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Abstract: This paper addresses the topic of robot identification. The usual identification method 

makes use of the inverse dynamic model (IDM) and the least squares (LS) technique while robot is 

tracking exciting trajectories. Assuming an appropriate bandpass filtering, good results can be 

obtained. However, the users are in doubt whether the columns of the observation matrix (the 

regressors) are uncorrelated (exogenous) or correlated (endogenous) with the error terms. The 

exogeneity condition is rarely verified in a formal way whereas it is a fundamental condition to 

obtain unbiased LS estimates. In Econometrics, the Durbin-Wu-Hausman test (DWH-test) is a formal 

statistic for investigating whether the regressors are exogenous or endogenous. However, the DWH-

test cannot be straightforwardly used for robot identification because it is assumed that the set of 

instruments is valid. In this paper, a Revised DWH-test suitable for robot identification is proposed. 

The Revised DWH-test validates/invalidates the instruments chosen by the user and validates the 

exogeneity assumption through the calculation of the QR factorization of the augmented observation 

matrix combined with a F-test if required. The experimental results obtained with a 6 degree-of-

freedom (DOF) industrial robot validate the proposed statistic. 

 

Index Terms: Robots identification, Rigid robot dynamics, Instrumental variable method, 

Heteroskedasticity, DWH-test, Wald-statistic. 

  



1 Introduction 
The usual robot identification method makes use of the continuous-time inverse dynamic model and 

the least squares (LS) technique while the robot is tracking some exciting trajectories. This explains 

why robot identification belongs to the closed-loop identification of continuous-time models from 

sampled data. This method, called as Inverse Dynamic Identification Model with Least Squares 

method (IDIM-LS), has been successfully applied to identify the inertial parameters of several 

prototypes and industrial robots, (Olsen et al. 2002), (Swevers et al. 2007), (Hollerbach et al. 2008), 

(Calanca et al. 2011), (Gautier et al. 2013) and (Janot et al. 2014, a) among others. Good results are 

obtained provided that an appropriate bandpass filtering of the joint positions is used to calculate 

the joint velocities and accelerations. However, because robots are identified in closed loop, the 

users can doubt whether the columns of the observation matrix (the regressors) are correlated with 

the error terms (endogenous) or not (exogenous) even with a data filtering, see e.g. (Söderström and 

Stoica 1989), (Garnier and Wang 2008), (Young 2011) and (Gilson et al. 2011).  

Other identification methods were tried: the Total Least-Squares (Xi 1995), the Set Membership 

Uncertainty (Ramdani and Poignet 2005), an algorithm based on Linear Matrix Inequality (LMI) tools 

(Indri et al. 2002), a maximum likelihood (ML) approach (Olsen et al. 2002), the Closed-Loop Output-

Error method (Landau and Karimi 1997), (Landau 2001), (Östring et al 2003) and (Gautier et al. 2013), 

an algorithm based on neural network (Soewandito et al. 2011), a Bayesian approach (Ting et al. 

2006), the extended Kalman filter (Gautier and Poignet 2001) and (Kostic et al. 2004), a method 

which estimates the nonlinear effects in the frequency domain (Wernholt and Gunnarsson 2008) and 

the Unscented Kalman Filter (Dellon and Matsuoka 2009). Although all these techniques are of 

interest, they do not really improve the IDIM-LS method combined with an appropriate data filtering. 

Furthermore, the robustness against data filtering was not studied, some of these approaches were 

not validated on a 6 degrees-of-freedom (DOF) industrial robot and the condition that the regressors 

are not correlated with the error terms is not addressed whereas it is a critical condition to obtain 

unbiased estimates (Hausman 1978), (Davidson and MacKinnon 1993) and (Wooldridge 2009). This 

condition is called as the exogeneity condition. 

The Instrumental Variable method (IV) provides unbiased estimates while the regressors are 

endogenous (Söderström and Stoica 1989), (Garnier and Wang 2008) and (Young 2011). A generic IV 

method for industrial robots identification is proposed in (Janot et al. 2014, a) and (Janot et al. 2014, 

b). This approach called as the IDIM-IV method was successfully validated on a 2 DOF prototype 

robot and on a 6 DOF industrial robot. However, the validity of the instruments was not addressed 

and using the IV method while the regressors are exogenous provides inefficient unbiased estimates 

i.e. their variances are not minimal (Hausman 1978), (Davidson and MacKinnon 1993) and 

(Wooldridge 2009). 

In Econometrics, the Durbin-Wu-Hausman test (DWH-test) is a formal statistic for investigating 

whether the regressors are exogenous or endogenous (Hausman 1978). The DWH-test makes use of 

the Two Stages Least Squares (2SLS) technique and an augmented LS regression. However, the DWH-

test cannot be straightforwardly used for robot identification because it is implicitly assumed that the 

instrumental matrix is well correlated with the observation matrix and uncorrelated with the errors. 

Furthermore, the econometric models are empirical whereas the models used in mechanical 

engineering are based on physical laws (e.g. the Newton's laws). 



In this paper, it is proposed to bridge the gap between Econometrics theory and Control engineering 

practice by presenting a Revised DWH-test suitable for identification of robots. This revisited statistic 

validates/invalidates the model chosen by the user and the exogeneity condition is validated by the 

QR factorization of the augmented observation matrix combined with the F-test. 

A condensed version of this work has been presented in (Janot et al. 2013). This paper contains 

detailed proofs to enlighten the theoretical understanding of the Revised DWH-test, 

heteroskedasticity is taken into account and additional experimental results are provided. 

The rest of the paper is organized as follows. Section 2 recalls the IDIM-LS method and reviews the 

theory of Econometrics. Section 3 introduces the Revised DWH-test while Section 4 is devoted to 

experimental results. Finally, Section 5 concludes the paper. 

 

2 Theoretical Background: Modelling, identification of robots and 

Introduction of the DWH-test 

2.1 Modelling and identification of robots 

The inverse dynamic model (IDM) of robot with n  moving links calculates the ( )1n×  joint torques 

vector idmτ  as a function of generalized coordinates and their derivatives (Khalil and Dombre 2002), 

( ) ( ),idm = +τ M q q N q qɺɺ ɺ , (1) 

where q , qɺ  and qɺɺ  are respectively the ( )1n×  vectors of generalized joint positions, velocities and 

accelerations; ( )M q  is the ( )n n×  inertia matrix; ( ),N q qɺ  is the ( )1n×  vector of centrifugal, Coriolis, 

gravitational and friction torques. 

