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In this paper, we propose a set of audio features to de-
scribe the quality of an audio signal. Audio quality is here
considered as being modified by the chain of processes/effects
applied to the individual instrument tracks to obtain the final
mix of a musical piece. Thus, the quality also depends on
the mastering processes applied to the final mix or the sig-
nal degradation caused by MP3 compression. To evaluate our
proposal, we created a large set of artificial mixes and also
used real-world studio mixes. Using unsupervised and su-
pervised classification methods, we show that our proposed
audio features can detect the processing chain. Since this pro-
cessing chain applied in professional studio has evolved over
the years, we use our audio features to directly predict the
decade during which a music track was recorded.

Index Terms— audio quality, music information re-
trieval, audio reverse-engineering, database indexing, music
remixing.

1. INTRODUCTION

Audio signal quality can be related to subjective and objec-
tive audio signal attributes resulting from a sophisticated dig-
ital signal processing chain. Despite, a consistent definition
of audio quality has not yet been offered, researchers agree
to say that it depends on a combination of transformations
applied to audio signal since studio recording (or pure syn-
thesis) to the resulting final mix obtained after mastering [1].
Knowing the audio quality of a music track is full of interest
for applications such as music streaming or playlist genera-
tion since it allows to decide which sound file (when several
occurrences of the same music track exist in a database) has
the better quality or should be discarded.

Among the first works related to the objective description
of the audio quality, the standard ISO/IEC 15938-4 (MPEG-7
Audio) [2] proposes a set of informative features to describe
the audio content and the signal quality. More recently, audio
quality has re-gained interest. In 2011, [3, 1] propose to use
a set of audio quality features to estimate the decade during
which a musical piece was recorded and help the navigation
in large music collection. In 2015, [4] performs a set of per-
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ceptual experiments in which users judge the audio quality
through listening tests. This leads to an audio quality lexicon.
[5, 6, 7] propose a set of audio quality features to predict the
results of the perceptual experiments using a machine learn-
ing approach.

In this paper, we extend this approach, i.e. we propose
an objective description of the audio quality. We aim at de-
scribing the audio signal content related to the mixing process
and the signal quality. Hence, this approach is directly related
to the audio signal reverse engineering problem [8, 9] which
finds applications in music description, audio branding [10],
automatic playlist generation or automatic music mixing [11].

The paper is organized as follows. In Section 2, we ad-
dress problem of the objective description of the audio quality
by first describing the set of considered alteration effects. We
then present the set of proposed audio signal quality features.
In Section 3, we apply this framework to automatically pre-
dict the audio signal alterations and to automatically predict
the music decade. We finally discuss the results and present
future works in Section 4.

2. TOWARDS OBJECTIVE AUDIO QUALITY
ASSESSMENT

A music audio signal is the result of the mixing of a set of
effects and transformations applied on separated tracks (ele-
mentary signals) in order to obtain an artistic mixture [11].
These transformations, which are subjectively applied in stu-
dio by sound engineers, depend on the targeted music medium
and are often difficult to reverse. Because of this, audio mix-
ing reverse engineering recently gained interest. It was ad-
dressed for example in [8, 9]. Furthermore, after studio mix-
ing, audio signals can also be degraded by signal transforma-
tions resulting from users manipulation (e.g. remixing, re-
sampling, lossy compression, etc.). This results in a loss of
quality, which can be characterized for example, by an addi-
tion of noise or a reduction of the content frequency band-
width.

Hence, the audio quality characterization problem ad-
dressed here consists in either obtaining cues about the signal
mixing process or (ideal case) recovering the exact signal
properties related to the transformations which have been
applied to the signal.
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2.1. Considered audio signal alteration effects

In the present work we only consider a restricted set of signal
alterations. Those however cover a wide range of commonly
used audio transformations, as often addressed in the music
processing literature [12, 11, 8, 13, 1, 14].

