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Reassigning and synchrosqueezing the Stockwell Transform: Complementary proofs

1 Relationship between the squared modulus of the S-transform and the Wigner-Ville distribution

|ST x (t, ω)| 2 = ST x (t, ω) • ST x (t, ω) * (1) = ω 2 2π(ω 0 T ) 2 R 2 x(τ )x(τ ) * e - ω 2 (t-τ ) 2 2(ω 0 T ) 2 e - ω 2 (t-τ ) 2 2(ω 0 T ) 2
e -jω(τ -τ ) dτ dτ (2)

As the Wigner-Ville distribution can be seen as the Fourier transform of the instantaneous autocorrelation function of a signal x

WV x (t, ω) = R x(t + τ 2 )x(t - τ 2
) * e -jωτ dτ.

(3)

Hence, using the inverse Fourier transform we obtain

x(t + τ 2 )x(t - τ 2 ) * = R WV x (t, Ω) e jΩτ dΩ 2π . (4) 
By replacing τ = t + τ 2 and τ = t -τ 2 we obtain t = τ +τ 2 and τ = τ -τ thus we have

x(τ )x(τ ) * = R WV x τ + τ 2
, Ω e jΩ(τ -τ ) dΩ 2π .

(5)

Similarly with h(λ) = 1 √ 2πT e -λ 2 2T 2 we have

WV h (λ, ω) = 1 2πT 2 R e -(λ+ τ 2 ) 2 2T 2 e -(λ-τ 2 ) 2
2T 2 e -jωτ dτ (6) (WV h (λ, ω) is further expressed in Section 1.1) and

e -(λ+ τ 2 ) 2 2T 2 e -(λ-τ 2 ) 2 2T 2 = 2πT 2 R WV h (λ, Ω ) e jΩ τ dΩ 2π . (7) 
If we define

(λ + τ 2 ) 2 = ω 2 ω 2 0 (t -τ ) 2 (8) (λ - τ 2 ) 2 = ω 2 ω 2 0 (t -τ ) 2 (9) 
we obtain λ = ω ω0 (t -τ +τ 2

) and τ = ω ω0 (τ -τ ) thus we have

e - ω 2 (t-τ ) 2 2(ω 0 T ) 2 e - ω 2 (t-τ ) 2 2(ω 0 T ) 2 = 2πT 2 R WV h ω ω 0 t - τ + τ 2 , Ω e jΩ ω ω 0 (τ -τ ) dΩ 2π . (10) 
So, (2) can be expressed using Eqs. ( 5) and (10) as

|ST x (t, ω)| 2 = ω 2 ω 2 0 R 4 WV x ( τ + τ 2 , Ω) e jΩ(τ -τ ) WV h ( ω ω 0 (t - τ + τ 2 )
, Ω ) e j ωΩ ω 0

(τ -τ )-jω(τ -τ ) dΩ 2π dΩ 2π dτ dτ .

(11)

If we define τ 1 = τ +τ 2 and τ 2 = τ -τ , we obtain

τ τ = Φ(τ 1 , τ 2 ) = τ 1 + τ2 2 τ 1 -τ2 2 , ( 12 
)
as a result for a multiple substitution integration we obtain

dτ dτ = |det J Φ | dτ 1 dτ 2 = dτ 1 dτ 2 (13)
where det J Φ is the determinant of the Jacobian of matrix Φ. As a result, (11) can be expressed as

|ST x (t, ω)| 2 = ω 2 ω 2 0 R 4 WV x (τ 1 , Ω)WV h ( ω ω 0 (t -τ 1 ), Ω ) e jτ2(Ω-ω-ωΩ ω 0 ) dΩ 2π Ω 2π dτ 1 dτ 2 (14) = ω 2 ω 2 0 R 3 WV x (τ 1 , Ω)WV h ( ω ω 0 (t -τ 1 ), Ω )δ Ω -ω - ωΩ ω 0 dΩ 2π dΩ dτ 1 (15) = |ω| ω 0 R 3 WV x (τ 1 , Ω)WV h ( ω ω 0 (t -τ 1 ), Ω )δ ω 0 Ω ω -ω 0 -Ω dΩ 2π dΩ dτ 1 (16) = |ω| ω 0 R 2 WV x (τ 1 , Ω)WV h ( ω ω 0 (t -τ 1 ), ω 0 ω (Ω -ω)) dΩ 2π dτ 1 (17)
1.1 Wigner-Ville distribution of a Gaussian analysis window

If we define h(t) = 1 √ 2πT e -t 2
2T 2 , its Wigner-Ville distribution can be expressed as

WV h (t, ω) = R h t + τ 2 h t - τ 2 * e -jωτ dτ (18) = 1 2πT 2 R e -(t+ τ 2 ) 2 2T 2 e -(t-τ 2 ) 2 2T 2 e -jωτ dτ (19) = 1 2πT 2 R e -t 2 + τ 2 4 T 2 e -jωτ dτ (20) = 1 2πT 2 e -t 2 T 2 R e -τ 2 4T 2 e -jωτ dτ (21) = 1 √ πT e -t 2 T 2 e -ω 2 T 2 (22)
Thus, from (17) we finally obtain

|ST x (t, ω)| 2 = |ω| √ πω 0 T R 2 WV x (τ, Ω) e - ω 2 (t-τ ) 2 (ω 0 T ) 2 e -(ω 0 T ) 2 (Ω-ω) 2 ω 2 dτ dΩ 2π (23)
2 Frequency domain expression of the S-transform

