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Abstract

This paper concerns the assessment of the dynamic stiffness of plates us-
ing non-contact excitation and non-contact measurements. In particular, a
constrained-layer damping sandwich plate is considered, of which the appar-
ent dynamic stiffness as function of frequency is determined. The experi-
mental results compare very well with an analytical model that computes
the frequency dependent apparent bending stiffness of the constrained-layer
damping sandwich plate. A Nd:YAG laser is used for excitation of the plate
and a laser Doppler vibrometer is used to measure its dynamic response along
a line on the plate, thus reducing the measurement effort. Using advanced
data acquisition and data processing techniques, a signal-to-noise ratio of up
to 100 dB was obtained, yielding estimates of the flexural wavenumber and
dynamic stiffness of the plate up to a frequency of 50 kHz. It is shown that
the Prony method and the wavenumber fit method yield a much improved
wavenumber resolution as compared to the spatial Fourier transform method.
An additional advantage of the wavenumber fit approach is that it allows the
accuracy of the fit to be determined. The accuracy was estimated at 1 rad/m
(best relative wavenumber resolution 2�).

Keywords: Laser Doppler vibrometer, Nd-YAG laser, non-contact
excitation, structural dynamics, dispersion, equivalent homogeneous plate,
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constrained-layer damping sandwich plate
PACS: 46.40.-f, 46.40.Cd, 46.80.+j

1. Introduction

In a constrained-layer damping sandwich structure two thin faces of metal
sheet are bonded to a visco-elastic core. It provides an effective way to sup-
press vibration and noise in structures, whilst the structure can remain to
be relatively thin and light, as compared to non-constrained damping treat-
ments. This makes constrained-layer damping sandwich structures interest-
ing for automotive, aerospace as well as naval applications.

For the analysis of constrained-layer damping sandwich structure one-
dimensional finite-element models have been developed to describe the cross-
sectional deformation of a linear viscoelastic laminate[1], as well as special
‘2.5D’ layered shell elements (see for instance [2]). Other approaches can be
used for the modeling of composite panels, based on the Wave Finite Element
Method (WFEM) ([3, 4]) or analytic approaches ([5, 6]).

For the validation of these models it is required to perform measurements
on constrained-layer damping sandwich test panels. This paper is dealing
with the experimental assessment of the effective (complex) bending stiff-
ness of test panels in general, and constrained-layer damping sandwich test
panels in particular. It should also be noted that the apparent stiffness of
constrained-layer damping sandwich plates are frequency dependent (see e.g.
[7, 8]).

With respect to the measurement approach, in general one can distinguish
contact and non-contact methods to excite the plate. Contact methods to
excite a structure usually result in measurement data with a good signal-
to-noise ratio. Shakers are capable of injecting relatively high energy levels,
resulting in vibration levels well above the noise floor. Mounting a shaker,
however, is not always easy and requires a highly skilled experimenter. A
good alternative is hammer excitation. A disadvantage of hammer excitation
is that it can be rather difficult to repeatedly excite at the same physical
location on the structure, causing so-called DOF-jitter [9].

Although for non-contact methods a highly skilled experimenter is re-
quired as well, and additional safety precautions are also necessary (laser
beam), non-contact methods have the advantage that the structure remains
untouched. This can be important in case of fragile structures, or in biomed-
ical applications where the testing equipment must be sterile. Non-contact
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excitation can be accomplished by means of an electro-magnetic force [10]
or an air pulse [11], among others. The electro-magnetic excitation employs
the interaction between the eddy currents and the magnetic field to create a
Lorentz force that excites the structure. Hefner et al. [10] examined the use of
electromagnetic excitation of a stainless steel shell immersed in water. They
found that excitation by means of electromagnetic forces are more suited to
excite torsional modes. Hefner et al. excited a structure immersed in water
up to frequencies as high as 100 kHz. In a modal analysis application Bau et
al. [12] used this method of excitation to excite a structure immersed in air
up to frequencies of 2000 Hz. Obviously this excitation approach can only
be used when the structure is made from an electrically conducting material.

Excitation by means of a pulsed air jet is an alternative way of non-
contact excitation. This approach typically excites the structure in the lower
frequency range, up to frequencies of approximately 200 Hz (e.g. [11, 13]),
which is appropriate for experimental modal analysis, for instance.

Yet another way of non-contact excitation is by means of a laser impulse.
This method of excitation is based on the photo-acoustic effect. The laser
emits light at a very high intensity during an extremely short time (for in-
stance, in the order of 1 nano second, depending upon the type of laser),
focused at a point on the structure. Each light pulse heats up the material
at the light spot, which locally expands the material and launches a vibra-
tional wave. The material can be excited up to very high frequencies (e.g.
GHz range) with this excitation technique.

