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Abstract. The increasing presence of robots in industries has not gone
unnoticed. Large industrial players have incorporated them into their
production lines, but smaller companies hesitate due to high initial costs
and the lack of programming expertise. In this work we introduce a
framework that combines two disciplines, Programming by Demonstra-
tion and Automated Planning, to allow users without any programming
knowledge to program a robot. The user teaches the robot atomic actions
together with their semantic meaning and represents them in terms of
preconditions and effects. Using these atomic actions the robot can gen-
erate action sequences autonomously to reach any goal given by the user.
We evaluated the usability of our framework in terms of user experiments
with a Baxter Research Robot and showed that it is well-adapted to users
without any programming experience.

Keywords: cobotics, programming by demonstration, automated plan-
ning

1 Introduction

The use of robots has increased productivity and replaced humans for repeti-
tive and manual tasks. However, there remain many tasks that cannot be com-
pletely taken over by robots and that still need human intervention, such as
high-precision tasks. The introduction of collaborative robots or “cobots” [5]
opens the door to a safe and barrier-free collaboration between humans and
robots. Designed to respond to actions of the human operator, cobots generally
perform tasks which humans cannot perform on their own, such as the manipu-
lation of heavy parts. Cobotic systems have been adapted in several industries
from the food-processing industry, to aeronautics, to the health industry. De-
spite the uprising popularity of cobots, there are still many companies which are
hesitant with their adoption. In particular, small companies consider the invest-
ment cost-ineffective due to high initial costs and, more importantly, the lack of
trained personnel who have the required expertise to fully exploit the robots.

Robot Programming by Demonstration (PbD) [4] addresses this issue by
allowing non-expert users to teach robots new skills by demonstrating a task
and without the need for writing machine commands. It is a quick and intuitive
programming approach independent of the robot platform. It is an iterative
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process with the goal to refine the robot’s performance by providing repetitive
demonstrations. However, existing PbD implementations are not goal-oriented.
The robot is generally taught an ordered action sequence to achieve a goal (e.g.
stacking or ordering objects on a table [6]), but it cannot deduce an action
sequence from a given goal. Teaching full action sequences can be complicated
and time-consuming, as the robot has to be taught a new action sequence when
the goal changes. Why not simply teach the robot atomic actions that it can
use in any arbitrary order and generate the action sequence using an automated
planner?

In this work we explore the possibility for a robot to learn action seman-
tics and to generate action sequences autonomously using automated planning
techniques. We aim to equip the robot with all the atomic actions needed to
act autonomously in any state of the world. We propose a framework where
(1) the non-expert user teaches the robot atomic actions by demonstration and
builds action models used in automated planning techniques (2) the robot can
autonomously generate solutions to any goals specified by the user. As an initial
step we want to investigate the framework’s potential usability in terms of user
experiments, focusing on the user’s ability to understand the logical represen-
tations for action models in terms of preconditions and effects. In particular,
we want to find out if users with diverse educational backgrounds understand
the concept of PbD in relation with these action models and if they find them
intuitive. Finally, we are interested in the user’s perception of the goal-oriented
programming approach.

The remaining of this paper is organised as follows. We will first give an
overview of the related work, then we will present our proposed framework. This
is followed by the experimental setup, used methods, and experimental results.
Finally, we conclude by discussing potential future work.

2 Related Work

Programming by Demonstration (PbD) provides an intuitive medium to allow
non-experts, who do not possess the necessary domain knowledge, to commu-
nicate skills to robots more easily. The underlying concept is to learn a new
skill, also known as a policy, from a set of correct demonstrations provided by
the teacher. Research in PbD generally concentrates on learning a good policy
in as few demonstrations as possible. Argall et al. [2] present a comprehensive
overview of different policy derivation techniques, splitting them into three main
categories. Mapping functions to approximate a state-to-action mapping for the
demonstrated behaviour and often used in combination with other classifiers
(e.g. Hidden Markov Models [8], Neural Networks [10], k-Nearest Neighbours
[11]); System models use a state transition model in combination with a reward
function to learn a policy. With the goal to maximise the cumulative reward
over time, the reward function can either be user-defined [12] or learned from
demonstration data [1,3].
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Our work uses the policy derivation technique of plans, where the policy
is represented as a sequence of actions leading from an initial state to a final
goal state. Actions are defined in terms of preconditions, i.e. a state of the
world that must be attained in order to execute the action, and effects, i.e. the
expected state resulting from the action execution. Existing implementations
of plans learn action sequences to achieve a single goal starting from different
initial states [9], but do not learn different action models that can be applied
independently. Our approach teaches the robot independent action models that
can be used by automated planning techniques to reach any given goal.

