
HAL Id: hal-01466831
https://hal.science/hal-01466831v1

Preprint submitted on 13 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mutations on a Random Binary Tree with Measured
Boundary

Jean-Jil Duchamps, Amaury Lambert

To cite this version:
Jean-Jil Duchamps, Amaury Lambert. Mutations on a Random Binary Tree with Measured Boundary.
2017. �hal-01466831�

https://hal.science/hal-01466831v1
https://hal.archives-ouvertes.fr


Mutations on a Random Binary Tree with Measured
Boundary

Jean-Jil Duchamps∗† and Amaury Lambert∗†

February 13, 2017

Abstract

Consider a random real tree whose leaf set, or boundary, is endowed with a
finite mass measure. Each element of the tree is further given a type, or allele,
inherited from the most recent atom of a random point measure (infinitely-
many-allele model) on the skeleton of the tree. The partition of the boundary
into distinct alleles is the so-called allelic partition.

In this paper, we are interested in the infinite trees generated by super-
critical, possibly time-inhomogeneous, binary branching processes, and in their
boundary, which is the set of particles ‘co-existing at infinity’. We prove that
any such tree can be mapped to a random, compact ultrametric tree called
coalescent point process, endowed with a ‘uniform’ measure on its boundary
which is the limit as t → ∞ of the properly rescaled counting measure of the
population at time t.

We prove that the clonal (i.e., carrying the same allele as the root) part of
the boundary is a regenerative set that we characterize. We then study the
allelic partition of the boundary through the measures of its blocks. We also
study the dynamics of the clonal subtree, which is a Markovian increasing tree
process as mutations are removed.

Keywords and phrases: coalescent point process; branching process; ran-
dom point measure; allelic partition; regenerative set; tree-valued process.
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1 Introduction

In this paper, we give a new flavor of an old problem of mathematical population
genetics which is to characterize the so-called allelic partition of a population. To
address this problem, one needs to specify a model for the genealogy (i.e., a random
tree) and a model for the mutational events (i.e., a point process on the tree).
Two typical assumptions that we will adopt here are: the infinite-allele assumption,
where each mutation event confers a new type, called allele, to its carrier; and the
neutrality of mutations, in the sense that co-existing individuals are exchangeable,
regardless of the alleles they carry. Here, our goal is to study the allelic partition of
the boundary of some random real trees that can be seen as the limits of properly
rescaled binary branching processes.

In a discrete tree, a natural object describing the allelic partition without labeling
alleles is the allele frequency spectrum (Ak)k≥1, where Ak is the number of alleles
carried by exactly k co-existing individuals in the population. In the present paper,
we start from a time-inhomogeneous, supercritical binary branching process with
finite population N(t) at any time t, and we are interested in the allelic partition
of individuals ‘co-existing at infinity’ (t → ∞), that is the allelic partition at the
tree boundary. To define the analogue of the frequency spectrum, we need to equip
the tree boundary with a measure `, which we do as follows. Roughly speaking, if
Nu(t) is the number of individuals co-existing at time t in the subtree Tu consisting
of descendants of the same fixed individual u, the measure `(Tu) is proportional to
limt↑∞Nu(t)/N(t). It is shown in Section 5 that the tree boundary of any super-
critical branching process endowed with the (properly rescaled) tree metric and the
measure ` has the same law as a random real tree, called coalescent point process

2



(CPP) generated from a Poisson point process, equipped with the so-called comb
metric [20] and the Lebesgue measure. Taking this result for granted, we will focus
in Sections 2, 3 and 4 on coalescent point processes with mutations.

In the literature, various models of random trees and their associated allelic par-
titions have been considered. The most renowned result in this context is Ewens’
Sampling Formula [13], a formula that describes explicitly the distribution of the
allele frequency spectrum in a sample of n co-existing individuals taken from a sta-
tionary population with genealogy given by the Moran model with population size
N and mutations occurring at birth with probability θ/N . When time is rescaled by
N and N → ∞, this model converges to Kingman coalescent [18] with Poissonian
mutations occurring at rate θ along the branches of the coalescent tree. In the same
vein, a wealth of recent papers has dealt with the allelic partition of a sample taken
from a Λ-coalescent or a Ξ-coalescent with Poissonian mutations, e.g., [4, 5, 14,15].

In parallel, several authors have studied the allelic partition in the context of branch-
ing processes, starting with [16] and the monograph [23], see [10] and the references
therein. In a more recent series of papers [8, 9, 11, 19], the second author and his
co-authors have studied the allelic partition at a fixed time of so-called ‘splitting
trees’, which are discrete branching trees where individuals live i.i.d lifetimes and
give birth at constant rate. In particular, they obtained the almost sure convergence
of the normalized frequency spectrum (Ak(t)/N(t))k≥1 as t → ∞ [8] as well as the
convergence in distribution of the (properly rescaled) sizes of the most abundant al-
leles [9]. The limiting spectrum of these trees is to be contrasted with the spectrum
of their limit, which is the subject of the present study, as explained earlier.

Another subject of interest is the allelic partition of the entire progeny of a (sub)critical
branching process, as studied in particular in [7]. The scaling limit of critical branch-
ing trees with mutations is a Brownian tree with Poissonian mutations on its skele-
ton. Cutting such a tree at the mutation points gives rise to a forest of trees whose
distribution is investigated in the last section of [7], and relates to cuts of Aldous’
CRT in [3] or the Poisson snake process [2]. The couple of previously cited works
not only deal with the limits of allelic partitions for the whole discrete tree, but also
tackle the limiting object directly. This is also the goal of the present work, but
with quite different aims.

First, we construct in Section 2 an ultrametric tree with boundary measured by a
‘Lebesgue measure’ `, from a Poisson point process with infinite intensity ν, on which
we superimpose Poissonian neutral mutations with intensity measure µ. Section 2
ends with Proposition 2.12, which states that the total number of mutations in any
subtree is either finite a.s. or infinite a.s. according to an explicit criterion involving
ν and µ.

The structure of the allelic partition at the boundary is studied in detail in Section
3. Theorem 3.3 ensures that the subset of the boundary carrying no mutations (or
clonal set) is a (killed) regenerative set with explicit Laplace exponent in terms of
ν and µ and measure given in Corollary 3.8. The mean intensity Λ of the allele
frequency spectrum at the boundary is defined by Λ(B) := E

∑
1`(R)∈B, where the

sum is taken over all allelic clusters at the boundary. It is explicitly expressed in
Proposition 3.11. An a.s. convergence result as the radius of the tree goes to infinity
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is given in Proposition 3.14 for the properly rescaled number of alleles with measure
larger than q > 0, which is the analogue of

∑
k≥q Ak in the discrete setting.

Section 4 is dedicated to the study of the dynamics of the clonal (mutation-free) sub-
tree when mutations are added or removed through a natural coupling of mutations
in the case when µ(dx) = θdx. It is straightforward that this process is Markovian
as mutations are added. As mutations are removed, the growth process of clonal
trees also is Markovian, and its semigroup and generator are provided in Theorem
4.2.

Section 5 is devoted to the links between measured coalescent point processes and
measured pure-birth trees which motivate the present study. Lemma 5.5 gives a
representation of every CPP with measured boundary, in terms of a rescaled pure-
birth process with boundary measured by the rescaled counting measures at fixed
times. Conversely, Theorem 5.6 gives a representation of any such pure-birth process
in terms of a CPP with intensity measure ν(dx) = dx

x2 , as in the case of the Brownian
tree.

2 Preliminaries and Construction

2.1 Discrete Trees, Real Trees

Let us recall some definitions of discrete and real trees, which will be used to define
the tree given by a so-called coalescent point process.

In graph theory, a tree is an acyclic connected graph. We call discrete trees such
graphs that are labeled according to Ulam–Harris–Neveu’s notation by labels in the
set U of finite sequences of non-negative integers:

U =
⋃
n≥0

Zn+ = {u1u2 . . . un, ui ∈ Z+, n ≥ 0},

with the convention Z0
+ = {∅}.

Definition 2.1. A rooted discrete tree is a subset T of U such that

• ∅ ∈ T and is called the root of T

• For u = u1 . . . un ∈ T and 1 ≤ k < n, we have u1 . . . uk ∈ T .

• For u ∈ T and i ∈ N such that ui ∈ T , for 0 ≤ j < i, we have uj ∈ T and uj
is called a child of u.

For n ≥ 0, the restriction of T to the first n generations is defined by:

T|n := {u ∈ T , |u| ≤ n},

where |u| denotes the length of a finite sequence. For u, v ∈ T , if there is w ∈ U
such that v = uw, then u is said to be an ancestor of v, noted u � v. Generally, let
u ∧ v denote the most recent common ancestor of u and v, that is the longest word
u0 ∈ T such that u0 � u and u0 � v. The edges of T as a graph join the parents u
and their children ui.
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For a discrete tree T , we define the boundary of T as

∂T := {u ∈ T , u0 /∈ T } ∪ {v ∈ ZN
+, ∀u ∈ U , u � v ⇒ u ∈ T },

and we equip ∂T with the σ-field generated by the family (Bu)u∈T , where

Bu := {v ∈ ∂T , u � v}.

Remark 2.2. With a fixed discrete tree T , a finite measure L on ∂T is characterized
by the values (L (Bu))u∈T . Reciprocally if the number of children of u is finite
for each u ∈ T , by Carathéodory’s extension theorem, any finitely additive map
L : {Bu, u ∈ T } → [0,∞) extends uniquely into a finite measure L on ∂T .

By assigning a positive length to every edge of a discrete tree, one gets a so-called
real tree. Real trees are defined more generally as follows, see e.g. [12].

Definition 2.3. A metric space (T, d) is a real tree if for all x, y ∈ T,

• There is a unique isometry fx,y : [0, d(x, y)] → T such that fx,y(0) = x and
fx,y(d(x, y)) = y,

• All continuous injective paths from x to y have the same range, equal to
fx,y([0, d(x, y)]).

This unique path from x to y is written [[x, y]]. The degree of a point x ∈ T is
defined as the number of connected components of T \ {x}, so that we may define:

• The leaves of T are the points with degree 1.

• The internal nodes of T are the points with degree 2.

• The branching points of T are the points with degree larger than 2.

One can root a real tree by distinguishing a point % ∈ T, called the root.

From this definition, one can see that for a rooted real tree (T, d, %), for all x, y ∈ T,
there exists a unique point a ∈ T such that [[%, x]] ∩ [[%, y]] = [[%, a]]. We call a the
most recent common ancestor of x and y, noted x∧y. There is also an intrinsic
order relation in a rooted tree: if x ∧ y = x, that is if x ∈ [[%, y]], then x is called an
ancestor of y, noted x � y.

We will call a rooted real tree a simple tree if it can be defined from a discrete tree
by assigning a length to each edge. From now on, we will restrict our attention to
simple trees.

Definition 2.4. A simple (real) tree is given by (T , α, ω), where T ⊂ U is a
rooted discrete tree, and α and ω are maps from T to R satisfying

ζ(u) := ω(u)− α(u) > 0,

∀u ∈ T , ∀i ∈ Z+, ui ∈ T =⇒ α(ui) = ω(u).

