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Abstract—
A large scale configurable system typically offers thousands of op-

tions or parameters to let the engineers customize it for specific needs.
Among the resulting many billions possible configurations, relating op-
tion and parameter values to desired performance is then a daunting
task relying on a deep know how of the internals of the configurable
system. In this paper, we propose a staged configuration process to
narrow the space of possible configurations to a good approximation of
those satisfying the wanted high level customer requirements. Based on
an oracle (e.g. a runtime test) that tells us whether a given configuration
meets the requirements (e.g. speed or memory footprint), we leverage
machine learning to retrofit the acquired knowledge into a variability
model of the system that can be used to automatically specialize the
configurable system. We validate our approach on a set of well-known
configurable software systems. Our results show that, for many different
kinds of objectives and performance qualities, the approach has inter-
esting accuracy, precision and recall after a learning stage based on a
relative small number of random samples.

Index Terms—software product lines; machine learning; constraints
and variability mining; software testing; variability modeling

1 INTRODUCTION

Most modern software systems are configurable and offer
(numerous) configuration options to users. Web servers like
Apache, operating systems like the Linux kernel, or a video
encoder like x264: all can be highly configured at compile-
time or at run-time for delivering the expected functionality,
hopefully with an adequate performance (e.g., execution
time).

Even with know-how or expertise on the domain, config-
uring such systems is known to be a laborious activity with
lots of trials and errors. Users typically set some Boolean or
numerical values for their options, observe the behavior of
the configured system, and iterate until obtaining a suitable
configuration (e.g., in terms of speed, footprint, size or
any other performance related metric). Along the road, it
may happen that the specified configuration leads to an
error at compile-time or at runtime (e.g., a crash during the

execution). It may also happen that some configurations are
functionally valid and yet lead to performance issues that
are perceived as unacceptable. For example, the execution
time is greater than 5 seconds or the quality of the output is
less than an expected threshold.

Finding a good combination of options that meets both
functional and performance requirements is in general a
very challenging problem. Firstly, there may be billions of
possible configurations: In practice it is too costly to manu-
ally or automatically execute, measure, observe, and test all
of them so that only the right ones are retained. Secondly,
empirical results show that quantifying the performance
influence of each individual option is not sufficient in most
cases, since there are numerous complex interactions and
constraints between options [1]–[6]. As a result, users have
hard time (1) to understand the effects of each configura-
tion option on performance; (2) to express the performance
models to reach or optimize. Thirdly, users can hardly
find a suitable and complete configuration solely based on
performance objectives. The use of an automatic procedure
for picking a configuration may involve arbitrary choices
that users may not actually want – the performance is OK
and even optimized, but the functional requirements are
not acceptable. Users usually need a (fine-grained) control
and keep some flexibility during a multi-stage or multi-step
configuration process.

In this article, we introduce the idea of automatically
specializing a configurable system in such a way that admis-
sible configurations satisfy a given performance objective.
In a sense we aim to pre-configure a system so that any
remaining choices have a high probability of satisfying the
required performance. For instance, we can derive a special-
ized x264 with a low energy consumption, as defined by a
value threshold. Software integrators can then embed x264
in small devices: They can still fine-tune their configurations
w.r.t their functional constraints (e.g., hardware characteris-
tics of the targeted device). Importantly, our specialization
method does not aim to select, tune, or optimize one config-
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uration. We rather aim to offer a set of satisfying configura-
tions. The specialized system remains (highly) configurable
but constrained to satisfy the performance objective for any
remaining configurations.

Our performance specialization method proceeds as fol-
lows. First, a performance objective is defined (e.g., execu-
tion time is less than 10 seconds). Importantly the objec-
tive is not a performance model of the entire system, but
simply a threshold value for which the system behavior
is acceptable or not. Users of our method just have to
specify a performance requirement (e.g., "execution time
less than 10 seconds"), the rest is automatic. An automated
procedure (e.g., a runtime test) operationalizes the check-
ing of the required performance as measured on a set of
relevant benchmarks. Second, we leverage machine learning
techniques to classify configurations in two classes: configu-
rations we want to keep because they meet the performance
objective; and configurations that are not acceptable and
that we want to discard. Thanks to learning, we expect
to classify configurations that were never executed and
measured before with a good precision and recall. Our
empirical results confirm that only a small sample of con-
figurations is needed to perform accurate predictions. Third,
we synthesize constraints among configuration options to
narrow down the space of possible configurations. That is,
we directly retrofit the knowledge acquired with machine
learning into a variability model. State-of-the-art solving or
search-based techniques can then exploit such constraints
to pilot a (multi-step) configuration process [7]–[16], [16]–
[20]. As a result, the configuration experience should no
longer be a semi-blinded endeavor based on numerous
trials and errors. On the contrary, users of the specialized
system should be guided at each configuration step (e.g.,
propagation of options values) until finding a configuration
satisfying the required performance and their own specific
needs.

With our method, developers can pre-configure and
automatically build specialized configurable systems that
meet a certain objective (e.g., energy consumption or execu-
tion time). Non-acceptable configurations are automatically
discarded, leading to safe and still flexible configurable
systems. Vendors or developers can deliver new bundles
or product lines for targeting specific customers, profiles,
use cases, hardware settings, or safety-critical contexts.
Our method also has a practical interest when engineering
adaptive systems or dynamic software product lines [21]–
[23] that are highly configurable systems. At runtime, the
decision-making engine will typically operate over a re-
duced and safe configuration space thanks to our special-
ization method.

In this article, we make the following contributions:

• We propose an automated method that produces
a partially specialized configurable system so that
users’ configurations almost always meet a desired
performance quality. The engineering effort only re-
sides in the specification of an "objective" to indicate
what quality is acceptable for the new configurable
system.

• We implement the approach and demonstrate its
practicality and generality by experiments on real-

world configurable software systems. The results
show that, for many different kinds of objectives and
performance qualities, the approach has interesting
accuracy, precision and recall after a learning stage
based on a relative small number of random samples.

• We empirically explore the sensitivity of the method
w.r.t objective specification and random sample size.
A key finding is that it works well when the objec-
tive yields to a good separation of the performance
distributions into two classes, somehow in between
the two extreme cases when the objective is too per-
missive (allow all configurations, so no specialization
is obtained) or too restrictive (no configuration does
exist to satisfy the objective).

• We compare our solution with a sound (non
learning-based) method. Our empirical results show
that our learning-based specialized method produces
safer configurable systems. This is especially the case
for performance objectives that require to eliminate a
large portion of non-acceptable configurations.

This article significantly extends our previous work
published at SPLC’16 [24]. In [24], we used learning tech-
niques to correct a configurable video generator. Compared
to SPLC’16 paper, we generalize here our specialization
method to support performance objectives. It broadens
the applicability and the usefulness of our method, since
many specialization scenarios are related to performance
properties (speed, size, etc.). In terms of evaluation, we
consider much more subjects, i.e., in total 16 publicly avail-
able configurable systems and performance properties. We
also study the effect of the sampling size used to train
the machine learning technique. Furthermore we consider a
third important independent variable: the threshold values
of the performance objective. It simply does not exist in our
previous work and challenges our learning-based special-
ization technique. A comprehensive evaluation framework
with metrics (e.g., specificity, negative prediction value) has
been developed for assessing our method while key findings
are precisely related to the effect of performance objectives.

The remainder of the article is structured as follows.
Section 2 motivates our work and formalizes the problem.
Section 3 describes our specialization method. Section 4 re-
ports on our empirical results. Section 5 discusses threats to
validity. Section 6 reviews related work. Section 7 concludes
the article and outlines future work.

2 MOTIVATION AND PROBLEM STATEMENT

What configuration options or parameter value ranges am I
still allowed to use when I want to satisfy some performance
(or non-functional properties)? This question arises every
time users configure a system, for example, when Web de-
velopers write a configuration file for a server like Apache,
or when administrators explore the compilation options of
a database engine like SQLite.