The modified Denavit and Hartenberg (MDH) notation allows to obtain an IDM which is linear in 

relation to a set of base parameters β  

( ), ,idm =τ IDM q q q βɺ ɺɺ  , (2) 

where ( ), ,IDM q q qɺ ɺɺ  is the ( )n b×  matrix of basis functions of bodies dynamics and β  is the ( )1b×  

vector of base parameters. 

The base parameters are the minimum number of dynamic parameters from which the IDM can be 

calculated. They are obtained from the standard dynamic parameters by regrouping some of them 

with linear relations (Mayeda et al. 1990). The standard parameters of a link j  are jXX , jXY , jXZ , 

jYY , jYZ  and jZZ  the six components of the inertia matrix of link j  at the origin of frame j ; jMX , 

jMY  and jMZ  the components of the first moment of link j ; jM  the mass of link j ; jIa  a total 

inertia moment for rotor and gears of actuator j ; jFv  and jFc  the viscous and Coulomb friction 

parameters of joint j . 

The direct dynamic model (DDM) of robots is given by 



( ) ( ),idm= −M q q τ N q qɺɺ ɺ . (3) 

Proportional-Derivative (PD) and Proportional-Integral-Derivative (PID) controls are often 

implemented to identify the dynamic parameters. The joint j  signal control 
j

vτ  is given by 

( ) ( )j j jj r mesv C s q qτ = − , (4) 

where ( )jC s  is the transfer function of the joint j  controller, 
jrq  is  the joint j  position reference,  

jmesq  is the measurement of jq  the joint j  position, s  is the time derivative operator i.e. /s d dt= . 

The data available from robots controllers are mesq  the ( )1n×  vector of measurements of q  and τv , 

the ( )1n×  vector of control signals. The joint torques are connected with the control signals by the 

following relation 

τ τ=τ G v , (5) 

where τG  is the ( )n n×  diagonal matrix of drive gains. The diagonal components of τG  have a priori 

values given by manufacturers. 

In (2), q  is estimated with q̂  obtained by filtering mesq  through a lowpass Butterworth filter in both 

the forward and reverse directions. ( )ˆ ˆ,q qɺ ɺɺ  are calculated with a central differentiation algorithm of q̂

. τ  being perturbed by high-frequency disturbances, a parallel decimation procedure is used to 

eliminate torque ripples (see (Gautier et al. 2013) for the details). 

Because of uncertainties, the ( )1n×  vector of the actual joint torques τ  differs from idmτ  by an error 

e . The model (2) is sampled while the robot is tracking trajectories (see (Gautier et al. 2013) for the 

details). After data acquisition and data filtering, the following overdetermined linear system is 

obtained 

( ) ( )ˆ ˆˆ , ,= +y τ X q q q β εɺ ɺɺ , (6) 

where ( )y τ  is the ( )1r ×  measurements vector built from the actual torques τ ; ( )ˆ ˆˆ , ,X q q qɺ ɺɺ  is the 

( )r b×  observation matrix built from the sampling of ( )ˆ ˆˆ , ,IDM q q qɺ ɺɺ ; ε  is the ( )1r ×  sampled vector of 

e ; er n n= ⋅  is the number of rows in (6), en  being the number of rows in a subsystem j . 

Relation (6) is the Inverse Dynamic Identification Model (IDIM). The columns of ( )ˆ ˆˆ , ,X q q qɺ ɺɺ  are the 

regressors. ε  is assumed to have zero mean, to be serially uncorrelated with a covariance matrix Ω  

partitioned so that ( )2 2 2
1 e e en j n n ndiag σ σ σ=Ω I I I⋯ ⋯ , 

enI  being the ( )e en n×  identity matrix. 2
jσ  

is estimated through the Ordinary Least Squares (OLS) solution of a subsystem j  (see (Gautier et al. 

2013) for the details). The IDIM-LS estimates and their covariance matrix are given by 

( ) 11 1ˆ T T
LS

−− −=β X Ω X X Ω y , ( ) 11ˆ T
LS

−−=Σ X Ω X .  (7) 



The IDIM-LS estimates are unbiased if 

( )TE =X ε 0 ,  (8) 

where ( ).E  is the expectation operator (Davidson and MacKinnon 1993). 

Because robots are identified in closed loop, the users can doubt whether ( )ˆ ˆˆ , ,X q q qɺ ɺɺ  is correlated 

with ε  or not. To overcome the problem of a correlation between X  and ε , the Two-Stage-Least-

Squares (2SLS) technique is an appropriate method. 

 

2.2 Review of theory of Econometrics 

The 2SLS method estimates β  with two LS regressions. Researchers in Econometrics consider the 

model (6) as the reduced form of the general model defined by 

= +
 = +

y Xβ ε

X ZΠ V
, (9) 

where Z  is the ( )r z×  instrumental matrix with z b≥ ; Π  is the ( )z b×  matrix of coefficients to be 

identified and V  is a ( )r b×  matrix of error terms. 

The columns of Z  are called instruments. If the following assumptions hold ( )rank b=Z , ( )TE =Z ε 0

, ( )TE =Z V 0  and ( )E =V 0 , Z  is said valid. 

The first stage calculates Π̂ , the LS estimate of Π , given by ( ) 1ˆ T T−
=Π Z Z Z X . X̂ , the projected of X  

onto the space spanned by the columns of Z , is given by 

( ) 1ˆ ˆ T T
Z

−
= = =X ZΠ Z Z Z Z X P X , (10) 

where ( ) 1T T
Z

−
=P Z Z Z Z  is the idempotent ( )r r×  projection matrix of Z . 

The second stage calculates the 2SLS estimates. Assuming that ˆ ˆT T
Z =X P X X X  is nonsingular i.e. 

( )ˆrank b=X , the 2SLS estimates and their associated covariance matrix are given by (Wooldridge 

2009) 

( ) 1
1 1

2
ˆ ˆ ˆ ˆT T

SLS

−− −=β X Ω X X Ω y , ( ) 1
1

2
ˆ ˆ ˆT

SLS

−−=Σ X Ω X . (11) 

If  z b=  the 2SLS estimates collapse to the IV estimates given by ( ) 1ˆ T T
IV

−
=β Z X Z y . 

