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Paulino Martínez3 and Jesús Fernández5*

Abstract

Background: Interactions between fish and pathogens, that may be harmless under natural conditions, often
result in serious diseases in aquaculture systems. This is especially important due to the fact that the strains used in
aquaculture are derived from wild strains that may not have had enough time to adapt to new disease pressures.
The turbot is one of the most promising European aquaculture species. Furunculosis, caused by the bacterium
Aeromonas salmonicida, produces important losses to turbot industry. An appealing solution is to achieve more
robust broodstock, which can prevent or diminish the devastating effects of epizooties. Genomics strategies have
been developed in turbot to look for candidate genes for resistance to furunculosis and a genetic map with
appropriate density to screen for genomic associations has been also constructed. In the present study, a genome
scan for QTL affecting resistance and survival to A. salmonicida in four turbot families was carried out. The
objectives were to identify consistent QTL using different statistical approaches (linear regression and maximum
likelihood) and to locate the tightest associated markers for their application in genetic breeding strategies.

Results: Significant QTL for resistance were identified by the linear regression method in three linkage groups (LGs
4, 6 and 9) and for survival in two LGs (6 and 9). The maximum likelihood methodology identified QTL in three
LGs (5, 6 and 9) for both traits. Significant association between disease traits and genotypes was detected for
several markers, some of them explaining up to 17% of the phenotypic variance. We also identified candidate
genes located in the detected QTL using data from previously mapped markers.

Conclusions: Several regions controlling resistance to A. salmonicida in turbot have been detected. The observed
concordance between different statistical methods at particular linkage groups gives consistency to our results. The
detected associated markers could be useful for genetic breeding strategies. A finer mapping will be necessary at the
detected QTL intervals to narrow associations and around the closely associated markers to look for candidate genes
through comparative genomics or positional cloning strategies. The identification of associated variants at specific genes
will be essential, together with the QTL associations detected in this study, for future marker assisted selection programs.

Background
In aquaculture, disease resistance related traits are of par-
ticular importance. The reason is that interactions
between fish and pathogens, that may be harmless under
natural conditions, often result in disease problems in
aquaculture systems because of the added stress from

biological, physical and chemical factors [1]. This is espe-
cially important due to the fact that, in contrast to farm
animals, the strains used in aquaculture usually have
been very recently derived from wild strains [2] and,
therefore, have had little time to adapt to the new disease
pressures within the aquaculture environment.
Improvements in the performance of any productive or

physiological characteristic of the cultured species can be
achieved (if the trait is genetically determined) through
artificial selection. Several breeding programmes have
been developed for different traits in aquaculture species
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usually involving growth rate, cold tolerance and disease
resistance. However, implementing classical breeding
programs focused on disease resistance traits could be
highly problematic, since the phenotypic measurement of
these traits is often complex and expensive. It is not
possible to evaluate specimens to be selected and thus,
evaluation has to be performed on relatives. Moreover,
the required challenges may cause animal suffering and
increase risks of infection at farm facilities [3]. Despite
those disadvantages, some populations of Atlantic salmon
have been already selected for resistance to bacterial and
viral diseases. Selection for resistance to Infectious
Pancreatic Necrosis (IPN) virus, based on bath challenge
tests of several hundred families of first feeding fry,
showed 66.6% and 29.3% mortality for low and high resis-
tant strains, respectively [4]. Also, high resistance to IPN
in rainbow trout was achieved by selective breeding [5].
In that study, the commercial strain RT-201 artificially
challenged with IPN virus showed a mortality of 4.3%,
whereas the highly sensitive controls reached 96.1%. In
carps, Schäperclaus [6] found resistance to the dropsy
disease, selected lines suffering low mortality (11.5%) well
below the unselected ones (57%).
Positive response to selection pressures is possible

because resistance against particular diseases affecting
aquaculture species often shows moderate to high herit-
abilities and, thus, there is a large potential for genetic
improvement. For example recent heritability estimates for
resistance to Aeromonas salmonicida ranged from 0.43
to 0.62 in Atlantic salmon [reviewed by [7]], and it was
0.51 ± 0.03 in Salvelinus fontinalis [8].
Turbot (Scophthalmus maximus) is a flatfish that has