Here α(u) and ω(u) are called the birth time and death time of u and ζ(u) is the
life length of u.
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We will sometimes consider simple trees (T , α, ω,L ) equipped with L a measure
on their boundary ∂T .

We call a reversed simple tree a triple (T , α, ω) where (T ,−α,−ω) is a simple
tree. We may sometimes omit the term “reversed” when the context is clear enough.

The restriction of A = (T , α, ω) to the first n generations is the simple tree defined
by

A|n = (T|n, α|T|n , ω|T|n).

One can check that a simple tree (T , α, ω) defines a unique real rooted tree defined
as the completion of (T, d, %), with

% := (∅, α(∅)),
T := {%} ∪

⋃
u∈T
{u} × (α(u), ω(u)] ⊂ U × R,

d((u, x), (v, y)) :=
{
|x− y| if u � v or v � u,
x+ y − 2ω(u ∧ v) otherwise.

(1)

In particular, we have (u, x) ∧ (v, y) = (u ∧ v, ω(u ∧ v)).

In this paper, we construct random simple real trees with marks along their branches.
We see these trees as genealogical/phylogenetic trees and the marks as mutations
that appear in the course of evolution. We will assume that each new mutation
confers a new type, called allele, to its bearer (infinitely-many alleles model). Our
goal is to study the properties of the clonal subtree (individuals who do not bear
any mutations, black subtree in Figure 1) and of the allelic partition (the partition
into bearers of distinct alleles of the population at some fixed time).

Figure 1: Simple tree with mutations

2.2 Comb Function

2.2.1 Definition

We now introduce ultrametric trees, using a construction with comb functions fol-
lowing Lambert and Uribe Bravo [20].
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Definition 2.5. Let T > 0 and I = [0, T ]. Let also f : I → [0,∞) such that

#{x ∈ I, f(x) > ε} <∞ ε > 0.

The pair (f, I) will be called a comb function. For any real number z > maxI f ,
we define the ultrametric tree of height z associated with (f, I) as the real
rooted tree Tf which is the completion of (Sk, %, df ), where Sk ⊂ I × [0,∞) is the
skeleton of the tree, and Sk, % and df are defined by

% := (0, z),
Sk := {0} × (0, z] ∪ {(t, y) ∈ I × (0, z], f(t) > y},

df :


Sk2 −−−→ [0,∞)

((t, x), (s, y)) 7−−−→
{
|max(t,s] f − x|+ |max(t,s] f − y| if t < s,

|x− y| if t = s.

The set {0} × (0, z] ⊂ Sk is called the origin branch of the tree.

For t ∈ I, t > 0, we call the lineage of t the subset of the tree Lt ⊂ Tf defined as
the closure of the set

{(s, x) ∈ Sk, s ≤ t, ∀s < u ≤ t, f(u) ≤ x}.

For t = 0 one can define L0 as the closure of the origin branch.

Remark 2.6. One can check that df is a distance which makes (Sk, df ) a real tree,
and so its completion (Tf , df ) also is a real tree. Furthermore, the fact that {f > ε}
is finite for all ε > 0 ensures that it is a simple tree, since the branching points
in Sk are the points (t, f(t)) with f(t) > 0. For a visual representation of the tree
associated with a comb function, see Figure 2, where the skeleton is drawn in vertical
segments and the dashed horizontal segments represent branching points.

t

f(t)

0

Figure 2: Comb function and its associated tree.
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Proposition 2.7. With the same notation as in Definition 2.5, for a fixed comb
function (f, I) and a real number z > maxI f , writing Tf for the associated real tree,
the following holds. For each t ∈ I, there is a unique leaf αt ∈ Tf such that

Lt = [[%, αt]].

Furthermore, the map α : t 7→ αt is measurable with respect to the Borel sets of I
and Tf .

Proof. For t = 0, L0 is defined as the closure of the origin branch {0}× (0, z]. Since
df ((0, x), (0, y)) = |x− y|, the map

ϕ0 :
{

(0, z] −→ Sk
x 7−→ (0, x)

is an isometry, and since Tf is defined as the completion of the skeleton Sk, there
is a unique isometry ϕ̃0 : [0, z] → Tf which extends ϕ0. Therefore we define α0 :=
ϕ̃0(0) ∈ Tf , which satisfies L0 = [[%, α0]] since ϕ̃0 is an isometry. Also α0 is a leaf
of Tf because it is in Tf \ Sk. Indeed, since Tf is the completion of Sk which is
connected, Tf \ {α0} is necessarily also connected, which means that α0 has degree
1.

Now for a fixed t ∈ I, t > 0, write (ti, xi)i≥0 for the (finite or infinite) sequence with
values in

{(0, z)} ∪ {(s, x) ∈ I × (0,∞), f(s) = x}

defined inductively (as long as they can be defined) by (t0, x0) = (0, z) and

∀i ≥ 0, xi+1 := max
(ti,t]

f,

and ti+1 := max{s ∈ (ti, t], f(s) = xi+1}.

• If the sequence (ti, xi)i≥0 is well defined for all i ≥ 0, then since f is a comb
function, we necessarily have that xi → 0 as i→∞.

• On the other hand, the sequence (ti, xi)0≤i≤n is finite if and only if it is defined
up to an index n such that either tn = t or f is zero on the interval (tn, t]. In
that case, we still define for convenience xn+i := 0, tn+i := tn for all i ≥ 1.

Now it can be checked that we have
∞⋃
i=0

[xi+1, xi) \ {0} = (0, z),

and that Lt is defined as the closure of the set

At :=
∞⋃
i=0
{ti} × ([xi+1, xi) \ {0}) ⊂ Sk.

Also, by definition of the sequence (ti, xi)0≤i, the distance df satisfies, for
(s, x), (u, y) ∈ At,

df ((s, x), (u, y)) = |x− y|.
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Therefore the following map is an isometry (and it is well defined because xi ↓ 0).

ϕt :
{

(0, z) −→ Sk
x 7−→ (ti, x) if x ∈ [xi+1, xi) for an index i ≥ 0.

As in the case t = 0, this isometry can be extended to ϕ̃t : [0, z]→ Tf and we define
αt := ϕ̃t(0). It is a leaf of Tf satisfying Lt = [[%, αt]] for the same reasons as for 0.

It remains to prove that α : t 7→ αt is measurable. It is enough to show that it is
right-continuous, because in that case the pre-image of an open set is necessarily a
countable union of right-open intervals, which is a Borel set. Now for t < t′ ∈ I,
by taking limits along the lineages Lt and Lt′ , it is easily checked that the distance
between αt and αt′ can be written

df (αt, αt′) = 2 max
(t,t′]

f,

and since f is a comb function, necessarily we have

max
(t,t′]

f −−→
t′↓ t

0.

Hence α is right-continuous, therefore measurable.

It follows from Proposition 2.7 that the Lebesgue measure λ on the real interval I
can be transported by the map α to a measure on the tree Tf , or more precisely on
its boundary, that is the set of its leaves.

Definition 2.8. With the same notation as in Definition 2.5 and Proposition 2.7,
for any fixed comb function (f, I) and z > maxI f , writing Tf for the associated real
tree, we define the measure on the boundary of Tf as the measure

` := λ ◦ α−1

which concentrates on the leaves of the tree. From now on, we always consider the
tree Tf associated with a comb function f as a rooted real tree equipped with the
measure ` on its boundary.

2.2.2 The Coalescent Point Process

Here we will consider the measured tree associated to a random comb function. Let
ν be a positive measure on (0,∞] such that for all ε > 0, we have

ν(ε) := ν([ε,∞]) <∞,

and N be the support of the Poisson point process on [0,∞)× (0,∞] with intensity
dt⊗ ν. Then we can define fN as the function whose graph is N .

fN (t) =
{
x if (t, x) ∈ N ,
0 if N ∩ ({t} × (0,∞]) = ∅.

Now fix z > 0 such that ν(z) > 0 and set

T (z) := inf{t ≥ 0, fN (t) ≥ z}.
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Definition 2.9. The ultrametric random tree associated to I = [0, T (z)) and fN|I is
called coalescent point process (CPP) of intensity ν and height z, denoted by
CPP(ν, z). It is equipped with the random measure `, concentrated on the leaves,
which is the push-forward of the Lebesgue measure on [0, T (z)) by the map α.

Formally, a CPP is a random variable valued in the space of finitely measured com-
pact metric spaces endowed with the Gromov-Hausdorff-Prokhorov distance defined
in [1] as an extension of the more classical Gromov-Hausdorff distance. Actually, it
is easy to check that all the random quantities we handle are measurable, since we
are dealing with a construction from a Poisson point process.

2.3 Mutations on a CPP

Here we set up how mutations appear on the random genealogy associated with a
CPP of intensity ν. Let µ be a positive measure on [0,∞). We make the following
assumptions:

∀x > 0, 0 < ν(x) := ν([x,∞]) <∞ and µ(x) := µ([0, x]) <∞,
µ([0,∞)) =∞,

ν and µ have no atom on [0,∞).
(H)

We will now define the CPP of intensity ν and height z > 0 marked with rate µ.

Recall that the CPP is constructed from the support N of a Poisson point process
with intensity dt⊗ν on [0,∞)×[0,∞] and has a root % = (0, z). Define independently
for each point N := (t, x) of N ∪ {%} the Poisson point process MN of intensity µ
on the interval (0, x). Each atom y ∈ [0, x] of MN is a mark (t, y) on the branch
{t}×(0, x) ⊂ Sk at height y. The family (MN )N∈N therefore defines a point process
M on the skeleton of the CPP tree:

M :=
∑

(t,x)∈N∪{%}

∑
y∈M(t,x)

δ(t,y).

By definition, conditional on Sk, M is a Poisson point process on Sk whose intensity
is such that for all non-negative real numbers t and a < b, we have:

E
[
M({t} × [a, b])

∣∣∣ {t} × [a, b] ⊂ Sk
]

= µ([a, b]).

Definition 2.10. Let ν, µ be measures satisfying assumption (H). A coalescent
point process with intensity ν, mutation rate µ and height z, denoted
CPP(ν, µ, z), is defined as the random CPP(ν, z) given by N , equipped with the
point process M on its skeleton.

(i) The clonal subtree of the rooted real tree (T, %) equipped with mutationsM
is defined as the subset of T formed by the points :

{x ∈ T,M([[%, x]]) = 0}.

Equipped with the distance induced by d, this is also a real tree.
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(ii) Given the (ultrametric) rooted real tree (T, %) equipped with mutations M
and the application α from the real interval I = [0, T (z)) to T whose range is
included in the leaves of T, we can define the clonal boundary (or clonal
population) R = R(T,M, α) ⊂ I:

R := {t ∈ I,M([[%, αt]]) = 0)}.

Remark 2.11. This set R is studied in a paper by Philippe Marchal [21] for a CPP
with ν(dx) = dx

x2 and mutations at branching points with probability 1− β. In that
case the sets Rβ have the same distribution as the range of a β-stable subordinator.
In the present case of Poissonian mutations, R is not stable any longer but we will
see in Section 3 that it remains a regenerative set.