Castellini [14] used a Nd:YAG source (532 nm, 100 mJ/pulse) to excite a
beam structure and perform modal analysis on it up to frequencies of about
3000 Hz. They also measured the structural response of the beam by means of
a laser Doppler vibrometer, thus using an all-optical, non-contact approach,
with obvious advantages.

In this paper it is shown that photo-acoustic excitation by means of a
laser impulse (Nd:YAG-laser, wavelength 1064 nm, maximum energy 200
mJ per pulse) can excite a constrained-layer damping sandwich structure
(total thickness 1.17 mm) at sufficiently high vibration levels, measurable by
means of a laser Doppler vibrometer, up to frequencies as high as 50 kHz.
Excitation at higher frequencies appeared for this specific plate structure not
possible due to inertia effects of the plate and the limited excitation force of
the Nd:YAG laser pulses. Once the laser beam is positioned at a single point
on the plate, it remains accurately exciting this specific point on the plate.
Because of this, time-averaging can be exploited to improve the signal-to-
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noise ratio, without the above mentioned DOF-jitter effects. Using a laser
Doppler vibrometer to measure the response of the structure a signal-to-noise
ratio of up to 100 dB was obtained. In this way, an all-optical, non-contact
measurement approach for both excitation and response measurement was
employed.

The data processing aspects that are addressed in this paper are mainly
related to the conversion of the measurement data to dispersion relationships
and the assessment of the dynamic stiffness of the plate. The estimation of
the dispersion curves requires a transformation of the measurement data from
the time-space domain to the frequency-wavenumber domain. Whilst the
transformation from the time-domain to the frequency domain can usually
be done with a sufficient frequency resolution by means of a classical Fourier
transform, the transformation from the spatial domain to the wavenumber
domain often suffers from a rather limited wavenumber resolution due to the
limited scanning length along the sample. The article discusses alternative
ways of the classical Fourier transform to determine the wavenumber from
the measurement data in an effort to overcome this limitation, i.e. the Prony
approach, and the wave fitting approach.

The Prony method, developed in the 18th century, is a well-know approach
in which damped sinusoids are used to fit equally spaced measurement data
(for a contemporary treatment of modern Prony methodsm, see [15]). Many
papers use this approach. For instance Braun and Ram [16] used the Prony
approach for modal analysis and Grosh and Williams [17] used this method
to estimate the complex wave-number of structural vibrations.

Yet another, closely related approach, is a wave fitting approach, which
is in literature sometimes also called the inhomogeneous wave correlation
method [18, 19, 20], the maximum likelihood method [21], the least-squares
estimation method [22], or the wave coefficients method [23]. Basically, the
method searches for (assumed) wave functions that fit the measurement data
best in a least squares sense. Because the approach employs a redundancy of
measurement data, the estimates of the parameters are robust. Moreover, as
opposed to the Prony method, the wave fitting approach can also be applied
to measurement data that was taken on non-equally spaced positions and
the method allows for an estimation of the fit accuracy.

Halliday et al. [21], Hillstrom et al. [22], and also Liao et al. [23] applied
the wave fitting approach to a beam structure. Hull et al. [24] used the
method to estimate the complex flexural wavenumber of a beam. Rak et al.
[20] applied it to estimate the loss factor of beams.
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Halkyard [19] studied the wave propagation in a plate with this method.
Berthaut et al. [18] applied the wave fitting approach in two dimensions for
the estimation of the dispersion curve of a ribbed panel, as function of the
angle of propagation in the panel.

This paper focuses on the measurement of the apparent stiffness of constrained-
layer damping sandwich panels, in which the sandwich panel is represented
by an equivalent Kirchhoff-Love homogeneous plate, as well as a comparison
with an analytical model. Measurements are done in a contactless manner,
using a Nd:YAG pump laser to excite the structure by photoacoustic effects,
and a laser Doppler vibrometer to measure the response of the plate.

The paper employs both a laser for exciting the plate structure and sens-
ing the vibrational response. Although the use of a pump laser for excitation
of the structure is not new (see Castellini [14]), the device is scarcely used
in the structural-dynamics community. This paper hopes to get more re-
searchers and engineers interested in this approach.

Next to that the paper shows that the wavenumber fit approach can also
be used to assess the accuracy of the plate stiffness as function of frequency,
something which is not possible when using other approaches (such as the
classical spatial Fourier transform). Furthermore, to the knowledge of the au-
thors, the extraction of the stiffness parameters of a plate was never pursued
on the basis of measurement data that was taken along a line on the plate.
Measuring on a line, instead of an area of the plate, reduces the measurement
effort. It is shown that the estimation of the wavenumber propagating in the
plate can be done on the basis of a line-measurement, without compromising
the quality of the material assessment.