Automated planning computationally studies the deliberation process of
choosing and organising actions in order to achieve a goal. It can be used to
model a robot’s skills and strategies, when operating in diverse environments,
without the need for expensive hand-coding [7]. The focus lies within the de-
velopment of domain-independent planning systems, namely planners, which
consist of search algorithms that are not problem-specific. A planning problem
is given by a set of atomic actions, a description of the state of the world, and
some goal state. The planner generates a solution to this problem as an ordered
sequence of actions, which guarantees the transition from the initial state to the
goal state. Similar to the policy derivation technique of plans in PbD, actions are
defined in terms of preconditions and effects, representing states attained before
and after the action execution. Classical planning algorithms use the Planning
Domain Definition Language (PDDL)[7] as their standard encoding language to
represent action models. Program 1 shows an example of an action in PDDL
(moveObject(?obj, ?pos1, ?pos2)), which moves an object (?obj) from one
position (?pos1) to another position (?pos2).

Program 1 Representation of a moveObject action in PDDL.

(:action moveObject

:parameters (?obj - object ?pos1 - position ?pos2 - position)

:precondition (and (at ?obj ?pos1)

not(empty ?pos1)

(empty ?pos2))

:effect (and (at ?obj ?pos2)

(empty ?pos1)

(not (empty ?pos2))))

Veeraraghavan et al. [14] represent a set of pre-programmed action models in
PDDL to learn a sequential task plan from demonstrations. Zita Haigh et al.
[15] implement a planning algorithm in a robot but do not teach actions by
demonstration. Our work uses PbD techniques to provide non-expert users the
flexibility to teach the robot action models in PDDL, and that are then used
by automated planners to generate task plans. As far as we know, there are no
user studies in this area which deal with the user’s understanding of the logical
representations of action models in terms of preconditions and effects.
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3 A Framework for Robot Programming by
Demonstration

Our proposed framework consists of the following four steps: (i) user teaches
the robot atomic actions; (ii) robot plans the solution for a defined planning
problem; (iii) robot executes the action plan; and (iv) user revisits the learned
action models to allow incremental learning. Figure 1 shows the layout of our
proposed framework.
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User
Demonstration

User
Validation

Robot Policy
Derivation

Robot Extraction
Precondition/Effects

Teach action model (PbD) Planning and Execution

Planning Problem

Planning Domain
created using PbD

Initial State
recognised by Robot

Final Goal State
set by User

Planner
Robot

Execution

action1
action2

...

Retro-active loop

Fig. 1. Framework for Robot Programming by Demonstration which use the action
models as part of a planning domain and an automated planner to solve a planning
problem (dotted lines indicate user actions, solid lines indicate robot actions).

3.1 Teaching Action Models

The user first needs to construct a planning domain consisting of all
atomic actions needed to achieve a goal in that domain. An action model
is created by the user who provides a demonstration of a specific ac-
tion, e.g. moving a red object from an initial position to a final position
(moveObject(redObj,initPos,finPos)). Executing an action results in a
change in the state of the world such as the changed position of the moved ob-
ject. By observing these changes before and after the demonstration, the robot
extracts preconditions (e.g. red object on initial position) and effects (e.g. red
object on final position) to build a generalised action model, known as an opera-
tor. Table 1 compares the states from the demonstrated action to the generalised
operator. The generalised operator is automatically translated into PDDL (see
Program 1), allowing the creation of a PDDL planning domain, without the need
for any programming knowledge. The user can validate the created operator,
modify the proposed preconditions or effects, or provide another demonstration
to refine model. This process is repeated for all atomic actions that are required
to build the knowledge base for the complex task.

