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Abstract—The Internet of Things (IoT) introduces a new vision
in which objects are connected to the network. This paradigm
is receiving much attention of the scientific community and
it is applied in many fields. In some cases, it is useful to
prove that a number of objects are simultaneously present in
a group. For instance, a client might want to authorize NFC
payment with his mobile only if k of his devices are present
to ensure that he is the right person. This principle is known
as yoking/grouping Proofs. However, existing grouping schemes
are mostly designed for RFID systems and don’t fulfill the IoT
characteristics. In this paper, we tackle this issue and propose
a threshold yoking/grouping proof for IoT applications. Our
scheme uses the Ciphertext-Policy Attribut-Based Encryption
(CP-ABE) protocol to encrypt a message so that it can be
decrypted only if at least k nodes are simultaneously present.
A security analysis and performance evaluation is conducted to
show the effectivenesses of our proposal solution.

Index Terms—IoT; Grouping proofs; CP-ABE; Pairing Cryp-
tography;

I. INTRODUCTION

The Internet of Things (IoT) emerges as a new paradigm

in which physical objects (such as sensors, actuators, RFID

Tags) are able to communicate with each other and interact

over the network to reach common goals. This concept will

allow the development of a smart world where every-day

objects are interconnected. As the IoT creates unprecedented

opportunities, it also raises new types of risks. Security issues

are considered as one of the most aspects that attract attention

of the IoT research community. Since objects can be limited

in terms of energy, storage and computation, security solutions

have to be adapted to cope with these challenging factors [1].

Yoking-proof is a security concept which was introduced

by Juels in 2004 [2]. It aims to provide a proof that a pair

of RFID tags has been scanned simultaneously. Although

it originally addresses RFID systems, yoking-proof can be

considered for IoT applications. For example, the manager of

an emergency center might want to ensure that the ambulance

doesn’t leave the garage without a mobile scanner. In its basic

description, yoking-proof addresses only a pair of devices.

Given the necessity of considering this concept for a group

of more than two nodes, the notion of grouping-proof was

proposed as a generalization of the yoking-proof concept

[3][4]. However, existing yoking/grouping schemes are mostly

designed for FRID systems. Characteristics of IoT applications

introduce other requirements that have to be considered by

yoking/grouping schemes.

Ciphertext-Policy Attribute-Based Encryption (CP-ABE)

[5] is a well-known security protocol which has been widely

used to develop secure systems. It provides a public key en-

cryption scheme which enables a fine-grained access control,

a scalability management, and a flexible data distribution.

However, CP-ABE is commonly employed in cryptographic

access control solutions and not to check the presence of a

group of devices. In this paper, we propose a threshold yok-

ing/grouping system based on CP-ABE for IoT applications.

Main contributions of our work are the following:

• We propose a new yoking/grouping scheme for IoT

applications, based on a powerful security protocol (CP-

ABE).

• We propose the notion of threshold in grouping schemes

that consists in proving the simultaneous presence of at

least k entities.

• We also introduce the concept of entity importance to give

to the presence of a particular object more importance in

the grouping proof.

The rest of this paper is organized as follows. Section II

gives a review on related works about yoking/grouping proofs.

A background of the CP-ABE protocol is presented in section

III. Our solution to develop a threshold yoking/grouping proof

scheme for the IoT using CP-ABE is explained is section IV.

An analysis of the proposed approach is conducted in section

V. Section VI presents applications that illustrate use case

scenarios. Section VII concludes this paper and draws future

work.

II. RELATED WORKS

The concept of yoking-proofs was proposed by Juels as

means to prove that a pair of RFID tags has been present

simultaneously [2]. The proposed technique uses the reading

device to generate a proof that can be off-line verifiable by a

third-party (verifier).



Several proposals and critics have been made on the yoking-

proof protocol. Bolotnyy and Robine raised a security con-

cern in [4]. Indeed, Jules’s protocol reveals tags identifier

which creates a privacy problem when the reader is untrusted.

The authors introduced a new problem formulation called

anonymous-yoking which requires preserving privacy in the

yoking-proof protocol.