If the 2SLS method is used while relation (8) holds, the estimates are unbiased but their variances are 

not minimal (Hausman 1978), (Davidson and MacKinnon 1993) and (Wooldridge 2009). The Durbin-

Wu-Hausman test (DWH-test) is a formal test which examines whether (8) holds or not. This paper 

focuses on the augmented DWH-test (Hausman 1978). Assuming that Z  is valid, the model (9) can 



be written as ˆ= + +y Xβ Vβ ε . Then, by referring to the coefficient corresponding to V  as γ  and 

rewriting (9) after adding and subtracting Vβ , one obtains ( ) ( )ˆ= + + − + = + +y X V β V γ β ε Xβ Vθ ε , 

with = −θ γ β  being the ( )1b×  vector of omitted parameters that explain the correlation between X  

and ε . The following relation called as "exogeneity condition" is obtained 

( ) ˆTE = ⇔ =X ε 0 θ 0 . (12) 

Because V  is not known, its estimate is calculated with ˆ ˆ= −V X ZΠ  and the following augmented 

regression is built ˆ  
 = +  

 

β
y X V ε

θ
. The LS estimates β̂  and θ̂  are then calculated and with an 

appropriate statistical test (e.g. F-test), it is checked that the null hypothesis 0
ˆ:H =θ 0  holds. If the 

test accepts 0H , the LS estimates are unbiased, otherwise they are biased (Hausman 1978) and 

(Wooldridge 2009). 

Although the DWH-test is of great interest, it cannot be used as it is. First, the unbiasedness of the 

2SLS estimates and the DWH-test are based on the fact that the Z  is valid. In practice, how to 

validate/invalidate this assumption? Second, the DWH-test can detect a bias of the LS estimator but 

it cannot provide the origin of this bias. Third, the models used in Econometrics are empirical 

whereas the models used in Mechanical/Electrical Engineering are mostly based on physical laws. 

Fourth, the notion of closed-loop identification is not addressed in Econometrics. In the following 

section, a Revised DWH-test that validates/invalidates the construction of Z  and determinates the 

origin of the bias of LS estimates is presented. 

 

3 A Statistic to Validate/Invalidate the IDIM-LS Estimates 

3.1 Preliminary definitions 

Because of noisy measurements, the following definitions are introduced 
j j jmes nf mesq q qδ= + , 

j jj nf j qτ τ δτ δτ= + + , ˆ ˆ
jj nf jq q qδ= + , ˆ ˆ

jj nf jq q qδ= +ɺ ɺ ɺ  and ˆ ˆ
jj nf jq q qδ= +ɺɺ ɺɺ ɺɺ . , ,

j j jnf nf nfq q qɺ ɺɺ  are the joint j  noise-

free position, velocity and acceleration respectively, 
jnfτ  is the joint j  noise-free torque given by 

( )( )j j j jnf r nfg C s q qττ = − , 
jmesqδ  is the measurement error, ˆ jqδ , ˆ

jqδ ɺ  and ˆ
jqδ ɺɺ  are the errors in ˆ jq , ˆ

jqɺ  

and ˆ
jqɺɺ  respectively. At last ( )

j j jq mesg C s qτδτ δ=  is the error in jτ  due to the feedback and jδτ  is the 

error in jτ  due to the measurement noise. 

Let 1

T

nτ δτ δτ =  e ⋯  be the ( )1n×  vector of measurements noises in τ , 
1mes n

T

q q qδτ δτ =  e ⋯  

be the ( )1n×  vector of measurements noises in τ  due to 
1 n

T

mes mes mesq qδ δ δ =  q ⋯  the ( )1n×  

vector of measurements noises in mesq . Let ˆδ q , ˆδ qɺ  and ˆδ qɺɺ  be the ( )1n×  vector of noises in q̂ , q̂ɺ  

and q̂ɺɺ  respectively with [ ]1ˆ ˆ ˆ T

nq qδ δ δ=q ⋯ , 1
ˆ ˆ ˆ T

nq qδ δ δ =  qɺ ɺ ɺ⋯  and 1
ˆ ˆ ˆ T

nq qδ δ δ =  qɺɺ ɺɺ ɺɺ⋯ . Let 

, ,nf nf nfq q qɺ ɺɺ  be the ( )1n×  vector of noise-free positions, velocities and accelerations respectively. 



Since q̂  is obtained through the filtering of mesq  and since ( )ˆ ˆ,q qɺ ɺɺ  are calculated from the 

differentiation of q̂ , the errors mesδq  and ˆδ q , ˆδ qɺ , ˆδ qɺɺ  are correlated. 

 

3.2 Exogeneity condition for robot identification 

For robot identification, the true model is assumed to be 

nf q

nf

τ = + +


= +

y X β ε ε

X X V
, (13) 

where nfX  is the ( )r b×  noise-free observation matrix built from the sampling of ( ), ,nf nf nfIDM q q qɺ ɺɺ , 

τε  is the ( )1×r  sampled vector of τe ; qε  is the ( )1×r  sampled vector of 
mesqe ; V  is the ( )r b×  matrix 

of error terms that depends on the sampling of ˆδ q , ˆδ qɺ , ˆδ qɺɺ . 

With ( ) ( )qE E τ= =ε ε 0 , ( )E =V 0  and τε  being uncorrelated with qε , one obtains ( )TE τV ε  = 

( ) ( )TE E τ =V ε 0  and ( )T
qE τε ε  = ( ) ( ) 0T

qE E τ =ε ε . Because mesδq  and ˆδ q , ˆδ qɺ , ˆδ qɺɺ  are correlated, qε  

and V  are also correlated. As usually done in Statistics, we introduce q ′=ε Vγ  where ′γ is the ( )1b×  

vector of parameters that explain the correlation between V and qε . With nf = −X X V  and by 

introducing ′= −θ γ β  the ( )1b×  vector of omitted variables, it yields τ= +ε ε Vθ . After calculations, 

one obtains ( ) ( )T TE E=X ε V V θ . 

( )TE =X ε 0  implies two exogeneity conditions 

=θ 0 , (14) 

or 

=V 0 . (15) 

′γ  being the vector of parameters that have no real physical meaning, ′γ  and β  are not of the same 

nature in the case of robot identification and relation (14) is quite implausible. Furthermore, by 

calculating q̂  through the filtering of mesq  and by calculating ( )ˆ ˆ,q qɺ ɺɺ  from the differentiation of q̂ , the 

relations ˆδ ≈q 0 , ˆδ ≈q 0ɺ , ˆδ ≈q 0ɺɺ  are expected. V  being built from the sampling of ˆδ q , ˆδ qɺ , ˆδ qɺɺ , 

relation (15) is the expected relation. 

Another way of looking at (15) is the design of the right inputs (also called 'optimal trajectories' in 

robotics) that allow to obtain the best estimates. This is the experiment design (Aguero and Goodwin 

2006) and (Aguero and Goodwin 2007). The works presented in these references cannot be 

straightforwardly applied for robot identification because robots are nonlinear Multi-Input-Multi-

Output (MIMO) systems whereas the works presented in these references are focussed on linear 

Single-Input-Single-Output (SISO) systems. At last, the basis functions contain nonlinear functions. 

Those reasons explain why the authors suggest to run the proposed approach. 