3.2 Planning and Execution

The created planning domain is fed into an automated planner to create a plan-
ning problem. The user can specify any goal state that can be reached using
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Table 1: Generalisation from a demonstrated action to a generalised operator.

moveObject Demonstrated action Generalised operator

:precondition (at redObj initPos) (at ?obj ?pos1)

not(empty initPos) not(empty ?pos1)

(empty finPos) (empty ?pos2)

:effect (at redObj finPos) (at ?obj ?pos1)

(empty initPos) (empty ?pos1)

not(empty finPos) not(empty ?pos2)

the taught actions. The initial state is automatically recognised by the robot
by observing the current state of the world. The automated planner generates
a plan consisting of an ordered action sequence for the robot to execute. If the
user changes the goal, a new plan can be generated accordingly. Generating a
plan under different initial states allows the user to test the created operators.
The execution of this action sequence provides the user with the opportunity to
test the soundness of the created operators.

3.3 Retro-active Loop for Incremental Learning

The execution to a new context is an important step to test the created action
models in order to refine them. It is likely that the execution of the plan does
not produce the desired outcome, especially if the plan is executed in a context
different to the demonstration (e.g. using objects of different colour or shape).
Missing preconditions or effects for an action model can lead to suboptimal or
non-existing solutions and will need to be corrected by the user.

4 Experimentation

4.1 Experimental Setup

The experiments were conducted using a Baxter Research Robot from Rethink
Robotics, with 7 DoF (per arm) and a maximum load of 2.27kg. Both end
effectors are mounted with a camera and an infrared sensor range. During the
experiment the participants only manipulated Baxter’s right limb which was
equipped with a vacuum gripper. The robot’s main head display was used to
give visual feedback of the state of the system, e.g. the end effector’s camera feed
was constantly displayed when searching for objects, approval and refusal were
expressed with the social feedback cues of nodding and shaking respectively.
Figure 2 shows the experimental setup. The participants operated on a table
with two positions marked with A and D (arrival and departure respectively),
two square blocks (blue and red), that represent parts on an assembly line.
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Fig. 2. Experimental set up with a
Baxter robot and two blocks (blue
and red) and positions A (arrival)
and D (departure).

Presentation

1 Training: Learn a movement with Baxter

2
Learning an action (pickup a block)

3
Action reproduction

User asks to repeat the same action
User asks to repeat the action in a new context

4
Goal oriented programming

User assigns a goal to the robot and 
observes the execution

User records a movement 
User adds action semantic

Close event

User 
interview

Fig. 3. Overview of the experimental protocol

4.2 Principal Hypotheses

The main goal of the experiment was to evaluate the usability of our proposed
framework for non-experts. We stated the following principal hypotheses for our
experiments:

1. A user without any programming knowledge is able to teach Baxter a move-
Object action. This allows us to evaluate the user’s understanding of the
basic PbD paradigm.

2. The user understands the concepts of action models, preconditions, and ef-
fects as used in Automated Planning techniques. This allows us to verify
whether the chosen logical representation for atomic action models in terms
of preconditions and effects can be adopted easily by users without any pro-
gramming background.

3. The user perceives Baxter as having learned a new task. This relates to the
user’s overall satisfaction with the programming results.
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4.3 Experimental Design

To evaluate the user’s understanding of preconditions and effects when creating
new action models we consider three scenarios of incremental complexity. The
experiment takes place on a simulated assembly line, where objects of the same
shape but different colour arrive consecutively at zone D (for departure). The
participant is asked to teach Baxter the action for moving an object from zone
D to zone A (for arrival) by direct manipulation of Baxter’s right limb. For each
scenario the participant reviews the taught action model (in terms of precondi-
tions and effects) and improves it. Starting with a simple naive action model,
each scenario leads the participant closer towards a generalised representation
of the moveObject action model. Figure 4 illustrates the initial and final states
of each scenario.

