently being used in two industrial prototypes, which are
to be used for different purposes: (i) the first one is designed
to provide a tool for buyers, informing them when to purchase
a product for their company; (ii) and the second prototype is
used for detecting fraud in public markets. The objective of
our work on both prototypes is the same: to forecast prices
based on raw materials and/or finished products.

This paper is organized as follows: the first three sections
are dedicated to related work: Section II is dedicated to
prediction models, Section III is related to feature selection
and dimension reduction methods and Section IV is devoted to
the Granger causality. In Section V, we detail our approach. In
Sections VI and VII, we perform experiments and comparison
study on real data sets. And in Section VIII, we summarize
our contributions and put forth possible future research.

II. PREDICTION MODELS

Many prediction models which are currently being devel-
oped are based on the idea of Auto-Regressive model AR(p)
[6]. This model expresses a univariate time series as a linear
function of its p precedent values:

yt = α0 + α1yt−1 + · · ·+ αpyt−p + εt



Where p is the order of the model, α0 . . .αp are the parameters
of the model, and εt is a white noise error term. The Moving
Average model (MA) has the same expression, but for the error
terms. The ARMA(p, q) model [6] combines these two models
by considering both past error terms and values. For non-
stationary time series, the ARIMA(p, d, q) model [6] is more
preferable, it applies the ARMA(p, q) model after a differenc-
ing step, in order to obtain stationary time series, where d is
the order of differenting (computing d times the differences
between consecutive observations). In [7], the Vector Auto-
Regressive VAR model is introduced as an extension of the AR
model. Consider a k-dimensional time series Yt, the VAR(p)
system expresses each univariate variable of the multivariate
time series Yt as a linear function of the p previous values of
itself and the p previous values of the other variables:

Yt = α0 +
∑p

i=1AiYt−i + εt,

where εt is a white noise with a mean of zero, and A1, . . . , Ap

are (k× k) matrix parameters of the model. In [8], the Vector
Error Correction (VECM) is introduced. This model transforms
the VAR model by taking into account non-stationarity of
the time series and by including cointegration equations. To
simplify matters, let us consider two univariate time series
(xt, yt) integrated of orger one, which means non stationary,
but the first difference (∆xt = xt − xt−1) is stationary. The
VECM Model can be written as follows:

∆yt= α0y − γy(β0yt−1 − β1xt−1) +

p∑
i=1

viy∆yt−i

+

p∑
i=1

wiy∆xt−i + εt

∆xt= α0x − γx(β0yt−1 − β1xt−1) +

p∑
i=1

vix∆yt−i

+

p∑
i=1

wix∆xt−i + εt

Where β0yt−1−β1xt−1 is stationary, the coefficients (β0, β1)
are the cointegrating parameters, and (γy , γx) are the error
correction parameters. If there exist no coefficients (β0,β1)
such that β0yt−1 − β1xt−1 is stationary, then xt and yt are
not cointegrated and the VECM model is reduced to the VAR
form.

III. FEATURE SELECTION AND DIMENSION REDUCTION
METHODS

Feature selection refers to the act of extracting subset
of the most relevant variables (features) of size k from a
set of variables of size n >> k. While, dimension reduc-
tion methods consist in generating an artificial features with
smallest dimension from the originals by combining them.
Therefore, from a descriptive analysis point of view, feature
selection is more interesting. However, both of them can be
used to optimise the inputs of prediction models. Using all the
existing variables in a multivariate model has two principal
drawbacks. First, it can affect the rightness of the predictions
computations. For example, in Auto-Regressive based models,
if the number of regressors is proportional to the sample size,
the ordinary least squares (OLS) forecasts are not efficient, and

the challenge with these situtations is to reduce dimensionality
of predictors [9]. Second, it prevents from detecting the most
relevant variables, which can degrade forecasts accuracy [4].

The Principal Component Analysis (PCA) is one of the
most common dimension reduction methods used [10]. Based
on a set of variables, this method takes advantage of the
inter-correlation between them. The idea is to generate the
principal variables that describe as much as possible the
original variables using a linear transformation. The Kernel
PCA method is a non-linear principal component analysis
proposed as an extension of PCA, by considering non-linear
correlation between variables [11]. The Recursive Feature
Elimination (RFE) technique works by recursively removing
variables and building a model on those variables that remain
[12]. These methods are widely used in forecasting time series,
for example PCA and Kernel PCA have been adopted in two-
step approach which reduces first the number of predictors,
and then a applies a forecasting model [13]–[15]. Univariate
appoaches are based on the principle of selecting variables
by ranking them according to a statistical test or a similarity
measure. For instance, in [16], a method based on causality is
proposed. The algorithm selects variables that cause the target,
and it shows good results compared with some dimension
reduction methods.