2.1.1. Dynamic range control

Dynamic range control is a non-linear effect, which modi-
fies the overall loudness perception of the audio signal. This
can be done by amplifying the volume of quiet sounds and
reducing the volume of loud sounds. The result is a trans-
formation of the dynamic range of the input signal. A com-
pressor or an expander, are often parameterized by a detec-
tion threshold L and a gain ratio R. Delay parameters τ att

v ,
τ rel
v and τ att

g , τ rel
g can also be used to obtain smoothed detec-

tion and gain functions. Furthermore, different compressor
parameters can also be separately applied on arbitrary cho-
sen signal frequency bands [12]. In our experiments, we ap-
ply a compressor-expander (compander) on a Linear Instanta-
neous (LI) mixture using SoX with parameters depending on
the signal profile, as detailed in Table 1.

Table 1. SoX profiles used for dynamic range control.
Profile name SoX parameters
speech compand 0.02,0.20 5:-60,-40,-10 -5 -90 0.1
streaming compand 0.3,1 6:-70,-60,-20 -5 -90
speech/music compand 0.1,0.3 -60,-60,-30,-15,-20,-12,-4,-8,-2,-7 -2
music 1 compand 0.3,1 -90,-90,-70,-70,-60,-20,0,0 -10 0 0.2
music 2 compand 0.3,1 6:-70,-60,-20 -5 -90 0.2

2.1.2. Spatialization

In our experiment we only consider two-channels mixtures.
We denote by s1[n] and s2[n] the left and right channels
discrete-time signals and by S1[n,m] and S2[n,m] their dis-
crete Short-Time Fourier Transforms (STFT). The considered
stereophonic transformations are described as follows.

• Mono effect consists in duplicating both channels:
s2[n] = s1[n].

• Amplitude panning aims at simulating the direction
of arrival of a mixture by changing its amplitude on
each channel. For a given azimuth θ ∈ [−π2 ,+

π
2 ] and a

monophonic input signal x[n], the left and right chan-
nels are given by(

s1[n]
s2[n]

)
=

(
sin
(
θ
2 + π

4

)
cos
(
θ
2 + π

4

))x[n]. (1)

If θ = 0 then s1[n] = s2[n], if θ = −π2 then s1[n] =
x[n], s2[n] = 0, if θ = π

2 then s1[n] = 0, s2[n] = x[n].

• Phase panning changes the delay between both chan-
nels. It can be implemented by transforming the STFT
phase. If we denote by ∆φ, the phase lag parameter,
this effect is obtained by S2[n,m] = S1[n,m]ej∆φ.
s2[n] is then obtained by inversion of the STFT.

SoX - Sound eXchange: http://sox.sourceforge.net/

• Head Related Transfer Function (HRTF) filtering
aims at simulating the binaural perception of a source
signal which arrives from a given direction. This effect
is simply obtained by convolving the source signal x[n]
by the left and right impulse responses corresponding
to the given azimuth θ. Our experiments use the CIPIC
HRTF database [15].

2.1.3. Lossy audio compression

We simulate this alteration by encoding the original audio
mixture in the MP3 audio file format [16] (which is the most
popular format for audio storage, transfer and playback). For
this, we used the LAME encoder with four different qual-
ity profiles corresponding to the following bitrates: 16 kbs,
64 kbs, 128 kbs and 320 kbs.

2.1.4. Content alteration

We also consider two content alteration effects:

• Resampling consists in changing the number of sam-
ples. Down-sampling reduces it while up-sampling
increases it. This results in an increase or a decrease of
the original signal frequency bandwidth. It is often re-
lated to a loss of signal quality (in particular for down-
sampling). Our original sampling rate is 44.1 kHz.
We consider four profiles in our experiments: 8 kHz
(down), 16 kHz (down), 32 kHz (down), 96 kHz (up).

• Noise addition is simply achieved by merging (addi-
tion) the original signal with a white Gaussian noise
signal. We used five different Signal-to-Noise Ratio
(SNR) values: −15 dB,−5 dB, 10 dB, 20 dB and 45 dB.