On the modeling part, it is shown that the apparent stiffness (Young’s
modulus) of constrained-layer damping sandwich panels as predicted by an
analytical model from the literature, using nominal values of the thickness
and material properties of the individual layers of the sandwich plate, corre-
sponds very well with the measured stiffness as function of frequency.

The paper is organized as follows. Section 2 discusses the three different
data processing approaches to transform the measurement data from the
spatial domain to the wavenumber domain. The test set-up that was used
to apply these theories for the estimation of the material properties of a
constrained-layer damping sandwich plate is detailed in section 3. The results
are discussed in section 4, where in subsection 4.1 the results obtained with
the standard spatial Fourier are shown and in subsections 4.2 and 4.3 the
results obtained with the Prony approach and the wave fitting approach,
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respectively, are shown. The concluding remarks of the paper are given in
section 5.

2. Data processing approaches

In this section the theoretical basis is given for the estimation of the
material properties of a plate-like structure from measurement data. It is the
main objective of this paper to estimate the stiffness of the plate structure as
function of frequency. The Young’s modulus of an equivalent, homogeneous
thin plate following Kirchhoff-Love plate theory[25] that represents the plate
under investigation as good as possible, is examined.

It is assumed that the measurements are taken along a line on the plate.
These points have coordinate x. The point of excitation is also chosen to be
located on this line. Using this approach reduces the measurement efforts.

Consider measurement data of the form w(x, t) where w is the structural
displacement in normal direction of the plate as function of coordinate x
and time t. The measurement data in the spatial-time domain, w(x, t), are
transformed to the spatial-frequency domain w(x, ω) by means of Fourier
transform, i.e.

w(x, ω) = F {w(x, t)} (1)

where ω is the angular frequency and where F denotes the Fourier transform.
The transformation to the wavenumber-frequency domain w(k, ω), where k is
the wavenumber, can be done in different ways. In this section three methods
are discussed: the classical spatial Fourier transform, the Prony method and
the wave fitting approach.

The transformation of w(x, ω) to w(k, ω) by means of the classical spatial
Fourier transform is denoted by

w(k, ω) = F {w(x, ω)} (2)

Prony analysis is a method of fitting a linear combination of exponen-
tial terms to a finite number of samples of a signal [15, 16, 17, 26]. The
phase variation of the pole as function of the spatial coordinate x gives the
wavenumber k:

k(ω) =
∠p(ω)

∆x
(3)

where p is the Prony pole found at angular frequency ω and ∆x is the step
size of the measurement points along x.
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The third and last approach that will be discussed in this paper is a wave
fitting procedure, in which the x-dependence of the signal is fitted by a test-
wave for each angular frequency ω. The method assumes, in it’s most simple
form, only one test-wave which is propagating through the structure. This
test-wave φ is assumed to be a harmonic function of the following form

φk(x) =
eikx√
|x− x0|

(4)

where the suffix k indicates the dependence on the (assumed) testing wavenum-
ber k, i is the imaginary number, and the term 1/

√
|x− x0| accounts for the

geometric attenuation of the structural vibration level in an infinite plate as
function of the distance from the point of excitation, x = x0. In general,
k can be complex. However, in section 4 of this paper, only real values for
k will be considered as the plate under consideration is lightly damped and
only the Young’s modulus of an equivalent, homogeneous plate is of interest.
The actual vibrational field w(x, ω) is approximated by φk(x), as follows

w̃(x, ω, k) = α(k, ω)φk(x) (5)

where αk is a frequency dependent scalar containing the contribution strength
of the vector φk to the projected vibrational field w̃. Writing w(x, ω) and
φk(x) as a vector w(ω) and Φk, respectively, the least squares solution for α
is given by

α(k, ω) = Φk
+w(ω) = (Φk

∗Φk)−1Φk
∗w(ω) (6)

where Φk
+ is the pseudo inverse of Φk. The error e of the least squares fit

can be defined as

e(k, ω) =
‖w(ω)− w̃(ω, k)‖2

‖w(ω)‖2
, (7)

where w̃(ω, k) is the vector representation of w̃(x, ω, k). This error e obvi-
ously is a function of the assumed testing wavenumber k. Searching for the
minimum of e as function of the testing wavenumber k, an optimum value of
k can be found for each angular frequency ω.