As a signal x can be expressed as the inverse of its Fourier transform

x(t) = +∞ -∞ F x (ξ) e +jξt dξ 2π (24) 
thus, ST x (t, ω) can now be expressed as

ST x (t, ω) = |ω| √ 2πω 0 T R 2 F x (ξ) e - (t-τ ) 2 ω 2 2(ω 0 T ) 2 e -j(ω-ξ)τ dτ dξ 2π (25) = |ω| ω 0 R 2 F x (ξ)h ω ω 0 (t -τ ) e -j(ω-ξ)τ dτ dξ 2π ( 26 
)
where

h(t) = 1 √ 2πT e -t 2 2T 2 .
The Fourier transform of g(t, ω0T |ω| ) = |ω| ω0 h ω ω0 (t -τ ) can be expressed as

F g (Ω) = |ω| ω 0 +∞ -∞ h ω ω 0 (t -τ ) e -jΩt dt (27) = e -jΩτ +∞ -∞ h(α) e -j ω 0 ω Ωα dα = e -jΩτ F h ( ω 0 ω Ω) (28) 
Thus ( 26) can now be expressed as

ST x (t, ω) = R 3 F x (ξ)F h ω 0 ω Ω e j(Ω(t-τ ) e j(ξ-ω)τ dτ dξ 2π dΩ 2π (29) = R 2 F x (ξ)F h ω 0 ω Ω e jΩt +∞ -∞ e j(ξ-Ω-ω)τ dτ dξ 2π dΩ 2π (30) = R 2 F x (ξ)F h ω 0 ω Ω e jΩt δ(ξ -Ω -ω) dξ dΩ 2π (31) = e -jωt +∞ -∞ F x (ξ)F h ω 0 ω (ξ -ω) e jξt dξ 2π (32) = +∞ -∞ F x (Ω + ω)F h ω 0 ω Ω e jΩt dΩ 2π (33)
3 S-transform of particular signals

S-transform of a time-delayed signal

If y(t) = x(t -t 1 ), then we obtain

ST y (t, ω) = |ω| e -jωt √ 2πω 0 T +∞ -∞ x(t + τ -t 1 ) e -ω 2 τ 2 2(ω 0 T ) 2 e -jωτ dτ and ST x (t -t 1 , ω) = |ω| e -jω(t-t1) √ 2πω 0 T +∞ -∞ x(t -t 1 + τ ) e -ω 2 τ 2 2(ω 0 T ) 2 e -jωτ dτ (34) = ST y (t, ω) e -jωt1 . (35) 
Thus, we finally deduce

ST y (t, ω) = ST x (t -t 1 , ω) e jωt1 . ( 36 
)
3.2 S-transform of a frequency-shifted signal

If we define y(t) = x(t) e jω1t , then using

F y (ω) = F x (ω -ω 1 ) we obtain ST y (t, ω) = +∞ -∞ F x (ω -ω 1 + Ω)F h ω 0 Ω ω e jΩt dΩ 2π (37) 
As,

ST x (t, ω -ω 1 ) = +∞ -∞ F x (ω -ω 1 + Ω)F h ω 0 Ω ω -ω 1 e jΩt dΩ 2π (38) 
we finally deduce that ST y (t, ω) = ST x (t, ω -ω 1 ).

(39)

S-transform of a rescaled signal

If we define z(t) = 1 √ s x t s , then we have

ST z (t, ω) = |ω| √ 2πω 0 T +∞ -∞ 1 √ s x τ s e - ω 2 (t-τ ) 2 2(ω 0 T ) 2 e -jωτ dτ (40) = |ω| √ 2πω 0 T +∞ -∞ 1 √ s x(τ ) e - ω 2 (t-sτ ) 2 2(ω 0 T ) 2 e -jωsτ sdτ (41) = 1 √ s s|ω| √ 2πω 0 T +∞ -∞ x(τ ) e - s 2 ω 2 ( t s -τ ) 2 2(ω 0 T ) 2 e -jsωτ dτ (42) = 1 √ s ST x t s , sω . (43) 

S-transform of a sinusoid

If we consider a signal x(t) = A e jω1t , we have F x (ω) = 2πAδ(ω -ω 1 ). Hence, the S-transform of x can be expressed as

ST x (t, ω) = A +∞ -∞ δ(Ω + ω -ω 1 )F h ω 0 ω Ω e jΩt dΩ (44) = AF h ω 0 ω (ω 1 -ω) e j(ω1-ω)t (45) = A e -(ω 1 -ω) 2 (ω 0 T ) 2 2ω 2 e j(ω1-ω)t . (46) 
Thus, we finally deduce ST x (t, ω 1 ) = A (47)

3.5 Tuning ω 0 T to compute the S-transform of a sinusoid

Let's begin with the S-transform of a sinusoid expressed as ST

x (t, ω) = A e -(ω 1 -ω) 2 (ω 0 T ) 2
2ω 2 e j(ω1-ω)t . If one wants the set {ω, |ST x (t, ω)| > Γ} with Γ < 1, to have a width ∆ω 1 around ω 1 , we have to find the two values ω and ω that verifies ∆ω 1 = ω -ω > 0 (with ω > ω ) obtained by solving the equation

e -(ω 1 -ω) 2 (ω 0 T ) 2 2ω 2 = Γ (48) - (ω 1 -ω) 2 (ω 0 T ) 2 2ω 2 = log(Γ) (49) (ω 1 -ω) 2 = 2 log(1/Γ) (ω 0 T ) 2 ω 2 (50) 1 - 2 log(1/Γ) (ω 0 T ) 2 ω 2 -2ω 1 ω + ω 2 1 = 0 (51)
Thus we obtain the solutions