been intensively cultured during the last decade due to
its great commercial value. Its production in Europe has
increased from 3000 Tm in 1996 to 9246 Tm in 2009 [9].
Increasing growth rate, controlling sex ratio (females lar-
gely outgrow males) and enhancing disease resistance
currently constitute the main goals of genetic breeding
programmes in this species. Pathologies constitute one of
the main problems of turbot culture. Among these,
furunculosis, caused by Aeromonas salmonicida, has
produced important losses to turbot industry [10,11].
Genomic resources of turbot have increased in the last
years [12,13] and an immune-enriched oligo-microarray
was designed and applied to identify candidate genes of
resistance to A. salmonicida [14]. Also, a microsatellite
consensus genetic map including centromere positions
was reported in this species [15,16], and recently, 31
EST-linked microsatellites, particularly useful for com-
parative genomics, were added to the consensus map
[17]. Combining functional genomics strategies with the
detection of genomic regions associated to productive
characters (using genetic maps) increases the power to

identify genes involved in the phenotypic differences
occurring within and between families.
Besides an infinitesimal component (due to small effects

of a huge number of loci) the variation in quantitative
traits may be also controlled by a few genes with larger
effects. Genomic regions closely linked to those genes
show association with the trait phenotype and are known
as quantitative trait loci (QTL) [18]. The effects of allele
segregation at molecular markers throughout the genome
can be used to determine the number and position of
trait-related QTL, as well as the magnitude of their effects
[19]. If, eventually, the responsible gene of a large effect on
a trait is detected and the causal mutation determined,
selection could be exerted directly on the genotype for
that locus (Gene Assisted Selection, GAS). Alternatively,
genetic maps provide DNA markers tightly linked to
genes affecting different traits. Such markers can be used
in Marker-Assisted Selection (MAS), selection based partly
or fully on DNA marker genotypes. Consequently, disease
resistance traits are candidates for the implementation of
MAS and, especially, GAS programs, which would allow
the evaluation of individuals without exposing them to the
pathogen or relying on relatives’ information alone.
There have been a certain number of studies on disease

resistance QTL in the main aquaculture species, especially
focused in rainbow trout and Atlantic salmon within fish.
In rainbow trout, several QTL were detected for resistance
to IPN and IHN (Infectious Hematopoietic Necrosis)
viruses [20-23] and to different parasites, including Cerato-
myxa shasta and Myxobolus cerebralis [24,25]. The identi-
fied QTL in response to IHN virus were detected in more
than one family supporting their consistency [22], and in
the case of resistance to Myxobolus cerebralis, a very
strong association was detected which explained between
50 and 86% of the phenotypic variance across families
[25]. In Atlantic salmon, QTL for disease resistance have
been reported for the ISA (Infectious Salmon Anaemia)
virus [26], for the bacterium Aeromonas salmonicida
responsible of furunculosis [27] and for the ectoparasite
Gyrodactylus salaries [28]. Of particular relevance in
this species was a recent study on ten full-sib families for
mapping QTL for resistance against the IPN virus in post-
smolts of Scottish origin, based on data from a field trial
[29]. In this study, a major QTL explained up to 21% of
the phenotypic variation in the data set and was found to
segregate in 7 out of 20 parents investigated. Additionally,
this QTL mapped to the same location of a recently
detected QTL for IPN-resistance that explained 29% of
the phenotypic variance using ten large full-sib families of
challenge-tested Norwegian Atlantic salmon. This particu-
lar QTL was found to be segregating in 10 out of 20
parents, and a subsequent fine-mapping with additional
markers narrowed the QTL peak to a 4 cM region on
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linkage group 21 [3]. This QTL, detected in two different
populations, is now being implemented in within-family
selection in both Scotland [30] and Norway [3]. QTL for
disease resistance have also been reported in a few cases in
non-salmonid teleosts, including those for stress/immune
response in tilapia [31], for resistance to pasteurellosis in
gilthead sea bream [32] and for resistance to lymphocystis
viral disease in Japanese flounder [33]. Other QTL for dis-
ease resistance traits in aquaculture species were identified
in Crassostrea virginica, Ostrea edulis and Paralichthys
olivaceus [see 7 for a review].
To date, only two studies identified QTL in turbot. One