Motivating scenario. Let us consider the case of x264,
a tool to encode videos into the H.264 compressed format.
x264 offers configuration options such as output quality, en-
coder types, and encoding heuristics (e.g., parallel encoding
on multiple processors or encoding with multiple reference
frames). Users configure x264 by setting options values,
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task: 
configuration

VM' = VM 
^ cfrRatio > 26.7 
^ no_mbtree = 
false 

Performance objective: 
"speed < 145"

SPECIALIZATION

Fig. 1: Configuration of a specialized x264. Given a performance objective, the specialization method infers and fixes some
options values (no_mbtree and crfRadtio); users still have some flexibility to configure other options.

through command-line parameters or through graphical
user interfaces. Figure 1 shows an excerpt of options:
no_mbtree, qp, no_asm, and no_cabac are Boolean options
(true or false values) and crfRatio, ipratio, and b_bias are
numerical values with different ranges.

Finding a configuration that performs as desired is a
time-consuming and error-prone task, even with a good
knowledge of the configurable system. Though x264 pro-
vides a comprehensive documentation of options [25], the
description is in natural language and does not necessary
capture all interactions between options. Furthermore it is
practically impossible for maintainers or users of a config-
urable system to test the 1027 configurations of x264.

Users typically try some options, look at or measure the
result, and iterate again and again until getting a satisfactory
performance. A fundamental issue is that changing one
individual option may dramatically change the behavior
of the system. Empirical results on x264 show that each
option and interaction between options can have severe
consequences on the execution time, on the quality of the
output, or on the energy consumption [1]–[6].

Approach. Our goal is to assist users in reaching con-
figurations that meet both functional and performance re-
quirements. On the one hand, we want to restrict the space
of reachable configurations. In Figure 1, we have specialized
x264 in such a way that each authorized configuration now
has an execution time (speed) less than 145s. With regards
to performance distribution1 (see Figure 2), this threshold
value means that x264 should be fast. On the other hand,
we want to keep open the configurability (or variability)
of the system. That is, we do not want to pick only one
suitable configuration, but we rather want to still provide
some flexibility to users when configuring the system.

Given a performance objective, our approach specializes a
configurable system. Users can still configure their systems

1. The considered x264 has 1027 configurations in total. As it is
practically impossible to compute and test all configurations, other
researchers [1], [3], [6], [26], [27] have computed a large subset of 69k
configurations (see also Section 4 for more details about the datasets).

in different steps or stages (for setting the compression,
input video format, blurriness of the result, etc.) but any
remaining choice has a high probability of satisfying the
required performance. For instance, thanks to the special-
ization of x264 (see Figure 1), no_mbtree is automatically
deselected (and must never be activated) while the remain-
ing possible values of crfRatio are now greater than 26.7.
It is a real result of our method (see also Section 4 for other
empirical results). It is also coherent with information found
online [25] that mentions higher values of crfRatio tend to
produce low quality videos and are thus faster.

Problem formalization. We assume a variability model
VM documents the set of options of the configurable system
under consideration. Options can take Boolean or numerical
values (integer or float). The variability model may already
contain some constraints that restrict the possible values of
options. For example, the inclusion of some Boolean option
implies the setting of a numerical value greater than 30.
A configuration is an assignment of values for all options
of a variability model. A configuration is valid if its values
conform to constraints (e.g., cross-tree constraints over nu-
merical options). Semantically a configurable system char-
acterizes a set of configurations JVMK = {c | c ∈ JVMK}.

A specialized configurable system is a new system in
which all its valid configurations meet a certain objective.

An objective can be as simple as "it compiles" or "it
passes the test suite". It can also be about some performance
aspect of the system, for instance: "the execution time of
the system should be less than one second". An objective,
denoted OBJ, is a Boolean predicate over a configuration
and a value of a non functional property (e.g., execution
time).

Formally, given a configurable system cs, we want to
obtain a new configurable system: cs′ such that

JVM ′K = {c′ | c′ ∈ JVMK ∧OBJ(c′)} (1)

Overall the problem is to synthesize a new variability
model VM ′ such that each valid configuration now yields
to an acceptable performance (as defined by an objective).
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Fig. 2: Number of x264 configurations running under a
certain time: X-axis represents a number of configurations;
Y-axis represents the execution speed (in seconds) to encode
a video benchmark; e.g., about 25994 configurations can
encode the video in less than 145.01 seconds.

Simply put, VM ′ is VM augmented with constraints. Since
JVM ′K is a subset of JVMK, VM ′ is a specialization [28]
of VM . We use the term specialization in accordance with
the terminology employed in the software product line
literature (see e.g., [16], [16]–[20], [28]).

Challenges. For numerous existing configurable sys-
tems, the major issue is that we cannot execute and check
OBJ for all existing configurations (e.g., 1027 for x264). In
general, a solution based on a comprehensive enumeration
is not possible because of the cost of execution and the cost
of measurement. Therefore, in practice, we rather have at
our disposal a (small) sample of configurations. Further-
more, performance qualities involve interactions between
several options that are hard to quantify and model. Figure 2
shows the performance variations of x264 configurations
w.r.t execution speed.

Boolean options like no_mbtree and crfRatio and their
interactions influence the execution time. Overall, trying
to find constraints explaining those performances is very
difficult and leads to highly non-linear functions.

Our goal is to use machine learning techniques to con-
strain a configurable system with respect to a given perfor-
mance objective, while still keeping open the configuration
space.

A novel problem. Previous learning approaches ad-
dressed a complementary yet different problem [1]–[5]:
They aimed to predict the performance of a given config-
uration using statistical regression techniques. For example,
users may specify some parameters of x264 and a predictor
gives the speed value – without executing and measuring
x264. A prediction can be used for determining whether a
configuration is acceptable w.r.t performance objective. If
it is not, users have to iterate again until finding a good
combination of values that meets their objectives. It remains

a semi-blinded endeavor only slightly guided by the users’s
domain know-how, since non-acceptable configurations are
not discarded. Such techniques do not retrofit constraints
into the variability model and thus do not address our
problem (see Equation 1). In the remainder of the paper,
we will show that our specialization problem boils down to
a classification problem (as opposed to a regression problem).

3 AUTOMATED SPECIALIZATION

Users in charge of specializing a configurable system have
to specify a performance objective. An automated procedure
based on machine learning is then executed to synthesize a
new variability model. Figure 3 depicts the different steps
of the specialization process.

3.1 From user’s objective to oracle

An objective states whether a given performance configura-
tion is acceptable and is the only input of our method (see
right part of Figure 3). Developers, maintainers, integrators,
sellers of product lines, or even end-users can play the role
of a specializer and express an objective in a declarative
way. For instance, let say the objective is formulated as "the
execution time of an x264 encoding on a given benchmark
should be less than 145s". In Figure 2, there are about 25994
configurations out of 69000 that are able to encode a video
benchmark within 0 to 145 seconds. It means that we want
to only retain these 25994 configurations, representing about
37% of configurations of our dataset.

An objective is fed to an automated procedure, called an
oracle, that takes as input a configuration and returns true
or false. As a practical realization, an oracle follows these
steps:

• execution or compilation of the configured system
given an input configuration;

• measurement over the execution or the result of
the compilation. Specializers can develop or simply
reuse a procedure to measure a configuration;

• confrontation of the measure with the objective, giv-
ing true or false value.

3.2 Configuration sampling and oracle’s labelling

Another step in the process is configuration sampling. Since
deriving and measuring every possible configuration can
have significant costs, we need to create a smaller set
of configurations. Such configurations are valid w.r.t the
original constraints and variability model VM (see left
part of Figure 3). Numerous strategies can be considered
such as the generation of T-wise configurations, random
configurations, etc. [3], [29]–[35] In this article, we do not
aim to develop or assess specific sampling techniques; we
rather use a random strategy.

Now that a sample has been created and an oracle can
be executed, we can determine which configurations in the
sample fulfill the expected objective. We label configurations
as acceptable (w.r.t an oracle) or non-acceptable (see right
part of Figure 3). A configuration is characterized as a set
of option values and a label, also called class hereafter. For
example, in configuration c1, ft1 has value 1 (representing a
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Variability 
Model (VM)

VM' = 
VM + 

Constraints
Machine
Learning

Sampling
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derivation) 
and
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Oracle

labelled 
configurations

Constraints
task: specialization

Fig. 3: Sampling, measuring, learning: given a performance objective, there is an automated method for specializing a
configurable system

true Boolean value), ft2 has value 26 (numerical value), etc.
and ftn has the true value. The class of c1 is non-acceptable
since its performance measure (200) is superior to 145 in our
example. In configuration c3, ft1 has the true value, ft2 has
value 28, etc. and ftn has the true value. The class of c3 is
acceptable.