ω = ω 1 1 - √ 2 log(1/Γ) ω0T = ω 1 1 -α with α = 2 log(1/Γ) ω 0 T (52) ω = ω 1 1 + √ 2 log(1/Γ) ω0T = ω 1 1 + α . ( 53 
)
Thus we have,

∆ω 1 = ω -ω = ω 1 1 -α - ω 1 1 + α = 2α 1 -α 2 ω 1 = 2 √ 2 log(1/Γ) (ω0T ) 2 1 -2 log(1/Γ) ω0T ω 1 . (54) 
that leads to

1 - 2 log(1/Γ) (ω 0 T ) 2 = ω 1 ∆ω 1 2 2log(1/Γ) ω 0 T (55) (ω 0 T ) 2 -2 log(1/Γ) = ω 1 ∆ω 1 2 2 log(1/Γ)ω 0 T (56) (ω 0 T ) 2 - ω 1 ∆ω 1 2 2 log(1/Γ)ω 0 T -2 log(1/Γ) = 0 (57)
So finally, as ω 0 T > 0, we obtain a unique solution

ω 0 T = 2 log (1/Γ) 1 + ω 2 1 ∆ω 2 1 + ω 1 ∆ω 1 (58)
3.6 S-transform of an impulse signal

If x(t) = δ(t -t 1 ) then we obtain ST x (t, ω) = |ω| ω 0 +∞ -∞ δ(τ -t 1 )h ω ω 0 (t -τ ) e -jωτ dτ (59) = |ω| ω 0 h ω ω 0 (t -t 1 ) e -jωt1 (60) = |ω| √ 2πω 0 T e - ω 2 (t-t 1 ) 2 2(ω 0 T ) 2 e -jωt1 (61) 
Thus, we finally deduce

ST x (t 1 , ω) = |ω| √ 2πω 0 T e -jωt1 (62) 
3.7 Tuning ω 0 T to compute the S-transform of an impulse

Let's begin with the S-transform of an impulse located at instant t 1 expressed as ST

x (t, ω) = |ω| √ 2πω0T e - ω 2 (t-t 1 ) 2 2(ω 0 T ) 2 e -jωt1 .
If one wants the set {t, STx(t,ω) STx(t1,ω) > Γ} with Γ < 1, to have a width ∆t 1 around t 1 , we have to find the two values t and t that verifies ∆t 1 = t -t obtained by solving the equation

ST x (t, ω) ST x (t 1 , ω) = e - ω 2 (t-t 1 ) 2 2(ω 0 T ) 2 = Γ (63) that leads to - ω 2 (t -t 1 ) 2 2(ω 0 T ) 2 = log(Γ) (64) (t -t 1 ) 2 = 2 log(1/Γ) (ω 0 T ) 2 ω 2 (65) t 2 -2tt 1 + t 2 1 -2 log(1/Γ) (ω 0 T ) 2 ω 2 = 0. ( 66 
)
From the solutions

t = t + α 2 with α = 2 2 log(1/Γ) ω 0 T ω (67) t = t -α 2 (68) (69) one can deduce ∆t 1 = t -t = 2 2 log(1/Γ) ω 0 T ω (70) 
So finally we have

ω 0 T = ω∆t 1 2 2 log(1/Γ) (71)
4 Marginalization of the S-transform over time

+∞ -∞ ST(t, ω) dt = +∞ -∞ x(τ ) e -jωτ |ω| √ 2πω 0 T +∞ -∞ e - (t-τ ) 2 ω 2 2(ω 0 T ) 2 dt 1 dτ (72) = +∞ -∞ x(τ ) e -jωτ dτ = F x (ω) (73)
5 S-transform simplified reconstruction formula

Proof

The S-transform simplified reconstruction formula leads to the following result

+∞ -∞ ST x (t, ω) e jωt dω |ω| = R 2 F x (Ω + ω)F h ω 0 ω Ω e jΩt e jωt dΩ 2π dω |ω| (74) = R 2 F x (Ω ) e jΩ t F h ω 0 ω (Ω -ω) dΩ 2π dω |ω| (75) 
Using the following variables substitution with the corresponding Jacobian matrix

Φ(ξ, Ω ) = ω0Ω ξ Ω (76) J Φ (ξ, Ω ) = -ω0Ω ξ 2 ω0 ξ 0 1 (77) we obtain +∞ -∞ ST x (t, ω) e jωt dω |ω| = R 2 F x (Ω ) e jΩ t F h (ξ -ω 0 ) |ω 0 Ω | ξ 2 |ξ| |ω 0 Ω | dΩ 2π dξ (78) = +∞ -∞ F x (Ω ) e jΩ t dΩ 2π • +∞ -∞ F h (ξ -ω 0 ) dξ |ξ| (79) = x(t) • C h (ω 0 T ) (80) with C h (ω 0 T ) = +∞ -∞ e -(ξT -ω 0 T ) 2 2 dξ |ξ| = +∞ -∞ e -(x-ω 0 T ) 2 2 dx |x| . (81) 
Hence, x can be recovered from ST x using the simplified S-transform inversion formula

x(t) = 1 C h (ω 0 T ) +∞ -∞ ST x (t, ω) e jωt dω |ω| . ( 82 
)