detected a QTL for body length highly associated with the
marker YSKr51, explaining 12.4% of the phenotypic
variance [34], and the other one identified a significant
sex-determining QTL highly associated with the SmaUSC-
E30 marker, which allowed for correct sex determination
in up to 98.4% of the studied individuals [35]. The con-
struction of a genetic map with appropriate marker den-
sity is necessary to detect QTL controlling quantitative
traits of economic interest in aquaculture [20]. However,
genetic linkage maps of most aquaculture species have
only recently been available. Bouza et al. [17] reported an
updated consensus including a total of 273 microsatellites
clustered in 26 linkage groups, comprising 1343.2 cM
length, with an average distance between markers of 6.5 ±
0.5 cM.
In the present work, a genome scan for QTL affecting

resistance and survival to A. salmonicida in four turbot
families was carried out using the reported microsatellite
panel. The objectives were: (1) to locate QTL on the
available linkage map, (2) to compare QTL obtained
through the use of two different methodologies: linear
regression and maximum likelihood, and (3) to determine
the association between markers and traits.

Methods
Families
Four full-sib turbot families were used to identify QTL for
resistance and survival to A. salmonicida and to evaluate
the association of those traits with the genotyped markers.
Three of these families were obtained from the Stolt Sea
Farm S.A. breeding program (FamAS-1, FamAS-2 and
FamAS-3) and one family was obtained from Insuiña S.A.
(FamAP). Both companies have their facilities located in
NW Spain.
Since no selected strains for high and low disease resis-

tance exist in turbot, families were selected trying to
emphasize genetic divergence between parents to detect
as much as possible allelic variants associated with resis-
tance. Thus, families founded with unrelated grandpar-
ents and, when possible, from different Atlantic origins,
were chosen. Also, we selected families where a three-
generation pedigree was available. This enabled us to

know the linkage-phase between markers for a more con-
sistent statistical analysis. This process finally led to four
independent full-sib pair analyses.

Trait measurement
All offspring of each family (approximately 150 indivi-
duals per family) were intracelomically injected at the age
of four months (mean weight around 20 g) with a highly
virulent A. salmonicida strain. Although A. salmonicida
infection was previously reported to last around 21 days
[11], the experiment was prolonged to 39 days to increase
phenotypic variance for survival. After injection, two dis-
ease resistance related traits were evaluated: resistance
(Re) and survival (Su). Around one hundred individuals
for each family were selected to evaluate both traits (the
50 most resistant and the 50 most sensitive individuals).
The dichotomous trait Re was defined as the survival vs
non survival status of individuals at the end of the experi-
ment (i. e. day 39 after the injection). The trait Su was
defined as the number of days one individual survived
(i.e. elapsed days until the individual died or the experi-
ment finished). Consequently, this is a censored trait
since all individuals still alive at the end of the study were
scored with the same value for survival.

Genetic map
The panel of markers used for QTL identification was
reported by Martínez et al. [35] and it is based on the
consensus map by Bouza et al. [15], the new EST-linked
microsatellites by Bouza et al. [17] and the centromere
mapping [16].
Table 1 shows the number of analyzed microsatellites,

the number of linkage groups, the map length, the aver-
age distance between microsatellites and the average
number of microsatellites per linkage group. The aver-
age distance between markers in the map ranged
between 15.53 and 16.06 cM, being below the minimum
distance proposed for QTL detection (< 20 cM) [36].

QTL analyses
Two programs were used to detect QTLs: GridQTL [37]
and QTLMap [38]. Within both methodologies, two
approaches were followed. First, a single QTL was

Table 1 Screening figures in the four families analyzed
for QTL identification

Family NM LG MLe D NMG

FamAS-1 104 22 1147.80 15.62 4.73

FamAS-2 98 22 1105.10 15.53 4.46

FamAS-3 99 22 1132.30 15.90 4.50

FamAP 101 23 1149.40 16.06 4.39

NM: Number of markers; LG: linkage groups; MLe: map length in cM;
D: average distance between markers in cM; NMG: mean number of
microsatellites per linkage group.
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assumed at each LG. Afterwards, a two-QTL model was
also tested within each LG.
GridQTL
This software http://www.gridqtl.org.uk/ implements a lin-
ear regression (LR) methodology, considering the linkage
phase between markers according to pedigree information.
The default regression method [39] was applied, and the
genome and chromosome-wide significance thresholds
were estimated by implementing bootstrapping at p = 0.05
and 0.01 [40], with a permutation test of 10, 000 iterations
[41].
QTLmap
This software https://qgp.jouy.inra.fr/index.php?option=-
com_content&task=view&id=17&Itemid=28 detects QTL
through interval mapping using a maximum likelihood
(ML) test. To determine the significance level 10, 000
simulations were performed for each trait and LG, with a
heritability set to 0.10 [42].
For both methodologies, an outbred full-sib model was