IV. GRANGER CAUSALITY

The purpose of this section is to redefine the Granger
causality [5], and to detail the statistical test used to estimate
the bivariate causality between two time series. Let us consider
two univariate time series xt, yt. The Granger definition
of causality acknowledges the fact that xt causes yt if it
contains information helpful to predict yt. In other words, if by
removing xt from the available information used to predict yt
at the current time, the prediction results for y will be affected.

We detail here the standard Granger causality test [17],
which uses the VAR model with a trend term. The test
compares two models, (i) the first one only takes into account
the precedents values of yt and (ii) the second uses both xt
and yt in order to predict yt. If there is a significant difference
between the two models, then it can be ascertained that the
added variable, i.e., xt causes yt:

Model1 : yt = α0 + αt+

p∑
i=1

αiyt−i + εt

Model2 : yt = α0 + αt+

p∑
i=1

αiyt−i +

p∑
i=1

βixt−i + εt

The next step of the test is to compare the residual sum
of squares (RSS) of these models using the Fisher test. The
statistic of the test is expressed as follow:

F =
(RSS1 − RSS2)/p)

(RSS2/n− 2p− 1)

Where RSS1 and RSS2 are the residual sum of squares related
to Model1 and Model2 respectively, n is the size of the
predicted vector. Two hypotheses are tested, the null hypothesis
H0: ∀i ∈ {1, . . . , p}, βi = 0 (which means x does not cause y)
and H1: ∃i ∈ {1, . . . , p}, βi 6= 0. Under the null hypothesis
H0, F follows the Fisher distribution with (p, n − 2p − 1)
degrees of freedom, then the test is carried out at a level α in
order to examine the null hypothesis of non causality.



V. OUR PROPOSAL

We focus here on the selection of the top predictor variables
based on the Granger causality as a relationship between
variables. Let us consider Y = {y1, y2, . . . , yn} a multivariate
time series and a target variable y. The idea is to choose a
subset of Y , for which we have the more accurate forecasts.
Let us underline that from a theoretical point of view, there are∑k

i=1

(
n
i

)
possible partitions of size less than or equal to k.

And in general, there are 2n possible partitions, which means
2n possible models [9]. In addition, the Granger causality is
not a monotone function, as a consequence, finding the best
subset of variables that maximizes the causality is a NP-hard
problem. One solution is to choose a set of variables having
strong causality regarding to the target y as investigated in
[16]. However, this approach does not take into account hidden
relationship between variables, which means that we could use
the same information even when using many variables.

x1 x2 x

x3

0.86

0.97 0.93

0.91

0.95

Figure 1. Illustration of dependencies between time series
using Granger causality graph

In Figure 1, we show a small Granger causality graph
describing dependencies between 4 variables. Let us try to
select two variables as predictors for the target variable, i.e.,
x. Selecting variables by ranking them according to causality
leads to getting x1 and x2. However, x1 and x2 might provide
the same information because x1 causes x2.

We propose a new method to deal with this problem based
on clustering the Granger causality graph or the adjacency
matrix using Partitioning Around Medoids (PAM) algorithm
[18]. The p-value of the test is the probability to observe the
given result under the assumption that H0 is true, which means
the probability of non causality. We consider so the causality
as one minus p-value in order to express values of causalities
in the range [0, 1].

A. Algorithm of the proposed method
The algorithm of the proposed method can be divided into

three steps:

• Building the adjacency matrix of causalities between
variables.

• Clustering the set of all the possible predictors vari-
ables, by minimizing the causalities between clusters,
and maximizing the causality within clusters, using
the PAM method.

• Choosing one element from each cluster, the one that
maximizes the causality on the target variable.

In Figure 2, the GSM (Granger Selection method) algorithm
summarizes our approach. It generates for each target variable
y, k variables that contributes to the prediction of y.

Input: Set of predictors time series Y = {y1, y2, . . . , yn}, y
the target variable, MINCAUS Min-Causality threshold,
k the selection size

Output: GSM-CL the selected variables associated to y
1: for i = 1 to n do
2: if Y.size() 6 k then
3: Y = Y \ {yi}
4: end if
5: if Y.size() 6 k then
6: return GSM-CL = Y
7: end if
8: end for
/* The clustering step. */

9: Let Mc be the dissimilarity matrix of predictors
10: for each xi, xj in Y such that i 6= j do
11: Mc[i, j] = Mc[j, i] = 1 − max(causality(xi →

xj), causality(xj → xi))
12: end for
13: Clusters = pam(Mc, k)

/* The selection step. */
14: for each Cluster cl in Clusters do
15: GSM-CL = GSM-CL ∪ arg max

clj∈cl
(causality(clj → y)

16: end for
17: return GSM-CL

Figure 2. The GSM Algorithm.