2.2. Audio quality features

For the purpose of describing the audio quality, we collect
previously proposed audio quality features from -[1] (average
spectrum), -[2] (monophony detector, cross-channel correla-
tion, relative delay, balance, DC-offset, frequency bandwidth,
background noise-level), -[3] (dynamic histogram, cochlea-
gram difference, spectral stereo phase spread) and -[17] (spec-
tral entropy). For reason of restricted length of the paper, we
refer the readers to the respective publications for a detailed
description. The entire set of features used in this study is
summarized in Table 2. Features corresponding to a time
series (DH, AS, SE and BW) are statistically summarized
by their mean, median, Inter-Quartile Range (IQR), standard
deviation, skewness, kurtosis, minimum, maximum, entropy
and slope over time. This leads to 10 scalars for each frame-
based feature. For DH and AS, we also compute the centroid
and the position of the maximum. The CD feature is repre-
sented by a matrix D of size M × N (M denotes frequency
bands and N time-frames). It is summarized by 5 scalars
expressed as CD1 = 1

MN

∑M−1
m=0

∑N−1
n=0 |Dm,n|, CD2 =

σ
(

1
N

∑N−1
n=0 |Dm,n|

)
, CD3 = 1

MN

∑N−1
n=0

∣∣∣∑M−1
m=0 Dm,n

∣∣∣
LAME encoder: http://lame.sourceforge.net/
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and CD4 = σ
(

1
M

∑M−1
m=0 Dm,n

)
, where σ(x) denotes the

standard deviation of the time series x.
Each sound file is represented by a vector of features,

which is used as the input of a classification method.

Table 2. List of proposed audio signal quality features.
Feature name Label Designation #
Dynamic histogram [3] DH mixture dynamic range 12
Average spectrum[1] AS 12
Cochleagram difference [3] CD stereo quality 5
Spectral Stereo Phase Spread [3] SSPS 1
Monophony detector[2] isMono 1
Cross-channel correlation[2] CCCor 1
Relative delay[2] RDelay 1
Balance [2] Bal 1
DC-offset [2] DCOff signal content 1
Root Mean Squared amplitude aRMS 1
Spectral Entropy [17] SE 10
Frequency bandwidth[2] BW 10
Background noise level [2] BNL 1

Total number of features 57

3. NUMERICAL EXPERIMENTS

In order to validate our proposed audio quality features, we
use the following two experimental scenarios.

3.1. Scenario 1: prediction of audio signal alterations
In this scenario, we used the Medley dataset [18] which pro-
vides 122 music pieces available in two forms: 1) studio mix
(which is a stereo high-quality artistic mixture with effects ap-
plied to the various instrument tracks), 2) the set of separate
multi-track instruments which allows to build a flat mono-
phonic mix (named LI mix). On those, we apply a set of 27
different signal alteration effects. Those are detailed in Sec-
tion 2.1 and summarized in Table 3. It should be noted that
several sets of parameters can be used for a given effect to ob-
tain several instances (e.g. dynamic range compression uses
5 different profiles).

Table 3. List of considered simulated audio alteration.
Effect name (# of classes) Profiles #

Dynamic range control (7)
no compression (LI mix) 1
reference studio mix 1
dynamic range compression (SoX) 5

Spatialization (5)

reference studio mix 1
mono 1
amplitude panning 4
phase panning 4
HRTF 4

Lossy compression (5) original WAV file 1
MP3 compression (LAME encoder) 4

Content alteration (10) resampling 5
addition of a white Gaussian noise 5

The goal of our experiment is to automatically recognize
the alteration effects applied to the audio, using our audio fea-
tures (cf. Table 2). We consider this as a set of classification
tasks with 7 classes for the dynamic range control, 5 for spa-
tialization, 5 for lossy compression and 10 for content alter-
ation. We try to solve these tasks using both supervised and
unsupervised classification.

3.1.1. Supervised classification

We tested the following supervised classification algorithms:
K-Nearest Neighbor (KNN), Linear Discriminant Analy-
sis (LDA)[19] and multiclass (one-against-all) Radial Basis
Function (RBF) kernel Support Vector Machine (SVM) [20].
We performed a 3-fold cross-validation, with randomly parti-
tioned equal sized folds. For the KNN method, we usedK = 9
(which was empirically found to provide the best results) and
a city-block distance (also named Manhattan) which provided
better results than an Euclidean one.