The wave fitting procedure, in addition, also allows the accuracy of the
fit to be estimated. The confidence in the least squares fit results can be
estimated as follows. Let’s assume that each data point, as measured by the
laser Doppler vibrometer, is drawn from a Gaussian distribution. Defining a
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reduced (i.e. corrected with a factor 1/(N − P )) goodness-of-fit parameter χ2:

χ2 =
1

N − P

N∑
i=1

{
[w(xi)− w̃(xi)]

2

σ2
i

}
(8)

where w(xi) is the measured data at measurement point x = xi, having a
standard deviation σi, w̃(xi) is the fitted data at that point, N is the number
of measurement data points and P is the number of fit parameters (here:
P=1). In case the fit is correctly describing the phenomena, without system-
atic errors, it can be expected that the deviations w(xi) − w̃(xi) are of the
order of the expected standard deviations σi, causing the reduced goodness-
of-fit parameter χ2 to approach unity for an optimum fit. Considering χ2

in terms of the (in this specific case a single) fitting variable α(k), it can be
shown that near the vicinity of the minimum, χ2 can be approximated to
second order as [27]

χ2 =
(α(k)− α(kopt))

2

(N − P )σ2
α

+ 1 (9)

where α(kopt) is the optimum value of for α(k) that minimizes χ2 and σα is
the standard deviation of the fitting variable. Thus χ2 varies as the square of
the distance from a minimum (which is equal to 1 for an unbiased fit), and an
increase of 1 standard deviation (σα) in the parameter from the value α(kopt)
at the minimum increases χ2 by 1 [27]. Thus, the uncertainty in the α(kopt),
σα, can be determined by plotting the error function e (Eq. 7) as function of
this fitting parameter, and search for the values of ak for which e is increased
by a factor 2 relative to the minimum of e. The standard deviation σα can
be obtained by dividing this range by

√
N − P .

Once an estimate of the wavenumber k as function of angular frequency
is found, the stiffness of the plate can be estimated. To estimate the stiff-
ness of a plate, a theoretical model is required to allow a conversion from
wavenumber to the Young’s modulus for bending. As the wavelength of the
bendingwaves for the types of plates and frequencies considered in this paper
is much larger than the thickness of the plate, the bending stiffness of the
constrained-layer damping sandwich structure can be described by an equiv-
alent homogeneous plate. The (frequency dependent) Young’s modulus of
such an equivalent, homogeneous thin plate following Kirchhoff-Love plate
theory is seeked for. Considering Kirchhoff’s thin shell theory, the following
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relation between the wavenumber k and the Young’s modulus E exists:

k = 4

√(
ω2m′

EI

)
(10)

Here I is the second moment of area per unit width, and m′ the mass per
unit area, defined as

m′ = ρh (11)

where ρ is the mass density and h is the plate thickness. For a plate the
second moment of area per unit width I is given by

I =
h3

12 (1− ν2)
(12)

where ν is Poisson’s ratio. Using these relationships, the factor EI/m′ can
be estimated from

EI

m′
=
ω2

k4
(13)

The advantage of considering only a limited number of waves propagating
through the structure, as is done in Prony or in the wave fitting procedure, is
that the wavenumber resolution is highly improved as compared to the clas-
sical spatial Fourier transform. However, the choice of the wave types must
be an appropriate choice for this method to work well. For instance, when
fitting the measurement data with only one flexural wave with wavenumber
k, it is assumed that the higher order modes are negligible. It is assumed
that the wave form consists of a single frequency component. For bending
waves traveling in thin plates (relative to the wavelength), this assumption
is usually justified. Application of the three fitting approaches will be given
in the next sections.

3. Measurement set up

The reconstruction of dispersion curves requires the response of the struc-
ture (with a fixed point of excitation) to be measured at a number of points.
Alternatively, using reciprocity, the structure can be excited at a number of
points and the response of the structure is measured at a fixed point. It is the
latter option that is used in this work, as it has the advantage that a retro-
reflecting sticker at a single point on the plate can be used to enlarge the

9



LDV

Nd: Yag

Scanning

Stage

Mirror 1

Test

plate

Support 1

Support 2

Figure 1: Measurement set up. Nd:YAG-laser beam illustrated by means of a green line.
Laser Doppler Vibometer beam illustrated by means of a red line.

amount of laser light being reflected back into the laser Doppler vibrometer,
thus improving the quality of the signal. Whilst the laser Doppler vibrometer
measurement position is fixed, the Nd:YAG laser beam is moved across the
plate.

Figure 1 shows the measurement set-up. The optical path of the Nd:YAG-
laser beam (a Photonics diode pumped solid state powerchip nanolaser sys-
tem, laser wavelength 1064 nm, maximum energy 200 mJ per pulse, 10 pulses
per second) is illustrated by means of a solid green line. The Nd:YAG-laser,
however, was not used at its full power. The energy per pulse was reduced
to about 10% in order not to cause permanent damage of the surface. The
Nd:YAG-laser beam is moved across the plate from left to right by means of
a home made translation stage.