(a) (b) (c)  (d)

Initial
state

Failure
scenario

Goal
state

Fig. 4. The four scenarios demonstrated to the participant showing the start (top) and
the end (bottom) state after the execution of the latest taught action model. (b) and
(c) show the failure scenarios before the action model has been modified by the user.

The first scenario consists of the teaching phase using a single red block posi-
tioned on D. The participant demonstrates the moveObject action from D to A
by direct manipulation of Baxter’s limb. The demonstrated action is assigned:

moveObject:
– preconditions: ‘red block on zone D’
– effects: ‘red block on zone A’

The level of difficulty is low to allow the participant to get acquainted with the
logical representation. This is the only scenario where the user has to manipulate
the robot’s limb.

The second scenario uses a single blue block positioned on D. The participant
is asked if the previously taught action model moveObject: can be applied to the
new block in order to move it from D to A. The participant is demonstrated a
failure scenario (Figure 4 (b)) when trying to apply the previous action model.
We requested them to modify the conditions to evaluate their thinking on the
logical representation which should result in:

moveObject:
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– preconditions: ‘block on zone D’
– effects: ‘block on zone A’

The third scenario uses a blue block positioned on A and a red block positioned
on D. The participant is asked if the latest action model can be applied to the
new scenario in order to move the red block from D to A. The participant is
demonstrated a scenario where the action model is incorrectly applied – not
considering the occupied arrival position (Figure 4 (c)). The participant is re-
quested to modify the action model to enable a correct moveObject behaviour.
The additional condition demands a generalised thinking of higher complexity
which should result in:

moveObject:
– preconditions: ‘block on zone D’, ‘zone A is empty’
– effects: ‘block on zone A’, ‘zone D is empty’

The forth scenario uses a blue block positioned on A and a red block positioned
on D and a new position M. The participant is asked if the latest action model
can be applied to a goal, namely to exchange the positions of the two blocks from
D to A. The participant is demonstrated a scenario where the action model is
used in combination with an automated planner to solve the permutation.

4.4 Procedure

The complete experimental protocol is shown in Figure 3. Each experiment starts
with an introduction to the Baxter robot followed by a training phase where users
are given time to familiarise themselves with the manipulation of Baxter’s limb.

The second phase consists of teaching Baxter to move a block from the depar-
ture to the arrival position. Users are requested to verify the extracted conditions
of the state of the world and and raise any uncertainties.

The following phase consists of an iterative protocol to show the reproduction
of the learned action: The user is presented a scenario and asked to describe their
expectations when applying the latest action model. The user is faced with a
failure scenario when trying to apply the action model in a new context and
asked to present improvements to the existing action model to handle the new
situations.

The final phase presents the user with a scenario where the learned action
model is applied in combination with an automated planner to demonstrate a
goal-oriented behaviour. The Baxter robot is assigned a goal and autonomously
executes an action sequence to achieve the given goal. Finally, the user is given
a questionnaire to rate their experience and to provide us with their background
information.

5 Results

We recruited 11 participants with diverse educational backgrounds, but focused
on non-programming experts that had no knowledge of automated planning
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techniques. Figure 5 shows the distribution of the participants for the experi-
ments. The participants for ‘Programming experience’ ranged from 0 ‘None’ to 6
‘Beginner’ (experience in office productivity software), 2 ‘Advanced’ (attended a
programming course) to 3 ‘Expert’ (studies in Computer Science). 3 of the par-
ticipants who had previously heard of Automated Planning attended a related
course. Each participant was allocated 1 hour, with an overall average duration
of 29 minutes and 32 seconds. The experiment was recorded while the partici-
pant interacts with the robot, until they are given the questionnaire at the end.
Overall, all users were satisfied with the PbD process and Baxter’s abilities to