3.3 Machine Learning (ML)
For specializing a configurable system, we need to classify
configurations as acceptable or non-acceptable using a sam-
ple. Then constraints can then be synthesized for removing
non-acceptable configurations. Our goal is to infer, out of a
few configurations, what options’ values lead to the class
acceptable or non-acceptable. In essence, we try to find a
function to relate the configuration options to a Boolean re-
sponse. We need to resolve a binary classification problem [36].

Problem reduction. We represent all configurations options
(being Boolean features or numerical attributes) of a config-
urable system as a set F = {ft1, ft2, . . . , ftn} of variables.
We consider all variables of F as predictor variables. A
configuration is encoded as a n-dimensional vector. We have
a training sample of m configurations on class variables Y
that take values {0, 1} (resp. acceptable and non-acceptable
configuration). Given training data (ci, yi) for i = 0 . . .m,
with ci ∈ JVMK and yi ∈ {0, 1}, we want to learn a classifier
able to predict the values Y from new F values.

Classification trees. Many approaches have been devel-
oped for addressing (binary) classification problems. Deci-
sion trees (DT) are a supervised ML technique which tries
to classify data into classes [37]. We choose DTs since they
are well suited to our specialization problem:

• DTs can handle both numerical and categorical data.
In our case, we want to handle Boolean options (fea-
tures) or numerical options (attributes) both present
in the variability models of real-world configurable
systems;

• We can extract rules or constraints expressed in
propositional logics. We can seamlessly inject such
constraints into VM ;

• DTs are usually easy to understand and interpret.
It can be useful for synthesizing human-readable
constraints.

DTs where the class variable Y can take a finite set of
values are called classification trees2. It is the case of our
specialization problem since the set of values is either 0
(acceptable) or 1 (non-acceptable).

A classification tree consists of nodes and edges orga-
nized in a hierarchy. Nodes test for the values of a certain
variable. Edges correspond to the outcome of a test and
connect to the next node. In other words, at each level of
the tree, a binary decision is made regarding the value of
predictor variables (configuration options). Leaves of the
tree are terminal nodes that predict the final outcome.

Figure 4 shows an example of a classification tree that
has been built on the x264 configurable system with the
objective of execution time < 145s. This tree has only two
depth levels (decisions before reaching leaves). To know
the class of a new configuration, one has to simply go
through the tree until a leaf is reached. At each level, the
path is decided by considering the configuration option
indicated in the current node and by comparing its value
with the test expressed on edges. In this tree, there are three
leaves and two of them are labeled "1", meaning that every
configuration falling into these two leaves are considered
non-acceptable.

Building classification trees. Algorithms for building classi-
fication trees [36], [37] choose a node at each step that "best"
splits the set of examples (i.e., configurations in our case). In
the ideal case, the distribution of examples in each node is
homogeneous so that it mostly contains examples of a single
class; the pure node can then be used to predict the class of a
large portion of examples. Measures of node impurity based
on the distribution of the observed Y values in the node are
usually employed. The key challenge is to find an effective
strategy for choosing nodes and splitting.

Algorithm and implementation. Different metrics for mea-
suring the homogeneity or entropy of the class variable Y
within the subsets have been proposed. ID3, C4.5, and C5.0
algorithms use information gain (difference in entropy) for

2. DTs where the target class variable can take continuous values
(e.g., real numbers) are called regression trees. Such DTs can be used to
specifically address regression problems (e.g., performance prediction
problems). Furthermore, specific algorithms have been developed to
build regression trees and differ from algorithms used to build classifi-
cation trees.
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Fig. 4: An example of a classification tree based on x264
system (speed is the performance quality considered)

1 !(crf_ratio <= 26.7)
2 !( crfRatio > 26.7 & no_mbtree > 0 )

Fig. 5: Constraints extracted from Figure 4

its splitting function, whereas CART uses a generalization
of the binomial variance called the Gini index [37]–[39]. We
rely on scikit-learn [40], a widely used machine learning
framework written in Python. Specifically, we use classifi-
cation tree algorithms of scikit-learn3 with information gain
as splitting criterion. For other parameters of scikit-learn’s
algorithm, we use default values. The source code of our
implementation can be found online [27].

3.4 From decision trees to constraints

It has been shown that rules (or constraints) can be extracted
out of decision trees [41]. Since leaves are labeled, we can go
through the entire tree and remember choices which lead to
leaves that represent configurations that do not fulfill the de-
sired behavior expressed by the oracle. Such paths (built by
following those choices) can be considered as constraints to
be added in the variability model in order to further exclude
configurations that follow those choices. Considering again
Figure 4, we can retrieve two paths leading to leaves labeled
"1", thus, retrieving two constraints shown in Figure 5. Such
constraints, denoted cst, are eventually injected into VM to
get VM ′. VM ′ = VM ∧ cst is then exploited to guide
users in a multi-stage configuration process.

In Figure 1, we can observe the effect of retrofitting the
constraints of Figure 5. When configuring x264, no_mbtree
is now automatically set to false. Users are also invited to
choose crfRatio values greater than 26.7. In general, solving
techniques based on SAT, BDD, CSP, or SMT [8]–[15] can
operate over VM ′ for consistency checking, propagation of
values, range fixes, etc. Ideally, constraints of VM ′ prevent
all configurations that contradict a given performance objec-
tive but still allow users to select any of the remaining con-
figurations. In the following, our primary assessment will
be on the ability of our learning-based method to synthesize
a semantically sound VM ′ and set of constraints4.

3. http://scikit-learn.org/stable/modules/tree.html
4. Developers, maintainers, or experts can read constraints extracted

out of decision trees for understanding or debugging configurable
systems. The evaluation of the syntactical properties of constraints,
however, is out of the scope of this article. We rather focus on the
configuration semantics of VM ′ = VM ∧ cst

4 EVALUATION

The main question we aim to address is whether our ap-
proach can accurately classify configurations as acceptable
(resp. non-acceptable) w.r.t any performance objective and
with a reasonably small training set.

On the one hand, our learning-based technique can
introduce errors in the following cases:

• a configuration in VM ′ is valid (and thus classified
as acceptable) despite being non-acceptable – the
system is under-constrained and unsafe;

• a configuration in VM ′ is not valid (and thus clas-
sified as non-acceptable) despite being acceptable –
the system is over-constrained and lacks flexibility.

On the other hand, we expect to observe such cases:

• a configuration in VM ′ is valid and correctly classi-
fied as acceptable;

• a configuration in VM ′ is non-valid and correctly
classified as non-acceptable.

Errors or successes in the classification can indeed have
severe consequences on the configurability of the resulting
specialized system. Our specialization method can over-
constrain the system – very few configurations are reachable
– and the users’ flexibility is undermined. There is also a
risk to under-constrain the system (e.g., very few constraints
have been synthesized), thus compromising its safety.

We can quantify the ratio of correct classifications, i.e.,
the accuracy. However it is well-known that accuracy alone
can have limited interest since it hinders important phe-
nomena (see hereafter for more details). Intuitively, in our
specific problem, we also need to measure the precision and
recall of our classification. It can give better insights on our
ability to (1) discard non-acceptable configurations and (2)
to keep acceptable configurations. Furthermore, we need to
quantify how safe and flexible are the resulting specialized
systems. Finally, we also compare our learning-based spe-
cialization method with an approach without learning and
specialization.

To summarize, our research questions are as follows:

• RQ1 What is the accuracy of our specialization method
for classifying configurations?

• RQ2 What is the precision and recall of our specialization
method for classifying configurations?

• RQ3 How safe and flexible are specialized configurable
systems when applying our method?

• RQ4 How effective is our learning technique compared to
a non-learning technique?

For each research question, we study the influence of
different performance objectives and sizes of training sets
on a set of real-world variability-intensive systems.