The optical path of the Polytec Laser Doppler Vibrometer (Polytec laser
head OFV-505 and a Polytec controller OFV-5000) is illustrated with of a
dashed red line in Fig. 1. The Laser Doppler Vibrometer (LDV) was focussed
on a fixed position of the plate, approximately at the middle of the scanning
line.

Per measurement position a time record of 0.1 s was acquired, using a sam-
ple frequency of fs=500 kHz (number of samples per time record nt=50001).
Time averaging was employed to improve the signal-to-noise ratio of the LDV
signal. The firing moment of the Nd:YAG-laser was used to trigger the time-
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averaging process. A total of 500 time averages were taken per measurement
position (thus requiring 500 x 0.1 = 50 s measurement time per measure-
ment position). The application of the time averaging is one of the reasons
of having a high signal to noise ratio, as will be shown in Section 4. The
plate response was measured at a fixed position by the LDV, as explained
above, whilst the point of excitation was scanned along a line on the plate
that coincides with the measurement point. The total scanning length is
0.381 m, in steps of 1.5 mm (number of measurement positions nx=255).
Thus a matrix w(x, t) with measurement data was obtained as function of
x and t, with a dimension of nx x nt = 255x50001, with x the coordinate
of each point of excitation. As the light pulse of the Nd:YAG-laser is in the
order of 1 ns, all eigenfrequencies of the plate will be excited up to the GHz
frequency range (although the measurable response of the plate is limited to
about 50 kHz, due to inertia effects of the plate and the limited excitation
force of the Nd:YAG laser pulses). As a result, the measurements contained
in w(x, t) can be considered to be an (unscaled) impulse response function
of the plate.

The measurements were conducted on a constrained-layer damping sand-
wich plate, consisting of a thin steel layer of 0.30 mm thickness, a polymer
layer of 0.69 mm thickness and a thin aluminum layer of 0.18 mm thickness
(total plate thickness h=1.17 mm). The overall dimensions of the plate are
30 x 40 cm2. The total measured weight of the plate was 0.387 kg, yielding
an effective mass per unit area m′= 3.2 kg/m2. The plate was suspended by
means of elastic bands, thus realizing a ’free-free’ boundary condition. With
this type of boundary condition, the influence of the boundary conditions on
the stiffness and damping of the plate is negligible.

4. Measurement results and data processing results

Figure 2 shows the measured impulse responses in dB, computed as 20 ·
log10(|w(x, t)|)). Figure 3 shows the same data zoomed to early times 2< t <4
ms. The fixed position of the laser Doppler vibrometer, denoted by x = x0,
was half way the plate, at x0=0.1973 m. At the moment the Nd:YAG laser
beam was hitting the plate (at approximately t=2.2 ms), the waves in the
plate indeed seem to originate from x = x0. Reflections from the ends of
the plate at x=0 and x=0.4 m started to occur at approximately t=2.5 ms.
Between 2.2 ms < t < 3 ms dispersion effects can be observed.
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Figure 2: Dispersion measurement results as function of position x and time t (colorbar
in dB).
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Figure 3: Dispersion measurement results as function of position x and time t (colorbar
in dB), as shown in Fig. 2. Time axis zoomed in on 2< t <4 ms.

4.1. Spatial Fourier transform results

The measurement data w(x, t) is transformed to the frequency domain
by means of a fast Fourier transform (Eq. 1), to arrive at w(x, ω). No time-
domain weighting function (such as Hanning for instance) is applied in this
specific case to minimize leakage, as the signal is effectively reduced to the
background level at the end of the time record (cfr. Fig. 2). The frequency
f = ω/2π covers the range from −fs/2 up to fs/2 in nt steps, where fs is the
sampling frequency of the time record and nt is the number of samples of the
time record.