Relationship with the Morlet wavelet synthesis formula

For the wavelet transform of a signal x expressed as

W x (t, s) = 1 |s| R x(τ )Ψ( τ -t s ) * dτ (83)
the simplified wavelet reconstruction formula is given by

x(t) = 1 C Ψ R W x (t, s)|s| -3/2 ds (84) = 1 √ ω 0 C Ψ R CW x (t, ω) dω |ω| (85) 
with s = ω0 ω for ω 0 > 0 and CW x (t, ω) = W x (t, ω0 ω ). For the Morlet wavelet transform denoted MW x (t, ω) (i.e. MW x (t, ω) = CW x (t, ω) when

Ψ(t) = π -1/4 √ T e -t 2
2T 2 e jω0t ),

thus using F Ψ (ω) = √ 2T π 1/4 e -(ω-ω 0 ) 2 T 2 2
(see Section 12) we have

C Ψ = √ 2T π 1/4 R e -(ω-ω 0 ) 2 T 2 2 dω |ω| (86) = √ 2T π 1/4 R e -(ωT -ω 0 T ) 2 2 dω |ω| (87) = √ 2T π 1/4 R e -(x-ω 0 T ) 2 2 dx |x| (88) = √ 2T π 1/4 C h (ω 0 T ) (89)
Using the relation between the S-transform and the Morlet wavelet transform expressed as MW x (t, ω) = √ 2ω 0 T π 1/4 1 √ |ω| e jωt ST x (t, ω) (see the main article) and using Eq. ( 89), we obtain from Eq. ( 85)

x(t) = 1 √ 2ω 0 T π 1/4 C h (ω 0 T ) R MW x (t, ω) dω |ω| (90) = 1 C h (ω 0 T ) R ST x (t, ω) e jωt dω |ω| (91) 
that is the simplified S-transform reconstruction formula given by Eq. ( 82).

As the Morlet wavelet is considered to be be approximately analytic (F Ψ (ω) ≈ 0 for ω < 0 when ω 0 T 0), thus we have

|C P si| < ∞. Using the relationship of C h (ω 0 T ) and B h (ω 0 T ) with C Ψ , one can deduce that |C h (ω 0 T )| < ∞ and |B h (ω 0 T )| < ∞.

Energy conservation of the S-transform

Starting from the frequency domain expression of the S-transform given by Eq.( 33)

ST x (t, ω) = +∞ -∞ F x (ω + Ω)F h ( ω 0 ω Ω) e jΩt dΩ 2π , (92) 
the Stockwellogram can be expressed as

|ST x (t, ω)| 2 = R 2 F x (ω + Ω 1 )F x (ω + Ω 2 ) * F h ( ω 0 ω Ω 1 )F h ( ω 0 ω Ω 2 ) * e -j(Ω2-Ω1)t dΩ 1 2π dΩ 2 2π (93)
Hence, when the Stockwellogram is marginalized over time, we obtain

+∞ -∞ |ST x (t, ω)| 2 dt = R 2 F x (ω + Ω 1 )F x (ω + Ω 2 ) * F h ( ω 0 ω Ω)F h ( ω 0 ω Ω) * δ(Ω 2 -Ω 1 ) dΩ 1 2π dΩ 2 (94) = +∞ -∞ |F x (ω + Ω )| 2 |F h ( ω 0 ω Ω )| 2 dΩ 2π (95) = +∞ -∞ |F x (Ω)| 2 |F h ( ω 0 ω (Ω -ω))| 2 dΩ 2π (96) = +∞ -∞ |F x (Ω)| 2 e -(ω 0 T ) 2 (Ω-ω) 2 ω 2 dΩ 2π ( 97 
)
that corresponds to a smoothed version of the energy spectral density of the analyzed signal x. Now, one can calculate

R 2 |ST x (t, ω)| 2 dt dω |ω| = R 2 |F x (Ω)| 2 |F h ( ω 0 Ω ω -ω 0 )| 2 dΩ 2π dω |ω| (98) 
Using the following variables substitution with the corresponding Jacobian matrix

Φ(ω , Ω ) = Ω0Ω ω Ω (99) J Φ (ω , Ω ) = -ω0Ω ω 2 ω0 ω 0 1 , (100) 
we obtain

R 2 |ST x (t, ω)| 2 dt dω |ω| = +∞ -∞ |F h (ω -ω 0 )| 2 dω |ω | +∞ -∞ |F x (Ω)| 2 dΩ 2π (101) = B h (ω 0 T )E x (102) 
So finally, the Parseval's theorem leads to

E x = +∞ -∞ |x(t)| 2 dt = +∞ -∞ |F x (ω)| 2 dω 2π = 1 B h (ω 0 T ) R 2 |ST x (t, ω)| 2 dt dω |ω| ( 103 
)
where the proportionality factor B h (ω 0 T ) is given by