In [3] authors pointed out that Jules’s protocol is vulnerable

to replay attack and a yoking-proof can be obtained with one

RFID tag. The authors proposed a version that introduces a

timestamp generated by a database to prevent from replay

attack. The authors proposed also a generalization of the

yoking-proof protocol to a group of tags. In their scheme,

the reader sends the timestamp to all tags participating to the

protocol, which is used to parameterize the proof. However,

because timestamp increases sequentially, an untrusted reader

can take a future timestamp value, use it on one tag and wait

that the database sends this value to exploit the old result

generated by the tag with the current results of the rest of the

group, which breaks the simultaneity character of the yoking

proof. Although Piramuthu proposed a solution based on the

use of a random number instead of a timestamp [6], an attacker

can attempt a brute force attack method, especially if the

range of the random number is not large (i.e. the attacker

uses all possible numbers and stores results). This issue was

addressed by Cho et al. in [7], where the authors proposed

a solution based on dividing the random number into two

numbers to raise complexity of the brute force attack in terms

of storage space. But this will work well as long as attackers

have limited resources. Another technique can be found in [8],

where authors use so random number as RFID tags. However,

the proposed solution reveals tags identifiers and creates a

privacy problem.

In the same context, Bolotnyy and Robine proposed in [4]

a solution based on the construction of a circular chain while

polling tags. The purpose behind the use of a chain is to ensure

that an untrusted reader will not be able to mount a replay

attack or generate a proof if it breaks the chain. However,

when dealing with a large set of tags, the completion of the

proof would take a time and an adversary can take a tag once

it is interrogated, breaking therefore the simultaneity character.

This issue was tackled by Fuentes et al. in [9]. The authors

proposed an approach based on dividing the set of devices

(the authors consider IoT devices) into several subsets with

low cardinality and poll each subset in unpredictable manner.

The scheme operates in a number of rounds in such a way

that different subsets are rebuilt in each round, which reduces

the chance that an adversary takes a device without corrupting

the proof. However, this kind of solution would increase the

execution time of the proof.

Furthermore, in all the aforementioned propositions, the size

of the generated proof increases proportionally with the size

of entities. This could create a storage problem for the verifier

as it receives the proof. The same can be said about the stored

keys (each entity shares its secret key with the verifier so the

latter can verify the proof). In this paper, we propose a new

yoking/grouping proof system based on a powerful security

protocol, the Ciphertext Policy Attribute-Based Encryption

(CP-ABE). In fact, CP-ABE has been proved secure in [5].

Especially, data encrypted by CP-ABE can’t be accessed by an

unauthorized user. We use this protocol to encrypt a message

in such a way that it can be decrypted only if at least k nodes

are simultaneously present. For the best of our knowledge,

this is the first work that tackle the grouping proof from this

perspective.

III. BACKGROUND

In this section we recall some preliminaries and notions used

in the paper. Section III-A gives the definition of bilinear maps.

Section III-B presents CP-ABE scheme in highlights. Finally,

Section III-C introduces the concept of access structure used

in CP-ABE scheme.

A. Bilinear Maps

Let G0 and G1 be two multiplicative cyclic groups of prime

order p. Let g be a generator of G0 and e be a bilinear map, e ∶

G0×G0 → G1. the bilinear map e has the following properties:

1) Bilinearity: for all u, v ∈ G0 and a, b ∈ Zp, we have

e (ua, vb) = e (u, v)ab.

2) Non-degeneracy: e (g, g) ≠ 1.

We say that G0 is a bilinear group if the group operation in

G0 and the bilinear map e are both efficiently computable. No-

tice that the map e is symmetric since e (ga, gb) = e (g, g)ab =
e (gb, ga).
B. Ciphertext-Policy Attribute-Based Encryption

Ciphertext-policy Attribute-Based Encryption [5] is an en-

cryption mechanism that allows to implement a cryptographic

fine-grained access control. users’ private keys are associated

with a set of attributes, on the other side, data are encrypted

over an access tree defining the access policy to the ciphertext.

Only users’ whose attributes sets satisfy the access policy can

decrypt the ciphertext.

It consists mainly of four primitives:

● Setup. It takes no input other than the implicit security

parameter. It outputs the public parameters PK which is

shared with all the entities of the system, and a master

key MK which is kept secret.

