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cUniversité Tunis El Manar, LR99ES20, LAMSIN-ENIT, B.P. 37, 1002 Tunis-Belvédère, Tunisia

Abstract

In contrast to the conventional Cauchy Stokes problems, in which the velocity and the stress force data are
given on the accessible boundary, in the present paper, we reduce the accessible boundary data information
and we consider a problem which deals only with shear stress data. We refer to this problem as a sub-Cauchy
Stokes problem. This problem is ill-posed because of severe instability and even uniqueness is unknown. We
first address the uniqueness issues associated with this problem. Resorting to the domain decomposition
techniques together with the duplication process of Vogelius [1], we propose new Lagrange multiplier meth-
ods to solve the sub-Cauchy Stokes problem. These methods consist in recasting the problem in terms of
interfacial equations, by equalizing two solutions of the sub-Cauchy Stokes problem using matching condi-
tions defined on the inaccessible boundary. The matching is based on second order conditions and depends
on the equations used to match the values of the unknowns on the inaccessible boundary. The underlying
interfacial problems are then solved by iterative procedures in which coefficients can be optimized to improve
convergence rates. A complete analysis of the methods is presented, and various numerical results illustrate
the effectiveness and the performance of the proposed approaches.

Keywords: Inverse problem, Sub-Cauchy Stokes system, Uniqueness, Ventcell boundary conditions,
Alternating method, Noise, Convergence factor.

1. Introduction

This work is concerned with the data completion problem associated with the Stokes system. This is
a strongly ill-posed inverse problem. To describe the inverse problem, we let Ω be a bounded and simply
connected domain of R2, with Lipschitz boundary Γ = ∂Ω made up of three connected disjoint open subsets
satisfying ∪i=I,D,CΓi = Γ. The portion ΓC is considered as accessible to measures while ΓI is the unreachable
boundary and no data are thus available on it. Let us denote as usual, by n the outward unit normal vector
and by τ the unit tangent vector to the boundary Γ. For any vector field v on ∂Ω, we shall denote by vτ

the projection of v on the tangent hyperplane to Γ. In other words vτ = v − (v · n)n.
The data completion problem we consider consists in finding the solution (u, p) of the incompressible

Stokes equations

∇ · u = 0 in Ω, (1.1)

−∆u+∇p = 0 in Ω, (1.2)
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and subject to the following physical boundary conditions

τ · 2D(u)n = ϕ on ΓC, (1.3)

u = Φ on ΓC, (1.4)

u = 0 on ΓD. (1.5)

Here, Φ is a shearing flow, i.e., a flow wherein u = uτ , and ϕ is the shear stress component. The deformation

rate tensor D(u) is given by D(u)
def
= (∇u+∇Tu)/2 (i.e., the symmetric part of the gradient). We denote

by σ(u, p) the stress tensor, i.e., σ(u, p)
def
= 2D(u)− pI, where I denotes the identity matrix.

The mathematical formulation corresponding to the data completion problem (1.1)–(1.5) is the well-
known Cauchy problem if the available data on the accessible boundary ΓC refer to Cauchy data (u,σ(u, p)n),
where the physical sense of σ(u, p)n is the Cauchy force acting on ∂Ω. The components of the Cauchy force
in the normal and tangential directions can be expressed by

n · σ(u, p)n = −p+ n · 2D(u)n (normal stress), (1.6)

τ · σ(u, p)n = τ · 2D(u)n (shear stress). (1.7)

This means that for classical Cauchy Stokes problem we should have the measurements of the quintuplet
(u, p, n · 2D(u)n, τ · 2D(u)n) |ΓC

. However, regarding the available data given by the boundary conditions
(1.3)–(1.4), one can easily show that the situation that we face here is not completely classical. In fact, the
information of the pressure p and the viscous stress n ·D(u)n on ΓC which are coupled in the normal stress
(1.6) are unavailable.

The boundary conditions (1.3)–(1.4) are encountered in various industrial applications involving internal
surfaces and interfaces to simulate flows near rough walls, such as in aerodynamics, in weather forecasts
and in hæmodynamics, as well as perforated walls. In such surfaces collecting accurate measurements is
difficult to do experimentally, and if it is possible, some measurements may be missing (see [2, 3, 4, 5]).
Mathematically, these measurements correspond to the so-called Navier friction, Navier slip, or simply
known as Navier boundary conditions. Clearly, these measurements do not fit Fabre and Lebeau’s Theorem
that guarantees the uniqueness of the corresponding pair (u, p) (see [6]). In the literature, classical Cauchy
problems have been extensively studied in recent years, and in particular the Stokes-Cauchy problem. Both
solvability and stability have been investigated intensively [6, 7, 8, 9, 10, 11].

In terms of numerical methods, there have been various techniques applied to the Cauchy-Stokes equa-
tions. In [12], the authors propose a control-type method based on the least squares minimization problem
with Cauchy-Stokes equations as constraints. Nowadays, a more appealing idea is given by the use of the
energy-like formulation. This formulation was introduced and analyzed in [13] for the Cauchy Stokes system.
In fact, this procedure, which extends analogue results for elasticity problems (see [14, 15]), has become very
popular lately, especially in the context of obstacle detection [16], or coefficient reconstruction [3]. The al-
ternating method has been applied successfully to the Cauchy Stokes problem and similar problems, see, for
example [17, 18, 19]. A deep one tool relates the two approaches. Actually the Domain Decomposition type
method amounts to the Euler equation of the mismuch functional. Other related methods were proposed
using Steklov-Poincaré approach in [20, 21] and boundary element method in [22].

This paper has two goals for the sub-Cauchy Stokes problem (1.1)–(1.5) which are analyzing the unique
recovery of the lacking data on ΓI from sub-Cauchy data over-specified on on ΓC then solving the data
completion problem. For the first goal, we have the following observation: The stream function formulation
of the sub-Cauchy problem (1.1)–(1.5) is the Dirichlet problem for the biharmonic equation (see Section 2).
In fact, this insight allows firstly to obtain an example where uniqueness fails to hold. On the other hand, it
allows investing some recent uniqueness results in [23, 24] where the authors consider the uniqueness issues
associated with the Dirichlet problem for the N-harmonic equations that are not covered by previously known
uniqueness theorems. Based on these results we establish a local uniqueness result for the reconstruction of
the pair (u, p), the solution of the sub-Cauchy Stokes problem (1.1)–(1.5).

For the second goal, we propose a new class of Lagrange multiplier methods to solve the Cauchy problems.
The regular approaches define and compare two distinct solutions of the inverse problem, where each one
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uses one item of the given data on the accessible boundary and where the two solutions are tied together
using matching conditions on the inaccessible boundary given by equality of the Dirichlet or the Neumann
conditions, or both of them [13, 20] (see [15] for Robin conditions). However, more general artificial boundary
conditions can be used as in domain decomposition (DD) methods (see [25, 26] for example). In the DD
context, this approach assures exchanging boundary data between two problems using higher order matching
conditions. Then, physically more valuable information is exchanging between the two problems and hence
have better convergence behavior. Our method is based on this approach, and hence we are able to handle
the data completion problem (1.1)–(1.5) in the same way. Nevertheless, in our problem ΓI will play the role
of the interface. As a result, using more general order 2 (or Ventcell) boundary operators, we formulate two
methods each of which reduces the sub-Cauchy Stokes problem to an interfacial problem which can be solved
iteratively. Both methods depend on the coupling conditions used to match the values of the unknowns on
the inaccessible boundary. Furthermore, we present accelerated alternating methods for the solution of the
sub-Cauchy problem based on order 2 conditions, and in which coefficients can be optimized to improve
convergence rates.

The rest of this paper is organized as follows. In Section 2, we investigate the uniqueness issues for the
sub-Cauchy Stokes problem. In Section 3, we present and study two Lagrange multiplier methods to solve the
problem (1.1)–(1.5). The basis of the two methods is the use of the duplication process of Vogelius together
with high-order domain decomposition techniques with Ventcell boundary conditions. In Section 4 of this
work, we propose and analyze an optimized Dirichlet–Order 2 alternating method to solve the sub-Cauchy
Stokes problem. This procedure consists in extending the alternating method to the Ventcell interfacial
conditions. In the last part of this section, we invoke the Fourier computations to analyze the convergence
behavior of the proposed iterative methods for one special problem in the annular domain. We compute
the convergence factor for this model problem which depends on the Ventcell parameters. In Section 5,
results of two-dimensional (2D) numerical experiments comparing the different methods are discussed. An
application of the optimized alternating method to the fluid-dynamics of blood is given in Appendix A.