B h (ω 0 T ) = +∞ -∞ |F h (ω -ω 0 )| 2 dω |ω| = +∞ -∞ e -(ω-ω0) 2 T 2 dω |ω| = +∞ -∞ e -ω0(x-1) 2 T 2 dx |x| = +∞ -∞ |F h (ω 0 (x -1))| 2 dx |x| (104)
7 Frequency derivative of the phase of the S-transform Let define the S-transform as a particular case of the Short-Time Fourier Transform (STFT) using the window

g(t, ω) = |ω| √ 2πω0T e -ω 2 t 2 2(ω 0 T ) 2 ST x (t, ω) = M x (t, ω) e jΦx(t,ω) = R x(τ )g(t -τ, ω) e -jωτ dτ (105) 
When ω = 0, we have

∂ST x ∂ω (t, ω) = ∂M x ∂ω (t, ω) e jΦx(t,ω) + j ∂Φ x ∂ω (t, ω)ST x (t, ω) (106) = ∂ ∂ω e -jωt R x(τ )g(t -τ, ω 0 |ω| T ) e jω(t-τ ) dτ (107) = -jtST x (t, ω) + e -jωt R x(τ ) ∂g ∂ω (t -τ, ω 0 |ω| T ) e jω(t-τ ) dτ + j R x(τ )(t -τ )g(t -τ, ω 0 |ω| T ) e jω(t-τ ) dτ (108) = -jtST x (t, ω) + jST T g x (t, ω) + ω |ω| √ 2πω 0 T R x(τ ) e - ω 2 (t-τ ) 2 2(ω 0 T ) 2 e -jωτ dτ - |ω|ω √ 2π(ω 0 T ) 3 R x(τ )(t -τ ) 2 e - ω 2 (t-τ ) 2 2(ω 0 T ) 2 -jωτ dτ (109) = -jtST x (t, ω) + jST T g x (t, ω) + ω |ω| 2 ST x (t, ω) - ω (ω 0 T ) 2 ST T 2 g x (t, ω). (110) 
Thus, we have

∂STx ∂ω (t, ω) ST x (t, ω) = 1 M x (t, ω) ∂M x ∂ω (t, ω) + j ∂Φ x ∂ω (t, ω) = -jt + j ST T g x (t, ω) ST x (t, ω) + ω |ω| 2 - ω (ω 0 T ) 2 ST T 2 g x (t, ω) ST x (t, ω) (111) 
so finally we deduce

∂Φ x ∂ω (t, ω) = Im ∂STx ∂ω (t, ω) ST x (t, ω) = -t + Re ST T g x (t, ω) ST x (t, ω) -Im ω (ω 0 T ) 2 ST T 2 g x (t, ω) ST x (t, ω) (112)
8 Computation of the reassignment operators using S-transforms

time coordinate

We consider first the definition of the reassigned time coordinates

t(t, ω) = R 2 τ WV x (τ, Ω)WV h ( ω ω 0 (t -τ ), ω 0 ω (Ω -ω))dτ dΩ R 2 WV x (τ, Ω)WV h ( ω ω 0 (t -τ ), ω 0 ω (Ω -ω))dτ dΩ (113) = Re     R 2 τ Ri x (τ, Ω)Ri h ( ω ω 0 (t -τ ), ω 0 ω (Ω -ω))dτ dΩ R 2 Ri x (τ, Ω)Ri h ( ω ω 0 (t -τ ), ω 0 ω (Ω -ω))dτ dΩ     (114) 
where Ri(t, ω) = x(t)F x (ω) * e -jωt is the Rihaczeck disctribution. Thus we have

t(t, ω) = 1 ω0 |ω| |ST x (t, ω)| 2 Re R x(τ )τ h( ω ω 0 (t -τ )) e -jωτ dτ • R F x (Ω) * F h ( ω 0 ω (Ω -ω)) * e -j(Ω-ω)t dΩ 2π (115) = t -Re     R x(τ )(t -τ )h( ω ω 0 (t -τ )) e -jωτ dτ ST x (t, ω) * ω0 |ω| |ST x (t, ω)| 2     (116) = t -Re ST T g x (t, ω) ST x (t, ω) (117) 

Frequency coordinate

We consider first the definition of the reassigned frequency coordinates

ω(t, ω) = R 2 ΩWV x (τ, Ω)WV h ( ω ω 0 (t -τ ), ω 0 ω (Ω -ω))dτ dΩ R 2 WV x (τ, Ω)WV h ( ω ω 0 (t -τ ), ω 0 ω (Ω -ω))dτ dΩ (118) = Re     R 2 ΩRi x (τ, Ω)Ri h ( ω ω 0 (t -τ ), ω 0 ω (Ω -ω))dτ dΩ R 2 Ri x (τ, Ω)Ri h ( ω ω 0 (t -τ ), ω 0 ω (Ω -ω))dτ dΩ     (119) = 1 ω0 |ω| |ST x (t, ω)| 2 Re R x(τ )h( ω ω 0 (t -τ ) e -jωτ dτ • R ΩF x (Ω) * F h ( ω 0 ω (Ω -ω)) e -(Ω-ω)t dΩ 2π (120) = ω + Re ST x (t, ω) |ST x (t, ω)| 2 • R (Ω -ω)F x (Ω) * F h ( ω 0 ω (Ω -ω)) * e -(Ω-ω)t dΩ 2π (121) = ω + Re ST x (t, ω) |ST x (t, ω)| 2 • R (Ω -ω)F x (Ω) * F g (Ω -ω) * e -(Ω-ω)t dΩ 2π ( 122 
)
Using the following property