4.1 Subject systems and configuration performances
We performed our experiments on a publicly-available
dataset used in previous works [1], [3], [6], [26]. The dataset
includes sets of configurations of real-world configurable
systems that have been executed and measured over differ-
ent performance metrics. As shown in Table 1, configurable
systems come from various domains and are implemented
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in different languages (C, C++ and Java). The number of
options varies from as little as ten, up to about sixty;
options can take Boolean and numerical values. The two last
columns show, first, the total number of different possible
configurations existing for the system and, last, the number
of configurations that have been generated and measured in
previous works [1], [3], [6], [26] ("All" meaning all different
configurations have been measured).

It should be noted that most benchmarks measure a sin-
gle performance value, except for x264 where benchmarks
evaluate 7 performance metrics.

System Domain Lang. Features #JVMK Meas.
Apache Web Server C 9/0 192 All
BerkeleyC Database C 18/0 2560 All
BerkeleyJ Database Java 26/0 400 181
LLVM Compiler C++ 11/0 1024 All
SQLite Database C 39/0 106 4553
Dune Solver C++ 8/3 2304 All
HIPAcc Image Proc. C++ 31/2 13485 All
HSMGP Solver n/a 11/3 3456 All
JavaGC Runtime Env. C++ 12/23 1031 166k
x264 (Energy) Codec C 8/12 1027 69k
x264 (PSNR) Codec C 8/12 1027 69k
x264 (SSIM) Codec C 8/12 1027 69k
x264 (Speed) Codec C 8/12 1027 69k
x264 (Size) Codec C 8/12 1027 69k
x264 (Time) Codec C 8/12 1027 69k
x264 (Watt) Codec C 8/12 1027 69k

TABLE 1: Features: number of boolean features / number
of numerical features; #JVMK: number of valid config-
urations; Meas.: number of configurations that have been
measured.

4.2 Experimental setup
The independent variables are the subject systems5, the size
of the input sample, and the percentage of acceptable con-
figurations (as determined by a performance objective). The
classification metrics (accuracy, precision, recall, specificity,
etc.) are measured as the dependent variables (see next
section and Figure 6).

To evaluate our method, we need two sets of config-
urations: the training sample and the test sample. For each
subject system, we have randomly selected a certain number
of configurations from the ones available in the public
dataset: our ML method operates over a training sample to
learn a separating function. All remaining configurations
form the test sample, i.e., it is the whole configuration set
minus the training set. They are used to verify whether the
classification of our ML is correct. For instance, the public
dataset contains 69,000 different configurations for x264. If
we used 500 of them to learn constraints, then we evaluate
the classification quality of ML on the remaining 68,500
configurations.

For each configurable system, we make vary the sample
size one by one, from 1 to the total number of configurations.
We make vary the objective value between the lower and
upper bounds of the performance measured in each dataset.

We notice that threshold values have direct influence on
the percentage of acceptable configurations. For instance,
considering Figure 2, an execution time (speed) threshold

5. It should be noted that x264 has been evaluated 7 times since 7
performance measurements have been gathered

less than 100s leads to only 21.4% of acceptable configura-
tions. We thus vary the objective value from 0% to 100% of
acceptable configuration with steps of 5%.

To reduce the fluctuations of the dependent variables
caused by random generation, we performed ten repetitions
for each combination of the independent variables. That is,
for each subject system, we repeated ten times generating a
random sample of a certain size and subsequently measured
the dependent variables after applying our approach to the
sample. We took only the average of these measurements
for analysis.

4.3 Classification measurements

In our case, positive class (also called class-1) corresponds to
non-acceptable configurations that we want to discard. The
negative class (also called class-0) corresponds to acceptable
configurations that we want to keep. There are four possible
situations represented in a confusion matrix (see Figure 6):

• True Positives (TP) and True Negatives (TN) are on
the main diagonal and represent the set of correctly
classified configurations;

• False Positive (FP) and False Negatives (FN), on the
contrary, represent classification errors

For obtaining TP, TN, FP, and FN, we confront the
classifications made by ML in the training set with the oracle
decisions available in the testing set. Based on a confusion
matrix, we can compute several classification metrics:

• Accuracy measures the portion of configurations ac-
curately classified as acceptable and non-acceptable.
It gives a global classification efficiency of the learning
phase.

• Precision measures our ability to correctly classify
non-acceptable configurations. A low precision may
be problematic since numerous non-acceptable con-
figurations are actually acceptable: Users may lose
some flexibility.

• Recall (also called true positive rate) measures our
ability to comprehensively identify non-acceptable
configurations. A low recall may be problematic as
well, since numerous non-acceptable configurations
have not been classified as such: Users may still
choose unsafe configurations.

• Specificity (also called true negative rate) quantifies
how flexible is the resulting specialized system.

• NPV (also called negative predictive value) quanti-
fies how safe is the resulting specialized system.

Each metric gives a complementary perspective to the qual-
ities of our learning-based method.

Example. We consider the confusion matrix of Figure 6a
to illustrate the metrics and their relations to safety and flex-
ibility. In total, 2000 configurations are tested. Out of 2000,
the machine learning succeeds to classify 650+1000 = 1650
configurations. Hence the accuracy is 88.5%.

The first classification errors concern the false negatives
(FP): 70 configurations are classified as non-acceptable de-
spite being acceptable. The precision is high (650/(650 +
70) = 90%). The other classification errors concern the
false negatives (FN): 280 configurations are classified as
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Fig. 6: Confusion matrix and classification metrics: with machine learning vs without learning (example)

acceptable despite being non-acceptable. We can notice that
the recall (650/(650+280) = 70%) is inferior to the accuracy
(88.5%). It shows that the accuracy metric hinders some
phenomenon and has some limitations (more details are
given in the next research questions).

Again in the example of Figure 6a, the oracle states that
1070 configurations out of 2000 should have been kept. the
machine learning correctly considers 1000 configurations
(true negatives, TN) as acceptable; we miss to only retain 70
configurations. The specificity and so the flexibility are high
1000/1070 = 93%. Finally, the machine learning retains
280 + 1000 = 1280 acceptable configurations in total. It
is superior to the 1070 configurations of the ground truth.
That is, there will be some unsafe configurations in VM ′

among the 1280. As we know that 1000 configurations are
truly acceptable, we can conclude that 1000/1280 = 78%
of configurations will be safe in the resulting specialized
system. It corresponds to NPV.

Comparison. An interesting perspective is to compare
classification metrics of a learning approach with a non-
learning approach. When there is no learning, all configura-
tions are considered as acceptable; it corresponds to the sit-
uation in which no specialization of the configurable system
is made. The number of false positive (FP) and true positive
(TP) is 0, i.e., opportunities to remove unsafe configurations
are missed. The precision and recall always equal to 0. In
the example of Figure 6b, the accuracy is 53.5%. It is less
than 82.5% (the score of machine learning). The NPV also
equals to 53.5%. The consequence is that the configurable
system is quite unsafe. Only 53.5% of configurations (1070
out of 2000) will be truly consistent with the performance
objective. In comparison, the machine learning achieves a

78% score and is much safer. Finally, the specificity of a non-
learning approach is 100% by construction. In contrast, the
machine learning score is 93% and is inferior in terms of
flexibility.

Overall, in the example of Figure 6, the machine learning
synthesizes much safer systems than a non-learning ap-
proach (78% vs 53.5%). We also consider it achieves a good
tradeoff between safety and flexibility (specificity: 93% vs
100%).

The confusion matrix of Figure 6 is just an illustrative
example. Based on our evaluation framework, we can now
address the research questions using real configurable sys-
tems, sample trainings, and performance objectives.

4.4 Verifiability and presentation of results
For the sake of reproducibility of the experiments we pro-
vide:

• a website (http://learningconstraints.github.io/)
with all heatmaps, plots, and figures.

• a git repository containing all data and the scripts
used to: i) execute the procedures over different
configurable systems; ii) generate all the different
graphs within this paper as well as the rest shown
in the website

• details on how we have collected and prepared data.

We recommend the reader to visualize heatmaps in color
(e.g., with a PDF viewer).