According to (Gautier 1991), (15) is equivalent to state that θ  has no influence on robot dynamics. 

To assess the influence of θ , (6) is first rewritten as [ ] XTD XTDτ τ
 = + = + 
 

β
y X V ε X β ε

θ
 where 

[ ]XTD =X X V  is the ( )2r b×  augmented observation matrix and 
TT T

XTD  =  β β θ  is the ( )2 1b ×  

augmented vector of parameters. Second, the QR decomposition of XTDX  is considered. This gives 

( )2 2

XTD

XTDXTD
r b b− ×

=
 
 
  

X

X

R
X Q

0
, (16) 

where 
XTDXQ is a ( )r r×  orthogonal matrix i.e. 

XTD XTD

T
r=X XQ Q I , and 

XTDXR  is a ( )2 2b b×  upper triangular 

matrix. 

Third, let krX  (resp. krV ) be the absolute value of the b  first (resp. last) diagonal elements of 
XTDXR  i.e. 

( ),
XTD

kr R k k=X X  for 1, ,k b= …  (resp. ( ),
XTD

kr R k k=V X  for 1, ,2k b b= + … ). According to (Gautier 1991), 

θ  has no influence if all krV 's are null 

0kr =V  for 1, ,k b= … . (17) 

In this case, (15) holds because XTDX  is rank deficient and collapses to X . 

Fourth, if all or some krV 's are not null, then θ  may significantly contribute to robot dynamics. To 

assess this contribution and to make a final decision, a F-test associated with the following 

hypothesis 0 :H =θ 0  is run. If the F-test accepts 0H , then the LS estimates are unbiased; otherwise 

they are biased. 

In this section, the exogeneity condition for robot identification has been given. However, it is 

assumed that a valid instrumental matrix Z  exists. In the following section, it is explained how to 

construct Z  and how to validate/invalidate this construction. 

 

3.3 Construction and validation/invalidation of an instrumental matrix 

In (Janot et al. 2014, a), it has been shown that a ( )r b×  valid instrumental matrix is 

( ), ,nf nf nf nf= =Z X X q q qɺ ɺɺ . (18) 

where ( ), ,nf nf nfX q q qɺ ɺɺ  is the ( )r b×  sampled matrix of  ( ), ,nf nf nfIDM q q qɺ ɺɺ . 

To build Z , the DDM given by (3) is simulated with the previous IV estimates denoted as 1ˆ it
IV

−
β and 

assuming the same references and the same control law structure for both the actual and the 

simulated robots. Sqɺɺ  the vector of the simulated joint accelerations is given by 

( ) ( )1 1ˆ ˆ, , ,it it
S IV S S S S IV

− −= −M q β q τ N q q βɺɺ ɺ  where ,S Sq qɺ  are respectively the ( )1n×  vectors of the simulated 

joint positions and velocities calculated by numerical integration of the DDM while Sτ  is the ( )1n×  

vector of simulated torques with 
jSτ , the jth element of Sτ , is given by ( )( )j j j jS j r Sg C s q qττ = − . 



Let Ẑ  defined by 

( )1ˆˆ , , , it
S S S IV

−=Z X q q q βɺ ɺɺ , (19) 

where ( )1ˆ, , , it
S S S IV

−X q q q βɺ ɺɺ  is the ( )r b×  sampled matrix of  ( )1ˆ, , , it
S S S IV

−IDM q q q βɺ ɺɺ . 

At iteration it , the IV estimates are given by 

( ) 1ˆ ˆ ˆit T T
IV

−
=β Z X Z y . (20) 

In order to ensure ( )ˆ , ,nf nf nf≈Z X q q qɺ ɺɺ  1ˆ it
IV

−∀β , the gains of the simulated controller of the simulated 

robot are updated according to ˆ it
IVβ . The updating procedure is completely described in (Janot et al. 

2014, a) and (Janot et al. 2014, b). According to the results presented in (Janot et al. 2014, a), this IV 

approach can be considered as a one-step IV algorithm. Consequently, a one-step 2SLS algorithm is 

considered for experiments. 

It is now shown how to validate/invalidate the construction of Ẑ . With nf=Z X , the following 

equality holds b=Π I  where bI  is the ( )b b×  identity matrix. expΠ̂  the expected value of Π̂  the 

estimate of Π  is defined by exp
ˆ

b=Π I . expˆ k −π  the expected value of the kth column of Π̂  is defined as 

( )expˆ 1k i− =π  for i k=  and ( )expˆ 0k i− =π  for i k≠ . (21) 

ˆ kπ  the kth column of Π̂  is calculated with ( ) 1ˆ ˆ ˆˆ T T
k k

−
=π Z Z Z x  where kx  is the kth column of X . ˆ kv  the 

kth column of  V̂  is given by ˆˆ ˆk k k= −v Zπ x . It is assumed that ( )ˆˆ ,
kk N vv 0 Ω∼  where ˆ kvΩ  is a diagonal 

matrix whose the diagonal elements are unknown to the users. In (White 1980), the author showed 

that the ith diagonal element of 
ˆ kv

Ω  can be estimated with ( ) ( )2
ˆ

ˆ ˆ,
k

ki i i=
v

Ω v , ( )ˆ k iv  being the ith 

element of  ˆ kv . The estimated covariance matrix of ˆ j
kπ  is then given by 

( ) ( )1 1

ˆ ˆ ˆ
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ

k k k

T T T
− −

=
π π v
Σ Z Z Z Ω Z Z Z . (22) 

Then, the following Wald-statistic is calculated 

2 1
ˆ ˆ ˆ

ˆ ˆˆ
k k k k

Tη −=
π π π πδ
δ Σ δ , (23) 

where exp
ˆ ˆ ˆ

k
k k −= −

π
δ π π . 

If ( )2 2
ˆ bη χ≤
δ

 for a level of significance α  usually chosen between 0.1 and 0.01, 0 expˆ ˆ: k kH −=π π  holds. 

The construction is Ẑ  validated. Otherwise, this construction is invalidated. 

Relation (23) indicates if the distance between ˆ kπ  and expˆ k −π  is compatible the variances calculated. 

If the Wald-test accepts 0 expˆ ˆ: k kH −=π π  for all k , then the relation exp
ˆ ˆ=Π Π  is verified and that 

proves that the statistical assumption made on V̂  hold. Indeed, if (23) holds, ˆ kπ  is a consistent 



estimate of expˆ k −π  and there exists a compact neighbourhood such that expˆ ˆk k −−π π  is finite. Because 

the trajectories are bounded and according to the results exposed in (White 1980), it follows that ˆ kv  

is a consistent estimate of kv . Since ( )E =V 0  implies ( )kE =v 0 , one obtains ( )ˆ kE =v 0  for all k  

and this leads to ( )ˆE =V 0 . 