F h ω 0 ω (Ω -ω) = R h(t) e -j ω 0 ω (Ω-ω)t dt = |ω| ω 0 R h( ω ω 0 τ ) e -j(Ω-ω)τ dτ (123) = R g(τ, σ t ) e -j(Ω-ω)τ dτ = F g (Ω -ω) (124) If we define Dg(t) = dg dt (t) = -t σ 2 t g(t)
and we have F Dg (ω) = jωF g (ω)

Thus using

F g (ω) = -j 1 ω F Dg (ω), we obtain ω(t, ω) = ω -Re j ST x (t, ω) |ST x (t, ω)| 2 • R F x (Ω) * F Dg (Ω -ω) * e -(Ω-ω)t dΩ 2π (125) = ω -Im ST Dg x (t, ω) * ST x (t, ω) * (126) = ω + Im ST Dg x (t, ω) ST x (t, ω) (127)
9 Computation of the Levenberg-Marquardt reassignment operators using S-transforms

Starting from the Stockwellogram classical reassignment operators given by

t(t, ω) = t -Re ST T g x (t, ω) ST x (t, ω) (128) ω(t, ω) = ω + Im ST Dg x (t, ω) ST x (t, ω) (129)
and the definition of the Levenberg-Marquardt reassignment operators

t(t, ω) ω(t, ω) = t ω -∇ t R x (t, ω) + µI 2 -1 R x (t, ω) (130) with R x (t, ω) = t ω - t(t, ω) ω(t, ω) (131) ∇ t R x (t, ω) = ∂Rx ∂t (t, ω) ∂Rx ∂ω (t, ω) (132) 
we directly obtain

R x (t, ω) =   Re ST T g x (t,ω) STx(t,ω) -Im ST Dg x (t,ω) STx(t,ω)   (133) ∇ t R x (t, ω) =   ∂ ∂t Re ST T g x (t,ω) STx(t,ω) ∂ ∂ω Re ST T g x (t,ω) STx(t,ω) -∂ ∂t Im ST Dg x (t,ω) STx(t,ω) -∂ ∂ω Im ST Dg x (t,ω) STx(t,ω)   ( 134 
)
The coefficients of matrix ∇ t R x (t, ω) can be detailed as below.

9.1 Computation of the partial time derivatives of R x (t, ω)

Using ∂STx ∂t = ST Dg x (t, ω) and

∂ST T g x ∂t = ST x (t, ω) + ST T Dg x (t, ω) we obtain ∂ ∂t Re ST T g x (t, ω) ST x (t, ω) = Re ∂ST T g x ∂t (t, ω)ST x (t, ω) -ST T g x (t, ω) ∂STx ∂t (t, ω) ST x (t, ω) 2 (135) = 1 + Re ST T Dg x (t, ω)ST x (t, ω) -ST T g x (t, ω)ST Dg x (t, ω) ST x (t, ω) 2 (136) = 1 + Re ST T Dg x (t, ω) ST x (t, ω) - ST T g x (t, ω)ST Dg x (t, ω) ST x (t, ω) 2 . ( 137 
) Using ∂ST Dg x ∂t (t, ω) = ST D 2 g x (t, ω) we obtain - ∂ ∂t Im ST Dg x (t, ω) ST x (t, ω) = -Im ∂ST Dg x ∂t (t, ω)ST x (t, ω) -ST Dg x (t, ω) ∂STx ∂t (t, ω) ST x (t, ω) 2 (138) = -Im   ST D 2 g x (t, ω) ST x (t, ω) - ST Dg x (t, ω) ST x (t, ω) 2   . ( 139 
)
9.2 Computation of the partial frequency derivatives of R x (t, ω)

Using the following equalities (computation details in Section 7)

∂ST x ∂ω (t, ω) = 1 ω ST x (t, ω) - ω (ω 0 T ) 2 ST T 2 g x (t, ω) + j(ST T g x (t, ω) -tST x (t, ω)) (140) 
and

∂ST T g x ∂ω (t, ω) = 1 ω ST T g x (t, ω) - ω (ω 0 T ) 2 ST T 3 g x (t, ω) + j(ST T 2 g x (t, ω) -tST T g x (t, ω)) (141) 
we obtain

∂ ∂ω Re ST T g x (t, ω) ST x (t, ω) = Re ∂ST T g x ∂ω (t, ω)ST x (t, ω) -ST T g x (t, ω) ∂STx ∂ω (t, ω) ST x (t, ω) 2 (142) = Re j ST T 2 g x (t, ω)ST x (t, ω) -ST T g x (t, ω) 2 ST x (t, ω) 2 + ω (ω 0 T ) 2 ST T 2 g x (t, ω)ST T g x (t, ω) -ST T 3 g x (t, ω)ST x (t, ω) ST x (t, ω) 2 (143) = -Im   ST T 2 g x (t, ω) ST x (t, ω) - ST T g x (t, ω) ST x (t, ω) 2   + ω (ω 0 T ) 2 Re ST T 2 g x (t, ω)ST T g x (t, ω) -ST T 3 g x (t, ω)ST x (t, ω) ST x (t, ω) 2 (144) Using ST Dg x (t, ω) = -ω 2 (ω0T ) 2 ST T g x (t, ω) we have ∂ST Dg x ∂ω (t, ω) = - ∂ ∂ω ω 2 (ω 0 T ) 2 ST T g x (145) = - 2ω (ω 0 T ) 2 ST T g x (t, ω) - ω 2 (ω 0 T ) 2 ∂ST T g x ∂ω (t, ω) (146) = - -3ω (ω 0 T ) 2 ST T g x (t, ω) + ω 3 (ω 0 T ) 4 ST T 3 g x (t, ω) -j ω 2 (ω 0 T ) 2 ST T 2 g x (t, ω) + jt ω 2 (ω 0 T ) 2 ST T g x (t, ω) (147) 
we obtain