4.5 (RQ1) What is the accuracy of our specialization
method for classifying configurations?
Accuracy (see Section 4.3 and Figure 6), a standard met-
ric for classification problems, measures the fraction of

http://learningconstraints.github.io/
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configurations accurately classified as acceptable and non-
acceptable.

In Figure 7a, we depict a heatmap of x264 for showing
its accuracy score w.r.t sampling size and objectives values
(the darker, the higher accuracy is). For instance, with a
percentage of acceptable configurations between 90 and 100
(Y-axis), the accuracy is above 0.9 whatever the sampling
size is (X-axis). It means that for an objective threshold value
that does not restrict too much the configuration space, the
accuracy is quite high.

All other heatmaps are available in the Appendix A.1
and Figure 11. Based on their analysis, we can report on the
following insights:

• the overall accuracy is quite high and is often above
90%. We can reach an accuracy of at least 80% for
every system.

• there is no need to use a large training sample to
reach such a high accuracy. In general, only dozens
of configurations in the training set are needed for all
systems.

• accuracy increases when the sampling size increases,
following a logarithm curve. Hence the method can
be used progressively.

• the performance objective for which accuracy is the
highest (e.g., greater than 0.9) is specific to systems.
There are some sweet zones, but e.g., an equal separa-
tion of acceptable and non-acceptable configurations
does not equate to accuracy improvement.

Limits of accuracy. The high accuracy observed on all
subjects suggests that our method is effective to classify con-
figurations. However, a high accuracy does not necessarily
mean that our specialization method is effective to identify
non-acceptable configurations. For instance, in the example
of Figure 6, accuracy is 82.5% (which is high) despite the
fact the method is less effective to identify non-acceptable
configurations we want to discard. Specifically, the recall is
lower (70%) – 650 non-acceptable configurations have been
identified out of 930.

Looking at the heatmaps of accuracy, precision, and
recall of x264 (see Figure 7a, Figure 7b, and Figure 7c),
we can observe that high accuracy does not imply high
precision or high recall. When confronting the heatmaps of
accuracy (see Appendix A.1, Figure 11) with the heatmaps
of precision and recall (see Appendix A.2, Appendix A.3,
Figure 12, and Figure 13) for all other subjects, we can
make the same observation. It is a theoretical statement (see
formulae) and empirical results confirm there is no relationship
between accuracy, precision and recall.

Hence accuracy does not show an important phe-
nomenon. Some methods may be very conservative (flexible
but unsafe), thus under-constraining the configurable sys-
tem, and eventually obtains a high accuracy. There is an-
other related phenomenon that accuracy is unable to show:
a method may be very agressive (safe but unflexible), over-
constraining the configurable system, and eventually also
obtains a high accuracy. It thus motivates the next research
questions and the use of other classification measures.

To sum up, high accuracy can be obtained with a relative
small number of configurations and for numerous perfor-
mance objectives. However, accuracy cannot be used for

characterizing the flexibility and safety aspects of a learning-
based specialization method. We need to consider other
classification metrics.

4.6 (RQ2) What is the precision and recall of our spe-
cialization method for classifying configurations?
Precision and recall (see Section 4.3 and Figure 6), two stan-
dard metrics for classification problems, measure our ability
to correctly classify non-acceptable configurations. A low
recall may be problematic, since numerous non-acceptable
configurations have not been classified as such: Users might
still choose unsafe configurations. A low precision may be
problematic as well since numerous non-acceptable con-
figurations are actually acceptable: Users might lose some
flexibility.

In Figure 7b and Figure 7c, we depict two heatmaps of
x264. We can observe that precision and recall values are
quite high (> 0.8) for a vast majority of objectives, even
with a low sampling size. There are some zones for which
precision and recall are lower, but still acceptable.

Based on the analysis of other heatmaps [27] (see Ap-
pendix A.2, Appendix A.3, Figure 12, and Figure 13), we
gather the following insights:

• precision and recall follow some of the trends we
describe for accuracy: the overall precision and ac-
curacy is high and often above 90%; only a dozen of
configurations are needed for all systems for reach-
ing 80%; precision and accuracy increase when the
sampling size increases; the performance objective
for which precision and recall are the highest is
specific to systems.

• there is an interesting trend that we do not observe
for accuracy. Precision (resp. recall) is the highest
when the objective value leads to a predominance
of non-acceptable configurations (e.g., there is less
than 25% acceptable configurations). It is the case
in Figure 7b and for other subjects. On the contrary
zones for which precision (resp. recall) are lower than
the average precision (resp. recall) usually exhibit
more than 75% acceptable configurations. Hence an
hypothesis is that there is not enough non-acceptable
configurations and the objective value is too "hard".

To sum up, high precision and recall can be obtained
with a relative small number of configurations with the
exception of some "hard" objective values for which the
configurable system can be seen as too permissive.

4.7 (RQ3) How safe and flexible are specialized config-
urable systems when applying our method?
What we ignore at this step is how safe is our resulting
specialized configurable system: how many valid config-
urations of VM ′ are truly acceptable? A low proportion
and users will perform numerous configuration errors since
the system is not safe enough. Conversely, how flexible is
our system once specialized: how many configurations have
been removed whereas they should still be reachable?

Accuracy, precision, and recall only measure the clas-
sification power of our method: They do not measure the
portion of safe configurations and the flexibility users have
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(a) Accuracy (b) Precision

(c) Recall (d) Specificity

(e) NPV (f) negNPV (comparison with non-learning w.r.t. safety)

Fig. 7: Classification measures for x264 (execution speed) through heatmaps. The darker, the higher. X-axis: number of
configurations in the training set. Y-axis: percentage of acceptable configurations (due to objective threshold value)
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within the resulting system. Hence we rely on specificity and
negative predictive value (NPV), also largely employed for
classification problems. Specificity quantifies how flexible is
the specialized system, while NPV quantifies how safe is the
specialized system (see Section 4.3 and Figure 6).

In Figure 7d and Figure 7e, we can observe that speci-
ficity and NPV values of x264 are again quite high (> 0.8)
for a vast majority of objectives, even with a low sampling
size. some objective values (i.e., leading to a percentage of
acceptable configurations less than 25%) tend to decrease
specificity and NPV values.

The analysis of all results (see Figure 8 and see Figure 9)
shows that:

• the specificity and NPV values, despite some minor
differences, follow the trends of RQ1 and RQ2. The
overall value is high and often above 90%. Only a
dozen of configurations are needed for all systems
for reaching 80%. We considered it as reasonable
since the ratio of measured configurations w.r.t the
total number is low. Furthermore, specificity and
NPV values progressively increase when the sam-
pling size increases.

• specificity and NPV values are typically the lowest
when the portion of acceptable configurations is low
(i.e., when there is less than 25% acceptable configu-
rations). It is the opposite of precision and recall.

• as a consequence of the previous observation, our
approach may be effective for identifying lots of non-
acceptable configurations, but the specialized system
still remains unsafe: There are simply too many
configurations to discard.

To sum up, our approach can be effective to produce
a safe and flexible system with a relative small number of
configurations with the exception of some hard objective
values for which the configurable system can be seen as too
restricted. In such cases, the safety of the specialized system
tends to decrease since there are simply lots of configura-
tions to discard. Yet, even and especially for hard objectives,
our specialization method significantly outperforms a non-
learning technique (see next research question).

4.8 (RQ4) How effective is our technique compared to
a non-learning technique?

Without learning and specialization, a configurable system
exhibits non-acceptable configurations that violate the per-
formance objective. If we consider the performance distri-
bution of x264 (see Figure 1) and an objective: "execution
time < 145", the percentage of non-acceptable configurations
is 63%. As a result, the safety of the configurable system
can be (severely) undermined, with impacts on users or
automated procedures in charge of choosing a configuration
of x264 because in about 2/3 of the cases it would end up in
an invalid configuration. With learning-based specialization,
we can hope to produce safer configurable systems. On the
other hand, a non-learning technique guarantees a maxi-
mum of flexibility since it retains all configurations. Com-
paratively, we aim to quantify how many configurations
a learning-based technique wrongly discards. Overall, the
question we want to address here is how safe and flexible

are configurable systems (1) without specialization and (2)
with specialization. We decompose RQ4 in two research
questions:

• (RQ4.1) How safe is our technique compared to a
non-learning technique?