Total number of mutations. Since µ is a finite measure, the number of mu-
tations on a fixed lineage of the CPP(ν, µ, z) is a Poisson random variable with
parameter µ([0, z]) < ∞, and so is a.s. finite. However, it is possible that in a
clade (here defined as the union of all lineages descending from a fixed point), there
are infinitely many mutations with probability 1. For instance, if µ is the Lebesgue
measure and if ν is such that ∫

0
xν(dx) =∞,

we know from the properties of Poisson point processes that the total length of any
clade is a.s. infinite. In this case, the number of mutations in any clade is also
a.s. infinite so that each point x in the skeleton of the tree has a.s. at least one
descending lineage with infinitely many mutations. Such a lineage can be displayed
by choosing iteratively at each branching point a sub-clade with infinitely many
mutations.

One can ask under which conditions this phenomenon occurs. Conditional on the
tree of height z, the total number of mutations follows a Poisson distribution with
parameter

Λ := µ(z) +
∑

(t,y)∈N ,t<T (z)
µ(y),

where T (z) is the first time such that there is a point of N with height larger than
z. Indeed, the origin branch is of height z and the heights of the other branches
are the heights of points of N . This number of mutations is finite a.s on the event
A := {Λ <∞} and infinite a.s on its complement. But by the properties of Poisson
point processes, two cases are distinguished: either A has probability 0 or it has
probability 1.

Proposition 2.12. There is the following dichotomy:∫
0
µ(x)ν(dx) <∞ =⇒ the total number of mutations is finite a.s.∫

0
µ(x)ν(dx) =∞ =⇒ the number of mutations in any clade is infinite a.s.

In the former case, the total number of mutations has mean

E[Λ] = µ(z) + 1
ν(z)

∫
[0,z]

µ(x)ν(dx).

11



Proof. Conditional on T (z), the set N ′ := {(t, y) ∈ N , t < T (z)} is the support of a
Poisson point process on [0, T (z)]× [0, z] with intensity dt⊗ν. Therefore, from basic
properties of Poisson point processes, conditional on T (z), Λ = µ(z)+

∑
(t,y)∈N ′ µ(y)

is finite a.s if and only if∫ T (z)

0

(∫
[0,z]

(
µ(x) ∧ 1

)
ν(dx)

)
dt <∞ a.s,

and since T (z) is finite a.s and µ is increasing, this condition is equivalent to the
condition of the proposition. Now let us writeNtot for the total number of mutations.
The conditional distribution of Ntot given Λ is a Poisson distribution with mean Λ.
Therefore we deduce

E[Ntot] = E[Λ]

= µ(z) + E

 ∑
(t,y)∈N ′

µ(y)


= µ(z) + E

[
T (z)

∫
[0,z]

µ(x)ν(dx)
]

= µ(z) + 1
ν(z)

∫
[0,z]

µ(x)ν(dx),

which concludes the proof.

3 Allelic Partition at the Boundary

In this section, we will identify the clonal boundary R in a mutation-equipped CPP,
that is the set of leaves of the tree which do not carry mutations, and characterize
the reduced subtree generated by this set.

3.1 Regenerative Set of the Clonal Lineages, Clonal CPP

Denote by Tz a CPP(ν, µ, z) where ν, µ satisfy assumptions (H). A leaf of Tz is
said clonal if it carries the same allele as the root. Recall the canonical map αz

from the real interval [0, T (z)) to the leaves of Tz (see Proposition 2.7). The clonal
boundary (see Definition 2.10) of Tz is then the set Rz ⊂ [0, T (z)) defined as the
pre-image of the clonal leaves by the map αz.

We define the event
Oz := {M%([0, z]) = 0}

that there is no mutation on the origin branch of Tz. Note that this event has a
positive probability equal to e−µ(z). By definition, the point process of mutations
on the origin branch M% is independent of (MN )N∈N . Therefore conditioning on
Oz amounts to considering the tree Tz equipped with the mutations on its skeleton
which are given only by the point processes (MN )N∈N . We now define a random
set R̃, whose distribution depends only on (ν, µ) and not on z, which will allow the
characterization of the clonal boundaries Rz conditional on the event Oz.

12



Definition 3.1. Recall the notations N and (MN )N∈N . For each fixed t ∈ [0,∞),
let (ti, xi)i≥1 be the (possibly finite) sequence of points of N such that

x1 = sup{x ∈ [0,∞], #N ∩ (0, t]× [x,∞] ≥ 1},
t1 = sup{s ∈ [0, t], (s, x1) ∈ N},

xi+1 = sup{x ∈ [0, xi), #N ∩ (ti, t]× [x,∞] ≥ 1},
ti+1 = sup{s ∈ (ti, t], (s, xi+1) ∈ N},

with the convention sup∅ = 0, and where the sequence is finite if there is a n ≥ 0
such that xn = 0. We define the following random point measure on [0,∞):

Mt :=
∑

i≥1, xi>0
M(ti,xi)( · ∩ [xi+1, xi]).

Now we define the random set R̃ as:

R̃ := {t ∈ [0,∞), Mt([0,∞)) = 0}.

Remark 3.2. Recall that for a comb function (f, I) and a real number t ∈ I, in the
proof of Proposition 2.7, we defined a sequence (ti, xi)i≥0 in the same way as in the
previous definition and we remarked that the lineage Lt of t is the closure of the set⋃

i≥0, xi>0
{ti} × ([xi+1, xi) \ {0}) ⊂ Sk.

It follows that in the case of the tree Tz equipped with the mutations M on its
skeleton, we have the equality between events

Oz ∩ {M([[%, αzt ]]) = 0} = Oz ∩ {Mt([0,∞)) = 0}.

Therefore, on the event Oz, the clonal boundary Rz of the tree Tz coincides with
the restriction of R̃ to the interval [0, T (z)), which explains why we study the set R̃.

The subtree of Tz spanned by the clonal boundary Rz is called the reduced clonal
subtree and defined as ⋃

t∈Rz
[[%, αzt ]].

Note that it is a Borel subset of Tz because it is the closure of⋂
n≥1

⋃
p≥n

⋃
x∈Cp

[[%, x]],

where Cp is the finite set {x ∈ Tz, d(x, %) = z(1 − 1/p), M([[%, x]]) = 0}. The set
R̃ is proven to be a regenerative set (see Appendix A.3 for the results used in this
paper and the references concerning subordinators and regenerative sets), and the
reduced clonal subtree is shown to have the law of a CPP.

Theorem 3.3. The law of R̃ and of the associated reduced clonal subtree can be
characterized as follows.
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(i) Under the assumptions (H) and with the preceding notation the random set
R̃ is regenerative. It can be described as the range of a subordinator whose
Laplace exponent ϕ is given by:

1
ϕ(λ) =

∫
(0,∞)

e−µ(x)

λ+ ν(x)µ(dx).

(ii) The reduced clonal subtree, that is the subtree spanned by the set R̃, has the
distribution of a CPP with intensity νµ, where νµ is the positive measure on
R+ ∪ {∞} determined by the following equation. Letting W (x) := (ν(x))−1

and Wµ(x) := (νµ(x))−1, we have, for all x > 0,

Wµ(x) = W (0) +
∫ x

0
e−µ(z)dW (z).

Remark 3.4. The last formula of the theorem is an extension of Proposition 3.1
in [19], where the case when ν is a finite measure and µ(dx) = θ dx is treated. Here,
we allow ν to have infinite mass and µ to take a more general form (provided (H) is
satisfied).

Figure 3: Mutation-equipped CPP, regenerative set R̃ shown in green

Regenerative set. Here, we prove the first part of the theorem concerning R̃.

Proof of Theorem 3.3, (i). Let (Ft)t≥0 be the natural filtration of the marked CPP
defined by:

Ft = σ
(
N ∩ ([0, t]× R+),M(s,x), s ≤ t, x ≥ 0

)
.

To show first that R̃ is (Ft)-progressively measurable, we show that for a fixed t > 0,
the set

{(s, ω) ∈ [0, t]× Ω, s ∈ R̃(ω)}

is in B([0, t])⊗Ft. Basic properties of Poisson point processes ensure there exists an
Ft-measurable sequence of random variables giving the coordinates of the mutations
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in N ∩ ([0, t]×R+). Let (Ui, Xi)i be such a sequence, for instance ranked such that
Xi is decreasing as in Figure 4. We also define the following Ft-measurable random
variables:

Ti := t ∧ inf{s ≥ Ui, (s, x) ∈ N , x ≥ Xi}.

Now we have
R̃ ∩ [0, t] =

⋂
i

([0, t] \ [Ui, Ti)),

which proves that the random set R̃ is (Ft)-progressively measurable, and almost-
surely left-closed.

X1

X4

X3

X2

U3 U1T4 = U2U4 t = T1T2T3

Figure 4: Mutations localized by the variables (Ui, Xi, Ti)

Let us now show the regeneration property of R̃. Define

H(s, t) := max{x ≥ 0, (u, x) ∈ N , s < u ≤ t},

the maximal height of atoms of N between s and t. We will note H(t) := H(0, t)
for simplicity. Remark that

R̃ = {t ≥ 0,Mt([0, H(t)]) = 0}.

Let S be a (Ft)-stopping time, and suppose that almost surely, S <∞, and S ∈ R̃
is not isolated to the right. From elementary properties of Poisson point processes
and the fact that the random variables (M(s,x))s≥0,x≥0 are i.i.d, we know that the
tree strictly to the right of S is independent of FS and has the same distribution as
the initial tree. Now since S ∈ R̃ almost surely, we have, for all t ≥ S,

Mt([0, H(t)]) = Mt([0, H(S, t)]),

because Mt([H(S, t), H(0, t)]) = MS([H(S, t), H(0, t)]) = 0, in other words there
are no mutations on the lineage of t that is also part of the lineage of S. As a
consequence,

R̃ ∩ [S,∞) = {t ≥ S,Mt([0, H(S, t)]) = 0},

which implies that R̃∩ [S,∞)−S has the same distribution as R̃ and is independent
of FS .
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Therefore it is proven that R̃ has the regenerative property, so one can compute its
Laplace exponent. Here we are in the simple case where R̃ has a positive Lebesgue
measure, and we have in particular, for all t ∈ R+,

P(t ∈ R̃) = E
[
e−µ(Ht)

]
=
∫

[0,∞]
P(Ht ∈ dx)e−µ(x)

=
∫

(0,∞)
P(Ht ≤ x)e−µ(x)µ(dx)

=
∫

(0,∞)
e−tν(x)−µ(x)µ(dx).

The passage from the second to the third line is done integrating by parts thanks
to the assumption that µ is continuous and that µ has an infinite mass. The last
displayed expression is therefore the density with respect to the Lebesgue measure
of the renewal measure of R̃ (see Remark A.8). This is sufficient to characterize our
regenerative set, and the expression given in the Proposition is found by computing
the Laplace transform of this measure:

1
ϕ(λ) =

∫ ∞
0

e−λt
(∫

(0,∞)
e−tν(x)−µ(x)µ(dx)

)
dt

=
∫

(0,∞)

e−µ(x)

λ+ ν(x)µ(dx),

which concludes the proof of (i).