used and a QTL was considered suggestive when signifi-
cance was between 5% and 1% at chromosome-wide
level, and significant when significance was below 1% at
chromosome-wide level or when significance was below
5% at genome-wide level [43]. These thresholds also
allow establishing a confidence interval to allocate the
detected QTL.
Sex was not included into the model because it was not

available. Although there is some debate about the influ-
ence of growth-related traits on the resistance to diseases
(see for example [44] for positive results, and [45] and
[46] for absence of correlations between both types of
traits), weight and length were included as covariates
within the model to reduce the stochasticity.

Association analyses
A one way analysis of variance (ANOVA) was performed
on the phenotypic values (resistance and survival) of the
progeny for each family using individual genotypes from
markers within the LGs where a significant or suggestive
QTL was found. The objective was to detect associations
between markers and traits by estimating the between-
genotype component of the observed phenotypic variance

(i.e. differences attributable to the different marker geno-
types). To avoid false positives due to multiple testing, a
simple Bonferroni correction was performed for all tests
involving those markers within the same LG. Each
ANOVA also provided a corrected R2 value useful to esti-
mate the reduction of the overall phenotypic variance of
the trait due to the model fitting, thus providing the pro-
portion of the trait variance predictable from the given
marker genotypes.

Results and Discussion
Trait values
Table 2 shows the number of observations and the
mean for the traits recorded (resistance and survival) in
the four families of the experiment. The standard devia-
tion ranged between 13.12 - 15.31 days for survival and
0.44 - 0.50 for resistance. Notice that a greater power
for detection is expected in challenges where there is
approximately a 50% of survival (LD50), as it occurred in
AS families. Although a lower survival (26%) was
observed for family AP, this did not preclude the detec-
tion of QTL in that family (see Table 3). Mean weight
and length ranged between 31.62 - 46.45 g and 10.70 -
12.83 cm, respectively.

QTL analyses
Table 3 shows the location of the detected QTL (LG,
estimated position and interval) with both methodolo-
gies (LR and ML). There were no QTL at genome-wide
level with the LR approach, but two suggestive (LG12
and LG13) and three significant (LG4, LG6 and LG9)
QTL were detected for resistance, and four suggestive
(LG4, LG11, LG12 and LG13) and two significant (LG6
and LG9) QTL were detected for survival at chromo-
some-wide level. Using the ML methodology, one QTL
for resistance (LG6) and three for survival (LG5, LG6
and LG9) were identified at genome-wide level with sig-
nificance below 1%. Additionally, three suggestive (LG4,
LG12 and LG16) and two significant (LG5 and LG9)
QTL for resistance, and five suggestive (LG1, LG4,
LG12, LG16 and LG18) QTL for survival were detected
at chromosome level.

Table 2 Statistics of the measured traits in the four families analyzed (± standard deviation)

Family Weight (g) Length (cm) Trait N Mean

FamAS-1 46.45 ± 8.49 12.83 ± 0.78 Re
Su

100
100

0.5
24.44

FamAS-2 26.69 ± 6.00 10.70 ± 0.77 Re
Su

100
100

0.5
24.17

FamAS-3 31.62 ± 7.18 11.33 ± 0.86 Re
Su

100
100

0.5
23.58

FamAP 32.13 ± 5.20 11.43 ± 0.59 Re
Su

113
113

0.26
17.04

Re = resistance; Su = survival; N = number of individuals.

Rodríguez-Ramilo et al. BMC Genomics 2011, 12:541
http://www.biomedcentral.com/1471-2164/12/541

Page 4 of 10

http://www.gridqtl.org.uk/
https://qgp.jouy.inra.fr/index.php?option=com_content&task=view&id=17&Itemid=28
https://qgp.jouy.inra.fr/index.php?option=com_content&task=view&id=17&Itemid=28