● KeyGen(MK, S). It takes the master key MK and list

of attributes S. The primitive outputs a secret key SK

corresponding to the list of attribute S.

● Encrypt(PK, M, γ). The encryption algorithm takes as

input the public parameters PK, a message M , and an

access structure γ over the universe of attributes. The

primitive encrypts M and produces a cipher-text CT

which could be decrypted only by a user that possesses

a set of attribute satisfying the access structure γ.

● Decrypt(PK, CT, SK). It takes as parameters the public

parameters PK, a cipher-text CT and a secret key SK

which is a secret key for a set S of attributes. If the

list of attributes S verifies the access policy defined in



CT , the primitive decrypt the cipher-text and outputs the

recovered message M .

For more details about the primitives construction, we invite

the reader to see [5].

C. Access Trees

Access trees [10] [5] are used in CP-ABE scheme to

describe access policies for ciphertexts. Therefore, only users

with attributes sets satisfying the access tree of a ciphertext

are able to decrypt it. Figure 1 shows an example of access

trees.

Each interior node of the access tree is a threshold gate (k

out-of-N gate), and leaf nodes are associated with attributes.

Figure 1 is an example of an access tree.

2 of 3 

1 of 2 2 of 3 2 of 2 

Att1 Att2 Att3 Att4 Att5 Att6 Att7 

Figure 1: Example of Access Tree

The user’s attributes set must satisfy the access policy, so

as the user is allowed to decrypt the ciphertext. For example,

a user with an attribute set S1 = {att1, att5}, is not able to

decrypt a ciphertext with the access policy of the Figure 1.

However, a user with S2 = {att1, att2}, S3 = {att3}, or S4 ={att5, att7} has the ability to recover the original message

from the ciphertext.

We define some functions to facilitate working with access

trees:

● parent(x): denotes the parent of the node x in the tree.

● att(x): is defined only if x is a leaf node, and denotes the

attribute associated with the leaf node x in the tree.

● index(x): denotes the order of the node x between its

brothers. The nodes are numbered from 1 to num.

Satisfying an access tree.

Let T be an access tree with root r. Denote by Tx the sub-

tree of T rooted at the node x. Hence T is the same as Tr. If

a set of attributes γ satisfies the access tree Tx, we denote it

as Tx(γ) = 1.

We compute Tx(γ) recursively as follows:

● If x is a leaf node, return 1 if att(x) ∈ γ, 0 otherwise.

● If x is a non leaf node, we evaluate Tx′(γ) for each child

x′ of x and compute the sum cpt of all returned values.

Return 1 if cpt ≥ kx, 0 otherwise.

In this paper, we use only access trees of only two levels:

level zero containing the root node and level one composed by

the leaf nodes. The root node is a threshold gate with value k =

kr representing the threshold. The number of the leaf nodes

is the same as the number of entities in the group N = numr.

IV. OUR APPROACH

This section explains in detail the proposed threshold group-

ing proof protocol. First, Section IV-A describes the main

concept of the scheme. Afterwards, Section IV-B presents

the different entities involved in the system. Section IV-C

presents the security requirements that a threshold grouping

proof protocol must meet. Section IV-D describes in detail the

construction of our protocol. Section IV-F proposes a solution

for managing several groups of entities with our protocol. The

notation in use throughout this paper is shown in Table I.

A. Overview

The main idea of our solution is to use Ciphertext-Policy

Attribute-Based Encryption (CP-ABE) [5] mechanism to im-

plement our threshold grouping proof scheme in such a way

to encrypt a secret so the latter can be decrypted only if at

least k entities are simultaneously present. Fist, the Attribute

Authority generates a secret key SK associated with the list

of attributes S = {attribute_1, attribute_2,⋯, attribute_N},
where N is the number of entities in the group. The couple

of elements (Dj ,D
′

j) associated to the attribute j is sent to

the entity j, where 1 ≤ j ≤ N . The element D of the secret

key is sent to a proxy who is intended to recover the secret.