B. Example
Consider Y = {y1, . . . , y8} a set of predictors and a target

variable y9. Let’s apply the GSM algorithm in order to select
4 predictor variables from Y that will contribute to forecast y.

1) The matrix of causalities: First, the algorithm computes
the Granger causalities between variables in pairs. In this
example, we take the matrix of causalities of our data sets
corresponding to the dataset ts1 described in Section VI-A:

MC =



1.00 0.935 0.999 0.999 0.832 0.998 0.998 0.933 0.998

0.28 1.00 0.877 0.87 0.224 0.785 0.801 0.999 0.868

0.033 0.656 1.00 0.106 0.479 0.944 0.775 0.082 0.905

0.028 0.647 0.239 1.00 0.483 0.944 0.776 0.096 0.905

0.7 0.457 0.977 0.978 1.00 0.343 0.031 0.398 0.901

0.808 0.417 0.818 0.817 0.906 1.00 0.997 0.431 0.722

0.274 0.742 0.992 0.992 0.942 0.959 1.00 0.906 0.788

0.327 0.999 0.998 0.998 0.427 0.895 0.996 1.00 0.900

0.304 0.071 0.581 0.584 0.205 0.448 0.999 0.754 1.00


2) Clustering and selecting the final variables: The algo-

rithm partitions the variables based on the symmetrical matrix
(as mentioned in the algorithm 2) using the PAM method. The
idea behind symmetrizing the matrix of causalities is to build
clusters where there is at least one causality between each
pairs of variables, so it is logical to use the maximum. Let
us underline also that the classical PAM algorithm partitions
elements from a symmetric dissimilarity matrix, by minimiz-
ing dissimilarities within clusters. In our case, the algorithm
maximizes causalities within clusters. That is why we use 1
minus the causality matrix as an input of the PAM method.
Then, from each cluster, the algorithm chooses the element
that has maximal causality on the target. The clustering vector
associated to {y1, . . . , y8} obtained is (1, 2, 1, 1, 3, 1, 4, 2).
And based on the causalities to the target (last column of the
adjacency matrix), the selected variables are {y1, y5, y7, y8}.



3) Evaluation of the clusters: The quality of the causalities
founded depends on, first the type of the data. And second, on
the evaluation of the clustering task. In our case, we evalu-
ate the quality of the clusters using the following objective
function:

minimize G(x) =
∑n

i

∑n
j (1−max(cij , cji))× zij ,

where,

1) zij =

{
1 if yi, yj belong to the same cluster
0 otherwise.

2) cij = causality(yi → yj).

This evaluation can be used in general as measure of causal
relationships in multivariate time series. In the example, the
value of G is 0.000168.

VI. EXPERIMENTS

We present in this part the methodologies adopted to
carry out the experiments. We compare our method with four
existing methods, selectKf: univariate feature selection method
using the F-test statistical test, selectKc: univariate feature
selection method using the Granger causality test [16], PCA:
Principal Component Analysis [19], KERNEL PCA: Kernel
Principal Component Analysis [11], and our proposal.

Vector Error Correction (VECM) [8] model is adopted to
forecast the multivariate time series generated by the feature
selection and dimension reduction methods. The univariate
ARIMA model (see II) is also evaluated to show the forecasting
results with no predictors variables. For our proposal, we use
a p value threeshold of the Granger causality test at 10%,
and the lag parameters of the VECM and ARIMA models are
determined according to the Akaike’s Information Criterion
(AIC) [20]. Experiments are made on an single computer with
processor 2,2 GHz Intel Core i7 and 16Gb of RAM.

A. The used Data Sets
The first data set used comes from our current project. The

second data set are taken from the Machine Learning Reposi-
tory website [21], and the third one represents macroeconomic
time series of United Sates [22]. A brief description of these
data sets including the number of variables and observations
and the target variables is presented in Table I.

B. Measuring forecast accuracy
The training step is carried out on the first 90% of the

input series, and an evaluation on the last 10% real values is
performed by one step ahead forecasts using rolling window
VECM and ARIMA models. The measure of prediction accu-
racy used is the normalized root mean square error (NRMSE):

NRMSE =
1

ȳ

√∑h
i=1(yi − ŷi)2

h
(1)

Where (ŷ1, . . . , ŷh) are the forecasts, (y1, . . . , yh) are the real
values and ȳ is the average value of yt.