2. Uniqueness Issues

As explained earlier, it is clear that with the available boundary conditions the uniqueness property can-
not be obtained from Fabre and Lebeau’s Theorem directly. In fact, it is not clear at all what happens under
the boundary conditions (1.3)–(1.4). The question to be answered is then, for homogeneous sub-Cauchy
data (Φ, ϕ) = 0 on ΓC, does it follow that the only solution is the trivial one?.

Some notations: For s > 1, we designate by Hs(Ω) the usual Sobolev spaces. Its norm and semi-
norm are written || · ||s,Ω and | · |s,Ω respectively. The space of squared integrable functions L2(Ω) is
endowed with a natural inner product written (·, ·)L2(Ω). The associated norm is written || · ||0,Ω. We

denote by L2
0(Ω) the space of functions in L2(Ω) with a null mean on Ω. We define the Hilbert space

Hs
D(Ω) = {v ∈ Hs(Ω) |v = 0 on ΓD}. For γ ⊂ Γ, we will frequently use the special space H

1/2
00 (γ), the set

of all the restrictions to γ of the functions of H1(∂Ω) that vanish on ∂Ω\γ. Its dual space is then denoted

by H
−1/2
00 (γ). The associated norms are written || · ||1/2,00,γ and || · ||−1/2,00,γ respectively and 〈·, ·〉1/2,00,γ

states for the duality inner product.

2.1. Non-uniqueness of the sub-Cauchy Stokes problem

The main difficulty associated with the data completion problem (1.1)–(1.5) is that, no information on
the pressure is available. To get rid of the pressure, we put the sub-Cauchy Stokes problem into its stream
function formulation. To this aim, we use this result to calculate the shear stress component (see [27]):

Lemma 1. Let u ∈ H2(Ω)2 be a vector field which is tangent to γ ⊆ ∂Ω. We then have

τ ·D(u)n =
1

2
curl(u) + κu · τ on γ, (2.8)

where curl(u) = ∂u2/∂x1 − ∂u1/∂x2, κ is the curvature of γ given by dτ/ds = −κn.
3



We now define the stream function such that u = curl(ψ), and let ψ satisfy

∇4ψ = 0 in Ω, (2.9)

∂jnψ = 0 on ΓD, for j = 0, 1, (2.10)

∂jnψ = 0 on ΓC, for j = 0, 1, 2, (2.11)

where ∂jn = ∂jψ/∂jn. We prove the following result

Proposition 2. Assume that (u, p) ∈ H2(Ω)2 ×H1(Ω) is a solution of (1.1)–(1.5) where (Φ, ϕ) = 0. The
associated stream function of u is then characterized as the function ψ ∈ H3(Ω) solution to (2.9)–(2.11).

Proof. Suppose that (u, p) is a solution of (1.1)–(1.5) in H2(Ω)2 × H1(Ω), and let u = curl(ψ), with
ψ ∈ H3(Ω). Taking the curl of the momentum equation (1.2) is equivalent to the homogeneous biharmonic
equation (2.9). Now, we turn to the boundary conditions (1.3)–(1.5). On the boundary the tangential and
normal components of the velocity can be expressed as the normal and tangential derivatives of the stream
function

u · τ = ∂ψ/∂n, u · n = −∂ψ/∂τ .

The boundary conditions

ψ = 0 ( no flow), ∂ψ/∂n = 0 ( no slip),

then coincide with the homogeneous Dirichlet boundary condition u = 0 on ΓC ∪ ΓD (see [28]). Using
equation (2.8), homogeneous shear stress condition on ΓC is equivalent to

∆ψ = 2κ∂ψ/∂n on ΓC,

where κ is the curvature of ΓC. Assembling the above equations, we verify the boundary conditions of the
system (2.9)–(2.11), and the proof is complete. �

In view of Proposition 2, it is easy to show that eliminating the pressure in the equations (1.1)–(1.5),
yields a simpler equivalent formulation with only one unknown function. Another way to see this result is
that the problem (2.9)–(2.11) gives a derivative representation of the boundary conditions on ΓC which are
more convenient than those in (1.1)–(1.5) to study Cauchy problems.

Remark 3. The unique continuation problem of (2.9)–(2.11) does not fit Holmgren’s uniqueness theorem,
which requires that on ΓC we should have ∂jnψ = 0 on ΓC, for j = 0, ..., 3, to ensure that ψ vanishes
identically. Thus, we call (2.11) a condition of vanishing sub-Cauchy data for the biharmonic equation.

Indeed, the new form of the Stokes equations with vanishing sub-Cauchy data allows us to construct explicitly
an illustrative example of a non-unique solution of the original sub-Cauchy problem (1.1)–(1.5). Perhaps,
unfortunately, such situation occurs, for instance, in the unit disk which is a very popular domain in
numerical modeling. Let us consider

ψ(z) =
(1− |z|2)3
|1− z|4 , (2.12)

in a unit disk domain D = {z : |z| < 1} which is biharmonic and vanishes with its normal, first and second
derivatives on any nontrivial arc of ∂D not containing the boundary singularity z = 1 (see [23, 24] for more
details).
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2.2. A uniqueness result

The above example might lead us to believe that the sub-Cauchy data (1.3)–(1.4) never gives uniqueness
for the Stokes problem. In fact, this example, constructed essentially for biharmonic functions, is very special
and should not be taken as generic; one can see [23, 24] where the authors reviewed the uniqueness theorem
of Holmgren for the N-harmonic equation. As an example, the uniqueness of (2.9)–(2.11) is restored if Ω if
Ω is a half-plane, or that ΓC is a proper arc of a non-circular ellipse Ω, then the solution to the biharmonic
function ψ in which all partial derivatives of ψ of order ≤ 2 vanish on ΓC is unique.

Assumption 1. We suppose that ΓC is a proper arc of a non-circular ellipse ω ⊆ Ω.

Now, we have this result.

Theorem 4. Assume that (u, p) is the solution of (1.1)–(1.5) in H2(Ω)2 ×H1(Ω) where (Φ, ϕ) = 0. Then,
u = 0 and p is constant in Ω.

Proof. We have ΓC is a proper arc of a non-circular ellipse ω ⊆ Ω. Then, according to Proposition 2, the
associated stream function of u restricted to ω is characterized by the function ψ the solution of biharmonic
function in which all partial derivatives of ψ of order ≤ 2 vanish on ΓC ⊂ ∂ω. In this case, it can be readily
verified that ψ belongs to H4(ω) [28, p. 50], and by virtue of Sobolev embedding that ψ ∈ H4(ω) ⊂ C2(ω)
(see [29]). Therefore the new result on the sub-Cauchy problem for the biharmonic function (see Corollary
1.8 in [23] or Corollary 8 in [24]) is applicable, and ψ is unique and vanishes identically in ω. Hence, u = 0
in ω ⊆ Ω. Since the work carried out by Fabre and Lebeau in [6], u = 0 and p is a constant in all of Ω. �

Remark 5. A similar situation was addressed in [2] for an incomplete Cauchy problem. Some responses to
the question of uniqueness are obtained for half-plane domains using integral representation. Note that the
above result works also for half-planes (see [24]). Furthermore, domains satisfying assumption 1 are closer
to the ones that we encounter in applications such as, for instance, the hæmodynamics problems (see [30]).

Let us state that if the problem (1.1)–(1.5) has a unique solution this means that the sub-Cauchy data (Φ, ϕ)
are compatible. Let us suppose that a weak solution (u, p) to problem (1.1)–(1.5) exists in H1(Ω)2×L2

0(Ω),

and we assume that (Φ, ϕ) ∈ H
1/2
00 (ΓC)

2 × H
−1/2
00 (ΓC). Note that we can easily show that the pairs of

compatible data are dense in the space H
1/2
00 (ΓC)

2 ×H
−1/2
00 (ΓC) (see [13, 31]).