A Secret message is encrypted with the following policy:

k of N (attribute_1, attribute_2,⋯, attribute_N ). Where k

is the threshold (1 ≤ k ≤ N ). Our solution allows the use of

many secrets, each one of them with a different threshold. This

enables making different proofs with different thresholds.

Table I: Summary of notations.

Notation Description

PK Public Key generated by the Attribute Authority
SK Secret Key generated by the Attribute Authority for

each user from her/his attributes list
S List of attributes used to construct the secret key
Ng Number of groups
N Number of entities in the group
CT The secret intended to be recovered by the group of

entities, it is also the result of encryption
γ Access tree used to encrypt messages. γ = k − of −

N(Attribute_1,Attribute_2,⋯,Attribute_N)
M The message to encrypt
k The threshold of secret recovery

Ej The jth entity in the group of entities

B. Network Model

● Entities: we consider a group of N entities with a

predefined threshold k.

● Proxy: it is responsible of relating the group of entities

in order to recover a secret.

● Attributes Authority: it is a special entity in the system.

The Attribute Authority is responsible for configuring the

system by creating Public and Master keys which are

used after that for encrypting messages and creating secret

keys.

● Verifier: which is responsible for generating the secret

and verifying the proof.



C. Security requirements

● Collusion of any k or more entities of the group makes

the secret message M easily computable.

● Collusion of any k−1 or fewer entities of the group leaves

the secret message M completely undetermined.

● Group entities must disclose no information about their

secret elements during the secret recovery process.

● The presence of entities must be in the same time (within

a short interval).

● An adversary or an untrusted reader must be prevented

from knowing if an object with a given identity is present

during the proof.

D. Construction

For the sake of simplicity we will consider a single group

of entities. It is easy to generalize our scheme to many groups

(A simple way to do that is explained in Section IV-F).

Let suppose we want to construct the proof for a group

of N entities. We can split our protocol into three main

phases: System configuration phase, Sharing secret phase and

Recovering secret phase.

System configuration

The Attribute Authority starts by running the Setup primitive

of CP-ABE to generate a public key PK and a master key

MK. The Attribute Authority chooses a bilinear group G0

of prime order p with generator g. Next it will choose two

random exponents α,β ∈ Zp. The public key is published as:

PK = (G0, g, h = g
β , e(g, g)α) (1)

and the master key MK is (β, gα).
This operation is executed once at the beginning of the

system configuration.

Given a group of N entities GE = {E1,E2,⋯,EN},
the Attribute Authority executes the KeyGen primitive to

generate a secret key SK associated with the attribute set

S = {attribute_1, attribute_2,⋯, attribute_N}. We suppose

here that each attribute attribute_i ∈ S is hold by the entity

Ei.

It first chooses a random r ∈ Zp, and then random rj ∈ Zp

for each attribute j ∈ S. Then it computes the key as

SK = (D = g(α+r)/β ,∀j ∈ S ∶
Dj = g

r
⋅H (j)rj ,D′j = grj) (2)

The element D of the key SK is given to the proxy as

it is responsible for doing the secret recovery process. Each

couple (Dj ,D
′

j) is given to the corresponding entity Ej of the

group holding the attribute_j. Figure 2 illustrates the system

configuration phase.

Sharing secret

To generate the grouping proof for a group of N entities,

the group identifier has to be sent to the verifier. The latter

encrypts a secret M with a particular access policy γ (k of N

Entity_i 
Entity_i 

Entity j Proxy AA 

Run KeyGen primitive 

over S  and construct SK 

Run Setup primitive 

! 

!" , !"# 

Verifier 

List of attributes 

Figure 2: System configuration phase

(attribute_1, attribute_2,⋯, attribute_N )). The access tree

associated with γ has a node root with a threshold value kR =

k. The root node R has N children, all of them are leaves.

Each leaf node is associated with one attribute attribute_i. S

is the set of leaf nodes.

The Encryption process begins with choosing a polynomial

qx for each node x in the tree γ. These polynomials are chosen

in the following way in a top-down manner, starting from the

root node R.

The degree of the polynomial corresponding to the root node

is dR = kR − 1 = k − 1. All other polynomials associated to

leaf nodes are with a degree equal to dx = kx − 1 = 0.