Remark 3.5. It is important to note that the particular case of a CPP with intensity
ν(dx) = dx

x2 has the distribution of a (root-centered) sphere of the so-called Brow-
nian CRT (Continuum Random Tree), the real tree whose contour is a Brownian
excursion. This is shown for example by Popovic in [22] where the term ‘Continuum
genealogical point process’ is used to denote what is called here a coalescent point
process. The measure ν(dx) = dx

x2 is the push-forward of the Brownian excursion
measure by the application which maps an excursion to its depth. In general, the
sphere of radius say r of a totally ordered tree is an ultrametric space whose topology
is characterized by the pairwise distances between ‘consecutive’ points at distance
r from the root. When the order of the tree is the order associated to a contour
process, these distances are the depths of the ‘consecutive’ excursions of the contour
process away from r, see e.g. Lambert and Uribe Bravo [20].
If in addition to ν(dx) = dx

x2 , we assume that µ(dt) = θ dt, which amounts to letting
Poissonian mutations at constant rate θ on the skeleton of the CRT, we have

1
ϕθ(λ) =

∫ ∞
0

θe−θx

λ+ 1/xdx.

In particular, for all θ, c > 0, we can compute:

ϕθ(cλ) = cϕθ/c(λ).

This implies the equality in distribution cRθ
(d)= Rθ/c. Nevertheless Rθ is not a

so-called ‘stable’ regenerative set, contrary to the sets Rα in [21].
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Reduced clonal subtree. To show that the reduced clonal subtree is a CPP, let
us exhibit the Poisson point process that generates it. Let σ be the subordinator
with drift 1 whose range is R̃ and let N ′ be the following point process:

N ′ := {(t, x), t ∈ R+, x = H(σt−, σt) > 0},

where H(s, t) := max{x, (u, x) ∈ N , s ≤ u ≤ t}. This point process generates the
reduced clonal subtree, because H(σt−, σt) is (up to a factor 1/2) the tree distance
between the consecutive leaves σt− and σt in R̃. To complete the proof of the
proposition, it is sufficient to show that conditional on the death time ζ of the
subordinator σ, N ′ is a Poisson point process on [0, ζ)×R+ with intensity dt⊗ νµ.

Proof of Theorem 3.3, (ii). This is due to the regenerative property of the process.
For fixed t ≥ 0, σt is a (Ft)-stopping time which is almost surely in R̃ on the event
{σt <∞} = {ζ > t}. This implies that conditional on {σt <∞}, the marked CPP
strictly to the right of σt is equal in distribution to the original marked CPP and is
independent of Fσt . In particular:(

{(s, x) ∈ R2
+, (σt + s, x) ∈ N}, R̃ ∩ [σt,∞)− σt

) (d)= (N , R̃).

This implies that N ′ ∩ ([t,∞) × R+) − (t, 0) has the same distribution as N ′ and
is independent of Fσt . For fixed ε > 0, let (Ti, Xi)i be the sequence of atoms of
N ′ such that Xi > ε, ranked with increasing Ti. Then Ti is a (Fσt)-stopping time
and the sequence (Ti − Ti−1, Xi)i is i.i.d. It is sufficient to observe that T1 is an
exponential random variable to show that N ′ has an intensity of the form dt⊗ νµ:

P(T1 > t+ s | T1 > t) = P(H(0, σt+s) ≤ ε | H(0, σt) ≤ ε)
= P(H(σt, σt+s) ≤ ε | H(0, σt) ≤ ε)
= P(H(0, σs) ≤ ε) = P(T1 > s).

It remains to characterize the measure νµ by computing Wµ(x). Note that the
following computations are correct thanks to the assumption that ν has no atom, so
that W is continuous. To simplify the notation, let Ht := H(0, t) = max{x, (u, x) ∈
N , 0 ≤ u ≤ t}. Then we can compute:

Wµ(x) =
∫ ∞

0
e−tνµ(x)dt

= E
[∫ ∞

0
1{Hσt≤x}dt

]
= E

[∫ ∞
0

1{Hu≤x}1{u∈R̃}du
]
.

(2)

Letting F (y) := P(Hu ≤ y) = e−uν(y), we have

P(Hu ≤ x, u ∈ R̃) = P(Hu = 0) +
∫ x

0
P(Hu ∈ dy)e−µ(y)

= F (0) +
∫ x

0
e−µ(y)dF (y).
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Now dF (y) = ue−uν(y)ν(dy), hence

Wµ(x) =
∫ ∞

0
e−uν(0)du+

∫ x

0

(∫ ∞
0

ue−uν(y)du
)

e−µ(y)ν(dy)

= 1
ν(0) +

∫ x

0

1
ν(y)2 e−µ(y)ν(dy)

= W (0) +
∫ x

0
e−µ(y)dW (y),

which concludes the proof.

Remark 3.6. Equality (2) becomes, letting x→∞,

Wµ(∞) = E[λ(R̃)].

Remark 3.7. In Remark 3.5, we explained that when the contour of a random tree
is a strong Markov process as in the case of Brownian motion, the root-centered
sphere of radius r of this tree is a CPP. In addition, the intensity measure of this
CPP is the measure of the excursion depth under the excursion measure of the
contour process (away from r). Let nc denote the excursion measure of the process
(B(c)

t − infs≤tB(c)
s )t≥0, with B(c) a Brownian motion with drift −c, and let h denote

the depth of the excursion. In the case ν(dx) = dx
x2 = n0(h ∈ dx) and µ(dx) = θ dx,

we have
W θ(x) = 1− e−θx

θ
= nθ/2(h ∈ [x,∞])−1.

This is consistent with Proposition 4 in [2], which shows that putting Poissonian
random cuts with rate θ along the branches of a standard Brownian CRT yields a
tree whose contour process is (e(s)−θs/2)s≥0 stopped at the first return at 0, where
e is the normalized Brownian excursion.

3.2 Measure of the Clonal Population

Recall that for a CPP(ν, µ, z), conditional on Oz (no mutation on the origin branch),
the Lebesgue measure λ(R̃ ∩ [0, T (z)) is equal to the measure `(Rz) of the set of
clonal leaves .

Corollary 3.8. Let ν, µ be two measures satisfying assumptions (H).

(i) With the notation of Theorem 3.3, the random variable λ(R̃) follows an expo-
nential distribution with mean Wµ(∞).

(ii) In a CPP(ν, µ, z), conditional on Oz, the measure `(Rz) of the set of clonal
leaves is an exponential random variable of mean Wµ(z).

Proof. Given a subordinator σ with drift 1 and range R̃, it is known (a quick proof
of this can be found in [6]) that

λ(R̃) = inf{t > 0, σt =∞}.
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Now the killing time of the subordinator σ is an exponential random variable of
parameter ϕ(0), where ϕ is the Laplace exponent of σ. We already know from
Remark 3.6 the mean of that variable:

ϕ(0)−1 = E
[
λ(R̃)

]
= Wµ(∞).

With a fixed height z > 0, one is interested in the law of λ(R̃ ∩ [0, T (z))). By
the properties of Poisson point processes, stopping the CPP at T (z) amounts to
changing the intensity measure ν of the CPP for ν̂, with

ν̂ = ν( · ∩ [0, z]) + ν(z)δ∞.

Then if Ŵ (x) := ν̂([x,∞])−1, we have

Ŵ (x) =
(
ν([x,∞] ∩ [0, z]) + ν(z)

)−1

=
(
ν([x ∧ z, z]) + ν([z,∞])

)−1

=
(
ν([x ∧ z,∞])

)−1

= W (x ∧ z),

and because of the characterization of Wµ given in Theorem 3.3, we also have(
Ŵ
)µ

(x) = Wµ(x ∧ z). Therefore
(
Ŵ
)µ

(∞) = Wµ(z), and we can conclude that
λ(R̃ ∩ [0, T (z)]) is an exponential random variable of mean Wµ(z).

Probability of clonal leaves. Here, we consider a CPP(ν, µ, z) and aim at com-
puting the probability of existence of clonal leaves in the tree.

Proposition 3.9. In a CPP(ν, µ, z), under the assumptions (H) and with the no-
tation of Theorem 3.3, there is a mutation-free lineage with probability

W (z) e−µ(z)

Wµ(z) .

Remark 3.10. Using a description of CPP trees in terms of birth-death trees (see
Section 5), the previous result could alternatively be deduced from the expression
of the survival probability of a birth-death tree up to a fixed time (see Proposition
A.1 in the appendix).

Proof. Suppose the CPP(ν, µ, z) is given by the usual construction with the Poisson
point processes N and (MN )n∈N . We use the regenerative property of the process
with respect to the natural filtration (Ft)t≥0 of the marked CPP defined by:

Ft = σ
(
N ∩ ([0, t]× R+),M(s,x), s ≤ t, x ≥ 0

)
.

Let X be the first clone on the real half-line.

X := inf{x ∈ [0, T (z)), M([[%, αx]]) = 0},
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with the convention inf ∅ = ∞ and with the usual notation. Then X is a (Ft)-
stopping time, and conditional on {X < ∞}, the law of the tree on the right of X
is the same as that of the original tree conditioned on having no mutation on the
origin branch. Let Cz := {X <∞} denote the event of existence of a mutation-free
lineage. Recall that Rz denotes the set of clonal leaves and that Oz denotes the
event that there is no mutation on the origin branch. Then we have

E [`(Rz)] = P(Cz)E [`(Rz) | Cz]
= P(Cz)E [`(Rz ∩ [X,∞)−X) | X <∞]
= P(Cz)E [`(Rz) | Oz]
= P(Cz)Wµ(z),

where the last equality is due to Corollary 3.8(ii). Furthermore,

E [`(Rz)] = E
∫ T (z)

0
1{t∈R̃} dt

=
∫ ∞

0
P(t ∈ R̃, t < T (z)) dt

=
∫ ∞

0
e−tν(z)e−µ(z) dt

= e−µ(z)

ν(z) = W (z) e−µ(z).

Therefore, the probability that there exists a clone of the origin in the present
population is

P(Cz) = W (z) e−µ(z)

Wµ(z) ,

which concludes the proof.

3.3 Application to the Allele Frequency Spectrum

3.3.1 Intensity of the Spectrum

From now on we fix two measures ν, µ satisfying assumptions (H), and we further as-
sume for simplicity that ν(z) ∈ (0,∞) for all z > 0. We denote by Tz a CPP(ν, µ, z).

Under the infinitely-many alleles model, recall that each mutation gives rise to a
new type called allele, so that the population on the boundary of the tree can be
partitioned into carriers of the same allele, called allelic partition. The key idea of
this section is that expressions obtained for the clonal population of the tree allow
us to gain information on quantities related to the whole allelic partition. We call
m ∈ Tz a mutation if M({m}) 6= 0 and denote by Tzm the subtree descending from
m. If f is a functional of real trees (say simple, marked, equipped with a measure
on the leaves), one might be interested in the quantity

ϕ(Tz, f) :=
∑
m∈Tz

mutation

f(Tzm), (3)
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or in its expectation
ψ(z, f) := E [ϕ(Tz, f)] .