 

3.4 Algorithm of the Revised DWH-test for robot identification 

The Revised DWH-test is run as follows (see Fig. 1): 

1. Construct the instrumental variable matrix Ẑ  and validate/invalidate this construction with the 

algorithm described in Section 3.3. 

2. If Ẑ  is valid, calculate ZXV ˆˆ −= . 

3. Check with the QR decomposition of XTDX  that θ  has no influence on robot dynamics as explained 

in Section 3.2. 

4. If the krV 's are not null, assess the contribution of θ  thanks to a F-test associated with 0 :H =θ 0 . If 

the F-test accepts 0H , then the LS estimates are considered as unbiased; otherwise, they are biased. 

 

 

Fig. 1. Scheme of the Revised DWH-test suitable for robot identification 

 

Compared with the classical regressed DWH-test, the Revised DWH-test can determine the origin of 
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the bias by evaluating the validity of the instruments, can detect a model misspecification and 

combines the QR factorization with a F-test. Those remarks make the proposed statistic relevant for 

mechatronic system identification. 

 

4 Experimental Identification Results Obtained with the TX40 

 

4.1 Model Reduction and Validation of the Statistical Hypotheses 

Before presenting the experimental results obtained with the TX40 robot, the F-test used to 

eliminate the dynamic parameters having no effect on robot dynamics is first introduced. Then, the 

tests which validate/invalidate the statistical assumptions are presented. 

4.1.1 F-test 

Some dynamic parameters remain poorly identifiable because they are small. They can be cancelled 

to simplify the inverse and direct models. The most rigorous way consists in using the F-test 

(Davidson and MacKinnon 1993) which is carried out with the weighted error 1/2−=ε Ω ε . Because 

( ) ( )1/2 1/2 1/2 1/2T T
rE E− − − −= = =εε Ω εε Ω Ω ΩΩ I , it is assumed that ( ), rΝε 0 I∼  and the samples of ε  are 

independent. From b  base parameters, bc  parameters may define the set of essential parameters 

that is enough to describe the robot dynamics. The F-test is performed as follows: 

1. First, one runs the 2SLS method with the b  base parameters and one computes ε ; 

2. Second, one runs the 2SLS method with the bc  essential parameters and one computes cε , the 

error norm obtained with the reduced model; 

3. Third, one calculates 

( ) ( )
( )

2 2

2
ˆ c b bc

F
r b

− −
=

−

ε ε

ε
.  (24) 

If F̂  is less than ( ) ( ) ( )1 , ,b bc r bF α− − − , the F-test accepts the model reduction; otherwise, it is rejected. 

The F-test works if  ( ), rΝε 0 I∼  holds and if the samples of ε  are independent. These assumptions 

must be validated with the Kolmogorov-Smirnov test (KS-test) and the Durbin-Watson test (DW-test). 

4.1.2 Kolmogorov-Smirnov test (KS-test) 

The KS-test is a nonparametric test for equality of continuous one dimensional probability 

distribution that can be used to compare a sample with a reference probability distribution. The KS-

test quantifies a distance between the empirical distribution function (EDF) of the sample and the 

cumulative distribution function (CDF) of the reference distribution. In our case, the null hypothesis is 

( )0 : , rH Νε 0 I∼ . The EDF of ε  is compared with the CDF of the reference distribution via a KS-test 

with a 0.05 level of significance. 



4.1.3 DW-test 

Assuming ( ), rΝε 0 I∼ , the DW-statistic is given by 

( ) ( )( ) ( ) ( )2 2

1
2 1

1 2 1
r r

i i

dw i i iε ε ε ρ
= =

= − − ≈ −∑ ∑ , (25) 

where 1ρ  is the sample autocorrelation and ( )iε  is the ith sample of ε . 

The value of dw  lies between 0 and 4. 2dw =  indicates no autocorrelation i.e. 1 0ρ =  and if the DW-

statistic is substantially less than 2, there is evidence of positive serial correlation. Small values of dw  

indicate that successive error terms are close in value to one another (or positively correlated). 

Similarly, if dw  is greater than 2, successive error terms are much different in value from one another 

(negatively correlated). 

For robot identification, as a rough rule of thumb, if dw  varies between 1.8 and 2.2, ε  can be 

considered as serially uncorrelated. Otherwise, a suspicion of a serial correlation is legitimate. 

4.1.4 KS-test, Wald-test and F-test with MATLAB 

In order to perform the KS-test, the kstest MATLAB function is used. The level of significance α is 5%. 

It is recommended to calculate the p-value in order to make a good interpretation of the result. 

To perform the Wald-test, (23) is first calculated and the chi2cdf MATLAB function is used. For 

instance, with (23), the following instruction is used ( )2
ˆ1 2 ,p chi cdf bη= −
δ

 where p is the p-value. It is 

checked that p α≥  to validate the set of instruments. 

For the F-test, the fcdf MATALAB function is used. F̂  given by (24) is first calculated and the 

following instruction is used ( )ˆ1 , ,p fcdf F b bc r b= − − −  and if p α≥ , the model reduction is 

validated. 

 

4.2 Brief introduction of the TX40 Robot 

The TX40 robot has a serial structure with six rotational joints and is characterized by a coupling 

between the joints 5 and 6. This coupling adds two additional parameters: 6mfv  the viscous friction 

coefficient of motor 6 and 6mfc  the dry friction coefficient of motor 6. The TX40 robot has 60 base 

dynamic parameters. Its complete modelling is given in (Janot et al. 2014, a). 

The robot is PD-controlled and jτ  is given by 

( )( )j j j j j jj p r mes v mesg k q q k qττ = − − ɺ . (26) 

where 
jpk  is the proportional gain in Nm/rad, 

jvk  is the derivative gain in Nm/(rad/s) , 
j

gτ  is the 

drive gain and 
jmesqɺ  is the velocity calculated from the differentiation of 

jmesq . 



The bandwidth of the first (resp. last) three position closed-loops is 10Hz (resp. 20 Hz). The results 

obtained with a PID controller sticking to those given in this paper, the use of a PD controller is 

enough and this is consistent with the results presented in (Gautier et al. 2013).  

The reference trajectories ( ), ,r r rq q qɺ ɺɺ  are designed so that rqɺɺ  are trapezoidal. Since 

( )( )ˆ ˆˆ , , 200cond =X q q qɺ ɺɺ , ( ), ,r r rq q qɺ ɺɺ  excite well the base parameters (Gautier and Khalil 1992) and 

(Pressé and Gautier 1993). To evaluate the three identification methods, data are stored with a 

measurement frequency 5mf kHz= . 