3. Reformulation of the sub-Cauchy Stokes problem

In this section, we present optimized methods to solve the sub-Cauchy problem (1.1)–(1.5) with greatly
enhanced convergence properties. We introduce two different well-posed problems, with a couple of solutions
(uD, pD) and (uN , pN) defined in Ω, both of which satisfy the Stokes equations in Ω as well as the Dirichlet
condition on ΓD, and we attribute a Dirichlet boundary condition on ΓC to the first problem while we
attribute a Navier-slip condition (see Definition 6) to the second one. Basically, in order to ensure that the
two solutions coincide in all of Ω, Dirichlet and Neumann boundary conditions, or Robin/Fourier, should
coincide on ΓI. For instance, in order to ensure that the two solutions coincide in all of Ω, we consider
matching conditions on ΓI of the type

−ηi
2
∆τui|ΓI

+ (2D(ui)− pi)n+ αiui, (3.13)

where ∆τ denotes the Laplacian operator defined on ΓI. The coefficients ηi and αi, i = D,N , are positive
constants used to specify different types of boundary conditions on ΓI. Either ηi = 0, and the boundary
condition is of Robin type, or we suppose ηi > 0 and the condition will be referred to as an Order 2 or
Ventcell condition. Moreover, these parameters can be chosen to optimize the convergence factor when the
inverse problem is solved iteratively. This Order 2 condition involves not only the Cauchy stress and the
velocity trace on ΓI, but also the tangential second order derivatives of the velocity on ΓI. This new term
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models the tangential effects of the diffusion on the inaccessible boundary (see [32] for the heat equation),
and it is used here as an artificial tool to enhance the information exchange between the duplicated solutions.
Specially, this order 2 operator provides clear advantages to tackle the question related to singularities of
solutions at points at which geometric singularities occur, such as corners and at certain endpoints at which
the boundary conditions change type. To introduce the methods we introduce the following functional space

W =
{
u ∈ H1

D(Ω)
2, u|ΓI

∈ H1
0 (ΓI)

2
}
,

where functions admit equal-order regularity both in Ω and on ΓI, and with a vanishing boundary value on
ΓD. We need also to define

W⋆ = {u ∈ W |u = 0 on ΓC} and W⊥ = {u ∈ W |u · n = 0 on ΓC} .

Endowed with the norm

||u||2W = ||u||21,Ω + |u|20,ΓI
,

the space W is a Hilbert space [33]. We finally define

Λ = L2(ΓI)
2, Σ = H

1/2
00 (ΓC)

2, Σ̃ = H
−1/2
00 (ΓC) and M = L2

0(Ω).

Definition 6. A Navier-slip condition is given by the shear stress condition together with a non-penetration
condition on ΓC, i.e., if we set N(u) = (τ · 2D(u)n,u · n) and ϕ = (ϕ, 0), then a Navier-slip condition on
ΓC is denoted by N(u) := ϕ on ΓC.

Remark 7. The use of a Navier slip condition in the duplication process is motivated by the fact that the
shear stress condition (1.3) by itself is not a complete boundary condition for the Stokes operator. The logic
behind this underspecified boundary condition is that no physical boundary condition is prescribed for the
normal direction (see [2] for a similar framework).

3.1. Method 1: Using the Ventcell–to–Dirichlet operator

The purpose of this method is to derive and analyze a weak formulation of the sub-Cauchy Stokes
problem using the Ventcell–to–Dirichlet operator. To this aim, we define the following Order 2 operator

θ(u, p) = −η
2
∆τu|ΓI

+ (2D(u)n− p)n, (3.14)

which depends on the parameter η > 0. Let λ denotes θ(u, p)|ΓI
which will be chosen as the new unknown

on the inaccessible boundary ΓI. We now introduce a pair of functions (uD, pD) and (uN , pN ) such that
(ui, pi, λ) ∈ W ×M × Λ, i = D,N , are the solutions to the following problems

∇ · uD = 0 in Ω,

−∆uD +∇pD = 0 in Ω,

θ(uD, pD) = λ on ΓI,

uD = Φ on ΓC,

(3.15)

∇ · uN = 0 in Ω,

−∆uN +∇pN = 0 in Ω,

θ(uN , pN ) = λ on ΓI,

N(uN ) = ϕ on ΓC.

(3.16)
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The key idea of this method is that we use higher order condition instead of the classical Neumann one on
the inaccessible boundary ΓI, leading to a coupling problem between a 2-dimensional PDE in Ω and a 1-
dimensional PDE on the inaccessible boundary ΓI which greatly enhance the information exchange between
the duplicated solutions. The method is also motivated by the physics of the underlying problem, in which
the boundary condition on the inaccessible boundary should be as “transparent” as possible to retrieve the
true information. For a given λ ∈ Λ, the functions (ui, pi), i = D,N , are well-posed in W ×M , owing to
the coerciveness of the associated Stokes operator together with an inf-sup condition (see subsection 3.1.1).
The first variational formulation we propose is then based on the following results.

Theorem 8. Suppose that (u, p) is the solution of problem (1.1)–(1.5). If p and u are sufficiently regular,
then (ui, pi, λ), defined by

ui = u, pi = p, for i = D,N, and λ = −η
2
∆τu|ΓI

+ (2D(u)− p)n, (3.17)

are respectively the unique solutions of (3.15) and (3.16) such that the following condition on the velocity
traces

uN (λ, ϕ) = uD(λ,Φ), on ΓI, (3.18)

holds true.

Proof. The proof of this theorem is obvious. �

Theorem 9. Assume that

(ui, pi, λ) ∈ W ×M × Λ, for i = D,N,

are respectively the solutions of (3.15) and (3.16) such that the condition (3.18) holds true. Then, the
solutions coincide in all of Ω and we have u = uD(λ,Φ) = uN (λ, ϕ) and p = pD(λ,Φ) = pN (λ, ϕ).

Proof. Assume that (3.18) holds and let (w, q) = (uD − uN , pD − pN ). Then w = 0 on ΓI as well as its

tangential second order derivative on ΓI, i.e., −
η

2
∆τw|ΓI

= 0. That σ(w, q)n = 0 on ΓI now follows from

the artificial condition on ΓI (third condition of (3.15) and (3.16)). As a result, the solution (w, q) satisfies a
Cauchy-Stokes problem with homogeneous Cauchy data on ΓI. Thus, we have necessarily w = 0 and q = 0
(see [6]). �

The above theorems are of special importance, explaining that the new unknown λ ∈ Λ is uniquely
defined on the inaccessible boundary ΓI if and only if the condition (3.18) is satisfied, whence the uniqueness
for problem (1.1)–(1.5) is preserved. We will show next how a variational formulation for the sub-Cauchy
Stokes problem (1.1)–(1.5) can be obtained using Theorems 8 and 9.

3.1.1. Variational formulation

Let Di, i = D,N , be the solution operator that associates to the boundary condition on the accessible
boundary ΓC and the unknown λ on ΓI, the solution (ui, pi), i.e.,

DD : Λ× Σ −→ W ×M

(λ,Φ) 7→ (uD, pD),
and

DN : Λ × Σ̃ −→ W ×M

(λ, ϕ) 7→ (uN , pN).

The variational formulation of the sub-Cauchy Stokes problem (1.1)–(1.5) uses the variational formulations
of (3.15) and (3.16). With this aim, we introduce the following bilinear forms

aη(u,v) =

∫

Ω

2D(u) : D(v) + η

∫

ΓI

Dτ (u) : Dτ (v),

b(v, q) = −
∫

Ω

q∇ · v.
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For a given λ ∈ Λ, the weak formulation of (3.15) reads: find (uD, pD) ∈ W×M to be subject to a Dirichlet
condition uD|ΓC

= Φ and satisfies

aη(uD,v) + b(v, pD) =

∫

ΓI

λv, ∀v ∈ W⋆, (3.19)

b(uD, q) = 0, ∀q ∈M. (3.20)

That of problem (3.16) is as follows: find (uN , pN ) ∈ W ×M such that uN · n|ΓC
= 0 and satisfies

aη(uN ,v) + b(v, pN ) =

∫

ΓI

λv + 〈ϕ,v · τ 〉1/2,00,ΓC
, ∀v ∈ W⊥, (3.21)

b(uN , q) = 0, ∀q ∈M. (3.22)

When transcribing the above variational formulations, we remark the advantage of Ventcell conditions in
performing the exchange of information between the accessible and the inaccessible boundaries sharing a
zero-dimensional measurement limit at their common point. Precisely, in the above formulations, we used
the fact that u = 0 on ∂ΓI, implying that the order 2 conditions enforce that the boundary data on the
common vertices of ΓD and ΓI to match. If, for example u 6= 0 on ΓD, additional terms involving the data
on ∂ΓI should be added to the right-hand side of (3.19) and (3.21).

The bilinear form aη(·, ·) is an inner product on the variational space W for η > 0. The corresponding
norm is defined by ||u||η = aη(u,u)

1/2 for every u ∈ W . Precisely, we have

Lemma 10. There exist positive constants C1, and C2 such that

C1||u||W ≤ ||u||η ≤ C2||u||W , ∀v ∈ W .