Subsequently, this data set is transferred from the spatial domain to the
wavenumber domain, by means of a spatial fast Fourier transform (Eq. 2),
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Figure 4: Dispersion measurement results as function of wavenumber k and frequency f
(colorbar show dB’s). a) No zero-padding. b) Zero-padding factor = 4 for transformation
from x to k.
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Figure 5: Dispersion measurement results as function of wavenumber k and frequency
f (zero-padding factor = 4 for transformation from x to k). The curves indicate the
relationship between frequency and wavenumber, based upon maximum search of the
spatial Fourier spectra data.

to arrive at a data set w(k, ω). Here the wavenumber k is defined as k = 2π/λ,
where λ is the structural wavelength. The wavenumber ranges from −kmax/2
up to kmax/2 in nx steps, where kmax is the sampling frequency in the spatial
domain and nx is the number of samples in the spatial domain. Here kmax is
defined as kmax = 2π/dx, where dx is the spatial step size.
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Due to a limited scanning length of the plate, the wavenumber domain
resolution, defined as ∆k = 2π/L, where L is the scanning length, was rather
limited compared to the frequency domain resolution. In this specific case
(L=0.4 m), ∆k=16 rad/m. By means of zero-padding [28, 29] in the spatial
domain (zero-padding factor = 4), before taking the spatial Fourier trans-
form, the resolution in the wavenumber domain was improved. The results
can be seen in Fig. 4 for the case without zero-padding in the spatial do-
main, and with zero-padding. The effect of zero-padding improves the wave
number domain resolution only slightly, as can be seen from the zooming-in
overlay graphs.

Furthermore, the results shown in Fig. 4 show only one maximum in
each quadrant, which clearly indicates that for the present set-up we are
dealing with only one single wave propagating through the structure. Given
the fact that the plate is excited in normal direction (i.e. an asymmetric
excitation across the thickness of the plate), and the much higher flexibility
of the plate for bending (antisymmetric A0 Lamb wave) as compared to
compression (symmetric S0 Lamb wave), it is very likely that this single
wave is a bending wave. The compression waves (symmetric S0 Lamb wave)
remains below the noise level in Fig. 4.

Figure 5 shows the lines that indicate the maxima in the four quadrants of
the k − ω domain, as obtained by the spatial Fourier transform (using zero-
padding factor = 4 for transformation from x to k). Because the Fourier
transform from the timedomain to the frequency domain is done on real
signals, the results in the quadrants on the left and on the right of f=0
exhibit complex symmetry (being their complex conjugate). Thus, only the
results of quadrant 1 and 2 are shown in Fig. 5b. This figure illustrates
the earlier derived wavenumber resolution ∆k=16 rad/m. Even when using
zero-padding, the wavenumber resolution effectively remains the same.

4.2. Prony fit results

A Prony fit is pursued using two roots, one for each wave traveling away
from the point of excitation, i.e. the waves running in positive and negative
x-direction, respectively.

In addition to this two-pole Prony fit of the data, a Prony fit is pursued
in which only one pole is used, employing only half of the measurement
data set, i.e. for x > x0, where x0=0.1973 m is the measurement position
of the laser Doppler vibrometer. Figure 6a shows the wavenumber k as
function of frequency f , based upon the measurement data for x > x0, using
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Figure 6: a) Dispersion measurement results as function of wavenumber k and frequency
f , using measurement data for x > x0 only. b) Prony results shown as blue dots.
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Figure 7: Wavenumber k estimate as function of frequency f , based upon Prony fit using
one pole (using half the dataset) and based upon Prony fit with 2 poles (using the full
dataset). a) Full frequency range. b) Zooming in on the frequency range from 10 to 20kHz

a two-dimensional Fourier transform. Obviously, now only two of the four
quadrants show high levels of vibration. Figure 6b shows the Prony fit results.

It appears that the accuracy of the wavenumber estimate is improved
when using only half the space-time dataset, employing a single-pole Prony
fit. Figure 7 shows that the wavenumber estimate is much more smooth
(which is physcially speaking more logical) for the single-pole Prony fit using
half the space-time dataset as compared to the two-pole Prony fit using the
complete space-time dataset. This effect is due to the disturbing influence
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of the measurement data on the left of the excitation point when fitting the
right running waves, and vice versa. For this reason it is better to consider
only half of the measurement data, either to the left or to the right of the
point of excitation, and fit the data with a single Prony pole.

4.3. Wave fitting results
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Figure 8: Contour plots of the normalized error e as function of testing wavenumber k
and frequency f . a) Using a test-wave φk = eikx/

√
|x− x0|. b) Using a test-wave φk = eikx.

Employing the wave fitting approach, Fig. 8 shows the normalized error
e (Eq. 7) as function of the fitting parameter k and as function of frequency.
In this specific case k is considered to be real, as the damping of the plate
is low. Fig. 8a shows the error for the right running wave fit, using the
measurement data for which x > x0 and using a test-wave φk = eikx/

√
|x− x0|

(Eq. 4). Similar results are obtained for the left running wave fit (using
the measurement data for which x < x0). The resulting estimate of the
wavenumber is shown in Fig. 9.