The classification results are indicated in Table 4 in terms
of class-recall and global accuracy. The corresponding con-
fusion matrices are indicated in Tables 5 (a)-(d).

Table 4. Supervised classification results for each task in terms of
recall and of accuracy.

Method Dynamic range control class name Accuracyno co. stud. spee. stream. spe./mus. mus.1 mus.2
KNN 0.36 0.80 0.23 0.08 0.26 0.44 0.06 0.32
LDA 0.72 0.98 0.65 0.48 0.89 0.96 0.27 0.71
SVM 0.90 0.99 0.48 0.37 0.23 0.95 0.09 0.57

Method Spatialization class name Accuracystud. mix mono amp. pan. phs. pan. HRTF
KNN 0.31 0.34 0.90 0.85 0.98 0.83
LDA 0.94 1 0.97 0.57 1 0.86
SVM 0.96 0.89 1 0.97 0.99 0.98

Method Lossy compression class name Accuracyorig. wav mp3 320kbs mp3 128kbs mp3 64kbs mp3 16kbs
KNN 0.34 0.20 0.20 0.99 1 0.55
LDA 0.73 0.80 0.85 1 1 0.88
SVM 0.75 0.59 0.43 1 0.99 0.75

Method Content alteration class name Acc.8kHz 16kHz 32kHz 44kHz 96kHz -15dB -5dB 10dB 20dB 45 dB
KNN 0.83 0.72 0.51 0.25 0.32 1 1 0.90 0.61 0.24 0.64
LDA 0.87 0.89 0.81 0.55 0.68 1 1 0.98 0.94 0.77 0.85
SVM 0.90 0.80 0.70 0.57 0.65 0.99 1 0.89 0.66 0.46 0.76

The table shows that SVM and LDA outperform the KNN
method in all cases. Best results are obtained to predict
spatialization classes (98%), then lossy compression (88%),
then content alteration (85%) and finally dynamic range
(71%). It should be noted that discriminating the dynamic
range classes is a much harder problem but interestingly, our
method achieves (but with difficulties according to Table. 5
(a)) to discriminate the “streaming” and the “music 2” profiles
which use almost identical SoX parameters.

3.1.2. Unsupervised classification

For the unsupervised classification, we use a simple k-means
algorithm [21] using again the city-block distance. The num-
ber K of clusters is fitted to the number of classes to discrim-
inate (cf. Table 3). For the unsupervised case, we used an
automatic feature selection algorithm in order to detect the
most relevant features to be used for each classification task.
For this, we used the Inertia Ratio Maximization using Fea-
ture Space Projection (IRMFSP) [22] algorithm. Thus, the most
informative features are indicated in Table 7.

In Table 6 we indicate the results of the unsupervised clas-
sification in terms of cluster purity [23] (a cluster containing
a single class has a purity of 1). Using less than 7 signal fea-
tures, we obtain purities above 0.6 for all classification tasks.



Table 5. Confusion matrices obtained using the best classification method for each prediction task.
(a) LDA method applied to dynamic range control effect prediction.

ref. class Classified as
no comp. stud. mix spee. stream. spe./mus. mus.1 mus.2

no comp. 88 4 30
stud. mix 119 1 1 1
spee. 79 14 8 21
stream. 9 59 1 53
spe./mus. 4 109
mus.1 5 117
mus.2 40 49 33

(b) LDA method applied to dynamic range control effect prediction.

ref. class Classified as
8kHz 16kHz 32kHz 44kHz 96kHz -15dB -5dB 10dB 20dB 45 dB

8kHz 106 13 3
16kHz 4 119 6 1 1 3
32kHz 2 99 5 14 2
44kHz 1 6 7 67 19 22
96kHz 2 15 19 83 3
-15dB 122
-5dB 122
10dB 119 3
20dB 2 115 5
45dB 3 20 5 94

(c) LDA method applied to lossy compression detect.

ref. class Classified as
wav 320kbs 128kbs 64kbs 16kbs

orig. wav 89 25 8
mp3 320kbs 18 97 7
mp3 128kbs 5 13 104
mp3 64kbs 122
mp3 16kbs 122

(d) SVM method applied to spatialization effect detect.

ref. class Classified as
stud.mix mono amp. pan. phs. pan. HRTF

stud.mix 117 1 4
mono 108 14
amp. pan. 487 1
phs. pan. 2 11 475
HRTF 1 2 485

(e) SVM method applied to decade predict.

ref. class Classified as
60s 70s 80s 90s 2000s

60s 327 49 8 7 5
70s 73 123 136 45 19
80s 9 74 272 35 6
90s 26 29 61 216 64
2000s 11 11 16 44 314

As for the supervised case, the spatialization classes are also
the best predicted in the unsupervised case. These results are
very promising for future unsupervised applications.