To validate the estimates, cross-validations are performed. They are carried out with 3 fifth-order 

polynomials passing through points different from those defined to build the trajectories used to run 

the 3 identification methods. For cross-test validations, data are stored with a measurement 

frequency 1cv
mf kHz=  and the relative errors are calculated with the LS or 2SLS estimates and with 

these trajectories (see (Janot et al. 2014, a) for the details). 

 

4.3 IDIM-LS method, 2SLS method and regressed DWH-test combined with 

an appropriate bandpass filtering 

The IDIM-LS method is carried out with a filtered position q̂  calculated with a 40 Hz fourth-order 

Butterworth filter. For the three methods, the parallel decimation is carried out with a 10 Hz 

Tchebyshef filter. 

Before calculating the LS and the 2SLS estimates, the construction of Ẑ  is validated with the 

procedure described in the subsection 3.3. The results are given in Table 1 where jb  is the number of 

identifiable parameters of a joint j . Because one has ( )2 2
ˆ bη χ≤
δ

 with a p-value greater than 0.05, Ẑ  

is valid and the 2SLS estimates are thus unbiased. For the columns associated with joint 

accelerations, the ˆ
kr

V
's are not null although very small (i.e. less than 1e-3) whereas for the columns 

associated with joint positions and/or velocities only, the ˆ
kr

V
's are null (smaller than 1e-20).  A F-test 

is therefore required to make a final decision. 

 
TABLE 1: 

RESULTS OF THE WALD-TEST (23) FOR EACH JOINT J 

 

Joint j  jb  ( )2
jbχ  ( )2

ˆmax η
δ

 

p-value 

1 34 48.5 18.5 0.98 

2 37 52.3 12.4 0.99 

3 31 45.0 18.1 0.97 

4 24 36.5 5.4 0.99 

5 20 31.3 11.7 0.93 

6 11 19.7 9.1 0.61 

 



The first hypothesis ( ), rΝε 0 I∼  is validated with the KS-test with a level of significance 0.05α = . The 

distribution of ε  obtained with the IDIM-LS method and its estimated Gaussian are plotted in Fig. 3 

(similar results are obtained with the two others methods). The KS-test accepts ( ), rΝε 0 I∼  and the 

distribution of ε  matches a Gaussian distribution with the three methods. Furthermore, dw  

calculated with (25) and given in Table 2 is close to 2.0 with the three methods. ε  is thus serially 

independent with ( ), rΝε 0 I∼ . 

The IDIM-LS and the 2SLS estimates are given in Table 2 as well the estimates θ̂  calculated with the 

augmented DWH-test (NS stands for "Not Significant"). The F-test accepts to cancel the base 

parameters such that ( )ˆˆ%
LS i

σ
β

 (resp. ( )2
ˆˆ%

SLS i
σ
β

) is greater than 30%. Actually, one obtains 48.5=ε

with the whole model and 49c =ε with the reduced model. With 60b = , 28cb =  and 2160r = , one 

has ˆ 1.4F ≈  with a p-value greater than 0.05. From 60 base parameters, only 28 define a set of 

essential dynamic parameters. Since the F-test accepts 0 :H =θ 0 , relation (15) holds, XTDX  collapses 

to X  and ( ) ( )ˆ ˆˆ , , , ,nf nf nf≈X q q q X q q qɺ ɺɺ ɺ ɺɺ . However, the 2SLS estimates are slightly less efficient than the 

IDIM-LS estimates because one has 
2 2

ˆ ˆˆ ˆ% %
SLS LS

σ σ≥
β β

 for each estimate. This result is consistent with 

the theory of Statistics (Wooldridge 2009). 

Direct comparisons have been performed with the following relative errors: ˆ
ˆ% LSrel = −y y Xβ y  for 

the IDIM-LS method, ˆ 2
ˆ% SLSrel = −y y Zβ y for revised DWH-test and for ˆ

ˆ% XTD XTDrel = −y y X β y

the regressed DWH-test. With relative errors close to 6% (see Table 2), the matching is therefore 

good. Cross-test validations have been performed. In Fig. 2, the torque reconstructed with the IDIM-

LS estimates and with the second trajectory matches the measured one while the norm of the 

relative error calculated with each validation trajectory and with the IDIM-LS and the 2SLS estimates 

given in Table 3 stick to those calculated with the direct comparisons. The estimates can be 

considered as unbiased. 

 

TABLE 2: 

IDIM-LS AND 2SLS ESTIMATES, REGRESSED DWH-TEST ESTIMATES – APPROPRIATE DATA FILTERING 

 

 ( )ˆ
ˆ ˆ%

LS
LS σ

β
β   ( )

2
ˆ2

ˆ ˆ%
SLS

SLS σ
β

β  θ̂  

ZZ1R 1.26 (1.2%) 1.25 (1.3%) NS 

Fv1 8.1 (0.7%) 8.20 (0.7%) NI 

Fc1 6.60 (2.3%) 6.54 (2.6%) NI 

XX2R -0.48 (2.5%) -0.48 (2.9%) NS 

XZ2R -0.16 (4.4%) -0.16 (4.8%) NS 

ZZ2R 1.09 (1.1%) 1.09 (1.2%) NS 

MX2R 2.20 (2.5%) 2.21 (2.9%) NI 

Fv2 5.68 (1.1%) 5.68 (1.2%) NI 

Fc2 7.76 (1.8%) 7.77 (2.1%) NI 

XX3R 0.13 (9.5%) 0.13 (10.2%) NS 

ZZ3R 0.12 (7.6%) 0.12 (8.8%) NS 

MY3R -0.59 (2.2%) -0.59 (2.3%) NI 



Ia3 0.084 (8.8%) 0.088 (9.2%) NS 

Fv3 2.02 (1.7%) 2.03 (1.8%) NI 

Fc3 6.10 (1.8%) 6.05 (1.9%) NI 

MX4 -0.02 (26.7%) -0.02 (30.0%) NI 

Ia4 0.029 (8.8%) 0.029 (9.4%) NS 

Fv4 1.14 (1.5%) 1.15 (1.5%) NI 

Fc4 2.34 (2.6%) 2.27 (2.6%) NI 

MY5R -0.03 (13.7%) -0.03 (14.1%) NI 

Ia5 0.044 (8.9%) 0.041 (11.2%) NS 

Fv5 1.87 (1.8%) 1.92 (2.0%) NI 

Fc5 2.93 (3.0%) 2.79 (3.5%) NI 

Ia6 0.01 (9.4%) 0.01 (10.9%) NS 

Fv6 0.67 (1.5%) 0.69 (1.6%) NI 

Fc6 2.08 (2.5%) 2.00 (2.8%) NI 

fvm6 0.63 (1.6%) 0.63 (1.8%) NI 

fcm6 1.80 (3.7%) 1.81 (4.2%) NI 

ˆ%rely  6.0% 6.0% 6.0% 

dw  1.8 1.9 1.9 

 
TABLE 3: 

RELATIVE ERRORS OBTAINED WITH CROSS-VALIDATION, THE IDIM–LS AND THE 2SLS ESTIMATES 

 

 cv
mf  ˆ%rely  (LS) ˆ%rely  (2SLS) 

Trajectory 1 1 kHz 6.5% 6.5% 

Trajectory 2 1 kHz 6.5% 6.5% 

Trajectory 3 1 kHz 7.0% 7.0% 
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Fig. 2. Cross-validations, joints 1, 2, 3, 4, 5 and 6 with 2SLS estimates and with the first trajectory. 