- ∂ ∂ω Im ST Dg x (t, ω) ST x (t, ω) (148) = -Im ∂ST Dg x ∂ω (t, ω)ST x -ST Dg x ∂STx ∂ω (t, ω) ST x (t, ω) 2 (149) = -Im -2ω (ω0T ) 2 ST T g x (t, ω)ST x (t, ω) ST 2 x + ω 3 (ω 0 T ) 4 ST T 3 g x (t, ω)ST x (t, ω) -ST T 2 g x (t, ω)ST T g x (t, ω)) ST x (t, ω) 2 -j ω 2 (ω 0 T ) 2 ST T 2 g x (t, ω)ST x (t, ω) -(ST T g x ) 2 ST x (t, ω) 2 (150) = -Re ST T Dg x (t, ω) ST x (t, ω) - ST T g x (t, ω)ST Dg x (t, ω) ST x (t, ω) 2 - ω 3 (ω 0 T ) 4 Im ST T 3 g x (t, ω) ST x (t, ω) - ST T 2 g x (t, ω)ST T g x (t, ω) ST x (t, ω) 2 + 2ω (ω 0 T ) 2 Im ST T g x (t, ω) ST x (t, ω) (151) 
10 Definition of the S-transform local instantaneous modulation operator

Let be x(t) = a(t) e jφ(t) a Gaussian-modulated linear chirp (i.e. φ(t) and log(a(t)) functions are quadratic. Thus, the frequency modulation qx can be defined as

qx (t, ω) = d 2 φ dt 2 (t). ( 152 
)
The proof of this result follows. By definition, x(t) is differentiable and its derivative is

dx dt (t) = da dt (t) + j dφ dt (t)a(t) e jφ(t) (153) = d dt (log(a(t))) + j dφ dt (t) l(t) x(t) ( 154 
)
where l is an affine complex-valued function since log(a(t)) and φ(t) are quadratic. 

= -jωST x (t, ω) -α R x(τ )((t -τ ) -t)g(t -τ, σ t ) e -jωτ dτ + βST x (t, ω) (159) = -jωST x (t, ω) -α ST T g x (t, ω) -tST x (t, ω) + βST x (t, ω). ( (158) 
) 160 
Dividing by ST x (t, ω) we obtain

∂STx ∂t (t, ω) ST x (t, ω) = ST Dg x (t, ω) ST x (t, ω) = -jω -α ST T g x (t, ω) ST x (t, ω) -t + β. (161) 
Differentiating with respect to t, we obtain

∂ ∂t ST Dg x (t, ω) ST x (t, ω) = -α ∂ ∂t ST T g x (t, ω) ST x (t, ω) -1 (162)
Thus, we have

α = d 2 dt (log(a(t))) + j d 2 φ dt 2 (t) = - ∂ ∂t ST Dg x (t,ω) STx(t,ω) ∂ ∂t ST T g x (t,ω) STx(t,ω) -1 (163) that leads to qx (t, ω) = -Im ST D 2 g x (t, ω)ST x (t, ω) -ST Dg x (t, ω) 2 ST T Dg x (t, ω)ST x (t, ω) -ST T g x (t, ω)ST Dg x (t, ω) . ( 164 
)
11 Implementation of the reassigned Gabor spectrogram and of the synchrosqueezed STFT

The discrete-time Gabor transform of a signal x can be approximed by

F g x (nT s , 2πm M Ts ) ≈ F g x [n, m] with n ∈ Z and m ∈ M as F g x [n, m] = e -j 2πmn M K/2 k=-K/2 x[n + k]g[-k, L] e -j 2jπmk M (165) = e -j 2πmn M √ 2πL K/2 k=-K/2 x[n + k] e -k 2 2L 2 e -j 2jπmk M (166) with g[k, L] = T s g(kT s , T Ts ) = 1 √ 2πL e -n 2 2L 2 , where K = 2L 2 log(1/Γ) is obtained by setting a threshold Γ thus we have e -(K/2) 2 2L 2 ≤ Γ. ( 167 
)
The signal x can be recovered using the STFT synthesis formula as

x[n] = 1 g(0, T ) m∈M F g x [n, m] e 2jπmn M ∆ω with ∆ω = 2π M T s (168) = √ 2π M L m∈M F g x [n, m] e 2jπmn M . (169) 
11.1 Computation of the spectrogram and the reassigned spectrogram

The spectrogram is simply computed as |F g x [n, m]| 2 and the reassigned spectrogram is computed as

RV x [n, m] = n∈Z m∈Z |F g x [n, m]| 2 δ[n -n[n, m]]δ[m -m[n, m]] (170) 
where n and m correspond to the reassigned time-frequency coordinates computed as

n[n, m] = n -Re T -1 s F T g x [n, m] F g x [n, m] (171) m[n, m] = m + Im T s F Dg x [n, m] F g x [n, m] (172) 
where T g(t, T ) = tg(t, T ) and Dg(t, T ) = dg dt (t, T ) = -1 T 2 T g(t, T ). The Levenberg-Marquardt reassigned time-frequency coordinates are computed as ñ