• (RQ4.2) How flexible is our technique compared to
a non-learning technique?

(RQ4.1) How safe is our technique compared to a non-
learning technique?

In terms of metrics we have previously defined in our
experimental settings, we can notice that a non-learning
technique exhibits:

• a recall equals to 0 (the number of true positives
equals to 0, due to the inability to classify configu-
rations as non-acceptable);

• an NPV (for negative predictive value) equals to
accuracy, suggesting that the NPV can be very low
since a non-learning method does not classify con-
figurations.

We remind that NPV measures how safe is the resulting
configurable system. We denote NPVnon−learning the neg-
ative predictive value of a non-learning technique. It is de-
fined as: NPVnon−learning = TN/(TN +FN). With a non-
learning technique, TN equals to the number of acceptable
configurations in the training set (since all configurations
are classified as acceptable). Furthermore, TN + FN is the
total number of configurations in the training set. We can
conclude that NPVnon−learning corresponds to the percent-
age of acceptable configurations in the sample (the Y-axis in the
heatmaps).

On the one hand, NPVnon−learning (and so the safety
of the system) is low (resp. high) when the percentage of
acceptable configurations is low (resp. high). On the other
hand, a low percentage of acceptable configurations chal-
lenges our learning technique. For further understanding,
we compare the negative predictive values of our tech-
nique (denoted NPV ) and of a non-learning technique (de-
noted NPVnon−learning). We compute a new metric, called
negNPV , equals to NPV − NPVnon−learning . The higher
negNPV , the safer is our specialized system comparatively
to a non-specialized system.

Let us consider an example before generalizing to other
configurable systems: Figure 7f gives the negNPV heatmap
of x264 (execution speed). We can observe that our learning-
based specialization method is always superior. There is
also a noticeable improvement (between 0.4 and 0.6) when
the percentage of acceptable configurations is less than 50
since numerous non-acceptable configurations are success-
fully discarded. Another observation is that a high (resp.
low) NPV (see Figure 7e) does not imply a high (resp.)
negNPV . For example, when the percentage of acceptable
configurations is less than 25, our specialization method
succeeds to remove a lot of unsafe configurations despite
relatively low NPV .

Figure 10 depicts the negNPV ’s heatmaps of each
configurable system. Empirical results confirm that our
learning-based technique is safer in the vast majority of
cases, even for a small training set. A first observation is
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Fig. 8: specificity for all systems through heatmaps. The darker, the higher. X-axis: number of configurations in the training
set. Y-axis: percentage of acceptable configurations (due to objective threshold value)
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Fig. 9: npv for all systems through heatmaps. The darker, the higher. X-axis: number of configurations in the training set.
Y-axis: percentage of acceptable configurations (due to objective threshold value)
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Fig. 10: negNPV for all systems through heatmaps. The darker, the higher. X-axis: number of configurations in the training
set. Y-axis: percentage of acceptable configurations (due to objective threshold value)
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that a learning-based specialization always beats a non-
learning technique (negNPV varies from 0 to values higher
than 0.8). A second observation is that the improvement
is particularly paramount when the performance objective
threshold value leads to a low percentage of acceptable
configurations. In Figure 10, we can observe that when
the percentage of acceptable configurations is less than 50,
negNPV tends to increase. In such cases, the number of
configuration errors of a non-learning technique (as quan-
tified by NPVnon−learning) is very high, since numerous
configurations are actually non-acceptable. As a summary,
our specialization method is particularly interesting for
performance objective that calls to eliminate lots of non-
acceptable configurations.

Another insight is that when negNPV increases, NPV
tends to decrease (see an example with Figure 7e and
Figure 7f). Though a learning technique induces some clas-
sification errors (see NPV ), it has the merit of eventually
discarding many more configurations than a non-learning
technique. On the one hand, it is challenging to properly
classify configurations when the number of acceptable con-
figurations is low. In such case, configurations classes are
imbalanced and NPV is the lowest. On the other hand, a
learning technique can capture lots of non-acceptable con-
figurations since there are many of them in the configurable
system. For hard performance objectives and despite classification
errors, a learning technique is much more effective to discard
unsafe configurations than a non-learning technique.

(RQ4.2) How flexible is our technique compared to a
non-learning technique?

In terms of metrics we have previously defined in our
experimental settings, we can notice that a non-learning
technique has a specificity always equals to 100%. The
configurable system is highly flexible since all configura-
tions are kept as acceptable. By construction, a learning-
based approach cannot beat a non-learning approach w.r.t
flexibility. In order to quantify this effect, we compute the
difference between the specificity of our learning method
(denoted specificity) and a non-learning method. The dif-
ference equals to specificity − 1.

All specificity values of configurable systems are de-
picted in Figure 8. The differences remain on the same
color scale and can be seamlessly visualized. Specifically,
our learning method suffers from the comparison with a
non-learning method when the specificity is low. Hence
the same observations made in Section 4.7 (see RQ3) apply.
A major insight is that our learning method degrades flexi-
bility when non-acceptable configurations are predominant
(i.e., less than 25%). Considering the insights of RQ4.1 and
RQ4.2, we can conclude that our learning method increases safety
to the expense of flexibility.

(RQ4) To sum up, empirical results show that:

• our learning-based specialization method produces
safer configurable systems for all subjects and per-
formance objective thresholds;

• despite classification errors (e.g., as quantified by
NPV), a learning technique can be much more ef-
fective to discard unsafe configurations than a non-
learning technique;

• safety differences between a learning and a non-
learning method are more important when the per-
centage of non-acceptable configurations is high.
In this case, our learning technique is particularly
suited to increase safety and significantly outper-
forms a non-learning technique even with a small
number of configurations in the sample;

• there exists some sweet zones for which we can
achieve high flexibility and high safety. In general,
our specialization method achieves a good trade-off
between flexibility and safety.

5 THREATS TO VALIDITY

External validity. To study the generalization of our
method, we have selected configurable systems in different
domains (database, compiler, video compression, etc.), writ-
ten in different languages, and that exhibit different configu-
ration complexity. We have also considered different perfor-
mance qualities. Furthermore we reused data published in
papers for predicting and modeling performance, which is
related to our topic. We are aware that our empirical results
are not automatically transferable to all other configurable
systems or performance qualities.

To increase the diversity of objectives, we used numer-
ous values that cover the whole performance spectrum. We
have considered the percentage of acceptable configurations
as an independent variable of our experiment, since the
effect of a performance objective is precisely to change
the ratio of acceptable and non-acceptable configurations.
Likewise we can vary performance threshold values (e.g.,
executiontime < 100). We can also handle objectives in the
following form: 50 < executiontime < 100.

Internal validity. We used random generation to select
our training set, while taking the rest of the population as
testing samples. We argue that it could lead to a worst case
scenario where little intelligence is put into the sampling
phase. To mitigate the random selection, we executed ten
times our experiments with the same settings (system, num-
ber of data in training set, and objective’s value).

In order to only focus on independent variables, we did
not try to optimize the parameters of the ML technique and
we used the same ML settings in all experiments.

Our results are dependent on data that have been pub-
lished before. Specially, we can notice that BerkeleyJ can
lead to 400 possible configurations but only 181 were used.
Similarly, for systems with more than 1020 possible configu-
ration, less than 1% were used. The choice of other configu-
rations could have led to different performance distributions
that could be easier or harder to learn.

Construct validity. We adressed a binary classification
problem with unbalanded classes: We carefully followed
recommendations when choosing suitable evaluation met-
rics in such a context [42]. Specifically we reused several
well-known classification measures and we discussed some
of their limitations (e.g., accuracy). Furthermore we showed
how our classification metrics relate to the specificities of
our specialization problem (e.g., flexibility and safety of a
configurable system).
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6 RELATED WORK

Learning and performance. The prediction of the perfor-
mance of individual configurations is subject to intensive
research [1]–[5]. These approaches aim at predicting the
performance of a given configuration. For example, users
specify some parameters of x264 and a predictor can give the
speed value or energy consumption – without executing and
measuring x264. Such works do not target our specialization
problem: They do not eliminate non-acceptable configu-
rations and do not retrofit constraints into the variability
model. As a result, users can still spend significant effort
and time in trying non-acceptable configurations. Similarly,
automated procedures, usually based on solving techniques,
cannot exploit constraints as part of their reasoning.