The comparison between methods will be the same if we
use the mean squared error MSE or the root-mean-square
RMSE. We use the NRMSE in order to have normalized and
relative evaluations.

TABLE I. DESCRIPTION OF THE USED DATA SETS.

Data Number Number of Description
sets of series observations

ts1 9 1090 Our Dataset, expressing the prices
of International Index containing
Oil, Propane, Gold, euros/dollars,
Butane, Cac40, and others, between
2013/03/12 and 2016/03/01,
aiming to forecast the Cac40.

ts2 8 563 Data sets includes returns of Is-
tanbul Stock Exchange (ISE) with
seven other international index; SP,
DAX, FTSE, NIKKEI, BOVESPA,
MSCE EU, MSCI EM from Jun 5,
2009 to Feb 22, 2011.

ts3 36 360 Monthly coincident and leading eco-
nomic indexes of economic activity
in the United States, for forecasting
four series: industrial production IP,
real personal income less transfer pay-
ments GMYXP8, real manufacturing
and trade sales MT82, and employee-
hours in nonagricultural establishments
LPMHU.

VII. COMPARATIVE STUDY

In a first time, we measure forecast accuracy using the
univariate ARIMA model. The results obtained are shown in
Table II. This will allow us to compare how much the reduced
model; VECM with dimension reduction of the predictors will
perform compared with the univariate model.

TABLE II. EVALUATING FORECAST ACCURACY OF THE ARIMA MODEL.

Data sets Target series NRMSE

ts1 CAC40 0.0136
ts2 ISE 0.1004

ts3

IP 0.0094
GMXY 0.0094
LPMHU 0.0103
MT82 0.0175

We show in Table III the forecast evaluations of each data
set, by considering different numbers of predictors variables
for each experiment. Let us underline that for the dataset
ts3, which contains 36 variables, the performance accuracy
decreased when we use more than 11 predictors. This is
why the results in the Table III are shown for a number of
predictors, i.e., k, less or equal than 11.

For dimension reduction methods PCA and Kernel PCA, it
is possible to have both automatic number of features k or a
specific number given in the input, which is not the case for
the univariate selection method using the Granger causality test
[16] which selects features naturally. The number of features
generated using this method can be seen in Figure 3c.

Our proposal can be extended to provide an automatic
number of features by using some methods of selection for
the optimal number of clusters of the PAM method. However,
the number of variables computed in advance is generally not
optimal in term of forecasting, since the optimal value must be
determined according to the forecast accuracy. For this reason
we evaluate different values of the number of predictors, i.e.,
k.



TABLE III. EVALUATING FORECASTS ACCURACY WITH DIFFERENT REDUCTION SIZES k.
* INDICATES THAT THE REDUCTION SIZE K IS GREATER THAN THE NUMBER OF VARIABLES,

- IF AN ERROR OF RESOLUTION OCCURS.

D
at

a
se

ts

Ta
rg

et
s

se
ri

es

M
et

ho
ds Normalized root mean squared error (NRMSE)

Number of features k

1 2 3 4 5 6 7 8 9 10 11

ts1

C
A

C
40

kpca 0.0136 0.0136 0.0137 0.0136 0.0136 0.0136 0.0136 0.0136 * * *
pca 0.0137 0.0137 0.0135 0.0135 0.0135 0.0135 0.0135 0.0135 * * *
selectKc 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 * * *
gsm 0.0134 0.0134 0.0134 0.0135 0.0134 0.0134 0.0133 0.0134 * * *
selectKf 0.0136 0.0136 0.0136 0.0136 0.0135 0.0134 0.0134 0.0134 * * *

ts2 IS
E

kpca 0.0991 0.1093 0.1100 0.1145 0.1141 0.1109 0.1210 * * * *
pca 0.0991 0.1093 0.1101 0.1145 0.1141 0.1109 0.1210 * * * *
selectKc 0.1239 0.1239 0.1239 0.1239 0.1239 0.1239 0.1239 * * * *
gsm 0.0983 0.1128 0.1174 0.1127 0.1129 0.1208 0.1210 * * * *
selectKf 0.1020 0.1206 0.1247 0.1203 0.1298 0.1208 0.1210 * * * *

ts3

IP

kpca 0.0090 0.0092 - - - - - - - - -
pca 0.0102 0.0095 0.0111 0.0111 0.0102 0.0108 0.0104 0.0105 0.0178 0.0195 0.0215
selectKc 0.0161 0.0161 0.0161 0.0161 0.0161 0.0161 0.0161 0.0161 0.0161 0.0161 0.0161
gsm 0.0091 0.0084 0.0086 0.0090 0.0094 0.0095 0.0115 0.0169 0.0186 0.0223 0.0232
selectKf 0.0093 0.0092 0.0093 0.0095 0.0123 0.0122 0.0103 0.0132 0.0141 0.0142 0.0164