For each mutation m ∈ Tz, we define the set Rzm of the leaves carrying m as their
last mutation

Rzm := {t ∈ R+, the most recent mutation on the lineage of αzt is m}.

We define the random point measure putting mass on the measures of the different
allelic clusters

Φz :=
∑
m∈Tz

mutation

1{Rzm 6=∅} δλ(Rzm).

The intensity of the allele frequency spectrum is the mean measure Λz of this point
measure, that is the measure on R+ such that for every Borel set B of R+,

Λz(B) = E[Φz(B)].

The analog for this measure when the number of individuals in the population is
finite is the mean measure (EA(k))k>0 of the number A(k) of alleles carried by
exactly k individuals (notation Aθ(k, t) in [19] and [8]). The goal here is then to
identify Λz, by noticing that for a Borel set B,

Φz(B) = ϕ(Tz, fB) and Λz(B) = ψ(z, fB),

with fB(T) := 1`(R)∈B, where T is an ultrametric tree with point mutations and
measure ` supported by its leaves, and R denotes the set of its clonal leaves.

Proposition 3.11. In a CPP(ν, µ, z), under the assumptions (H) and with the
notation of Theorem 3.3, the intensity of the allele frequency spectrum has a density
with respect to the Lebesgue measure:

Λz(dq)
dq = W (z)

(
e−µ(z)

Wµ(z)2 e−q/Wµ(z) +
∫

[0,z)

e−µ(x)

Wµ(x)2 e−q/Wµ(x)µ(dx)
)
.

Remark 3.12. This expression is to be compared with Corollary 4.3 in [8] (the term
(1− 1

W θ(x))k−1 with discrete k becoming here e−q/Wµ(x) with continuous q).

Remark 3.13. Integrating this expression, we get the expectation of the number of
different alleles in the population:

Λz(R+) = E[Φz(R+)] = W (z)
(

e−µ(z)

Wµ(z) +
∫

[0,z)

e−µ(x)

Wµ(x)µ(dx)
)
.

Note thatW (z) is the expectation of the total mass of the measure ` in a CPP(ν, µ, z).
It is then natural to normalize by this quantity and then let z → ∞. In (H) we
assumed that µ([0,∞)) =∞, and since Wµ(z) is an increasing, positive function of
z, we have clearly e−µ(z)

Wµ(z) → 0 when z →∞. Therefore we have

lim
z→∞

E[Φz(R+)]
W (z) =

∫
[0,∞)

e−µ(x)

Wµ(x)µ(dx).
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This provides us with a limiting spectrum intensity, written simply Λ:

Λ(dq)
dq := lim

z→∞
1

W (z)

(Λz(dq)
dq

)
=
∫

[0,∞)

e−µ(x)

Wµ(x)2 e−q/Wµ(x)µ(dx). (4)

Proof of Proposition 3.11. We aim at computing ψ(z, f), for f a measurable non-
negative function of a simple real tree T with point mutations equipped with a
measure ` on its leaves. Suppose the mutations (Mn)n≥1 on the tree T are numbered
by increasing distances from the root. By the branching property, for all n ≥ 1,
conditional on the height Hn of mutation Mn, the subtree growing from Mn has the
law of THn . Set

f̃(x) := E[f(Tx)].
Denoting Hz

n the height of the n-th mutation M z
n of Tz, we get

ψ(z, f) = E
[∑
n

f({subtree of Tz growing from M z
n})
]

=
∑
n

E [f({subtree of Tz growing from M z
n})]

=
∑
n

E
[
f̃(Hz

n)
]

= E
[∑
n

f̃(Hz
n)
]
.

Now this expression is simple to compute knowing f̃ and the intensity of the point
process giving mutation heights. Indeed, by elementary properties of Poisson point
processes

E
[∑
n

f̃(Hz
n)
]

= E

f̃(z) +
∑

y∈M(0,z)

f̃(y) +
∑

(t,x)∈N , t≤T (z)

 ∑
y∈M(t,x)

f̃(y)


= f̃(z) +

∫
[0,z)

f̃(x)µ(dx) + E
[
T (z)

∫
[0,z)

ν(dy)
∫ y

0
f̃(x)µ(dx)

]

= f̃(z) +
∫

[0,z)
f̃(x)µ(dx) + 1

ν(z)

∫
[0,z)

f̃(x)(ν(x)− ν(z))µ(dx)

= f̃(z) +W (z)
∫

[0,z)

f̃(x)
W (x)µ(dx).

Now consider, for a fixed q > 0, the function f given by f(T) := 1`(R)>q, where T
is a generic ultrametric tree with point mutations and measure ` supported by its
leaves, and R denotes the set of its clonal leaves. This allows us to compute the
expectation Λz((q,∞)) of the number of mutations carried by a population of leaves
of measure greater than q. Since the law of the measure of clonal leaves is known
for a CPP, (see Corollary 3.8), we deduce

f̃(z) = P(Cz)P(`(Rz) > q | Cz)
= P(Cz)P(λ(R̃ ∩ [0, T (z))) > q)

= W (z)e−µ(z)

Wµ(z) e−q/Wµ(z),
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where Cz again denotes the event of existence of clonal leaves in Tz and R̃ is the set
defined in Definition 3.1. Thus we have

Λz((q,∞)) = E[Φz((q,∞))]

= W (z)
(

e−µ(z)

Wµ(z)e−q/Wµ(z) +
∫

[0,z)

e−µ(x)

Wµ(x)e−q/Wµ(x)µ(dx)
)
.

Differentiating the last quantity yields the expression in the Proposition.

3.3.2 Convergence Results for Small Families

Recall the construction of a CPP from a Poisson point process N in Section 2.2,
and the point processes of mutations (MN )N∈N . Since a CPP(ν, µ, z) is given by
the points of N with first component smaller than T (z), this construction yields a
coupling of (Tz)z>0, where for each z > 0, Tz is a CPP(ν, µ, z). Recall the notation
Φz from the previous subsection. Then, similarly to Theorem 3.1 in [19], we have
the following almost sure convergence.

Proposition 3.14. Under the preceding assumptions, and assuming ν({∞}) = 0,
for any q > 0, we have the convergence:

lim
z→∞

Φz((q,∞))
T (z) =

∫
[0,∞)

e−µ(x)

Wµ(x)e−q/Wµ(x)µ(dx) = Λ((q,∞)) a.s.

Remark 3.15. Recall that Φz((q,∞)) is the number of alleles carried by a population
of leaves of measure larger than q in the tree Tz, and T (z) is the total size of the
population of Tz. The result is a strong law a large numbers: it shows that the
number of small families (with a fixed size) grows linearly with the total measure of
the tree at a constant speed given by the measure Λ defined by (4) as the limiting
allele frequency spectrum intensity.

Proof. We will use the law of large numbers several times. Let us first introduce some
notation. For z > 0, define (Ti(z))i≥1 as the increasing sequence of first components
of the atoms of N with second component larger than z, that is T1(z) = T (z) and
for any i ≥ 1

Ti+1(z) = inf{t > Ti(z), ∃x > z, (t, x) ∈ N}.

For z < z′, let N(z, z′) := #{(t, x) ∈ N : t ≤ T (z′), x > z}, that is the unique
number n such that

Tn(z) = T (z′).

Notice that the assumptions ν(z) ∈ (0,∞) for all z > 0 and ν({∞}) = 0 implies that
as z → ∞, T (z) → ∞ and N(z, z′) → ∞. Because the times (Ti+1(z) − Ti(z))i≥1
are i.i.d. exponential random variables with mean W (z) and since we have

T (z′) = T (z) +
N(z,z′)∑
i=2

(Ti+1(z)− Ti(z)),
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it is clear by the strong law of large numbers and from the fact that N(z, z′)→∞
as z′ →∞, that

T (z′)
N(z, z′) −→z′→∞

W (z) a.s.

Also, write Tz1, . . . ,TzN(z,z′) for the sequence of subtrees of height z within Tz′ that
are separated by the branches higher than z. That is, Tzi is the ultrametric tree
generated by the points of N with first component between Ti−1(z) and Ti(z). From
basic properties of Poisson point processes, they are i.i.d. and their distribution is
that of Tz.

Now, write h(T) for the height of an ultrametric tree (i.e., the distance between the
root and any of its leaves), and take any non-negative, measurable function f of
simple trees, such that

f(T) = 0 if h(T) > z. (∗)

Recall the definition of ϕ(T, f). Since f satisfies (∗), we can write

ϕ(Tz′ , f) =
N(z,z′)∑
i=1

ϕ(Tzi , f). (5)

Therefore, again by the strong law of large numbers, we have the following conver-
gence

ϕ(Tz′ , f)
N(z, z′) −→z′→∞

E[ϕ(Tz, f)] = ψ(z, f) a.s. (6)

Combining the two convergence results, it follows that

ϕ(Tz′ , f)
T (z′) −→

z′→∞

ψ(z, f)
W (z) a.s.

Let us apply this to the function f(T) = 1`(R)>q. This function f does not satisfy (∗)
for any z > 0, so we cannot apply (6) directly because (5) does not hold. However,
we can artificially truncate f by defining the restriction fz:

fz(T) := f(T)1h(T)<z,

which does satisfy (∗). Now since fz ≤ f , we have the inequality between random
variables

ϕ(Tz′ , fz) ≤ ϕ(Tz′ , f),

and by taking limits,

ψ(z, f)
W (z) ≤ lim inf

z′→∞

ϕ(Tz′ , f)
T (z′) a.s.

But we have ψ(z, f) = Λz((q,∞)) and as a consequence of Proposition 3.11, we have

Λz((q,∞))
W (z) = e−µ(z)

Wµ(z)e−q/Wµ(z) +
∫

[0,z)

e−µ(x)

Wµ(x)e−q/Wµ(x)µ(dx)

−→
z→∞

∫
[0,∞)

e−µ(x)

Wµ(x)e−q/Wµ(x)µ(dx),
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which is Λ((q,∞)) by definition. Therefore, we now have the inequality

Λ((q,∞)) ≤ lim inf
z′→∞

ϕ(Tz′ , f)
T (z′) a.s.

The converse inequality stems from a simple remark. There is at most N(z, z′)
mutations of height greater than z giving rise to an allele carried by some leaves
of Tz′ . This is simply because a population of n individuals can exhibit at most n
different alleles. Therefore, we have

ϕ(Tz′ , f) ≤ ϕ(Tz′ , fz) +N(z, z′),

which gives by taking limits

lim sup
z′→∞

ϕ(Tz′ , f)
T (z′) ≤ ψ(z, f) + 1

W (z) −→
z→∞

Λ((q,∞)) a.s.

We can finally conclude

ϕ(Tz, f)
T (z) −→

z→∞
Λ((q,∞)) a.s.,

which is the announced result.

4 The Clonal Tree Process

In this section we consider the clonal subtreeAz of a random tree Tz with distribution
CPP(ν, µ, z), where ν, µ are measures satisfying assumptions (H) and z > 0. We
further assume ν([0,∞)) = ∞, that is we ignore the case when Tz is a finite tree
almost surely. We will focus on the case when µ(dx) = θ dx.