Proof. The upper bound of aη(·, ·) is straightforward with C2 = max(2, η). The lower bound follows from
Korn’s inequality applied for H1

D(Ω) functions, respectively for H1
0 (ΓI) functions. �

The well-posedness of (3.19)–(3.20) is based on Lemma 10 and a classical inf-sup condition of Brezzi’s
Theorem [34], that of (3.21)–(3.22) can be ensured using the same arguments together with the analysis
done in [35]. Hence the solution operators Di, i = D,N , are well-defined and in order to ensure that
(uD, pD) = (uN , pN ) in all of Ω, the resulting solutions are enforced to verify the equality of the velocity
trace on the inaccessible boundary ΓI (see Theorem 9). We introduce

{
(̊uD, p̊D) = DD(0,Φ),
(̊uN , p̊N ) = DN (0, ϕ),

and

{
(uD, pD) = DD(λ, 0),
(uN , pN ) = DN (λ, 0),

and the condition (3.18) between (3.15) and (3.16) is then weakly enforced through the following equation:
find λ ∈ Λ such that ∫

ΓI

µT (uN − uD) (λ) =

∫

ΓI

µT (ůD − ůN ) , ∀µ ∈ Λ.

Taking v = uD(µ) in (3.19)–(3.20) then v = uN (µ) in (3.21)–(3.22), this equation is transformed to: find
λ ∈ Λ such that

sη(λ, µ) = ℓη(µ), ∀µ ∈ Λ, (3.23)

where

sη(λ, µ) = aη(uN (λ),uN (µ))− aη(uD(λ),uD(µ)), (3.24)

ℓη(µ) = aη (̊uD,uD(µ))− aη (̊uN ,uN (µ)) + 〈ϕ,uN (µ) · τ 〉1/2,00,ΓC
, (3.25)

and both depend on the parameter η. Let Rη be the Ventcell–to–Dirichlet operator associated with the
bilinear form sη(·, ·). Then, we can rewrite (3.23) as: find λ ∈ Λ such that

Rηλ = ℓη,
(
in H1

0 (ΓI)
2
)
. (3.26)

After solving (3.26), we recover the solution of the sub-Cauchy Stokes problem by setting u = ui(λ) + ůi

and p = pi(λ) + p̊i, i = D or N .
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3.1.2. The analysis of the interfacial equation

We come now to the analysis of the interfacial problem.

Lemma 11. The bilinear form sη(·, ·) is symmetric, positive and definite, i.e.,

sη(µ, µ) > 0, ∀µ ∈ Λ, µ 6= 0.

Proof. The proof is based on the well-posedness of (3.15) and (3.16) inW×M , and the uniqueness Theorem 4.
Let µ ∈ Λ, then the solution uN (µ) can be sought as the solution of the minimization problem

uN (µ) = min
w ∈ W⊥

∇ ·w = 0

1

2
aη(w,w)−

∫

ΓI

µw. (3.27)

As uD(µ) ∈ W⋆ is admissible, then

1

2
||uN (µ)||2η −

∫

ΓI

µuN (µ) ≤ 1

2
||uD(µ)||2η −

∫

ΓI

µuD(µ). (3.28)

Using the variational formulations (3.19)–(3.20) and (3.21)–(3.22), we obtain

||uD(µ)||2η =

∫

ΓI

µuD(µ), and ||uN (µ)||2η =

∫

ΓI

µuN (µ).

Substituting in (3.28), we obtain sη(µ, µ) ≥ 0. Now, let sη(µ, µ) = 0, from (3.24) we obtain ||uD(µ)||η =
||uN (µ)||η. It follows from the uniqueness of the minimization problem (3.27) and Lemma 10, that uD(µ) =
uN (µ) = v. Then the pair (v, q) with q = pD(µ) or pN (µ) is the solution of (1.1)–(1.5) with vanishing sub-
Cauchy data. As for regularity results, v is such that ∆v ∈ L2(Ω), v = 0 on ΓC ∪ ΓD and D(v)n −∆τv ∈
L2(ΓI). Such a regularity result has been proved for a similar situation in [36] for more general Ventcell
boundary condition (see also [33]) and the result applies here. Hence, from Theorem 4 we have v = 0 and
q is a constant. The fact that q ∈M implies that (v, q) = 0 and then that µ = 0. �

The ill-posedness of the interfacial problem (3.26) in the Hadamard sense is due to the compactness of
Rη.

Lemma 12. The Ventcell–to–Dirichlet operator Rη is compact.

Proof. Using the following relations

|Rηλ|1,ΓI
= ||uN (λ)||η − ||uD(λ)||η ≤ ||uN (λ)||η ≤ C||uN (λ)||W ≤ C||λ||0,ΓI

,

and the property of the compactness of the embedding operator of H1
0 (ΓI) into L2(ΓI), we have the com-

pactness of the operator Rη acting in L2(ΓI)
2. �

From the continuity and the symmetry of sη(·, ·), we deduce that Rη is continuous and self-adjoint in Λ.

Lemma 13. The kernel of the operator Rη is the trivial space {0}, and the closure of its range is the whole
space H1

0 (ΓI)
2.

Proof. From Lemma 11, we have Kernel(Rη) = {0}. Moreover, we have Rη is self-adjoint and bounded in

Λ, thus Rang(Rη)
⊥ = Kernel(Rη), and hence Rang(Rη) = H1

0 (ΓI)
2. �

Since the bilinear form sη(·, ·) is non-coercive in Λ then the space (Λ, sη(·, ·)) can not be a Hilbert space
with respect to the energy semi-norm arising from its inner product. This space can be completed as a
Hilbert space. We denote by Λc the completed space and let || · ||Λc

be the norm induced by the extension
of sη(·, ·) to Λc. Now the space (Λc, || · ||Λc

) is a Hilbert space that is continuously and densely embedded
in Λ. A detailed discussion of such a space can be found in [37].
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3.1.3. Regularized and optimized formulation, noisy data and error estimate

In practice, the sub-Cauchy data (Φ, ϕ) are measurements and so they are likely to be corrupted by noise,
which pollutes the compatibility behavior of the measurement. Thus, a regularizing procedure is needed for
the solution of the problem (3.23) and we will make use of the Tikhonov method. For a given δ > 0 and
η > 0 let

sδ,η(λδ, µ) = sη(λδ , µ) +
δ

2
(λδ, µ)L2(ΓI)

.

We now consider the regularized and optimized problem of finding λδ ∈ Λ such that

sη,δ(λδ, µ) = ℓη(µ), ∀µ ∈ Λ, (3.29)

where in that case the parameter η can be chosen dependently on the regularization parameter δ.

Lemma 14. For (Φ, ϕ) ∈ Σ × Σ̃, the regularized problem (3.29) admits a unique solution λδ ∈ Λ and we
have the estimate

||λδ||0,ΓI
≤ C√

δ

(
||Φ||1/2,00,ΓC

+ ||ϕ||−1/2,00,ΓC

)
. (3.30)

Moreover, when δ tends to 0, λδ converges to λ, the (unique) solution of problem (3.23) in Λc, with the
following estimate

||λ− λδ||Λc
≤

√
δ

2
||λ||0,ΓI

. (3.31)

Proof. The coerciveness of sη,δ(·, ·) in Λ is guaranteed for δ > 0. This result, together with the analysis
conducted on sη(·, ·), implies that (3.29) admits a unique solution satisfying the estimate (3.30). Now,
putting µ = (λδ −λ) ∈ Λ into the variational equations (3.23) and (3.29) and substituting the first from the
second we obtain the following identity

sη,δ(λδ − λ, λδ − λ) = − δ
4
(λ, λδ − λ)L2(ΓI).

In compact form this can be rewritten as

||λ− λδ||2Λc
+
δ

4
||λ− λδ||20,ΓI

=
δ

4

(
||λ||20,ΓI

− ||λδ||20,ΓI

)
,

which gives the convergence of (λδ)δ and the estimate (3.31). �

Next, we suppose that noisy data are given, i.e, (Φǫ, ϕǫ) ∈ Σ×Σ̃. For noisy measurements, the right-hand
term ℓη in (3.29) also appears in the form of a noisy version. We have the following result:

Proposition 15. There exists a constant C > 0 independent of the data such that

||λδ − λǫδ||0,ΓI
≤ C√

δ

(
||Φ− Φǫ||1/2,00,ΓC

+ ||ϕ− ϕǫ||−1/2,00,ΓC

)
.

Proof. Using the ellipticity of the regularized bilinear form sη,δ(·, ·), we have

δ||λδ − λǫδ||20,ΓI
≤ ℓη(λδ − λǫδ)− ℓη,ǫ(λδ − λǫδ).