Starting with the root node R the algorithm chooses a

random s ∈ Zp and sets qR(0) = s. Then, it chooses dR other

points of the polynomial qR randomly to define it completely.

For each leaf node x, the algorithm sets qx(0) =
qparent(x)(index(x)) = qR(index(x)).

The secret message is constructed as follows:

CT = (γ, C̃ =Me(g, g)αs, C = hs,∀y ∈ S ∶

Cy = g
qy(0), C ′y =H (att (y))qy(0) ) (3)

Once it is done, the verifier sends the secret message to the

proxy and arms a timer. If the proxy could not recover the

secret before the release of the timer, the verifier consider that

the proof can not be constructed and the process stops.

Recovering secret

To recover a secret message M shared with the group

of entities, the proxy starts by requesting assistance from

the group entities. If k or more entities respond, the proxy

can proceed with the recovery process, otherwise the secret

recovery stops (Figure 3).

The proxy sends to each entity Ej in the group the couple(Cj , C
′

j) of the ciphertext CT . Entities wishing to participate

in the secret recovery process use their received values from

the Attribute Authority to compute:

Fj =
e(Dj , Cj)
e(D′j , C ′j)
=
e(gr ⋅H(i)rj , hqj(0))
e(grj ,H(j)qj(0))

= e(g, g)rqj(0) (4)



We suppose that the proxy receives at least k intermediate

results (e(g, g)rqj(0) (1 ≤ j ≤ N)). Let Q be the set of

attributes corresponding to participating entities. P is a subset

of Q that has a cardinal number equals to k. We have

P ⊆ Q ⊆ S and ∣Q∣ ≥ ∣P ∣ = k. The proxy proceeds with

the decryption process by computing:

A = ∏
z∈P

(e(g, g)r⋅qz(0))∆i,P ′(0)

= ∏
z∈P

(e(g, g)r⋅qparent(z)(index(z)))∆i,P ′(0)

= ∏
z∈P

(e(g, g)r⋅qR(i)⋅∆i,P ′(0))
= e(g, g)r⋅∑z∈P qR(i)⋅∆i,P ′(0)

= e(g, g)r⋅qR(0)
= e(g, g)rs (5)

Where P ′ = {index(z) ∶ z ∈ P}, i = index(z), and

∆i,P ′(0) is the Lagrange Coefficient 1.

The algorithm now recovers the secret by computing

C̃/ (e (C,D) /A) = C̃/ (e (hs, g(α+r)/β) /e (g, g)rs)
=M (6)

Entity_i Entity_i Entity j Proxy 

!" , !"# 

Compute

$"  = e(g,g)
%&'()* 

$"  
+�- . -+ 

/ 

Pursuit decryption 

process et get M’ 

Verifier 

• Find the attributes set. 

• Construct ɣ 

• Generate randomly  M 

• Encrypt M with ɣ 

• Set a timer T 

!0 

Group 

identifier  
Group 

identifier  

1# 

• Verify M = M’ 

• Verify the timer T. 

Figure 3: Sharing and recovering secret phases

Once recovered, the proxy sends back the secret to the

verifier which issued the proof.

E. Group dynamics

Our solution allows easily and efficiently adding and re-

moving entities to and from the group.

Adding entities to the group. In order to add an entity

EN+1 to the group of entities, the Attribute Authority must

generate parts of the secret key DN+1, D′N+1 related to the

attribute attribute_(N+1) and send them to the new entity. To

be able to do that, the Attribute Authority must have saved the

random element r related to the CP-ABE secret key’s group,

thus, it has just to pick a random number rN+1 from Zp and

compute the couple (DN+1, D′N+1) this way:

1
∆i,S (x) =∏j∈S,j≠i (x − j) / (i − j) .

{ DN+1 = g
r
⋅H (attribute_(N + 1))rN+1

D′N+1 = g
rN+1

(7)

Once an entity is added to the group, the Verifier will add

the corresponding attribute to the access tree, so as, the new

entity could participate to the decryption process.