Table 6. Unsupervised classification results for each task in terms
of cluster purity, optimal number of features, number of clusters K.

Task Cluster purity # of feat. K

Dynamic range control 0.62 4 7
Spatialization 0.80 5 5
Lossy compression 0.78 3 5
Resampling 0.71 2 5
Noise add. 0.78 7 5
Noise add.+Resampling 0.63 6 10

Table 7. Top-10 features sorted by descending order of the Fisher
score (FS) [22] for each classification task.

rank dynamic range control spatialization lossy compression content alteration
feat. name FS feat. name FS feat. name FS feat. name FS

1 aRMS 0.80 isMono 0.71 mean AS 1 median AS 1
2 SSPS 0.70 CCCor 0.60 slope AS 0.96 mean BW 0.74
3 min DH 0.42 CD5 0.53 max BW 0.39 max BW 0.69
4 CCCor 0.23 SSPS 0.45 mean BW 0.22 min SE 0.33
5 DH pk. pos. 0.13 CD1 0.23 median AS 0.06 mean SE 0.28
6 CD1 0.05 CD4 0.07 std BW 0.06 skew. SE 0.18
7 entropy DH 0.04 aRMS 0.05 std AS 0.05 median SE 0.16
8 skew. DH 0.03 CD3 0.04 max AS 0.02 max SE 0.14
9 std. DH 0.02 Bal 0.02 skew. BW 0.02 entropy SE 0.12
10 slope DH 0.01 slope AS 0.02 iqr BW 0.02 min DH 0.10

3.2. Scenario 2: Decade prediction
Since the processing chain applied in professional studio has
evolved over the years, and since our audio features allows
describing this chain, we test the use our audio features to
predict directly the decades during which a music track was
recorded. For this, we consider the dataset of 1980 music
tracks previously used in [3]. It covers the years from 1960
to 2000. We subdivide them into 5 decades considered as
classes. Each musical piece is resampled at 44.1 kHz and only

the 60 first seconds are analyzed. As before, we tested the
following supervised classification algorithms: KNN, LDA and
SVM using a 3-fold cross-validation scheme. We also applied
an artist filter in order to ensure that the same artist is not
present both in the training and testing set (it allows to prevent
over-fitting [24]).

Results are indicated in Table 8 in terms of recall and
accuracy. The best results are obtained using SVM (63%).
In comparison, the results obtained in [3] were 61% with-
out adding Mel-Frequency Cepstrum Coefficients (MFCC) to
the set of audio quality features and 64% including them. It
should be noted however, that the splitting between train and
test used here is not the same as the one used in [3].

Table 8. Supervised classification results for decade prediction in
terms of recall and of accuracy.

Method Class name Accuracy60s 70s 80s 90s 2000s
KNN 0.77 0.38 0.63 0.49 0.71 0.60
LDA 0.69 0.43 0.62 0.52 0.77 0.60
SVM 0.83 0.31 0.69 0.55 0.79 0.63

4. CONCLUSION

In this paper, we proposed a set of audio features for the au-
tomatic characterization of the audio quality. During an ex-
periment with artificially generated mixing, we showed that
the proposed approach can efficiently predict the type of au-
dio effects and alterations applied to the original audio signal.
With real commercial music tracks, we also showed that the
same approach can be used to predict the decade during which
the track was recorded. This approach paves the way of more
sophisticated systems designed for automatic mixing, playlist
generation or database indexing. Future works will consist
in further investigating a larger set of “realistic” signal alter-
ations and using audio quality annotated dataset as in [25].
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