From the trace theorem together with the Cauchy-Schwartz inequality, there exists C > 0 such that

||λδ − λǫδ||20,ΓI
≤ C

δ
||λδ − λǫδ||0,ΓI

×
(
||DD(0,Φ− Φǫ)||W×M + ||DN (0, ϕ− ϕǫ)||W×M

)
.
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By the stability of the solution operators Di, i = D,N , there exists C1, and C2 such that

||λδ − λǫδ||0,ΓI
≤ C√

δ

(
C1||Φ− Φǫ||1/2,00,ΓC

+ C2||ϕ− ϕǫ||−1/2,00,ΓC

)
,

and the estimate holds by setting C = Cmax(C1, C2). �

We now suppose that the noise level is known and fixed to ǫ > 0, that is, for a positive constant C we
have

||Φ− Φǫ||1/2,00,ΓC
+ ||ϕ− ϕǫ||−1/2,00,ΓC

≤ Cǫ,

where the constant C is chosen so that

||λδ − λǫδ||0,ΓI
≤ ǫ√

δ
. (3.32)

Choosing the parameter δ = δ(ǫ) guarantees the convergence of the sequence (λǫδ)ǫ toward λ in Λ. Such an
a posteriori parameter choice can lead to a regularized solution with optimal-order of accuracy, as shown in
the result given next. Furthermore, an a posteriori parameter choice for η lead to an optimized convergence
if the regularized problem is solved iteratively (see subsection 4.1).

Proposition 16. If the function δ(ǫ) satisfies both conditions

lim
ǫ→0

δ(ǫ) = 0, lim
ǫ→0

ǫ√
δ(ǫ)

= 0, (3.33)

then the solution λǫδ := λǫ of problem (3.29) with ℓǫ instead of ℓ, converges to λ in Λc when ǫ tends to 0.
Choosing δ(ǫ) = ǫ, we have the following estimate

||λ− λǫ||Λc
≤ Cǫ1/2. (3.34)

Proof. Using the estimates (3.31) and (3.32), we obtain

||λ− λǫδ||Λc
≤ ||λ− λδ||Λc

+ ||λδ − λǫδ||Λc
≤ ǫ√

δ(ǫ)
+

√
δ

2
||λ||0,ΓI

.

We obtain the convergence by using Lemma 14 and the properties (3.33) of the function δ(ǫ). The estimate
(3.34) is a direct result when setting δ(ǫ) = ǫ. �

3.2. Method 2: Using the Ventcell–to–Ventcell operator

We introduce in this method matching conditions which are more effective for the information exchange
between the duplicated solutions. Precisely, we adopt more general boundary operator

Λi(u, p) = −ηi
2
∆τu|ΓI

+ (2D(u) − p)n+ αiu, (3.35)

where ηi and αi, i = D,N , are positive constants such that αD > αN and ηD ≥ ηN . Contrary to Method 1,
we now introduce two competitive unknowns ΨD and ΨN used as interfacial variables on the inaccessible
boundary ΓI, and such that (ui, pi,Ψi) ∈ W ×M × Λ, i = D,N , solves respectively

∇ · uD = 0 in Ω,

−∆uD +∇pD = 0 in Ω,

ΛD(uD, pD) = ΨD on ΓI,

uD = Φ on ΓC,

(3.36)
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∇ · uN = 0 in Ω,

−∆uN +∇pN = 0 in Ω,

ΛN (uN , pN ) = ΨN on ΓI,

N(uN ) = ϕ on ΓC.

(3.37)

We refer also to this method by the 2-Lagrange multiplier (2LM) method. For a given Ψi ∈ Λ, i = D,N ,
arguments similar to those used in Method 1 ensure that the functions (ui, pi), i = D,N , are well defined in
W ×M . To obtain the interfacial equation of the sub-Cauchy Stokes problem (1.1)–(1.5) with this method,
we give this result

Theorem 17. Under sufficient regularity, the sub-Cauchy Stokes problem (1.1)–(1.5) has a solution if and
only if there exists a pair of functions (ΨD,ΨN) ∈ Λ×Λ satisfying the following Order 2 or Ventcell coupling
conditions

ΨD = ΛD(uN (ΨN , ϕ), pN (ΨN , ϕ)),

ΨN = ΛN (uD(ΨD,Φ), pD(ΨD,Φ)),
on ΓI. (3.38)

If the order 2 conditions (3.38) are satisfied then the two solutions coincide in all of Ω and we have u =
uD(ΨD,Φ) = uN (ΨN , ϕ) and p = pD(ΨD,Φ) = pN (ΨN , ϕ).

Proof. Suppose that conditions (3.38) are satisfied and let (w, q) = (uD − uN , pD − pN ). Subtracting the
first equation of (3.38) from the second, one obtain that w ∈ H1

0 (ΓI)
2 is the solution of

−ηD − ηN
2

∆τw+ (αD − αN )w = 0, in ΓI.

We now seek the unique solution of this boundary problem, which is necessarily the solution w = 0 on ΓI

(see [38]). That σ(w, q)n = 0 on ΓI now follows from either equation of (3.38). Thus, the difference (w, q)
satisfies a Cauchy-Stokes problem with homogeneous Cauchy data on ΓI. A a result, w = 0 and q = 0 in
all of Ω. The converse sense is obvious if a sufficiently regular solution (u, p) exist. �

3.2.1. Variational formulation

In this method, we use the coupling conditions (3.38) to obtain a weak formulation for the sub-Cauchy
Stokes problem (1.1)–(1.5). This is quite possible by using the two unknowns ΨD and ΨN used as coupling
variables on the inaccessible boundary ΓI, and where both conditions (3.38) are written in a weak form. To
this aim, we will need the following solution operators:

RD : Λ× Σ −→ W ×M

(Ψ,Φ) 7→ (uD, pD),
and

RN : Λ× Σ̃ −→ W ×M

(Ψ, ϕ) 7→ (uN , pN ).

An extension of the arguments used in Method 1 (to the case of fully Ventcell boundary conditions) guar-
antees that the operators Ri, i = D,N , are well defined operators. Denote by (ui, pi) the linear part of
Ri and by (̊ui, p̊i) the constant part: ui = ui(Ψi) + ůi and pi = pi(Ψi) + p̊i, i = D or N . We define the
following Ventcell–to–Ventcell operators, which depends on the parameters αi and ηi, i = D,N :

RD : Λ× Σ −→ Λ

(Ψ,Φ) 7→ ΛN ◦ RD(Ψ,Φ),
and

RN : Λ× Σ̃ −→ Λ

(Ψ, ϕ) 7→ ΛD ◦ RN (Ψ, ϕ).
(3.39)

Define

R2LM : Λ× Λ −→ Λ × Λ
(

ΨD

ΨN

)
7→

(
ΨD −RD(ΨN , 0)
ΨN −RN (ΨD, 0)

)
,
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and

χ : Σ× Σ̃ −→ Λ× Λ

(Φ, ϕ) 7→
(

RD(0, ϕ)
RN (0,Φ)

)
.

We can write our second interfacial problem for the sub-Cauchy Stokes problem (1.1)–(1.5) as

R2LM

(
ΨD

ΨN

)
= χ (Φ, ϕ) , on ΓI. (3.40)

We then write (3.40) in weak form as: find (ΨD,ΨN) ∈ Λ× Λ such that
∫

ΓI

R2LM

(
ΨD

ΨN

)
·
(
ζD
ζN

)
=

∫

ΓI

χ(Φ, ϕ) ·
(
ζD
ζN

)
, ∀(ζD, ζN ) ∈ Λ× Λ. (3.41)

In order to study the interfacial operator R2LM , we introduce the bilinear form associated to the Stokes
problems (3.36) and (3.37):

aηi,αi
(u,v) =

∫

Ω

2D(u) : D(v) + ηi

∫

ΓI

Dτ (u) : Dτ (v) + αi

∫

ΓI

uv, i = D,N.

This bilinear form is an inner product on the variational space W for (α, η) > 0. We can show that the
corresponding norm defined by ||u||ηi,αi

= aηi,αi
(u,u)1/2 for every u ∈ W is an equivalent norm in W . For

the sake of simplicity, we consider ηD = ηN , then using the weak formulations of the duplicated problems
(3.36) and (3.37) and with the help of the above definitions, we find out

∫

ΓI

R2LM

(
ΨD

ΨN

)
·
(
ζD
ζN

)
=

∫

ΓI

(ΨD −ΨN ) (ζD − ζN )

−
∑

i={D,N}

(αj − αi) aηi,αi
(ui(Ψi),ui(ζj)), j 6= i,

∫

ΓI

χ(Φ, ϕ) ·
(
ζD
ζN

)
=

∑

i={D,N}

(αj − αi) aηi,αi
(̊ui,ui(ζj))

− (αD − αN ) 〈ϕ,uN (ζD) · τ 〉1/2,00,ΓC
, j 6= i.