The access tree will henceforth be like:

γ = k − of − (N + 1)(attribute_1, attribute_2,⋯,

attribute_N,attribute_(N + 1)) (8)

Removing entities from the group. In order to remove an

entity Ee from the group of entities it is just enough to inform

the Verifier that the entity is no longer part of the group, and

he will remove its corresponding attribute attribute_e from

the access tree. The new access tree will be:

γ = k − of − (N − 1)(attribute_1,⋯, attribute_(e − 1),
attribute_(e + 1),⋯, attribute_N) (9)

The proxy should be aware too as it is responsible of

interrogating the entities during the decryption process.

As the attribute corresponding to the removed entity does

not appear in the access tree, the entity could not participate

to the decryption process even if it still has a part of the secret

key.

F. Managing many groups of entities

The proposed scheme works well for one group of entities.

Managing several groups of entities with the same system

configuration requires to define a strategy of naming the

attributes used in generating shared secret keys. A simple

way to do that, is to associate an identifier j for each group

of entities. The set of attributes used for the jth group of

entities will be {attribute_ < j > _1, attribute_ < j >

_2,⋯, attribute_ < j > _Nj}. Where Nj is the number of

entities in the jth group.

V. ANALYSIS

This section presents security and performance analysis of

our scheme. First, Section V-A explains how our scheme

meets the security requirements presented in Section IV-C.

We highlight some advantages of our solution in Section V-B.

Then, Section V-C studies the performance analysis of our

solution and presents how to overcome its shortcomings.

A. Security Analysis

Once a secret message M is encrypted with the policy γ =

k − out − of −N(attribute_1, attribute_2,⋯, attribute_N)
it is not possible to any third party to recover its value (None

has a secret key with an attribute set satisfying γ).

As the threshold defined for this ciphertext is k out of

N attributes (attribute_1, attribute_2,⋯, attribute_N), the



collusion of any k − 1 or less of entities belonging to the

targeted group is pointless. Indeed, CP-ABE scheme prevents

decrypting a ciphertext when the access policy is not satisfied

by the attributes set of the secret key used. This property of our

scheme meets the second security requirement (section IV-C).

However, The collusion of at least k entities will end up by

decrypting the ciphertext as it is detailed in section IV-D.

An entity participating in the secret recovery does not

reveal any information about the secret elements that she

received from the Attributes Authority. Indeed, she computes

e(g, g)rqj(0), and sends it back to the proxy for recovering

the secret. It is obvious that based on this information, neither

the proxy nor a third party can get any information about

Dj = g
r
⋅H (j)rj or D′j = g

rj .

During the grouping process, objects don’t use their iden-

tifiers to generate the proof. Even knowing object’s attribute

the proxy cannot know its identifier since attributes have no

direct link with objects to whom they are associated. Thus, an

adversary or an untrusted reader is unable to know if a given

object is present during the proof.

The verifier uses a timer to ensure the presence of entities

in the same time. If the secret could not be decrypted within

a short time, the proof will not be constructed.

To attempt a replay attack with an untrusted proxy, the latter

has to return the right secret message to the verifier. However,

since the secret is encrypted with CP-ABE, the proxy cannot

have access. Even brute force attack is difficult to consider

because the proxy does not know what to return to the verifier.

B. Advantages

● Variability of the threshold k: The value of the threshold

k is determined at the time of encryption. Which means

that, for each secret we can define a different threshold

with the same system configuration.

● Variability of users’ importance: Our scheme has the

ability to grant to some entities more importance than the

others. In other words, the participation of an entity Ei

during the secret recovery process could be equivalent

to the participation of several other simple entities. This

could be achieved by according so many attributes as the

importance the entities.

● Possibility of easily adding and removing entities

to/from the group: Once the system configuration is

done, it is still possible to add/remove easily entities

to/from the group (See Section IV-E).

● One Setup Many Uses: Once the system is setup, many

proofs can be obtained from the configuration. Indeed,

we can decrypt as much as we want with the secret key

shared between different objects of the group without

reconfiguring the system.

We present in Table II a comparison between our proposal

approach with previously presented related works. The solu-

tion we propose preserves privacy and resists against replay

and brute force attacks. Contrary to chain-based techniques,

the proxy can interrogate entities without waiting a response

from another entity. Furthermore, our approach introduces

original proprieties, which are the variability of the threshold

k and the importance of users’ entities.