Blue: measurement; red: estimation; black: error. Appropriate data filtering. The constructed torques 

stick to the measured ones. Similar results are obtained with the IDIM-LS method. 
 

 

 

 
Fig. 3. Histogram of IDIM-LS error and its estimated Gaussian – Appropriate data filtering. The 

distribution matches a Gaussian distribution. A similar result is obtained with the 2SLS method.  
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4.4 IDIM-LS method, 2SLS method and the regressed DWH-test  combined 

with an inappropriate data filtering 

In this section, the robustness of the methods against an inappropriate data filtering is studied. The 

IDIM-LS and 2SLS methods are carried out with the position q̂  filtered with a 200 Hz fourth-order 

Butterworth filter and with velocities q̂ɺ  and accelerations q̂ɺɺ , calculated with a central difference 

algorithm of q̂ . The parallel decimation is carried out with a lowpass Tchebyshef filter with a cutoff 

frequency of 100 Hz. 

Because one has ( )2 2
ˆ bη χ≤
δ

 with a p-value greater than 0.05,  Ẑ  is valid and the 2SLS estimates are 

thus unbiased. In that case, the ˆ
kr

V
's  associated with joint accelerations are of the same magnitude 

as those of the krX 's. With the IDIM-LS method, the 2SLS method and the regressed DWH-test, the 

KS-test accepts the hypothesis ( ), rΝε 0 I∼  with a level of significance 0.05α =  while dw  is close to 

2.0 (see Table 4). Finally, it comes out that ε  is serially independent with ( ), rΝε 0 I∼ . 

The estimates of the IDIM-LS, the 2SLS methods and the regressed DWH-test are given in Table 4 

(only the significant parameters are given). At first glance, the IDIM-LS estimates seem acceptable 

because they are not aberrant, the relative error ˆ%rely  is not critical and the histogram of IDIM-LS 

error plotted in Fig. 4 matches a Gaussian distribution. Unfortunately, they are biased since they do 

not stick to the 2SLS estimates while the observed differences are not spanned by the LS variances 

and θ  contributes to the dynamics, the F-test rejecting 0 :H =θ 0 . The 2SLS estimates obtained with 

an inappropriate data filtering are less efficient than those obtained with an appropriate data 

filtering, their relative deviations being four/five times greater. This result highlights the behaviour of 

IV estimators: they are able to provide unbiased estimates with very large deviations. This result is 

consistent with the theory of Statistics (Wooldridge 2009). 

All the components of θ̂  corresponding to inertia parameters (ZZ1R, XX2R, XZ2R, ZZ2R, XX3R, ZZ3R, Ia3, Ia4, 

Ia5, Ia6) and to some gravity parameters (MY3R, MX4, MY5R) are identifiable and have a significant 

contribution because the F-test rejects 0 :H =θ 0 . This is due to the fact that their associated 

columns contain noisy joint accelerations. The augmented DWH-test supports the results of the 

Revised DWH-test (the estimates of the regressed DWH-test are not given because they stick to 2
ˆ

SLSβ

). 

Cross-test validations have been performed and the results obtained with the second trajectory and 

the IDIM-LS estimates are plotted in Fig. 5. Despite the fact that the errors are not negligible, the 

reconstruction of torques is quite acceptable and the IDIM-LS estimates are acceptable for a non-

expert in system identification. This result shows that the cross-validations may be not enough to 

make a final decision. In Table 5, the norms of relative errors calculated with the set of trajectories 

and with the IDIM-LS (resp. the 2SLS) estimates are given. With the 2SLS estimates, these relative 

errors match those calculated with the direct comparisons whereas there are some differences with 

the IDIM-LS estimates although these differences are not as critical as expected. Without running the 

Revised DWH-test, there are no undisputable evidences to conclude that the IDIM-LS estimates are 

biased. 

 



 
Fig. 4. Histogram of IDIM-LS error with its estimated Gaussian – Inappropriate data filtering. The 

error distribution matches a Gaussian distribution. 

 

 

TABLE 4: 

IDIM-LS AND 2SLS ESTIMATES, REGRESSED DWH-TEST RESULTS – INAPPROPRIATE DATA FILTERING 

 

 ( )ˆ
ˆ ˆ%

LS
LS σ

β
β  ( )

2
ˆ2

ˆ ˆ%
SLS

SLS σ
β

β  ( )ˆ
ˆ ˆ%σ

θ
θ  

ZZ1R 1.11 (0.8%) 1.24 (4.1%) -1.22 (3%) 

Fv1 8.23 (0.5%) 8.25 (2.4%) NS 

Fc1 6.42 (1.7%) 6.38 (9.1%) NS 

XX2R -0.38 (1.9%) -0.48 (10.6%) 0.46 (9%) 

XZ2R -0.16 (3.0%) -0.16 (15.9%) 0.14 (16%) 

ZZ2R 0.88 (0.8%) 1.08 (3.8%) -1.0 (3%) 

MX2R 2.42 (1.7%) 2.22 (9.9%) NS 

Fv2 5.63 (0.8%) 5.75 (4.4%) NS 

Fc2 7.88 (1.3%) 7.55 (6.4%) NS 

XX3R 0.19 (5.7%) 0.13 (29.3%) -0.11 (20%) 

ZZ3R 0.07 (6.2%) 0.11 (28.8%) -0.12 (10%) 

MY3R -0.71 (1.0%) -0.60 (6.6%) 0.5 (6%) 

Ia3 0.15 (2.6%) 0.09 (24.5%) -0.07 (20%) 

Fv3 2.03 (1.0%) 2.01 (4.5%) NS 

Fc3 5.96 (1.1%) 5.83 (5.1%) NS 

MX4 -0.01 (20.1%) -0.02 (27.5%) 0.01 (50%) 