Besides distinct applicability scope, the problems of per-
formance prediction and specialization are fundamentally
different. We address a binary classification problem while
predicting a performance value is a regression problem. In
terms of solution, we rely on classification techniques and
not on regression ones. Dedicated and optimized machine
learning algorithms have been independently designed for
either classification or regression, with very different math-
ematical formulations of the two problems (see Section 3).
In terms of evaluation, we also need to consider the speci-
ficities of our classification problem and we have developed
dedicated metrics.

Siegmund et al. [6] combined machine-learning and
sampling heuristics to compute the individual influences
of configuration options and their interactions. So-called
performance-influence models are meant to ease under-
standing, debugging, and optimization of configurable sys-
tems. As previous works mentioned, performance-influence
models do not address the performance specialization prob-
lem and do not retrofit constraints into a variability model.
Incidentally, our specialization method has the potential
to ease understanding and debugging of a configurable
system. Extracted constraints can serve to verify whether
options values or their interactions do make sense w.r.t a
performance threshold. For instance, developers can iden-
tify potential weaknesses or validate some strengths of soft-
ware variability when the execution is supposed to be very
fast – perhaps some configuration options are deactivated
whereas they should be activated in such specific cases. In
the example of Section 2, maintainers can verify some pa-
rameter values of x264 for fast execution times. At this step
of the research, however, it is unclear how the synthesized
constraints are effective for understanding and debugging
configurable systems. We plan to conduct comprehensive
user studies in future work.

Mining constraints and configuration options. Numer-
ous works address the problem of automatically building
a configuration model (e.g., Boolean feature model) [43]–
[50]. Given a Boolean formula or a configuration matrix,
algorithms have been notably proposed to synthesize con-
straints among options. Such techniques usually assume
a comprehensive knowledge of what constitute valid and
non-valid configurations. They cannot be reused in our
context since we only have a sample of configurations out
of which we need to learn and predict validity of the whole
population.

In prior work, we presented a learning-based process for
synthesizing constraints [24]. We showed that our method
was effective to reinforce a video generator developed in the
industry. The goal was mostly to avoid faulty configurations
and correct the video generator; the oracle was simply
a yes/no procedure. In this article, we have considered
performance qualities. The oracle is parameterized with an
objective value that users of our specialization method can
control. Hence our proposal can be seen as a generalization
of the idea originally proposed in [24]. Moreover our em-
pirical results cover much more systems and classification
metrics while taking training sizes and objective values into
account. The effect of performance objective thresholds has
been carefully considered and simply does not exist in our
previous work.

Techniques have been proposed to mine configurations
or constraints out of source code, build systems, or textual
descriptions [51]–[59]. For instance, Yi et al. [54] applied
support vector machine and genetic techniques to mine
binary constraints (requires and excludes) from Wikipedia.
Nadi et al. [60] combines different techniques to extract
configuration constraints in the Linux kernel. In our case
we aim to discover constraints that are specific to a given
performance objective. A static extraction of such special-
ized constraints within artefacts is thus unlikely.

Perrouin et al. [61] proposed a search-based process
to test and fix feature models. The idea is to validate or
eliminate some configurations, based on some checking (e.g.,
the configuration of the Linux kernel does compile). Our
strategy for adding constraints significantly differs. Instead
of only removing the configurations that have been tested,
we rely on learning to also consider configurations that have
not been tested. Furthermore we considered performance
qualities (e.g., execution time) as part of the testing process.

Testing and verification. Numerous techniques have
been developed to verify product lines and configurable sys-
tems either based on testing, type checking, model checking,
or theorem proving [62], [62]–[70].

SPLat is a dynamic analysis technique for pruning irrele-
vant configurations [70]. The goal is to reduce the combina-
torial number of variants (e.g., Java programs) to examine.
SPLif aims to detect bugs of software product lines with
incomplete feature models [66]. It helps to prioritize failing
tests and configurations. Our method can enforce feature
models with constraints and can benefit to SPLif.

Sampling. Several techniques can be used to sample the
configurations to test [3], [29]–[35], [71]. Empirical studies
show that sampling strategies can influence the number
of detected faults or the precision of performance predic-
tion [3], [35]. For instance, increasing the size of sample sets
can have positive effects on the fault-detection capability,
but it also has a cost [35]. As discussed, the problem of
inferring constraints is a tradeoff between the costs of testing
and the ability to learn constraints from an oracle and
configurations. In our evaluation, we use a random strategy
for picking values (see Section 3). More advanced strategies
or techniques to sample or prioritize configurations can
benefit to our method. A research direction is to conduct
further empirical studies to measure their cost-effectiveness.

Random testing. Black-box or white-box software test-
ing techniques have been developed [72]. The idea is to
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generate random inputs and resulting outputs are observed
for detecting faults in single programs. Our goal is to make
safe a configurable system and is thus different. Whitebox
fuzzing, such as SAGE, consists of executing the program
and gathering constraints on inputs using search techniques
and heuristics [73]. The role of constraints thus differs. In
our case, constraints are reinjected into a variability model
whereas SAGE exploits constraints to guide the test genera-
tion.

Configuration process. The idea of specializing a prod-
uct line has a long tradition [16], [16]–[20]. At different steps
or stages, users can partially configure a system. A manual
activity is usually performed for elaborating constraints
or (de-)activating options, both aiming to specialize the
configuration space. Our work aims at automating such a
specialization process with the definition of an objective and
the use of automated procedures (oracles).

Numerous works aim to tune configuration parameters
for improving the performance of a system (e.g., an algo-
rithm) or optimizing multiple quality criterion [7], [74]–[76].
Our specialization method does not aim to select, tune, or
optimize one configuration. We rather aim to offer a set of
satisfying configurations. We thus pursue a different goal:
The specialized system remains (highly) configurable but
constrained to satisfy a given performance objective.

Numerous techniques, based on solver or search-based
heuristics, have been developed to assist users in configur-
ing a system [8]–[15]. They operate over a variability model.
A strength of our method is that such reasoning techniques
can be reused once the specialization has been performed,
since we compute a new variability model.

7 CONCLUSION

With billions of possible configurations to consider, software
engineers, integrators, or simply end-users typically per-
form a semi-blinded endeavor based on numerous trials and
errors. In response, we introduced the idea of automatically
specializing a configurable system: all option values (and
combinations thereof) presented to users should henceforth
satisfy a performance objective (e.g., an execution time be-
low a certain threshold). A specialized configurable system
can save significant time and effort since the options values
are pre-configured while the configuration space is safer
since non-acceptable configurations are discarded. Impor-
tantly, a specialized system remains (highly) configurable
but constrained to satisfy the performance objective for any
of the remaining configurations.

Since measuring the performance of a system in every
possible configurations is not a viable solution, we relied
on machine learning techniques to predict the suitability of
unmeasured configurations. We then retrofitted constraints
into a variability model to enforce the configuration space
composed of Boolean and numerical options . We have
developed a method based on sampling, testing, and learn-
ing to narrow down the configuration space and exclude
configurations that do not satisfy a certain performance
quality.

Empirical results on 16 publicly available subjects and
performance qualities showed that our method can effec-
tively classify configurations with a relative small training

set and for numerous objective thresholds. The synthesis of
constraints leads to safe and still flexible specialized config-
urable systems. Our learning-based specialization method
produces safer configurable systems for all subjects and
performance objectives than a non-learning based approach.
It is particularly effective for hard performance objectives,
i.e., objectives for which less than 25% of configurations are
still acceptable. Without our specialization method, users or
automated procedures will most likely perform numerous
configuration errors, with negative impacts on engineer-
ing effort/time, configuration usability, or simply software
quality.

Future work

Our learning-based method has the potential to special-
ize numerous configurable systems, from software product
lines to self-adaptive systems. Different research directions
can be considered in the future.