[n, m] m[n, m] = n m -∇ t R x [n, m] + µI 2 -1 R x [n, m] (174) with R x [n, m] = n -ñ[n, m] m -m[n, m] (175) 
∇ t R x [n, m] =     1 + Re F T Dg x [n,m] F g x [n,m] - F T g x [n,m]F Dg x [n,m] F g x [n,m] 2 -Im T -2 s F T 2 g x [n,m] F g x [n,m] - T -1 s F T g x [n,m] F g x [n,m] 2 -Im T 2 s F D 2 g x [n,m] F g x [n,m] - TsF Dg x [n,m] Fx[n,m] 2 -Re F T Dg x [n,m] F g x [n,m] - F T g x [n,m]F Dg x [n,m] F g x [n,m] 2     (176) 
where T Dg(t, T ) = t dg dt (t, T ), T 2 g(t, T ) = t 2 g(t, T ) and D 2 g(t, T ) = d 2 g dt 2 (t, T ). Thus, the Levenberg-Marquardt spectrogram is simply obtained by replacing (n, m) by (ñ, m) in Eq. ( 170).

Computation of the synchrosqueezed STFT

The discrete-time synchrosqueezed STFT can be defined as

T x [n, m] = 1 2π m ∈M F g x [n, m ] e 2jπm n M δ[m -m[n, m ]] (177) 
where (n, m) can be replaced by (ñ, m) to obtain the Levenberg-Marquardt synchrosqueezed STFT.

The signal x can be recovered from the synchrosqueezed STFT as 12 Fourier transform of the Morlet Wavelet

x[n] = 1 g(0, T ) m ∈M T x [n, m]∆ω (178) = (2π) 3/2 L M m ∈M T x [n, m]. ( 
According to the definition of the Morlet mother wavelet, we have 

F Ψ (ω) =

  , the discrete-time local frequency modulation can be estimated asqx [n, m] = T m]F g x [n, m] -(T s F Dg x [n, m]) 2 F T g x [n, m]F Dg x [n, m]frequency estimator is given by mq [n, m] = m[n, m] + M 2π T 2 s qx [n, m](n -n[n, m]).(190)So finally, the vertical synchrosqueezed STFT is obtained by replacing m[n, m] by mq[n, m] in Eq. (177).

  + τ )g(-τ, σ t ) e -jωτ dτ as the expression of the S-transform of a signal x, we + τ )g(-τ, σ t ) e -jωτ dτ + e -jωt + τ )(t + τ )g(-τ, σ t ) e -jωτ dτ + βST x (t, ω)

	Thus, there exists complex (155) (t + τ )g(-τ, σ t ) e -jωτ dτ (156) l(t + τ )x(t + τ )g(-τ, σ t ) e -jωτ dτ numbers α and β such that l(t) = αt + β with α = dl dt (t) = d 2 dt (log(a(t))) + j d 2 φ dt 2 (t). Using ST x (t, ω) = e -jωt ∂ST x ∂t (t, ω) = -jω e -jωt R x(t R dx dt = -jωST x (t, ω) + e -jωt R (157) x(t obtain = -jωST x (t, ω) + e -jωt α
	R

R

x(t

  179)11.3 Computation of the vertical synchrosqueezed STFTLet be a signal x(t) = A(t) e jφ(t) with φ(t) = φ 0 + ωt + qt 2 2 . Thus we have , asF g x (t, ω) = e -jωt R x(t + τ )g(-τ, T ) e -jωτ we have ∂ ∂t (F g x (t, ω)) = -jωF g x (t, ω) + e -jωt R dx dt (t + τ )g(-τ, T ) e -jωτ dτ(181)= -jωF g x (t, ω) + e -jωt R (α(t + τ ) + β)x(t + τ )g(-τ, T ) e -jωτ dτ

	Thus(182)
			= (β -jω + αt) F g x (t, ω) -α e -jωt	x(t + τ )(-τ )g(-τ, T ) e -jωτ dτ	(183)
									R
			= (β -jω + αt) F g x (t, ω) -αF T g x (t, ω)	(184)
	then,							
			∂ ∂t (F g x (t, ω)) F g x (t, ω)	= (β -jω + αt) -α	F T g x (t, ω) F g x (t, ω)	(185)
	then,							
		∂ ∂t	∂ ∂t (F g x (t, ω)) F g x (t, ω)	= α 1 -	∂ ∂t	F T g x (t, ω) F g x (t, ω)	(186)
	F D 2 g x	(t, ω)F g x (t, ω) -F Dg x (t, ω) F g x (t, ω) 2	= α 1 -	(F g x (t, ω) + F T Dg x	(t, ω))F g x (t, ω) -F T g x (t, ω)F Dg x (t, ω) F g x (t, ω) 2	.	(187)
	Hence we have	α =	F D 2 g	
					dx dt	(t) =	dA dt (t) A(t)	+ j	dφ dt	(t)	x(t)	(180)
									l(t)

thus, there exists (α, β) ∈ C 2 thus we have

l(t) = αt + β , dl dt (t) = d 2 dt 2 (log (A(t))) + j d 2 φ dt 2 (t), hence q = Im(α). x (t, ω)F g x (t, ω) -F Dg x (t, ω) 2