In our study, four full-sib families from segregating
populations were evaluated separately using two different
methodologies. Kao [47] investigated the performances of
LR and ML methods for QTL detection, suggesting the
application of LR as an initial procedure to obtain preli-
minary results and then use the ML method as a final
procedure in order to obtain the most conclusive results.
Our data support in part Kao’s suggestion, since the
highest significance levels were yielded by ML for the
same QTL detected with both methodologies. The con-
cordance in QTL location between both methods or
between different families (LG16 in FamAS-2 and
FamAP; see Table 3) increases the confidence of the
results obtained.
QTL were less significant when length and weight were

excluded from the model (data not shown) indicating
that body size may contribute to or may be correlated
with another trait affecting disease resistance. The regres-
sion coefficients for the covariates themselves were not
significant except for body weight in one of the families
(FamAP). Overturf et al. [44] indicated a positive correla-
tion between body size and disease resistance related
traits, but other authors detected no significant correla-
tion between both types of traits [45,46]. Although the
inclusion of body size improved QTL detection in our
study, the exact relationship with resistance to A. salmo-
nicida is not known.
Classical QTL mapping methods assume that traits fol-

low a normal distribution [48]. However, the categorical
(dead or alive) and survival (length of life) data used in
this study are not-normally distributed. For such traits,

classical QTL detection methods could have a lower
power and a bias when estimating the effects and posi-
tion of QTL. Nevertheless, it has been proposed that clas-
sical interval mapping methods using a Gaussian model
on censored data, analyzed as if they were uncensored,
have not a reduced accuracy on QTL location and esti-
mation of QTL effects [49].
As can be seen in Table 3, several QTL were detected

for resistance and survival at close positions within the
same LG. One reason for this agreement could be the
high relationship expected between both traits, since the
resistance concept also includes survival (resistant indivi-
duals survive for a long period, in fact the whole experi-
ment). Other reason could be that the same genes were
involved in the mechanisms underlying both disease
resistance traits.
The power to detect QTL depends on the heritability

of the trait, the recombination distance between QTL
and markers, the proportion of phenotypic variance
explained by the QTL, the QTL allele frequency and the
sample size [50]. In addition, the power of QTL analysis
is limited, since only QTL segregating in one or both
parents can be detected. In fact, there were no QTL
detected within FamAS-1. Considering that families
come from unrelated and genetically divergent grand-
parents from natural populations of the Atlantic area,
identified QTL in our study could be representative of
the genetic architecture of disease resistance related
traits in turbot. Anyway, the detected QTL should be
verified in other turbot families before their use in
breeding programs.

Table 3 Location of the QTL detected for resistance and survival to A. salmonicida with two different statistical
methodologies

Resistance Survival

LR ML LR ML

Family LG EP Interval Sig. EP Interval Sig. EP Interval Sig. EP Interval Sig.

FamAS-2 4 0 0 - 11 * 10 0 - 18 s 0 0 - 15 s 10 0 - 19 s

11 43 37 - 44 s

16 49 46 - 49 s 49 41 - 49 s

FamAS-3 1 1 0 - 8 s

6 0 0 - 42 * 26 0 - 66 ** 0 0 - 43 * 26 0 - 66 **

9 66 64 - 66 s

12 52 49 - 52 s 52 50 - 53 s 52 51 - 52 s 52 50 - 53 s

FamAP 5 21 5 - 36 * 19 10 - 29 **

9 31 27 - 35 * 38 29 - 45 * 31 24 - 37 * 36 31 - 40 **

13 0 0 - 4 s 0 0 - 4 s

16 35 21 - 49 s 36 23 - 55 s

18 16 12 - 26 s

LR: linear regression; ML: maximum likelihood; LG: linkage group; EP: estimated position (in cM); Interval: confidence range of the detected QTL (in cM); Sig.:
significance level; QTL was considered suggestive (s) when significance was between 5% and 1% at chromosome-wide level, and significant when significance
was below 1% at chromosome-wide level (*) or when significance was below 5% at genome-wide level (**).
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The probability of success and the accuracy of results of
QTL studies depend on the precision and density of the
available genetic map. Following this idea, the map used in
this study is being further refined and, thus, the QTL
detection could also be improved. Currently, Martínez
et al. (unpublished data) are developing a consensus map
comprising 463 markers (microsatellites and EST) with a
moderately dense coverage.