Table II: Comparison between approaches

Privacy Replay

attack

Brute

force

attack

Time with

scalability

Variability

of the

thresh-

old k

Variability

of entity

impor-

tance

[2] - - - / - -

[3] - + - + - -

[6] + + - + - -

[7] + + - + - -

[8] - + + + - -

[4] + + + - - -

[9] + + + - - -

Ours + + + + + +

C. Performance Analysis

Performing our proposal scheme requires encrypting a ran-

dom message (by the verifier) and recovering the secret (by

the entities and the proxy). Number of operations that costs

each node during each phase is summarized in Table III.
Table III: Performance Analysis: Number of operations

Nb.
Pairing

Nb. Exp.
Nb.

Mul.
Nb.
Div.

System

Configuration

Phase

AA 1
(3) +
(3N + 1)

1 1

Sharing Secret

Phase

Encryptor
- 2(N + 1) 1 -

Secret Recovery

Phase

Each
Entity

2 - - 1

Proxy 1 k k − 1 2

CP-ABE

decryption

Decryptor
2N + 1 k k − 1 N+2

Encryption

CP-ABE is known to be very complex and expensive in

terms of computation and energy consumption, especially the

encryption primitive. Indeed, there are 2∗N+2 exponentiation

and one (1) multiplication to do during the encryption process.

However, in our proposal scheme this operation is performed

by the verifier which commonly has considerable resources.

When this primitive is executed by a resource-constrained

device, this could drain quickly it battery and therefore reduce

considerably its lifetime. However, In [11] a solution has been

proposed to reduce this computation overhead and the overall

energy consumption. It leverages the heterogeneity of the IoT

environment to delegate costly operations namely exponetia-

tions to more powerful trusted devices in the neighborhood.

Other solutions were proposed in [12] [13]. These solutions

consist on splitting the encryption primitive into two steps.

The first one which does the most of heavy operations is

executed when the device is online (using harvested energy or

line power). The second step is done offline when the device

is not connected to an energy source (Offline), it continue

executing the rest of the encryption primitive.

Secret Recovery

Our scheme allows to split the overhead of CP-ABE decryp-

tion primitive between the group of entities and the proxy.



Therefore, each entity computes only two pairings and one

division, rather than 2N + 1 pairing and N + 2 divisions. The

exponentiation and the multiplication operations are performed

by the proxy which has commonly significant resources. This

particularity of our schema is very interesting when it is

implemented in resource-constrained devices.

We have made a comparison between our approach and

the original CP-ABE in term of decryption primitive perfor-

mances. we considered an application case where the number

of entities in the group N = 20, the threshold for decryption

k = 10. The numbers of operations executed by an entity

in both original CP-ABE and our approach are illustrated in

Figure 4.
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Figure 4: Number of operations executed during the decryption

process by each entity

We notice that our approach reduces considerably the num-

ber of operations to execute during the decryption process.

Indeed, it squarely remove exponentiations and multiplications

as they are executed alongside the proxy. It also reduces the

number of pairing operations and divisions to two (2) and one

(1) respectively.

Secret Key Storage

Sizes of all elements used PBC library [14] are given in

Table IV. We recall that these sizes are specific to the pairing

parameters in the file "f.param".

Table IV: Elements Sizes

Group Size (bytes)

G1 44

G2 84

GT 244

Zp 24

Table V shows the size of secret elements sizes of both

entity and proxy for our scheme, and for original CP-ABE.

Ng notices the number of considered group and Ni denotes

the number of entities in the ith group (1 ≤ i ≤ Ng). We notice

that an entity in our scheme requires a fixed storage size per

group, regardless of the number of entities. Indeed, each entity

stores only two elements from G1 and G2. The proxy has to

store only one element of GT (244 bytes) for every group of

entities.