4.1 Clonal Tree Process

There is a natural coupling in θ of the Poisson processes of mutations, in such a
way that the sets of mutations are increasing in θ for the inclusion. Let M denote a
Poisson point process with Lebesgue intensity on R2

+, and define for θ ≥ 0,

Mθ := M([0, θ]× · ).

Then Mθ is a Poisson point process on R+ with intensity θ dx, and the sequence
of supports of Mθ increases with θ. Let us use this idea to couple mutations with
different intensities on the random tree Tz. Recall the construction of a CPP with
a Poisson point process N in Section 2. For each point N = (t, x) of N ∪ {(0, z)},
let MN be a Poisson point process on R+ × [0, x] with Lebesgue intensity. For fixed
θ ≥ 0, we get the original construction with µ(dx) = θ dx when considering

M θ
N := MN ([0, θ]× · ).
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Therefore a natural coupling of mutations of different intensities (M θ)θ∈R+ is defined
on the random tree Tz. Denote Azθ the clonal subtree of height z at mutation level
θ, that is the subtree of Tz defined by

Azθ := {x ∈ Tz,M θ([[%, x]]) = 0}.

It is natural to seek to describe the decreasing process of clonal subtrees (Azθ)θ∈R+ .
As θ increases, it is clearly a Markov process since the distribution of Azθ+θ′ given
Azθ is the law of the clonal tree obtained after adding mutations at a rate θ′ along
the branches of Azθ. We will see that the process is also Markovian as θ decreases.
Its transitions are relatively simple to describe using grafts of trees.

4.2 Grafts of Real Trees

Given two real rooted trees (T1, d1, %1), (T2, d2, %2), and a graft point g ∈ T1, one
can define the real rooted tree that is the graft of the root of T2 on T1 at point g by

T1 ⊕g T2 := (T1 t T2 \{%2}, d, %1),

with the new distance d defined as follows. For any x, y ∈ T1 t T2,

d(x, y) := di(x, y) if x, y ∈ Ti for i ∈ {1, 2},

and
d(x, y) := d1(x, g) + d2(%2, y) if x ∈ T1, y ∈ T2.

For real simple trees, this graft has a nice representation when the graft point is a
leaf of the first tree.

Definition 4.1. For a simple tree A = (T , α, ω), define the buds of A as the set
B(A) of leaves of T that live a finite time

B(A) := {b ∈ T , b0 /∈ T , ω(b) <∞}.

For two simple trees Ai = (Ti, αi, ωi) with i ∈ {1, 2}, and for b ∈ B(A1), we define
the graft of A2 on A1 on the bud b, denoted A1 ⊕b A2 by:

T := T1 ∪ bT2,

α(b) := α1(b), ω(b) := ω1(b) + ζ2(∅),

∀u ∈ T1 \ {b}, α(u) := α1(u), ω(u) := ω1(u),

∀u ∈ T2 \ {∅},
{
α(bu) := ω(b) + (α2(u)− ω2(∅)),
ω(bu) := α(bu) + ζ2(u),

A1 ⊕b A2 := (T , (α(u), ζ(u), ω(u))u∈T ).

It is then clear that B(A1 ⊕b A2) := B(A1) \ {b} ∪ bB(A2). See Figure 5 for an
example.
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Figure 5: Simple tree graft

4.3 Evolution of the Clonal Tree Process

We study the increasing clonal tree process as we remove mutations (decreasing θ).
We therefore reverse time by denoting η = − ln θ, and defining Xz

η := Aze−η . Denote
Qz
η the distribution of Xz

η with values in the set of reversed (i.e., with time flowing
from z to 0) simple binary trees. See Figure 6 for a sketch of the tree growth process.
The increasing process (Xz

η )η∈R is nicely described in terms of grafts.

Theorem 4.2.

(i) The process (Xz
η )η∈R is a time-inhomogeneous Markov process, whose transi-

tions conditional on Xz
η can be characterized as follows.

• The buds of Xz
η are the leaves b of height ω(b). Independently of the

others, each bud b is given an exponential clock Tb of parameter 1.

• At time η′ = η+Tb, a tree if grafted on the bud b, following the distribution
Qω(b)
η′ , and each newly created bud b′ is given an independent exponential

clock Tb′ of parameter 1.

(ii) The infinitesimal generator evaluated at a function ϕ of simple trees which
depends only on a finite number of generations (i.e. such that the property
∃n ≥ 0, ϕ( · ) = ϕ( · |n) holds) can be written as follows

Lηϕ(A) =
∑

b∈B(A)

(
Qω(b)
η [ϕ(A⊕b Y )]− ϕ(A)

)
,

where Y is the random tree drawn under the probability measure Qω(b)
η .

(iii) Write τz for the first time the clonal tree process reaches the boundary, that is
the first time there is a leaf x ∈ Xz

η with d(%, x) = z, (where d is the distance
in the real tree Xz

η ):

τz = inf{η ∈ R : ∃x ∈ Xz
η , d(%, x) = z}.

Then the distribution of τz is given by

P(τz ≤ η) = W (z) e−e−ηz

Wη(z)
,
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where as previously W (z) = ν(z)−1, and

Wη(z) = W (0) +
∫

(0,z]
e−e−ηxdW (x),

that is Wη = Wµ with µ(dx) = e−η dx.

∅

1

21
22

∅ grows at time η2

211212

η1

1

22

η2 η3

21 grows at time η3

Figure 6: Markovian evolution of an increasing tree process. In this example, the
time η2 − η1 is an exponential time of parameter 1 and η3 − η2 is an exponential

time of parameter 3.

We first state a result that is already interesting in itself, which ensures that CPP
trees are reversed pure-birth trees (see next Section for details on birth-death trees
and their links with CPPs). We refer the reader to Subsection A.2, where a more
general result is proved.

Lemma 4.3. Let ν and µ be diffuse measures on [0,∞), satisfying assumptions (H)
and ν([0,∞)) = ∞. Fix z0 ∈ [0,∞) such that ν(z0) = 1 and let J = (0, z0]. Then
for z ∈ J , a CPP(ν, z) is the genealogy of a reversed (i.e. with time flowing from z to
0) pure-birth process with birth intensity β defined as the Laplace-Stieltjes measure
associated with the nondecreasing function − log ν, started from z.

Proof of Theorem 4.2. From Lemma 4.3, we can express the CPP in terms of a
pure-birth tree, with time flowing from z to 0 (but measured from 0 to z) and birth
intensity dβ = d(log ◦W ). Let T ⊂ U denote the complete binary tree

T :=
⋃
n≥0
{0, 1}n

Then we can define recursively (α(u), ω(u))u∈T by setting α(∅) = z, and for u = vi,
with i ∈ {0, 1}:

α(u) = ω(v) = sup[0, α(v)) ∩Bv,
with the convention sup∅ = 0, and where (Bv)v∈T are i.i.d. Poisson point processes
on [0, z] with intensity β. This defines the random reversed simple tree (T , α, ω) as
the genealogy of a pure-birth process with birth intensity β, with time flowing from
z to 0. In other words, by the definition of β, (T , α, ω) is the reversed simple tree
with distribution CPP(ν, z).

Now we define independently of (T , α, ω), a family (Mu)u∈T of i.i.d. Poisson point
processes on [0,∞)× [0, z] with Lebesgue intensity. Writing for η ∈ R and u ∈ T ,

Mη
u = Mu([0, e−η]× · ),
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we define a coupling ((Mη
u )u∈T )η∈R of point processes with intensity e−ηdx on the

branches of (T , α, ω).

Now let us define the process (Yη)η∈R by Yη = (Tη, αη, ωη), with

Tη := {u ∈ T , ∀v ≺ u, Mη
v ([α(v), ω(v)]) = 0},

αη(u) := α(u) ∀u ∈ Tη,
and ωη(u) := sup ({ω(u)} ∪ {s < α(u), Mη

u ([s, α(u)]) = 0}) ∀u ∈ Tη,

By definition, one can check that Yη is the clonal simple tree associated with the
tree (T , α, ω) and the point process of mutations (Mη

u )u∈T . Therefore (Yη)η∈R has
the same distribution as (Xz

η )η∈R. We define the filtration (Fη)η∈R as the natural
filtration of the process (Yη)η∈R, which we may rewrite:

Fη := σ
(
(αη′)η′≤η, (ωη′)η′≤η

)
.

From our definitions, for u ∈ T , we have:

ωη(u) = inf{s ∈ [0, α(u)], Mu([0, e−η]× [s, α(u)]) = 0 and Bu([s, α(u)]) = 0},

and since Mu and Bu are independent Poisson point processes, it is known that
conditional on Fη, we have: Mu ∩ [0,∞) × [0, ωη(u)) and Bu ∩ [0, ωη(u)) are inde-
pendent Poisson point processes, with intensity Lebesgue for Mu and β for Bu, on
their respective domains.

We can further notice that on the event {u is a bud of Yη}, conditional on Fη, the
families of point processes

(Muv ∩ [0,∞)× [0, ωη(u)))v∈T and (Buv ∩ [0, ωη(u)))v∈T

are independent families of independent Poisson point process with intensity Lebesgue
for Muv and β for Buv, on their respective domains.

Also, since Mu and Bu are independent and with diffuse intensities, we have the a.s.
equalities between events

{u is a bud of Yη}
= {ωη(u) = inf{s ∈ [0, α(u)], Mu([0, e−η]× [s, α(u)]) = 0}}
= {Bu({ωη(u)}) = 0}.

Moreover, since Mu is a Poisson point process with Lebesgue intensity on [0,∞)2, it
is known that on this event, conditional on ωη(u), the point process Mu restricted
to [0, e−η]× [0, ωη(u)] has the conditional distribution of:

δ(U, ωη(u)) + M̂,

where U is a uniform random variable on [0, e−η] and M̂ is an independent Poisson
point process on [0, e−η] × [0, ωη(u)) with Lebesgue intensity. Hence on the event
A := {u is a bud of Yη}, the distribution of

η̂ = inf{η′ ≥ η, Mu([0, e−η′ ]× {ωη(u)}) = 0}
= sup{η′ ≥ η, Mu([0, e−η′ ]× {ωη(u)}) = 1}
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is given by

P(η̂ − η ≥ t | A) = P(Mu([0, e−(η+t)]× {ωη(u)}) = 1 | A)
= P(U ∈ [0, e−(η+t)])
= e−t,

And so if u is a bud of Yη, the first time η̂ such that ωη̂(u) is lower than ωη(u)
satisfies that η̂ − η has an exponential distribution with parameter 1.

We may now prove the first point (i) of the theorem. Fix η ∈ R, and write (b1, b2, . . .)
for the distinct buds of Yη. We define, for i ≥ 1 and η′ ≥ η:

T̃ iη′ := {u, biu ∈ Tη′},
α̃iη′(∅) := ωη(bi) and for u ∈ T \ {∅}, α̃iη′(u) := αη′(biu),

ω̃iη′(u) := ωη′(biu),

Ỹ i
η′ :=

(
T̃ iη′ , α̃iη′ , ω̃iη′

)
.