Association analyses
All markers within the same linkage group where a sug-
gestive or significant QTL was detected were analyzed.
Table 4 shows the results only for markers significantly
associated with any of the traits. At least one significantly
associated marker was found in all linkage groups where
a QTL was detected, except for LGs 1, 12, 13 and 18.
However, within these LGs only suggestive QTL were
detected (see Table 3). Remarkably, not always the most
significantly associated markers were the closest to the
estimated position of the QTL (data not shown). The rea-
sons could be: (1) low information content of the closest
marker due to the parents genotype; (2) a large extension
of the area in linkage disequilibrium with the detected

QTL, which could result in positive associations between
the trait and the genotypes at several markers; (3) the
existence of a secondary segregating QTL, although this
situation was not detected when LGs were analyzed for
the possibility of carrying two QTL; and finally (4) mar-
ker positions in the map are not definitive, which could
modify the order and the distance between markers.
For example, it should be noticed that the present genetic
map of turbot has more linkage groups (26) than chro-
mosomes observed in this species (2n = 44 chromo-
somes) [51].
Markers showing significant association with studied

traits explained from 7 to 17% of the phenotypic var-
iance. The marker SmaUSC-E30, significantly associated
with resistance and survival traits at LG5, was previously
associated to the major QTL for sex determination in
turbot [35]. This may suggest an influence of sex in the
measured traits that could be related either to the
reported growth rate differences between sexes in turbot
[52] or to sex-susceptibility/immune differences [53]. A
relationship between growth and immune function was
previously reported in fish [54,55]. In the case of LG9, up
to three markers showed significant association with

Table 4 Proportion of the phenotypic variance explained by the markers significantly associated with the evaluated
traits

Trait1 Family LG Method2 and
QTL position (cM)

Marker3 Marker
position (cM)4

R2 (%)

Re FamAS-2 4 LR: 0/ML: 10 Sma-USC47 0.00 7.4

FamAS-3 6 LR: 0/ML: 26 Sma-USC147 4.52 16.2

FamAP 5 ML: 21 SmaUSC-E30 0.00 8.9

9 LR: 31/ML: 38 SmaUSC-E23 30.75 10.5

SmaUSC-E41 45.68 12.4

Sma-USC21 53.91 11.6

16 ML: 35 Sma-USC256 32.75 13.6

Su FamAS-2 4 LR: 0/ML: 10 Sma-USC47 0.00 8.1

11 LR: 43 Sma-USC158 23.39 10.1

FamAS-3 6 LR: 0/ML: 26 Sma-USC147 4.52 16.8

FamAP 5 ML: 19 SmaUSC-E30 0.00 8.9

9 LR: 31/ML: 36 SmaUSC-E23 30.75 12.3

SmaUSC-E41 45.68 12.8

Sma-USC21 53.91 12.0

16 ML: 36 Sma-USC256 32.75 12.4
1Re: resistance; Su: survival.

LG: linkage group.
2LR: linear regression method; ML: maximum likelihood method;
3BLAST annotation [17] was only recorded for Sma-USC23 (3-Hydroxibutirate dehydrogenase type 2) and Sma-USC41 (Helicase with zinc finger domain).
4Marker position in centimorgan (cM) within the genetic map by Bouza et al. [17].

R2 (%): proportion of the explained phenotypic variance.
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both traits (Table 4: SmaUSC-E23, SmaUSC-E41 and
Sma-USC21), the two first ones being functionally anno-
tated as immune-related genes [14].
A high explained phenotypic variance was also

observed for an IPN-resistance QTL in salmonids 21%
[29] and 29% [3]. A QTL for ISA-resistance, also in
Atlantic salmon, explained 6 - 9% of the phenotypic var-
iance [26]. In rainbow trout two QTL for IPN-resistance
were identified explaining 27 and 34% of the phenotypic
variance, respectively [20].
Several associations have been detected in teleosts

between disease resistance and candidate genes, mostly
involving polymorphism of the Major Histocompatibility
Complex (MHC), an essential gene family for adaptive
immunity [7]. In rainbow and cutthroat trout, an associa-
tion was detected with the resistance to IHN virus [56];
in rainbow trout, a suggestive association with the resis-
tance to Bacterial Cold Water Disease (BCWD) [57]; and
in Atlantic salmon, associations were detected for resis-
tance to A. salmonicida [27,58,59], IHN [60], and ISA
[27]. Beyond salmonids, associations between MHC mar-
kers and disease resistance have also been reported in
other important farmed teleosts like Japanese flounder
(resistance to Vibrio anguillarum) [61]; common carp
(resistance to Cyprinid Herpesvirus-3) [62], and in the
turbot (resistance to Edwardsiella tarda) [63]. Several of
these associations involved the MHC class IIB gene, an
observation which strongly recommends the mapping of
this gene in turbot to cross this information against the
QTL locations from this study and to evaluate its possible
role in general resistance to bacterial pathogens. Never-
theless, direct selection on MHC variants could be not
advisable since balancing selection [57] or overdomi-
nance [64] have been suggested to be acting on this poly-
morphism. The risk of pathogen-specific allelic selection
could determine undesired loss of MHC variation, which
may increase susceptibility to other pathogens. Further-
more, it has been highlighted that other genes may also
play an important role to explain genetic variance for dis-
ease resistance [7]. Recently, significant associations with
other relevant immune-genes have been reported in com-
mon carp (Interleukin 10 (IL-10) with resistance to cypri-
nid herpesvirus-3 [65]) and in grass carp (Toll-like
Receptor-3 (TLR3) with resistance to reovirus [66]).
A revision and a refinement of the mapping regions