For purpose of illustration, Fig. 8b shows the error when using a test-wave
φk = eikx. It is clear that the omission of the term 1/

√
|x− x0| that accounts

for the geometric attenuation of the structural vibration level as function of
the distance from the point of excitation, x = x0, causes a higher normalized
error e. Omitting the attenuation term results in a minimum error (best fit)
of about 0.5 (Fig. 8b), whilst including the attenuation term results in a
minimum error (best fit) of less than 0.1 (Fig. 8a). Clearly the attenuation
term 1/

√
|x− x0| should be taken into account.
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Figure 9: Wavenumber k estimate as function of frequency f , based upon wave fitting. a)
using two waves running in positive and negative x-direction. b) using the mean of waves
running in positive and negative x-direction.

In Fig. 10a the normalized error e is shown for a frequency of 17.5 kHz,
using both mentioned test-waves. Circles indicate the point where the error
is twice the minimum error. The standard deviation σk can be estimated
following the procedure mentioned in Section 2 (just below Eq. 9). The
standard deviation σk, as function of frequency, can be obtained by searching
for the wavenumber-shift relative to the optimum value for the wavenumber,
for which the error is twice the minimum, and divide this wavenumber-shift
by
√
N − P . In the present case the number of measurement data points

N is equal to 255, and the number of fit parameters P is equal to 1. The
resulting standard deviation σk is presented in Fig. 10b. It shows that, when
using the test wave φk = eikx/

√
|x− x0| (Eq. 4), the standard deviation is in

the order of 1 rad/m in the frequency range from 10 kHz up to 30 kHz. The
normalized standard deviation, i.e. σk/k, can be as low as 2 ·10−3. This low
value of the standard deviation is caused by the redundancy of measurements
points (N=255) and the high signal-to-noise ratio of the measurement when
using time averaging.

As compared to the classical Fourier transform (wavenumber resolution
16 rad/m in the present case), it can be seen that the wavenumber resolu-
tion is improved by about a factor 15. This is caused by the fact that the
wavenumber fit (and the Prony fit) scan over all wavenumbers, whilst the
wavenumber domain resolution of the classical Fourier transform is funda-
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Figure 10: Normalized error e and standard deviation σk using a test-wave φk =
eikx/

√
|x− x0| (solid blue curves) and using a test-wave φk = eikx (dashed green curves).

a) Normalized error e as function of the wavenumber k for a frequency of 17.5kHz. b)
Standard deviation σk as function of frequency f .

mentally limited to ∆k = 2π/L, where L is the scanning length.
It should be noted that the application of the wavenumber fit (and the

Prony fit) it is implicitely assumed that only a limited number of waves are
present. For instance, in the wavenumber fit treated in this section, it is
assumed there is only one single wave propagating in the plate. Obviously,
this presumption must be valid. However, when this presumption is valid, a
highly improved wavenumber resolution is obtained.

It should also be noted that it is required that the excitation point should
be on the line of measurements in order to obtain a valid wavenumber es-
timate. If this would not be the case, a projection of the wavenumber on
the measurement line will be obtained, which will give a bias deviation in
comparison with the true wavenumber.

4.4. Estimate of Young’s modulus and comparison with an analytical model

This section the Young’s modulus of the constrained-layer damping sand-
wich plate under investigation is assessed and compared with an analytical
model.

Considering the results of the previous sections, the wavenumber of the
wave that was measured at a frequency of 50 kHz is approximately equal to
800 rad/m (cfr. Figure 4, 6, 9). As the plate is excited in normal direction,
the waves that are mainly excited are bending waves in the plate. Other
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waves are below the noise level of the measurement. The wavelength of
these bending waves at a frequency of 50 kHz is apparently approximately
λ = 2π/k = 8 mm, which is still large as compared to the thickness of the
plate (1.17 mm). Thus, up to a frequency of 50 kHz, it is allowed to use
the Kirchhoff-Love theory to estimate the Young’s modulus of an equivalent,
homogeneous plate. The Young’s modulus can be computed by means of Eq.
13, assuming the material properties as mentioned in Section 3 (h=1.17 mm,
m′=3.2 kg/m2), and an assumed Poisson’s ratio ν=0.33.

10
3

10
4

10
9

10
10

10
11

SPA_scan2, with zero padding, zp_factor=4

Frequency [Hz]

E
eq

u [N
/m

2 ]

 

 

Spatial FFT, Quadrant 4
Prony pole1
Wavenumber fit
Analytical model

10
4

10
10

Frequency [Hz]

E
eq

u [N
/m

2 ]

 

 

Spatial FFT, Quadrant 4
Prony pole1
Wavenumber fit
Analytical model

a) b)

Figure 11: Young’s modulus Eequ as function of frequency f , based upon maximum search
in the spatial Fourier spectra data in quadrant 4 (solid magenta line), Prony fit (dashed
blue line), and real wavenumber fit (dash-dotted red line). Analytical equivalent model in
dashed thick black line. a) Full frequency range. b) Frequency range from 10 to 30 kHz.