This definition formulates that for η′ ≥ η, Ỹ i
η′ is the unique simple tree such that

Yη′ = A⊕bi Ỹ i
η′ for another simple tree A in which bi is a bud, with ωA(bi) = ωη(bi).

Note that when writing Yη′ = A ⊕bi Ỹ i
η′ , A may be different from Yη, even for η′

arbitrarily close to η, since other grafts may have occurred (possibly infinitely many
grafts if Yη has infinitely many buds).

Since b1, b2, . . . are the buds of Yη, the sets b1T , b2T , . . . are disjoint. Thus, from our
construction, the following families of random variables are independent conditional
on Fη:

(Bb1u)u∈T , (Bb2u)u∈T . . . , (Mb1u)u∈T , (Mb2u)u∈T , . . .

Furthermore, we know how to describe their distributions conditional on Fη because
of the previous observations. It follows that the trees (Ỹ i

η′)i≥1 are independent
conditional on Fη and the distribution of (Ỹ i

η′)η′≥η can be described by:

There is a random variable η̂ such that

• η̂ − η is exponentially distributed with parameter 1.

• For η ≤ η′ < η̂, we have ωη′(bi) = ωη(bi) so Ỹ i
η′ is the empty tree (or rather

contains only one point, the root).

• Conditionally on η̂, the process (Ỹ i
η′)η′≥η̂ is distributed as our construction of

the process (Yη′)η′≥η̂, with the initial condition α(∅) = ωη(bi).

This concludes the proof of (i).

For (ii), write T for the set of simple binary trees and suppose we have a bounded
measurable map ϕ : T→ R and a number n ≥ 0 such that

ϕ(A) = ϕ(A|n) A ∈ T.

Consider a fixed tree A = (T , α, ω) ∈ T. There is a finite number of buds b1, . . . , bm
in the first n generations T|n, therefore for a fixed η ∈ R, conditional on {Xz

η = A},
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the process (ϕ(Xz
η′))η′≥η is a continuous time Markov chain. It follows from (i) that

this Markov chain jumps after an exponential time with parameter m to a new state
where one of the buds, uniformly chosen, grows into a new tree. That is, denoting
Lη the infinitesimal generator of the process (Xz

η )η≥η0 ,

Lηϕ(A) =
m∑
i=1

(
Qω(bi)
η [ϕ(A⊕bi Y )]− ϕ(A)

)
,

where Y is the random tree drawn under the probability measure Qω(bi)
η .

For (iii), note that the existence of a leaf in the clonal subtree at a distance z from
the root coincides a.s. with the existence of a clonal leaf in Tz, where Tz is the
original CPP(ν, z) with mutation measure µ(dx) = e−η dx. Then the formula in the
proof follows from Proposition 3.9, which gives the probability that there is a clonal
leaf in a CPP.

The branching random walk of the buds. Forgetting the structure of the tree
and considering only the height of the buds, the process becomes a rather simple
branching random walk. Write χzη :=

∑
b∈B(Xz

η ) δω(b) for the point measure on R+
giving the heights of the buds in Xz

η . Then (χzη)η≥η0 is a branching Markov process
where each particle stays at their height z′ during their lifetime (an exponential time
of parameter 1), then splits at their death time η according to the distribution of χz′η .
Similarly to the preceding paragraph, one can describe the infinitesimal generator
of this process as follows. For a map f : R+ → R+ that is zero in a neighborhood of
0 and a Radon point measure Γ on (0,∞) (i.e. such that Γ([x,∞)) < ∞ ∀x > 0),
write ϕf (Γ) for the sum

ϕf (Γ) :=
∫
f(z)Γ(dz).

Then the infinitesimal generator Lη at time η of the time-inhomogeneous process
(χη)η∈R, evaluated at ϕf , is given by

Lηϕf (Γ) =
∫

Qz
η[ϕf (χ)] Γ(dz)− ϕf (Γ).

5 Link between CPP and Birth-Death Trees

5.1 Birth-Death Processes

An additional well-known example of random tree is given by the genealogy of a
birth-death process, which will appear as an alternative description of our CPP trees.
Here, a birth-death process is a time-inhomogeneous, time-continuous Markovian
branching process living in Z+ with jumps in {−1, 1}. In a general context, we will
define the genealogy of a birth-death process as a random simple tree, which we may
equip with a canonical limiting measure on the set of its infinite lineages.

Let J = [t0, t∞) be a real interval, with −∞ < t0 < t∞ ≤ ∞. Suppose there are two
measures on J , β and κ, respectively called the birth intensity measure and death
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intensity measure, or simply birth rate and death rate, which satisfy for all t ∈ J

β([t0, t]) <∞, κ([t0, t]) <∞
β({t}) = 0, κ({t}) = 0.

(7)

In other words, β and κ are diffuse Radon measures on J .

Informally, the population starts with one individual at time t0, and each individual
alive at time t ≥ t0 may give birth to a new individual at rate β(dt), and die at rate
κ(dt).

Definition 5.1. Let J = [t0, t∞) be a real interval, with −∞ < t0 < t∞ ≤ ∞, and
β and κ measures on J satisfying (7). Independently for each u ∈

⋃
n{0, 1}n, we

define Bu and Du two independent point processes, such that Bu (resp. Du) is a
Poisson point process on J with intensity β (resp. κ).

The genealogy of a (β, κ) birth-death process started from t ∈ J is the random
binary simple tree (T , α, ω) defined recursively by:

1. ∅ ∈ T , with α(∅) = t.

2. For each u ∈ T , we set TB(u) := inf Bu ∩ (α(u), t∞), and TD(u) := inf Du ∩
(α(u), t∞). Then there are three different possibilities:

• if TB(u) < TD(u), then we set u0, u1 ∈ T , and α(u0) = α(u1) = ω(u) :=
TB(u),

• if TD(u) < TB(u), then we set ω(u) = TD(u), and u0, u1 /∈ T ,

• if TB(u) = TD(u) = t∞, then we set ω(u) = t∞, and u0, u1 /∈ T .

Birth-death processes have been known for a long time. They have been studied
thoroughly as early as 1948 [17]. In the case of pure-birth processes with infinite
descendance, we introduce a canonical measure on the boundary of the tree.

Definition 5.2. Under the assumption κ = 0 and β(J) = ∞, the tree (T , α, ω) is
said to be the genealogy of a pure-birth process. It may then be equipped with
a measure L on its boundary ∂T = {0, 1}N defined by

L (Bu) := lim
s↑t∞

Nu(s)
eβ([t0,s])

u ∈ T ,

where Bu = {v ∈ ∂T , u ≺ v} is defined as in Definition 2.4, and Nu(s) is the number
of descendants of u at time s:

Nu(s) := #{v ∈ T , u � v, α(v) < s ≤ ω(v)}.

Remark 5.3. The limits in the definition are well-defined because for each u ∈ T ,
conditional on α(u), the process

(
Nu(s)

eβ([t0,s])

)
s≥α(u)

is a non-negative martingale. Also,
the fact that the map u 7→ Nu(s) is additive combined with Remark 2.2 justifies
that the measure L is well defined.

Finally, let us introduce random mutations on a birth-death tree as a random discrete
set of points.
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Definition 5.4. Let µ be a diffuse Radon measure on J , and let # denote the
counting measure on

⋃
n{0, 1}n. A birth-death tree (T , α, ω) may be equipped with

a setM of neutral mutations at rate µ by defining, independently of the preceding
construction, a Poisson point process M̃ on (

⋃
n{0, 1}n) × J with intensity # ⊗ µ,

and then defining:

M := {(u, s) ∈ M̃, u ∈ T , α(u) < s ≤ ω(u)}.

This point processM is then a discrete subset of the skeleton of the real tree (defined
as in (1)) associated with (T , α, ω).

Example. The Yule tree is the genealogy of a pure-birth process with J = [0,∞)
and a birth rate β equal to the Lebesgue measure, which means that the branches
separating two branching points are i.i.d exponential random variables with param-
eter 1. Every pure-birth tree with β(J) =∞ can be time-changed into a Yule tree,
with the time-change ϕ : J → [0,∞), t 7→ β([t0, t]) (see Proposition A.2).

5.2 Link between CPP and Supercritical Birth-Death Trees

We first provide a refined version of Lemma 4.3 which is proved in Subsection A.2.

Lemma 5.5. Under the assumptions of Lemma 4.3, the CPP(ν, z) with boundary
measured by ` is the genealogy of a reversed pure-birth process with birth intensity
dβ = −d log ν started from z, with boundary measured by L .

Let J = [t0, t∞) be a real interval, with −∞ < t0 < t∞ ≤ ∞, and let β and κ be
diffuse Radon measures on J , i.e. measures satisfying (7). Consider a birth-death
process started from t0 with birth rate β and death rate κ. Let us define

It :=
∫

[t,t∞)
e−β([t,s])+κ([t,s]) β(ds)

β∗(dt) := β(dt)
It

In a birth-death process with β(J) = ∞, we say that an individual i alive at time
t has an infinite progeny if Ni(s) > 0 for any time s > t. It is known (see [17])
that the process is supercritical (i.e., the event {lim inft→t∞ N∅(t) > 0} has positive
probability) if and only if It0 <∞, and that the probability of non-extinction for a
process started at time t ∈ J is then I−1

t . Also, if the birth-death process with rates
(β, κ) is supercritical, then conditional on non-extinction, the subtree of individuals
with infinite progeny is a pure-birth tree with birth rate β∗.

Now we assume Poissonian neutral mutations are set on the genealogy of a (β, κ)
supercritical birth-death process, according to a rate µ, where µ is a diffuse Radon
measure on J . We also assume β∗(J) =∞ so that limt→t∞ N∅(t) = +∞ conditional
on non-extinction. Conditional on non-extinction, the subtree of individuals with
infinite progeny is a measured simple tree equipped with mutations (T , α, ω,L ,M),
where:

• (T , α, ω,L ) is a random simple binary tree constructed (see Definition 5.2)
from a pure-birth process with birth rate β∗.
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• With M̂ a Poisson point process on (
⋃
n≥0{0, 1}n) × J with intensity # ⊗ µ,

the mutations on the branches of T are defined as the set

M = {(i, t) ∈ M̂, i ∈ T , α(i) < t ≤ ω(i)}

One may study this measured tree with mutations as the limit in time of the geneal-
ogy of the birth-death process with neutral mutations. We show that this measured
tree with mutations is in fact a time-changed CPP tree.

Theorem 5.6. Let J = [t0, t∞) be a real interval, with −∞ < t0 < t∞ ≤ ∞, and let
β and µ be diffuse Radon measures on J , with β(J) =∞. Let T = (T , α, ω,M,L )
be a random measured simple tree representing the genealogy of a pure-birth process
with rate β started from t0, equipped with mutations at rate µ. Let ϕ : J → (0, 1] be
the time-change defined by

ϕ : t 7→ e−β([t0,t)).