Fig. 5. Overview of the participants recruited for the experiment

learn and reproduce the demonstrated moveObject action. All users understood
and validated the extracted action model and managed to adopt the notion of
preconditions and effects easily. As expected, no user managed to point out the
missing conditions (i.e. generalisation on colours or consideration of empty zones)
immediately at the start when asked for improvements. However, all users de-
tected them easily, when faced with the relevant failure scenarios. The majority
of users had difficulties with formulating the missing precondition (‘zone A is
empty’ ) and suggested other equivalent conditions (‘Do not place the object on
zone A, if it is occupied’ ). We conclude that the user interface should propose a
pre-defined set of conditions that can be added to the action model.

Throughout the experiment some users made wide assumptions about the
robot’s capabilities. In the third scenario, where both arrival and departure zones
were occupied (Figure 4 (c)), almost half of the users expected Baxter to consider
the occupied position, even though it was not mentioned in the Baxter’s action
model. This is a common problem in PbD solutions as there is a difference in the
perception of the robot’s intelligence perceived by its teacher [13]. This can be
easily addressed by reproducing the learned task in a new context and verifying
the robot’s knowledge base as we did throughout the experiment.

In the final phase users with no experience in automated planning did not
expect Baxter to solve the permutation problem and agreed unanimously that it
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acted in an intelligent manner when it did. At the end of the experiment, all users
stated that they had taught Baxter a new task and the majority understood the
representation of the action models well. Finally, none of the users encountered
any difficulties during the experiment.

With this experiment we verified the three principal hypotheses from Section
4.2. We showed that the level of representing an action in terms of preconditions
and effects is adequate for non-expert users and that they can easily teach a
robot a new action model to be used by an automated planner. Figure 6 shows
the responses from the questionnaire completed after the final phase.

 

Page 1

It was easy to manipulate the arm

Baxter is well adapted for workers on the assembly line

Baxter's behaviour was intelligent

I believe that I have taught him a new task

I can explain how Baxter represented the new task

I can explain how Baxter learned a new task from my demonstration

I can explain how Baxter represented the preconditions of the new task

No programming experience is required to teach Baxter a new task

I did not encounter any difficulties during the experiment

0%50%100%

Strongly agree Somewhat agree Somewhat disagree Strongly disagree

Fig. 6. Responses to the questionnaire completed at the end of the experiment.

6 Conclusion and Future Work

In this work we proposed a framework that allows non-expert users to teach
a robot atomic actions with their semantic meanings that can be used by au-
tomated planners. Our framework combines two disciplines, Programming by
Demonstration (PbD) and Automated Planning, and exploits the common logi-
cal representation in terms of preconditions and effects. We evaluated the user’s
understanding of the notion of these logical representations by conducting qual-
itative experiments. Our experiments showed that users with and without pro-
gramming experience understood the concept of PbD, as well as the notion of
preconditions and effects, despite learning about them for the first time. Overall,
the PbD process was considered to be very intuitive and easily understood by
users. However, users were not able to construct a complete action model for the
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moveObject action without being faced with failure scenarios in contexts differ-
ent to the initial demonstration. The complete vocabulary consisting of possible
logical conditions should be proposed when creating the action model, as the
exact logical formulation is not always straightforward.

After the final phase users believed to have taught Baxter a new moveObject
action and considered its application to solve the permutation problem as in-
telligent. Overall our work demonstrated that the proposed framework with the
logical representation of its action models is well-adapted to users with no pro-
gramming experience.

Future work from an experimental point of view should focus on quantitative
experiments to test the acceptability of a fully implemented system. We suggest
the use of a richer domain including multiple scenarios and tasks taught in order
to cover a wider set of problems. We will work towards in-situ experiments in
an industrial environment to validate our found results. Higher human-robot
interaction levels allowing multi-modal communication (vision, gesture, voice)
may enhance the user experience, allowing them to easily clarify ambiguous
situations (e.g. pointing at an object). From a scientific point of view, further
studies should focus on using statistical methods or efficient PbD solutions to
generalise over demonstrated tasks.
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