Supporting the specializer. Our specialization method
is fairly simple and takes as input a performance objective.
We aim to further explore how to support a specializer in
choosing a performance objective threshold. Considering
the execution time, a specializer can choose as well "less
than 5 seconds", "more than 10 seconds", or "less than
0.1 second". Depending on the configurable system, such
threshold values have certainly a specific meaning: the
system can be considered as "fast", "very slow" or "very fast".
In general, it seems useful to help a specializer visualizing
the performance distributions such that she can understand
the different trends (extreme values, mean, etc.). The chal-
lenge is to produce a representative visualization by using
a small configuration sample. Another related challenge is
to provide to a specializer the means to validate and gain
confidence in the specialization she has just applied. Our
results indeed show that both sampling size and perfor-
mance objectives can influence the safety or flexibility of
the specialized system. A possible validation strategy is to
test the training set and use the metrics of our evaluation.
Testing (in the machine learning sense) typically requires to
measure additional data (i.e., configurations) and thus has
a cost. Based on the test results, a specializer can change
the objective threshold or increase the size of the training
set. Overall, the extent to which safety and flexibility can be
degraded is a socio-technical decision. We plan to conduct
field studies in future work.

Readability of constraints. We used decision trees for
classifying configurations. An interesting property of deci-
sion trees is their simplicity and expressiveness. It first al-
lows one to inject constraints among Boolean and numerical
options into a variability model. Another advantage worth
investigating in future work is that humans can potentially
read and understand such constraints. Experts can qualita-
tively validate the synthesized constraints. It can be useful
to validate the specialization process itself (see previous
point). It can also ease understanding and debugging of a
configurable system, since e.g., our specialization method
identifies suspicious and unexpected constraints between
options.

Machine learning. In this article, we used fairly sim-
ple machine learning techniques that already achieve good
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results and act as a state-of-the-art baseline. Other classi-
fication algorithms (e.g., bagging, random forest, boosted
trees), sampling (e.g., over-sampling, under-sampling, or T-
wise sampling), or dimensionality reduction techniques can
be considered in the future [35], [36], [77]. We plan to reuse
our evaluation settings (subjects, metrics, etc.) to compare
the classification power of other approaches. For the sake of
reproducibility of the experiments, we provide data, source
code and instructions:

http://learningconstraints.github.io/

Applicability. Given performance objectives, new prod-
uct lines or pre-configured systems (x264, Apache, SQLite,
etc.) can be built for targeting specific usages, customers,
deployment scenarios, or hardware settings. For instance,
we can specialize x264 for achieving a low energy consump-
tion such that software integrators can embed x264 in small
devices. We can consider other performance properties (ex-
ecution time, footprint, etc.) as well and specialize x264
for achieving fast computations or delivering high-quality
results. Users can can still fine-tune their configurations
w.r.t their functional constraints. An immediate research and
practical direction is to conduct further empirical studies on
different configurable systems and performance qualities.
An open challenge is, for example: can we specialize the
Linux kernel (10000+ configuration options) such that all of
the remaining configurations boot in less than 5 seconds?
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APPENDIX A
ALL METRICS FOR ALL CONFIGURABLE SYSTEMS

We recommend the reader to visualize heatmaps in color
(e.g., with a PDF viewer).

A.1 Accuracy
Figure 11 (see page 21) depicts all accuracy values of our
learning-based technique.

A.2 Precision
Figure 12 (see page 22) depicts all precision values of our
learning-based technique.

A.3 Recall
Figure 13 (see page 23) depicts all recall values of our
learning-based technique.
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Fig. 11: accuracy for all systems through heatmaps. The darker, the higher. X-axis: number of configurations in the training
set. Y-axis: percentage of acceptable configurations (due to objective threshold value)
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Fig. 12: precision for all systems through heatmaps. The darker, the higher. X-axis: number of configurations in the training
set. Y-axis: percentage of acceptable configurations (due to objective threshold value)
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Fig. 13: recall for all systems through heatmaps. The darker, the higher. X-axis: number of configurations in the training
set. Y-axis: percentage of acceptable configurations (due to objective threshold value)
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APPENDIX B
ALL HEATMAPS/METRICS PER CONFIGURABLE SYS-
TEM

Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, Fig-
ure 19, Figure 20, Figure 21, Figure 22, Figure 23, Figure 24,
Figure 25, Figure 26, Figure 27, Figure 28, Figure 29 depict all
metrics ("accuracy", "precision", "recall", "specificity", "npv",
"negNPV") per configurable system ("Apache", "Berkel-
eyC", "BerkeleyJ", "Dune", "HSMGP", "LLVM", "JavaGC",
"SQLite", "HIPAcc", "Energy-x264", "PSNR-x264", "SSIM-
x264", "Speed-x264", "Size-x264", "Time-x264", "Watt-x264").

We recommend the reader to visualize heatmaps in color
(e.g., with a PDF viewer).
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Fig. 14: Classification measures for Apache through heatmaps. The darker, the higher is the classification. X-axis: number
of configurations in the training set. Y-axis: percentage of acceptable configurations (due to objective threshold value)
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Fig. 15: Classification measures for BerkeleyC through heatmaps. The darker, the higher is the classification. X-axis: number
of configurations in the training set. Y-axis: percentage of acceptable configurations (due to objective threshold value)
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Fig. 16: Classification measures for BerkeleyJ through heatmaps. The darker, the higher is the classification. X-axis: number
of configurations in the training set. Y-axis: percentage of acceptable configurations (due to objective threshold value)
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Fig. 17: Classification measures for Dune through heatmaps. The darker, the higher is the classification. X-axis: number of
configurations in the training set. Y-axis: percentage of acceptable configurations (due to objective threshold value)
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Fig. 18: Classification measures for HSMGP through heatmaps. The darker, the higher is the classification. X-axis: number
of configurations in the training set. Y-axis: percentage of acceptable configurations (due to objective threshold value)
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Fig. 19: Classification measures for LLVM through heatmaps. The darker, the higher is the classification. X-axis: number of
configurations in the training set. Y-axis: percentage of acceptable configurations (due to objective threshold value)
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Fig. 20: Classification measures for JavaGC through heatmaps. The darker, the higher is the classification. X-axis: number
of configurations in the training set. Y-axis: percentage of acceptable configurations (due to objective threshold value)
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Fig. 21: Classification measures for SQLite through heatmaps. The darker, the higher is the classification. X-axis: number of
configurations in the training set. Y-axis: percentage of acceptable configurations (due to objective threshold value)
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Fig. 22: Classification measures for HIPAcc through heatmaps. The darker, the higher is the classification. X-axis: number
of configurations in the training set. Y-axis: percentage of acceptable configurations (due to objective threshold value)
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Fig. 23: Classification measures for Energy-x264 through heatmaps. The darker, the higher is the classification. X-axis:
number of configurations in the training set. Y-axis: percentage of acceptable configurations (due to objective threshold
value)
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Fig. 24: Classification measures for PSNR-x264 through heatmaps. The darker, the higher is the classification. X-axis:
number of configurations in the training set. Y-axis: percentage of acceptable configurations (due to objective threshold
value)
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Fig. 25: Classification measures for SSIM-x264 through heatmaps. The darker, the higher is the classification. X-axis: number
of configurations in the training set. Y-axis: percentage of acceptable configurations (due to objective threshold value)
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Fig. 26: Classification measures for Speed-x264 through heatmaps. The darker, the higher is the classification. X-axis:
number of configurations in the training set. Y-axis: percentage of acceptable configurations (due to objective threshold
value)
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Fig. 27: Classification measures for Size-x264 through heatmaps. The darker, the higher is the classification. X-axis: number
of configurations in the training set. Y-axis: percentage of acceptable configurations (due to objective threshold value)
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Fig. 28: Classification measures for Time-x264 through heatmaps. The darker, the higher is the classification. X-axis: number
of configurations in the training set. Y-axis: percentage of acceptable configurations (due to objective threshold value)
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Fig. 29: Classification measures for Watt-x264 through heatmaps. The darker, the higher is the classification. X-axis: number
of configurations in the training set. Y-axis: percentage of acceptable configurations (due to objective threshold value)
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