G
M

X
Y

8

kpca 0.0189 0.0202 0.0228 - - - - - - - -
pca 0.0084 0.0082 0.0091 0.0100 0.0101 0.0102 0.0103 0.0109 0.0148 0.0162 0.0177
selectKc 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082
gsm 0.0089 0.0093 0.0098 0.0096 0.0094 0.0098 0.0122 0.0121 0.0135 0.0139 0.0146
selectKf 0.0087 0.0099 0.0099 0.0100 0.0099 0.0098 0.0103 0.0107 0.0108 0.0162 0.0177

L
PM

H
U

kpca 0.0079 0.0127 - - - - - - - - -
pca 0.0075 0.0073 0.0074 0.0080 0.0080 0.0082 0.0080 0.0082 0.0084 0.0100 0.0111
selectKc 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104
gsm 0.0076 0.0074 0.0073 0.0071 0.0078 0.0074 0.0078 0.0097 0.0096 0.0090 0.0085
selectKf 0.0077 0.0078 0.0080 0.0082 0.0080 0.0087 0.0080 0.0094 0.0096 0.0103 0.0113

M
T

82

kpca 0.0171 0.0171 - - - - - - - - -
pca 0.0168 0.0178 0.0179 0.0169 0.0170 0.0166 0.0168 0.0173 0.0275 0.0277 0.0294
selectKc 0.0206 0.0206 0.0206 0.0206 0.0206 0.0206 0.0206 0.0206 0.0206 0.0206 0.0206
gsm 0.0162 0.0165 0.0154 0.0158 0.0154 0.0154 0.0161 0.0248 0.0234 0.0263 0.0240
selectKf 0.0170 0.0170 0.0169 0.0171 0.0183 0.0188 0.0197 0.0203 0.0208 0.0205 0.0231

Evaluations in Table III show that overall, the GSM cur-
rently outperforms most of the target time series compared
with the ARIMA model and the methods previously evoked.
We can not show the statistical significance of forecast in all
cases, since the differences between the obtained results are
relatively small according to the NRMSE, but practically, by
making more predictions, it is important to take into account
any improvement. As a side note, it is worth to mention
that some authors, such as [23], have argued that statistical
significance testing of forecast accuracy should be avoided, as
test results may be misleading and that practice may actually
harm the progress of forecasting field. However, in Figure 3 we
compare the number of features that provides the best accuracy
for each method with the minimal number giving better or the
same forecast accuracy by our proposal. We remark that the
performance of those methods can be reached by our proposal
using smallest number of features in most cases.

VIII. CONCLUSIONS

In the context of forecasting with many variables, the
goal is to develop optimized models, performing both de-
scriptive and predictive tasks [24]. That can be achieved, in
(i) by optimizing the structure of the multivariate models,
i.e., reducing the number of predictors, while improving the
forecast accuracy, and (ii) by providing an explanation of the
dependencies between all variables. The application of feature
selection and dimension reduction methods as a preprocessing

step before the prediction is a reasonable solution to this issue,
except that the former are slightly advantageous since they
extract a subset of variables from the originals, while the latter
reduce dimensionality by generating artificial variables. In the
litterature, a considerable interest has been paid to correlation-
based methods. That can be coherent regarding to regression
or classification. But in forecasting, and especially with lags,
the predictive aspect of the selected features is not negligible.
In comparison, a little attention has been paid to the role
of causality in feature selection. In the current reseach, we
investigated its role in the context of time series forecasting
and propose the Granger Selection Method.

Experiments on real data sets and a comparative study with
others methods show an improvement of the forecast accuracy
and a reduction of the number of input predictors. The measure
adopted is the Granger causality, but the proposed algorithm
is applicable for other measures of dissimilarity between time
series. In the future, we aim to adopt a more deeper analysis on
the graph of causalties than the clustering approach, in order
to tackle dependencies between time series. We aim also to
apply our approach on other prediction models, as well as
study the applicability of feature selection methods according
to the types of models (prediction, classification, regression,
etc.).



(a) (b)

(c) (d)

Figure 3. Comparison On The Number Of Predictors Providing The Same Or Better Forecast Accuracy By Our Proposal With The Methods Used.
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