Contrary to Method 1, we obtain a non-symmetric interfacial operator R2LM but also not positive definite.
GMRES or GS iterations seems well suited to the solution of such non-symmetric problems (see [39, 40, 41]
for example). When an iterative method is applied to solve the interfacial equation (3.40), we will see that,
formulated using the second-order conditions, the interfacial unknowns ΨD and ΨN do cooperate to solve
the sub-Cauchy Stokes problem.

3.2.2. The Optimized Alternating Direction Iterative Methods

If we use for example Gauss–Seidel algorithm for solving the problem (3.40), this choice leads to an
alternating direction iterative method with optimized order 2 conditions (OADI):

• Constructing (u2k, p2k) by solving the problem (3.36), where ΨD = ΛD(u2k−1, p2k−1) on ΓI,

• Constructing (u2k+1, p2k+1) by solving the problem (3.37), where we set ΨN = ΛN (u2k, p2k) on ΓI,

• Repeat steps 1 and 2 until a prescribed stopping criterion is satisfied.

To finish the definition of the algorithm, we provide an initial guess Ψ0
D. The parameters αi and ηi, i = D,N ,

are chosen in order to improve the convergence rate of the algorithm. In classical alternating procedures,
using Dirichlet/Neumann conditions inhibit the information exchange between the duplicated solutions as
well as between the accessible and inaccessible boundaries and therefore slow down the convergence of the
algorithm. The above alternating method leads almost to faster convergence and improved reconstructions
of the inaccessible data in few iterations. Note that this approach built with order 2 conditions can lead to
many other two fields alternating methods by setting extreme values for the parameters αi and/or ηi.
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3.2.3. Regularized formulation, noisy data and stopping criteria

We suppose that noisy data (Φǫ, ϕǫ) ∈ H
1/2
00 (ΓC)

2 ×H
−1/2
00 (ΓC) are given. The right-hand side vector in

(3.40) is then contaminated by a noise, which represents the difference χǫ−χ. Let us suppose that a bound
of the norm of the noise is known, i.e.,

||χ− χǫ||0,ΓI
≤ ǫ, (3.42)

and we would like to solve the equation (3.40) with the unknown right-hand side χ by computing an
approximate solution of the equation

R2LMΨ = χǫ, with Ψ = (ΨD,ΨN)
T
. (3.43)

It has been observed in [40], that the GMRES method (see [42] for the ADI method) equipped with a
stopping rule based on the following discrepancy principle

||R2LMΨǫ
k − χǫ||0,ΓI

≤ bǫ, (3.44)

is a practical regularization method (with b > 1 fixed), and where k = k(ǫ). Study of the behavior of such
methods when ǫ approaches zero can be found in [40, 42].

4. The Optimized Dirichlet–Order 2 Alternating Method

As stated previously, by setting extreme values for αi and/or ηi, the iterates Ψk
D and Ψk

N in the OADI
method could cooperatively solve any combination of (ui,∆τui,σ(ui, pi)) on the inaccessible boundary ΓI.
For example, the alternating method can be reduced to solving alternatively the problem (3.36) with order
2 condition on ΓI and the problem (3.37) with a Dirichlet condition on ΓI. This method corresponds to
the case where we set ηN = 0 and αN = ∞. This method referred from now to as the O2OA method is as
follows:

• Constructing (u2k, p2k) by solving the problem (3.36), where ΨD = ΛD(u2k−1, p2k−1) on ΓI,

• Constructing (u2k+1, p2k+1) by solving the problem (3.37), where we set uN = u2k on ΓI,

• Repeat steps 1 and 2 until a prescribed stopping criterion is satisfied.

In [17], an alternating method was proposed which necessarily have to exchange Dirichlet and Neumann
traces at the inaccessible boundary in order to allow for convergence to the solution of the Cauchy Stokes
problem. This procedure is time-consuming and leads almost to non-accurate reconstructions of the stress
force. We will show next that our method produces a faster and optimized method with improved recon-
structions of the inaccessible data compared to these alternating methods. At the end of this section, we
will see that when the parameters are optimized, the method converges as fast as possible.

Theorem 18. Let (Φ, ϕ) ∈ Σ× Σ̃ and suppose that the problem (1.1)–(1.5) has a solution in W ×M . Let
(uk, pk) be the k-th approximate solution in the alternating procedure described previously. Then

lim
k→∞

||u− uk||W = 0 and lim
k→∞

||p− pk||M = 0.

For the proof of this theorem, we will show that the O2OA method is a fixed point resolution of an inter-
facial problem. To see that, we consider the first two iterations of the O2OA method, and for an initial
approximation ΨD ∈ Λ, let

{
(̊u0, p̊0) = RD(0,Φ),
(u0, p0) = RD(ΨD, 0),

and

{
(̊u1, p̊1) = RN (̊u0|ΓI

, ϕ),
(u1, p1) = RN (u0|ΓI

, 0),

where, in abuse of notation, RN and RD are the solution operators defined in (3.39) and RN mapsH1
0 (ΓI)×Σ̃

into Λ. We can immediately verify, using Theorem 17, that the iterate (u1, p1) ∈ W ×M is a solution to
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problem (1.1)–(1.5) if and only if ΨD satisfies the second order condition ΨD = −ηD
2
∆τu1 + σ(u1, p1)n+

αDu1 = ΛD(u1, p1). This condition is equivalent to solving the interfacial problem: find ΨD ∈ Λ that
satisfies

ΨD = AΨD +B, (4.45)

where A and B are two composite operators defined by

AΨD = RD(u1, 0), and B = RD (̊u1, ϕ). (4.46)

Using the same argument from [17, 19], we obtain the following result

Corollary 19. The operator A is not negative, self-adjoint, non-expansive and 1 is not an eigenvalue.

Proof. Let (u0, p0) and (u1, p1) be as given above and (u2, p2) such that (u2, p2) = RD(ΛD(u1, p1), 0). The
elements (w0, q0), (w1, q1), and (w2, q2) are then constructed in the same way but with initial Ventcell
condition ξ ∈ Λ. Let us show first that the operator A is self-adjoint and non-negative. Alternating the
boundary conditions, and using the symmetry of the bilinear form aη,α, we obtain

〈AΨD, ξ〉 =
∫

ΓI

ΛD(u2, p2)w0 =

∫

ΓI

ΛD(u1, p1)w1 = aη,α(w1,u1)

=

∫

ΓI

ΛD(w1, q1)u1 =

∫

ΓI

ΛD(w2, q2)u0 = 〈ΨD, Aξ〉 .

Let us suppose that 1 is an eigenvalue of A, then there exists ΨD ∈ Λ such that ΨD = AΨD, which means that
ΛD(u1, p1) = ΨD = ΛD(u0, p0) which also gives (u1, p1) = (u0, p0) because of the same Cauchy data on ΓI.
This implies that ΨD = 0. Let us finally prove that the operator A is non-expansive. If ΨD ∈ Λ, the sequence
(||uk||α,η)k is decreasing; see [17, 18]. We then obtain ||AΨD||0,ΓI

= ||u2||α,η ≤ ||u0||α,η = ||ΨD||0,ΓI
. �

Finally, we can state that the O2OA method converges.
End of the proof of Theorem 18. It is enough to consider the case with (Φ, ϕ) = 0. Then we will check that
(uk, pk) converges to zero in W ×M . Let us start the iterative method with an initial Ventcell condition
ΨD = ΛD(u, p). Now, with induction on k we will prove that u2k(ΨD) = u(AkΨD). This assertion is true
for k = 0. Next, we assume that this is true for k. Introducing AΨD = ΛD(u2, p2), one can easily show
that u0(A

k+1ΨD) = u2k+2(ΨD). Since the operator A is self-adjoint, non-negative, non-expansive, and 1
is not an eigenvalue, this implies that ||u2k||α,η tends to zero. Using the fact that (||uk||α,η)k is decreasing
uk tends to zero in W . It remains to prove that pk tends to zero in M . By the stability of the solution
operators Ri, i = 1, 2, there exist C1 and C2 such that

||u2k+1||||W + ||p2k+1||M ≤ C1|u2k|1,ΓI
,

||u2k+2||||W + ||p2k+2||M ≤ C2||ΛD(u2k+1, p2k+1)||0,ΓI
.