Ia4 0.022 (3.9%) 0.028 (25.5%) NS 

Fv4 1.14 (0.6%) 1.17 (3.2%) NS 

Fc4 2.35 (1.0%) 2.23 (6.3%) NS 

MY5R -0.02 (5.7%) -0.03 (28.3%) 0.03 (9%) 

Ia5 0.02 (3.2%) 0.04 (25.2%) -0.03 (12%) 

Fv5 1.84 (0.7%) 1.94 (4.0%) NS 

Fc5 3.01 (1.1%) 2.72 (7.3%) NS 

Ia6 0.007 (3.3%) 0.01 (24.5%) -0.008 (10%) 

Fv6 0.67 (0.6%) 0.69 (3.8%) NS 

Fc6 2.11 (1.0%) 1.97 (6.2%) NS 

fvm6 0.63 (0.6%) 0.64 (3.8%) NS 

fcm6 1.80 (1.4%) 1.74 (8.1%) NS 
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ˆ%rely  17.0% 12.5% 11.0% 

dw  1.7 1.8 1.8 

 
TABLE 5: 

RELATIVE ERRORS OBTAINED WITH CROSSCHECKING, IDIM–LS AND 2SLS ESTIMATES 

 

 cv
mf  ˆ%rely  (LS) ˆ%rely  (2SLS) 

Trajectory 1 1 kHz 20.0% 14.0% 

Trajectory 2 1 kHz 22.0% 14.0% 

Trajectory 3 1 kHz 21.0% 14.5% 
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Fig. 5. Cross-validations, joints 1, 2, 3, 4, 5 and 6 with IDIM-LS estimates and with the second 

trajectory. Blue: measurement; red: estimation; black: error. Inappropriate data filtering. The 

matching is quite good despite the fact that the IDIM-LS estimates are biased. 

 

 

4.5 Robustness against a misspecified model 

The robustness of the Revised DWH-test against a misspecified model is now studied. Because the 

gear ratios are greater than 25, it is legitimate to assume that the parameters of gravity and the off-

diagonal elements of inertia matrices do not contribute significantly to the dynamics. These 

parameters and their associated columns are removed from the IDM. The data are filtered as 

explained in Section 4.3. 

For the inertia parameters of joints 1, 2, 3 and 4, the Wald-test rejects the hypothesis that Ẑ  is valid 

because the minimum of 2
ˆη
δ

 given in Table 6 is greater than ( )2
jbχ  while the p-value is almost null. 

Interestingly, the set of instruments of joint 5 and 6 is valid. This is mainly due to the fact that the 

gravity parameters and the off-diagonal elements of inertia matrices are practically null. Because Ẑ  

is not valid, the 2SLS estimates are biased. 

The IDIM-LS and 2SLS estimates given in Table 7 differ from those given in Table 2. They are 

therefore biased. The KS-test rejects the hypothesis ( ), rΝε 0 I∼  for both methods. The IDIM-LS error 

and its estimated Gaussian are plotted in Fig. 6  and the distribution does not match a Gaussian 

distribution (a similar result is obtained with the 2SLS method). This experiment shows that the 

Revised DWH-test is able to detect a model misspecification. 

 

TABLE 6: 

RESULTS OF THE WALD-TEST (23) FOR THE JOINTS 1, 2, 3 AND 4 – MISSPECIFIED MODEL – APPROPRIATE DATA 

FILTERING 
 

Joint j  jb  ( )2
jbχ  ( )2

ˆmin η
δ

 

p-value 
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1 3 7.81 16.3 ~0 

2 3 7.81 19.1 ~0 

3 4 9.5 25.7 ~0 

4 4 9.5 19.6 ~0 

5 4 9.5 5.1 0.28 

6 6 12.59 4.9 0.56 

 

 

TABLE 7: 

IDIM-LS ESTIMATES AND 2SLS ESTIMATES – MISSPECIFIED MODEL AND APPROPRIATE DATA FILTERING 

 

 ( )ˆ
ˆ ˆ%

LS
LS σ

β
β  ( )

2
ˆ2

ˆ ˆ%
SLS

SLS σ
β

β  

ZZ1R 1.10 (3.0%) 1.08 (3.5%) 

Fv1 8.16 (3.0%) 8.17 (3.6%) 

Fc1 6.50 (10.6%) 6.48 (11.0%) 

ZZ2R 1.37 (2.3%) 1.20 (2.0%) 

Fv2 5.80 (5.2%) 5.83 (5.8%) 

Fc2 6.80 (10.3%) 6.80 (11.0%) 

ZZ3R 0.31 (7.8%) 0.27 (6.7%) 

Ia3 0.05 (36.0%) 0.07 (40.0%) 

Fv3 2.21 (7.2%) 2.22 (7.6%) 

Fc3 5.55 (9.3%) 5.53 (9.5%) 

Ia4 0.04 (26.2%) 0.05 (31.1%) 

Fv4 1.18 (5.0%) 1.20 (5.8%) 

Fc4 2.20 (9.6%) 2.17 (10.0%) 

Ia5 0.06 (28.2%) 0.05 (29.3%) 

Fv5 1.90 (7.1%) 1.89 (7.3%) 

Fc5 2.75 (12.5%) 2.75 (12.6%) 

Ia6 0.01 (31.0%) 0.01 (33.0%) 

Fv6 0.69 (5.1%) 0.69 (5.4%) 

Fc6 2.0 (8.9%) 2.0 (9.3%) 

fvm6 0.64 (5.6%) 0.64 (5.9%) 

fcm6 1.70 (15.2%) 1.70 (16.0%) 

ˆ%rely  17.0% 21.0% 

dw  1.8 1.8 

 



 
Fig. 6. Histogram of IDIM-LS error and its estimated Gaussian – Appropriate data filtering – 

Misspecified dynamic model 

 

5 Conclusion 
In this paper, a Revised DWH-test suitable for identification of robots was introduced and 

experimentally validated on a 6 degrees-of-freedom industrial robot. The main contributions of the 

work presented in this paper are the following: 

• The Revised DWH-test can validate/invalidate the instruments chosen by the user and is 

based on general statistical assumptions, 

• The Revised is able to detect model misspecifications, 

• The algorithm makes use of the QR factorization of an augmented matrix and is combined 

with a F-test if required, 

• The Revised DWH-test is able to validate/invalidate IDIM-LS estimates. 

The results provided by the revised statistic were cross-validated and compared with those provided 

by the augmented DWH-test widely used in Econometrics. Since all the results are close to each 

others, this shows that the results provided by the Revised DWH-test are reliable. 

Future works will address the application of the Revised DWH-test on flexible robots and electrical 

motors. The calculation of the optimal prefilters for robot identification and the application of the 

experiment design are worth of investigation and will be addressed. 
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