where QTL were located should be performed to further
narrow the intervals and facilitate the advance on candi-
date gene strategies. Also, mapping of differentially
expressed (DE) genes identified in response to A. salmoni-
cida infections [14] should be evaluated or acquired to
cross this information with QTL position. None of the
immune-related genes significantly associated with resis-
tance and survival traits in this study (SmaUSC-E23,
SmaUSC-E41) were found to be regulated in response to

A. salmonicida infection [14]. Nevertheless, two DE genes
detected in response to this pathogen [14] were located in
the vicinity of two QTL at LG9 and LG11, respectively.
SmaUSC-E41, linked to the immune-related DE ecdysone
receptor A (BLAST annotation; E-value: 3E-8), was located
at LG9 close to the marker SmaUSC-E5 [4 cM; see [17]].
This gene pertains to a nuclear receptor superfamily
present in all Metazoa, containing ligand dependent tran-
scription factors related to immune system and regulation
of inflammatory processes [67]. On the other hand, Sma-
USC147 was 7 cM apart from the significantly associated
SmaUSC-E24 marker at LG11. This marker is linked to a
DE gene (annotated as PRA1 family protein 3 using
BLAST; E-value: 3E-9), which modulates antiapoptotic
activity and immune response [68]. Since these DE mar-
kers were not included in the panel of markers for QTL
screening in this work, further association analysis across
the same QTL families should be carried out. Finally, mar-
kers linked to relevant DE genes in the turbot and pre-
viously associated with disease resistance in other fish
(e.g., TLR3, MHC class IA and MHC IIA) [14,66,7],
should be mapped. This would enable to test their associa-
tion within families to provide new candidates for a func-
tional explanation of resistance to A. salmonicida in the
turbot.
If the responsible gene and the causal mutation were

detected, then, GAS could be performed. Increasing map
density should facilitate the detection of more closely
linked markers useful to implement MAS. For both stra-
tegies, another promising approach is the use of com-
parative genomics [69]. A study of comparative mapping
by Bouza et al. [15] identified syntenic relationships
between sequences of turbot and the model fish Tetrao-
don nigroviridis (Tni): between turbot LG16 and Tni
chromosome 19; between turbot LG5 and Tni1; and
between turbot LG6 and Tni13. Since in the present
study QTL at LG5, LG6 and LG16 were detected, the
analysis of genes located at these syntenic blocks in
T. nigroviridis through comparative genomics tools with
the turbot DE genes in response to A. salmonicida [14]
could provide relevant information about candidates
underlying the detected QTL.
Finfish aquaculture is still relatively in its first stages in

the large-scale animal production sector. However, it can
take advantage on the vast amounts of genomic data cur-
rently being generated for livestock, as well as for model
fish organisms. Many livestock genomics programs have
focused on identifying genes influencing similar eco-
nomic traits as those important in aquaculture, such as
growth rate, disease resistance and meat quality traits.
Through comparative genomic approaches, sequence
information from other vertebrates can be used to
quickly isolate homologous genes in finfish. It could be
also interesting to extend this study to other pathogens
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for detection of disease resistance related QTL affecting
turbot aquaculture systems in order to investigate more
general disease resistance related traits.

Conclusions
Regions controlling resistance-related traits to Aeromonas
salmonicida in turbot were detected. Concordance on the
detection of QTL between statistical methods gives more
consistency to our results. A finer mapping will be neces-
sary on those linkage groups with effect on disease resis-
tance by increasing the density of markers on the position
where the QTL were detected. In addition, functional and
comparative genomics strategies could be used to confirm
the detected QTL and to look for candidate genes. Alter-
natively, the associated markers could be useful in pro-
grams for marker-assisted selection in turbot.
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