This implies from the first inequality that p2k+1 converges to zero inM , and hence from the second inequality
that p2k+2 converges to zero in M and the proof is complete. �

4.1. Convergence factor formula for computing the optimized parameters

As emphasized previously, the convergence of the alternating method can be improved using optimized
Ventcell parameters. This fact can be shown by deriving the convergence factor of the alternating method.
For simplicity, let us suppose that Ω is an annular domain with double radii (1, a), with a > 1. The internal
circle is ΓI and the external one plays the role of ΓC. We also suppose that the data (Φ, ϕ) vanishes since
only the error equations are needed in the analysis. Let us define by eθ, and er the polar unit vectors.
Then, similar to the derivation of the optimized Schwarz methods, we assume that the flow is circular, that
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is, u = u(r)eθ, so that the streamlines are circular [43, 44, 45, 26]. The incompressibility condition ∇ · u is
satisfied by any flow of this form, and the Stokes equations are therefore reduced to

∂p

∂r
= 0, 1 < r < a,

−1

r

∂p

∂θ
+

(
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

)
= 0, 1 < r < a.

Now, u is a function of r, so from the second equation the same must be true for ∂p/∂θ, hence from the
first equation, we find that p = cst, otherwise p would be a multivalued function of position (different at
θ = 0 and at θ = 2π). Taking p with a null integral on Ω leads to p = 0. The sub-Cauchy Stokes problem
(1.1)–(1.5) simplifies then to the following ill-posed Cauchy problem

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
u = 0, 1 < r < a,

u = 0, r = a, (4.47)

∂ru = 0, r = a.

The O2OA method now reads, for k ≥ 1, solve
(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
u2k = 0, 1 < r < a,

u2k = 0, r = a, (4.48)
(
∂r + (α− η

2
∂θθ)

)
[u2keθ] = Ψ2k−1, r = 1,

with Ψ2k−1 =
(
∂r + (α− η

2∂θθ)
)
[u2k−1eθ], and

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
u2k+1 = 0, 1 < r < a,

∂ru2k+1 = 0, r = a, (4.49)

u2k+1 = u2k, r = 1.

We now proceed to a Fourier transformation to analyze the convergence of the above iterative method to
the zero solution. From the above problems satisfied by u2k and u2k+1, we compute both expressions

u2k(r) = A2kr +
B2k

r
and u2k+1(r) = A2k+1r +

B2k+1

r
.

Inserting the above solutions into the Fourier transformed boundary conditions on r = a (i.e. the second
equations of (4.48) and (4.49)), and the Fourier transformed matching conditions on r = 1 (i.e. the third
equations of (4.48) and (4.49)), we obtain by induction

u2k =
(1− a2) + (α+ η

2 )(1 + a2)

(1 + a2) + (α+ η
2 )(1 − a2)

u2k−1

=

(
(1− a2) + (α+ η

2 )(1 + a2)

(1 + a2) + (α+ η
2 )(1 − a2)

)(
1− a2

1 + a2

)
u2k−2

= ρ2ku0,

where the convergence factor ρ is given by

ρ =

(
(1 − a2) + (α+ η

2 )(1 + a2)

(1 + a2) + (α+ η
2 )(1− a2)

)(
1− a2

1 + a2

)
. (4.50)
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Then, the pair of parameters (α, η) should be determined by solving the min problem

min
(α,η)>0

|ρ(α, η)|. (4.51)

Although the numerical experiments discussed at the end of the paper are done in general domains, our
study of the convergence factor and parameter optimization are based on the Fourier analysis and seems
therefore limited to some geometries. The results we state may be extended to a class of two-dimensional
domains that can be obtained by conformal mappings from the annular domain.

4.2. Concluding remarks

Computing the convergence factor of the OADI method applied to the model problem (4.47) gives

ρ =

(
(1− a2) + (αD + ηD

2 )(1 + a2)

(1 + a2) + (αD + ηD

2 )(1− a2)

)
×
(
(1 + a2) + (αN + ηN

2 )(1− a2)

(1 − a2) + (αN + ηN

2 )(1 + a2)

)
.

We can calculate the parameters in such a way as to minimize the above convergence factor:

min
(αi,ηi)>0

|ρ(αD, ηD, αN , ηN )|. (4.52)

The interfacial problem of Mathod 1 can be solved using Kozlov’s method (see [19, 13]) and the optimized
parameters can be calculated using the same techniques.

5. Numerical Results and Discussion

In this section, we carry out numerical experiments in 2D to investigate the performance of the methods
presented in Section 3 and 4. We first test and compare the methods on a numerical example where the over-
specified sub-Cauchy data (Φ, ϕ) on the accessible boundary ΓC is generated from an analytic solution. Their
noisy counterparts (Φǫ, ϕǫ) are produced by adding an artificial noise ǫ ranging from 0 to 0.05. To compare
the methods, the two components of the fluid velocity and the normal stress are represented on inaccessible
boundary ΓI. With the same analytic example, the effectiveness of our methods is next showcased for a
computational domain for which the uniqueness of the solution is not guaranteed. For the final numerical
experiment, we illustrate the efficiency of the proposed methods for the complete Cauchy-Stokes problem
where a Cauchy data are extracted from an analytic solution of the Stokes problem.

5.1. Test 1: Non-circular ellipse domain and convergence analysis

In this test case, Ω is a non-circular ellipse with semi-axes a = 0.25, and b = 0.5. To explore the
efficiency of the proposed methods, we consider the reconstruction of the velocity field u and the stress force
(σ1,σ2) = σ(u, p)n on the inaccessible boundary ΓI, which is defined by

ΓI = {(x, y) : (x/a)2 + (y/b)2 = 1, x > 0.25},

from sub-Cauchy data on the rest of the boundary ΓC. The exact solution is given by, cf. [13],

u(x, y) :=
1

4π

(
log

1√
(x− r)2 + y2

+
(x− r)2

(x − r)2 + y2
,

(x− r)y

(x− r)2 + y2

)
,

and

p(x, y) :=
1

2π

(x− r)

(x− r)2 + y2
,
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and involves a singular point outside the domain for r = 0.55. We have used an iterative process based on
the conjugate gradient (CG) algorithm in Method 1 (see [13]) and the OADI algorithm in Method 2 as well
as the O2OA method. We stop the iterations when the following energy-like error

E =
1

2

∫

Ω

σ(u1 − u2) : ∇(u1 − u2), (5.53)

gets below 10−6. To compare the methods, Figures 1 and 2 depict the different components of the
approximated velocity field u and stress tensor σ on ΓI, (in blue (Method 1), magenta (Method 2) and red
(O2OA method)). We can see that the reconstructed fields are almost indistinguishable, in particular,
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Figure 1: First test: The reconstructed velocity on ΓI with ǫ = 0.
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Figure 2: First test: The reconstructed stress tensor on ΓI with ǫ = 0.

the O2OA method gives a very satisfactory result in comparison with classical alternating methods even
in presence of singularities. The number of iterations of the three methods is given in Table 1, and as
shown Method 1 is faster than Method 2 as well as the O2OA method. Instead of providing more figures,
we only report that all the methods are faster than the classical Lagrange multiplier approaches specially
in the presence of singularities. Next, we verify the performance of the O2OA method with optimized
parameters. Figure 3 shows the energy-like error (in logarithmic scale) for various values of the parameters
α and η after 16 iterations. Clearly, we obtain a rapid convergence by taking the pair of the optimized
Ventcell parameters, which are a posteriori calculated by minimizing the convergence factor (4.51). One can
see that the parameters obtained are close to those giving the smallest energy error. Let us also note that
the convergence can be significantly slower, if the parameters are not chosen well.
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Figure 3: Level curves for the energy-like error (in logarithmic scale) after some fixed number iterations for various values of
the parameters α, and η. The square shows the optimized parameters.

5.2. Sensitivity analysis

We now add some noise to the data in order to test the robustness of the different methods. More
precisely, only the shearing flow data Φ is polluted by a point-wise random noise with an amplitude ǫ = 0.03
and ǫ = 0.05. The shear stress data ϕ remains free of noise. We use the three methods, and we stop the
iterations according to the corresponding stopping criteria. We have only plotted the first component of
the velocity field u1 and the first component of the stress tensor σ1. We observe that the reconstruction
process using the three methods remains efficient and robust for reasonable noise levels; in particular the
boundary singularity is well detected. Concerning the number of iterations, the O2OA method needs more
iterations than the other ones, with, though, only few iterations compared to the classical alternating
method, furthermore the optimized parameters reduces the number of iterations by a significant factor.
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Figure 4: First test: The reconstructed first components on ΓI with ǫ = 0.03.