Figure 11 combines the result from the three approaches in one figure.
It shows the Young’s modulus E as function of frequency f of an equivalent
thin plate following Kirchoff’s theory, based upon maximum search in the
spatial Fourier spectra data, Prony fit and real wavenumber fit.

This figure also shows the equivalent Young’s modulus of an equivalent
homogeneous plate of same thickness and mass per unit area, that would
exhibit the same dynamic flexural rigidity at one given frequency. This
equivalent Youngs modulus is computed by the analytical model that was
published by Guyader [30, 31]. The analytical method is based on the trav-
elling wave approach applied to a simplified multi-layer model. In each layer
bending, membrane and shear effects are considered. Continuity conditions
on displacement and shear stresses at each layer interface are used to ob-
tain the equations of motion of the multi-layered plate field expressed in the
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layer 1 layer 2 layer 3
Thickness h [m] 0.3× 10−3 0.69× 10−3 0.18× 10−3

Young’s modulus E [N/m2] 210× 109 300× 106 69× 109

Density ρ [kg/m3] 7800 580 2700
Poisson’s ratio ν [-] 0.33 0.33 0.33

Table 1: Dimensions and material properties of the individual layers of the constrained-
layer damping sandwich plate, as assumed in the analytical model.

function of the first layer field. The input parameters for the computation
of the analytical equivalent Young’s modulus is in correspondence with the
dimensions mentioned in Section 3, as summarized in Table 1. The material
properties for aluminum and steel as known from the literature were used.
The density of the plastic layer was measured, while the Young’s modulus of
this layer was fitted on the measurement data.

From Fig. 11 it can be seen that both the estimate of the Young’s modulus
which is based upon the Prony fit and the wavenumber fit are very smooth
and compare very well with the analytically predicted equivalent Young’s
modulus. It can also be seen that the assessment of the wavenumber, and the
resulting estimate for the frequency dependent equivalent Young’s modulus
Eequ, on the basis of the spatial Fourier transform has problems with the
wavenumber resolution.

The estimated standard deviation σk in the wavenumber estimate as ob-
tained by the wave fitting approach of approximately 1 rad/m in the fre-
quency range from 10 kHz up to 30 kHz, and normalized standard deviation
σk/k is as low as 2 ·10−3. Thus the normalized standard deviation of the
Young’s modulus, as a result of the 4th power in Eq. 13, equals approximately
4 × 2 ·10−3 ≈ 1 ·10−2. However, the estimate of the Young’s modulus also
depends on the assumed thickness, density and Poisson’s ratio, which each
also incorporate an uncertainty.

5. Conclusions

An all-optical, non-contact measurement approach for both excitation
and response measurement was employed to assess the wavenumber and the
dynamic stiffness of a constrained-layer damping sandwich plate. The mea-
surements were taken along a line on the plate, thus reducing the measure-
ment effort without compromising the quality of the wavenumber assessment.
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Repeatedly exciting the plate by a Nd:YAG laser beam, time averaging im-
proved the signal-to-noise ratio of the measurements to a maximum of 100
dB, without DOF-jitter effects.

Three methods for the estimation of the wavenumber as function of fre-
quency were used; the spatial Fourier approach, the Prony approach and the
wave fitting approach. Both the Prony approach and the wave fitting ap-
proach give a good wavenumber domain resolution. The estimates of both
methods compare very well with the analytical results, confirming the cor-
rectness of the estimated equivalent Youngs modulus as function of frequency.
Moreover, the wave fitting approach allows the accuracy of the wave number
to be estimated, which is not possible with the other methods. Further-
more, it is shown that the spatial Fourier approach suffers from a limited
wavenumber domain resolution, which is dictated by the scanning length.

The standard deviation of the wavenumber estimate as obtained by the
wave fitting approach was in the order of 1 rad/m in the frequency range from
10 kHz up to 30 kHz. The best normalized standard deviation was 2� for
the wavenumber estimate and 4 ×2 = 8 � for the Young’s modulus esti-
mate. This low value of the standard deviation is caused by the redundancy
of measurements points and the high signal-to-noise ratio of the measure-
ment when using time averaging. The wavenumber domain resolution of the
classical Fourier transform was 16 rad/m for the case studied.
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operated by the French National Research Agency (ANR-10-LABX-0060/
ANR-11-IDEX-0007) and by INSA-Lyon (BQR VIVARIUM project). The
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