Table V: Performance Analysis. Required Storage Capacity

Size of secret elements

(bytes)

CP-ABE Entity 128 ∗Ni + 244

Our Approach
Each Entity 128

Proxy 244 ∗Ng
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Figure 5: Size of secret elements for both the proxy and an

entity in both of our approach and original CP-ABE

Figure 5 shows the variation of the size of an entity’s and

proxy’s secret elements in both of our approach and original

CP-ABE with respect to the number of attributes in secret

key (The number of entities in the group). In our approach,

the required storage size for an entity is independent from

the number of entities. Furthermore, unlike existing grouping-

proof schemes, entities don’t need to share their keys with

the verifier. The latter uses group’s attributes to generates the

secret message which are so lightweight compared to keys.

Even the generated proof has a fixed size (∣GT ∣ = 244 bytes)

regardless of the number of entities or groups. This is a very

important characteristic when it comes to large scale groups.

Adding and Removing Entities

In original CP-ABE, adding and removing attributes to/from

a secret key requires appealing to an attribute revocation

mechanism [5]. The latter is known to be difficult to develop.

Trivial solution [15] of this problem is to rename the attributes

by adding an expiration date for each attribute. Many others

solutions have been proposed in the literature [16], [17], [18],

but they are not efficient and some of them are even not

applicable at all as they do not meet requirements of target

application. Indeed, some of them require the re-encryption

of data using the Proxy Re-Encryption Technique [19]. Others

propose to re-generate all secret keys sharing the concerned

attribute. These solutions induce high overheads in terms of

computation and bandwidth.

In this paper, we took advantage of our application context

to propose a simple key update mechanism which is specific

to our Threshold Grouping Proof approach (See Section IV-F).

As shown in the previous section, our solution is very simple

and very efficient comparing to solutions in the literature.



VI. APPLICATION CASES IN THE IOT

In the following, we provide two case scenarios of the use

of the proposed scheme in IoT environment: control access to

a location, and Mobile NFC payment.

- Location access control: we consider a security system

that controls location access for authorized persons. In order to

provide a high security level, the control system authorizes the

access only if the user holds, simultaneously, k nodes of his

authenticated devices (e.g. smart phone, smart bracelet, and

smart glasses). In this way, even if one device is stolen, the

thief will not be allowed to access the location. The system is

composed of a proxy that is charged of interrogating user’s

devices and a verifier entity which receives the proof and

decides to authorize the access or not. When the user asks for

access, the request is directed to the verifier and the latter starts

the proof (the simultaneous presence of at least k of user’s

devices). Therefore, the verifier encrypts a random message

and sends it to the proxy. In its turn, the proxy requests the

group of devices and sends to each one of them its related part

of the ciphertext. If k or more nodes respond, the message can

be decrypted. By sending the decrypted message to the verifier,

the latter considers that the user is authorized and the access

is allowed. Otherwise (timeout release), the user will not have

access to the location.

- Mobile NFC payment: NFC payment allows users to

issue payment transactions using their NFC-enabled mobiles.

The use of mobile devices helped to enhance the security level

and make transactions more secure than NFC cards (require

certification for applications, use of authentication for users,

etc.). However, if the phone gets stolen, payments can be

issued by an unauthorized person. Indeed, some clients may

deactivate protection control features because they are often

centered on user’s interaction (e.g. entering the PIN code to

issue the transaction). Using our proposed scheme, the user

will be authenticated through the simultaneous presence of

his devices without requiring his interaction. Thus, when the

user requests a NFC payment transaction, the mobile encrypts

a random message and sends it to each user’s device its related

part of the ciphertext (in this example, the mobile is considered

as proxy and verifier). the secret can be decrypted only if at

least k devices respond before the release of timer. If so (secret

decrypted), the mobile continue the transaction.

VII. CONCLUSION

In this paper we have presented a solution to implement

a threshold yoking/grouping proof scheme using Ciphertext-

Policy Attribute-Based Encryption. Our approach provides

more resistance against attacks by encrypting a secret in a

such way that it can be recovered only if at least k entities are

present at the same time. In addition to standard yoking/group-

ing proof proprieties, our solution introduces other features,

such as the variability of the threshold k and the importance

of user’s entities.

It would be also interesting to consider other access trees

more complex than k-out-of-N: an access tree implying AND

and OR gates. For example, the access tree γ: President

AND k of N (attribute_1,⋯, attribute_N ) imposes the

participation of the President entity to the secret recovery

process and any k of N other entities.
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