Nb of iters Method 1 Method 2 O2OA method
ǫ = 0 14 14 16
ǫ = 0.03 18 20 19
ǫ = 0.05 20 22 22

Table 1: The number of iterations.
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Figure 5: First test: The reconstructed first components on ΓI with ǫ = 0.05.

5.3. Test 2: Sub-Cauchy Stokes problem in an annular domain

The second example focuses on the solution of problem (1.3)–(1.4) in the case of annular domains. We
take the previous exact solution in Ω, a two-dimensional annular domain with radii R1 = 2 and R2 = 1.
The outer boundary is chosen to be ΓC while the inner boundary is considered as ΓI. Let us remark that
the uniqueness of the solution is not guaranteed in this case. To explore the efficiency of the proposed
approaches, we consider the reconstruction of the velocity field and the stress force on the inner circle from
sub-Cauchy data on the outer circle.
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Figure 6: Second test: The reconstructed first components on the inner circle ΓI.

We have only plotted the first component of the velocity field u1 and the first component of the stress
tensor σ1. The reconstructions obtained on the inner circle with the three procedures are given in Figure
6. They once again match quite well and the methods demonstrate the capability to select the correct
solution numerically. For the O2OA method, we plot in Figure 7 the energy-like error after 20 iterations
for various values of α and η. One can easily remark that using the optimized Ventcell parameters (marked
by a square) leading to an important economy of the number of iterations. As expected, for a bad choice of
the parameters the method may become significantly slower.

5.4. Test 3: Efficiency of the methods in the case of the Cauchy Stokes problem

In this experiment, we evaluate the effectiveness of the proposed methods in the case of the Cauchy
Stokes problem. In this test case, we take a polynomial example, given by

u(x, y) :=
(
4y3 − x2, 4x3 + 2xy − 1

)
,
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Figure 7: Level curves for the energy-like error (in logarithmic scale) after some fixed number of O2OA iterations for various
values of the parameters α, and η. The square shows the optimized parameters

and
p(x, y) := 24xy − 2x,

in a two-dimensional annular domain with radii R1 = 2 and R2 = 1. Let us precise that in that test case,
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Figure 8: Third test: The reconstructed velocity on ΓI.
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Figure 9: Third test: The reconstructed stress tensor on ΓI.

our task is to recover the velocity u and the stress force σ on the inner circle ΓI, by taking the measurements
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of Dirichlet and Neumann data on the outer circle boundary ΓI. The optimized parameters for the O2OA
method are the same as in the previous test case. The results are visualized in Figures 8 and 9, and it can
be seen that Method 1 and Method 2 yield almost indistinguishable results; they are in close agreement
with the exact solution. The results obtained using the O2OA method seem satisfactory and keep the
same convergence behavior as shown in test 1 so that it needs more iterations compared to Method 1 and
Method 2 (not presented).

6. Conclusion and perspectives

Many problems in industries have inaccessible boundary data that control the behavior of the system
and need to be predicted. For this data completion problem, we have developed new methods to retrieve
inaccessible data for the Stokes system from partially overdetermined boundary data. More precisely, we
seek to recover missing boundary conditions on a part of the boundary for the Stokes system from the
knowledge of incomplete Cauchy data given on another part of the boundary. This problem is referred
to as a sub-Cauchy Stokes problem. Some answers to the question of uniqueness are obtained using the
stream function representation of the Stokes equations together with the results established in [23, 24]. The
missing boundary data are rephrased through interfacial equations by eliminating the interior variables. The
interfacial problems are solved by iterative procedures, which requires solving well-posed Stokes problems
at each iteration. The originality of the proposed approaches stems from the use of second order or Ventcell
interfacial conditions, resulting in excellent reconstruction processes with considerably faster convergence
rates. Numerical experiments including those with practical applications on a medical device highlight the
performance of our approaches. Work underway addresses time-dependent Cauchy problems.

Appendix A. A Stokes flow slipping inside an aneurysmal sac

In this study we aim to investigate the O2OA method for the fluid-dynamics of blood in the presence of
aneurysm. This anomaly is one of the most dangerous diseases of arteries, and its treatment is very difficult.
In most cases the appearance and development of aneurysms proceeds for a long time without any appearing
symptoms up to the moment of breaking. If the presence of an aneurysm is determined, a possible therapy
consists in introducing a metallic multi-layered stent (see Figure A.10 right). This device slows down the
vorticity in a aneurysm by lowering the flow velocity, pressure, its gradient, and stresses in the aneurysmal
sac. An increasing effort has been made to identify hæmodynamic parameters that may play a role in the
design of the optimized stent that may reduce the velocity and the oscillatory shear stress inside the sac
[46, 30].

Artery wall

blood flow

stent’s wires
Aneursymal sac

Figure A.10: A sketch of stented arteries with a aneurysmal sac (left) and a 3D example of a real metallic multi-wired stent
(right).

The aim of this example is to determine the hœmodynamic blood flow parameters i.e, the velocity and
stress tensor, in the aperture of the aneurysmal sac in the presence of an aneurysm before and after inserting
the stent (see Figure A.11). From the applicative point of view, these two situations are of interest since we
identify the measurements necessary for the design of the stent, but also for post-surgical situation, where
we aim to measure the efficiency of the prosthesis. In vitro, the wall shear stress value may be estimated
from the flow velocity sampled near the aneurysmal wall (shearing velocity).
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Figure A.11: A sketch of the domains for the forward problem (left) and inverse problem (right).

Then, we consider the data completion problem in the domain given by Figure A.11 (right), where the
boundary is divided into two complementary parts ΓC representing the aneurysmal wall and ΓI representing
the aperture of the sac. The sub-Cauchy data are extracted from solving the Stokes equations with the
following boundary conditions





σ(u, p)n = 0, on Γout,
u =

(
1
2y(1− y), 0

)
, on Γin,

u = 0, on Γext ∪ Γo,
N(u) = (u · τ , 0), on ΓC,

(A.1)

on the geometry given in Figure A.11 (left) with and without the stent (Γo are the struts of the stent).
The finite element computations of this test case are performed with FreeFem++ [47]. Figures A.12 and
A.13 depict the converged solution before stenting. We observe that the method is efficient to reconstruct
the inaccessible data as well to detect and locate the pressure singularities in the corners. These corners of
high-pressure gradients are known to be dangerous from the medical viewpoint.
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Figure A.12: Application: The reconstructed velocity on ΓI (Without stent).

For the stented case, the situation is more complicated since the velocity field and the stress tensor on
the inaccessible boundary are influenced by the presence of the stent. We obtain good reconstructions (see
Figs.A.15 and A.16), and the method demonstrates its efficiency to detect the oscillations in the Dirichlet
as well as in the Neumann boundary conditions on ΓI; thanks to the Ventcell operator. These results also
confirm the effect of the stent in reducing the velocity and the stress induced by the aperture of the aneurysm,
but also confirm that the prosthesis promotes a more uniform distribution of the pressure and decreases the
absolute value of the pressure gradient inside the sac avoiding corner singularities (see Fig.A.14 and A.17).

We can conclude that our method is robust in the sense that it solves well and consistently various com-
plicate data completion problems. Specially the numbers of iterations remain satisfactory even in presence

23



0.016 0.017 0.018 0.019 0.02 0.021 0.022 0.023 0.024 0.025
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

σ1

σ1O2OA

0.016 0.017 0.018 0.019 0.02 0.021 0.022 0.023 0.024 0.025
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

σ2

σ2O2OA

Figure A.13: Application: The reconstructed stress tensor on ΓI (Without stent).

0.016 0.017 0.018 0.019 0.02 0.021 0.022 0.023 0.024
0.015

0.016

0.017

0.018

0.019

0.02

0.021

0.022

0.023

 

 

Figure A.14: Pressure and velocity in an aneurysmal sac without a stent.
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Figure A.15: Application: The reconstructed velocity on ΓI (With stent).

of poor and and singular data. The convergence of the method could be improved by a good choice of the
optimized parameters, with, though, this task is not known for general domains. In Figure A.18, we plot
the error obtained at iteration 15 varying the parameter η. The square indicates the optimized parameter
obtained using the minimization process. The square is near the small errors and leads to an optimal and
faster convergence.
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Figure A.16: Application: The reconstructed stress tensor on ΓI (With stent).
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Figure A.17: Pressure and velocity in an aneurysmal sac with stent.
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Figure A.18: Energy-like error after 15 iterations for various values of the Ventcell parameter η (α is fixed). The square shows
the estimated optimized parameter.
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