Then the time-changed tree ϕ(T) (see Proposition A.2) has the distribution of a
CPP

(
dx
x2 , µ ◦ ϕ−1, 1

)
.

Proof. Thanks to Lemma 5.5, we only need to exhibit a correct time change to prove
the Theorem. We know that a time-changed birth-death tree is still a birth-death
tree: this is explicitly stated in Proposition A.2 in the appendix. This implies here
that the time-changed tree ϕ(T) is a (reversed) pure-birth process with birth rate
β ◦ ϕ−1, started from ϕ(t0) = 1, and equipped with mutations with rate µ ◦ ϕ−1.
Let us first check that β ◦ ϕ−1(dx) = d log(x). Since β is diffuse, ϕ is continuous
decreasing, so for all x ∈ (0, z0], we have ϕ(ϕ−1(x)) = x, where ϕ−1 is the right-
continuous inverse of ϕ. Therefore we have, for all a < b ∈ (0, 1]:

β ◦ ϕ−1([a, b]) = β([ϕ−1(b), ϕ−1(a)])
= logϕ(ϕ−1(b))− logϕ(ϕ−1(a))
= log(b)− log(a).

Now notice that for x ∈ (0, 1],

− log
(∫ ∞

x

1
y2 dy

)
= log x,

so according to Lemma 5.5, a CPP
(

dx
x2 , µ ◦ ϕ−1, 1

)
is a pure-birth process with birth

rate β(dx) = d log(x), started from 1 and equipped with mutations at rate µ ◦ ϕ−1.
Therefore its distribution is identical to the distribution of ϕ(T).

Acknowledgements. The authors thank the Center for Interdisciplinary Re-
search in Biology (Collège de France) for funding.
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A Appendix

A.1 Birth-Death Processes

Proposition A.1. Let J = [t0, t∞) be a real interval, with −∞ < t0 < t∞ ≤ ∞,
and β and κ diffuse Radon measures on J (i.e. satisfying (7)). Let Pt denote the
distribution of the genealogy of a (β, κ) birth-death process started with one individual
at time t ∈ J , and let NT be the number of individuals alive at time T ∈ J . For
T > t and α ≥ 0, we have:

Et(e−αNT ) = 1− (1− e−α)
eκ([t,T ])−β([t,T ]) + (1− e−α)

∫
[t,T ] eκ([t,s])−β([t,s])β(ds)

,

and in particular,

Pt(NT > 0) =
(

eκ([t,T ])−β([t,T ]) +
∫

[t,T ]
eκ([t,s])−β([t,s])β(ds)

)−1

.

Proof. With a fixed time horizon T ∈ J and a fixed real number α ≥ 0, write for
t < T ,

q(t) = Et(e−αNT ).

We use a different description of the birth-death process than the one used in Sec-
tion 5, and consider a population where individuals die at rate κ, and during their
lifetime, produce a new individual at rate β. Notice that for any s > t, the number
of individuals alive at time s has the same distribution in both models.

Thus we write D for the death time of the first individual, and Bi for the possible
birth time of her i-th child. With our description, D has the distribution of the first
atom of a Poisson point process on [t, t∞) with intensity κ and conditional on D,
the set {B1, B2, . . . , BN} is a Poisson point process on [t,D] with intensity β. Also,
write Ñ i

T for the number of alive descendants of the i-th child at time T . Since we
have NT = 1D>T +

∑
i Ñ

i
T , we have

q(t) = Et
[
e−α1D>T

∏
i e−αÑ i

T

]
,

where we define by convention Ñ i
T = 0 if Bi > T . Now conditional on D and (Bi),

(Ñ i
T ) are independent, with Ñ i

T equal to the distribution of NT under PBi . Hence

q(t) = Et
[
e−α1D>T

∏
i q(Bi)

]
,

where we use the convention q(u) := 1 if u > T . Now conditional on D, (Bi) are
the atoms of a Poisson point process with intensity β(ds) on [t,D], so we have

q(t) = Et

[
e−α1D>T exp

(
−
∫

[t,D]
(1− q(s))β(ds)

)]

=
∫

[t,∞)
κ(du) e−κ([t,u))e−α1u>T exp

(
−
∫

[t,u]
(1− q(s))β(ds)

)
,
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which implies by differentiation

dq(t) = −κ(dt) + q(t) [κ(dt) + (1− q(t))β(dt)] ,

which in turn may be rewritten

d
( 1

1− q(t)

)
= −β(dt) +

( 1
1− q(t)

)
(β(dt)− κ(dt)).

Remark that with F (t) := eβ([t,T ])−κ([t,T ]), we have dF (t) = F (t)(κ(dt)− β(dt)), so
that

d
(

F (t)
1− q(t)

)
= −F (t)β(dt),

and since q(T ) = e−α, we have by integration on [t, T ]:

1
1− e−α −

F (t)
1− q(t) = −

∫
[t,T ]

F (s)β(ds),

that is

1− q(t) = (1− e−α)
eκ([t,T ])−β([t,T ]) + (1− e−α)

∫
[t,T ] eκ([t,s])−β([t,s])β(ds)

.

This characterizes the distribution of NT under Pt for all T . In particular, letting
α→∞, we get

Pt(NT > 0) =
(

eκ([t,T ])−β([t,T ]) +
∫

[t,T ]
eκ([t,s])−β([t,s])β(ds)

)−1

,

which concludes the proof.

Proposition A.2 (Time-changed birth-death processes). Let J = [t0, t∞) be a real
interval, with −∞ < t0 < t∞ ≤ ∞, and β, κ, and µ diffuse Radon measures on J
(i.e. satisfying (7)). Let ϕ : J → R be an increasing function, and define t′0 := ϕ(t0),
t′∞ := limt↑t∞ ϕ(t) and J ′ = [t′0, t′∞). We assume that ϕ satisfies

∀t < t∞, ϕ(t) < t′∞.

Let T = (T , α, ω,M) be the genealogy of a (β, κ) birth-death process, started at t ∈ J
and equipped with Poissonian mutations with rate µ, as in Definition 5.4. We define
the time-changed simple tree:

ϕ(T) := (T , ϕ ◦ α,ϕ ◦ ω, {(u, ϕ(s)), (u, s) ∈M}).

If β ◦ϕ−1 and κ◦ϕ−1 (the push-forwards of β and κ by ϕ) still have no atoms, then
ϕ(T) has the distribution of the genealogy of a (β ◦ϕ−1, κ ◦ϕ−1) birth-death process,
started at ϕ(t) ∈ J ′ and equipped with Poissonian mutations with rate µ ◦ ϕ−1.

Also, if κ = 0 and β(J) = ∞, then κ ◦ ϕ−1 = 0 and β ◦ ϕ−1(J ′) = ∞, and the
measures LT and Lϕ(T) on ∂T , defined for T and for ϕ(T), are the same.
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Proof. Suppose T is constructed as in Definition 5.1 with independent Poisson point
processes Bu and Du with respective intensities β and κ, for each u ∈

⋃
n{0, 1}n.

This implies that the random sets defined by

ϕ(Bu) := {ϕ(s), s ∈ Bu},
ϕ(Du) := {ϕ(s), s ∈ Du},

are independent Poisson point processes on the interval J ′ with respective intensities
β ◦ ϕ−1 and κ ◦ ϕ−1. Remark that by assumption, for η ∈ {β, κ}, for all t′ ∈ J ′, we
have η ◦ ϕ−1({t′}) = 0, so we a.s. have t′ /∈ ϕ(Bu) and t′ /∈ ϕ(Du). Now since α(u)
is independent of Bu and Du, we have also a.s.

ϕ ◦ α(u) /∈ ϕ(Bu) ∪ ϕ(Du). (8)

By definition, we have ∅ ∈ T and α(∅) = t, so ϕ ◦ α(∅) = ϕ(t). Then, if u ∈ T ,
with TB(u) = inf Bu ∩ (α(u), t∞), and TD(u) = inf Du ∩ (α(u), t∞), the following
assertions hold.

• Since we have (8), we know that a.s. for all s ∈ Bu ∩ (α(u), t∞), we have
ϕ(α(u)) < ϕ(s). This ensures that ϕ(TB(u)) = inf ϕ(Bu) ∩ (ϕ ◦ α(u), t′∞).

• For the same reason, we have ϕ(TD(u)) = inf ϕ(Du) ∩ (ϕ ◦ α(u), t′∞).

• Because ϕ(Bu) is independent of ϕ(Du) and because β ◦ ϕ−1 and κ ◦ ϕ−1 are
diffuse by assumption, we have ϕ(Bu) ∩ ϕ(Du) = ∅ almost surely. Therefore,
we have:

– ϕ(TB(u)) < ϕ(TD(u)) ⇐⇒ TB(u) < TD(u), which implies u0, u1 ∈ T ,
and ϕ ◦ α(u0) = ϕ ◦ α(u1) = ϕ ◦ ω(u) = ϕ(TB(u)),

– ϕ(TD(u)) < ϕ(TB(u)) ⇐⇒ TD(u) < TB(u), which implies ϕ ◦ ω(u) =
ϕ(TD(u)), and u0, u1 /∈ T ,

– ϕ(TB(u)) = ϕ(TD(u)) = t′∞ ⇐⇒ TB(u) = TD(u) = t∞, which implies
ϕ ◦ ω(u) = t′∞, and u0, u1 /∈ T .

Thus (T , ϕ ◦ α,ϕ ◦ ω) is defined as a (β ◦ ϕ−1, κ ◦ ϕ−1) birth-death process, started
at ϕ(t).

For the neutral mutations, we assume there is, as in Definition 5.4, a Poisson point
process M̃ on (

⋃
n{0, 1}n)× J with intensity #⊗ µ, and such that:

M = {(u, s) ∈ M̃, u ∈ T , α(u) < s ≤ ω(u)}.

Now {(u, ϕ(s)), (u, s) ∈ M̃} is a Poisson point process on (
⋃
n{0, 1}n) × J ′ with

intensity #⊗ µ ◦ ϕ−1, so

{(u, ϕ(s)), (u, s) ∈M} = {(u, ϕ(s)), (u, s) ∈ M̃, u ∈ T , α(u) < s ≤ ω(u)}

is the definition of random neutral mutations at rate µ ◦ ϕ−1 on the tree (T , ϕ ◦
α,ϕ ◦ ω).
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It remains to prove that in the case κ = 0 and β(J) = ∞, the measures LT and
Lϕ(T) are the same. By definition, we have for u ∈

⋃
n{0, 1}n,

Lϕ(T)(Bu) = lim
s′↑t′∞

N ′u(s′)
eβ◦ϕ−1([t′0,s′])

= lim
s↑t∞

N ′u(ϕ(s))
eβ◦ϕ−1([t′0,ϕ(s)]) ,

where N ′u(s′) := #{v ∈ T , u � v, ϕ ◦ α(v) < s ≤ ϕ ◦ ω(v)} is the number of
descendants of u in the time-changed tree at time s′. But we have a.s. for all s ∈ J ,
N ′u(ϕ(s)) = Nu(s), and also β ◦ ϕ−1([t′0, ϕ(s)]) = β([t0, s]), so finally

Lϕ(T)(Bu) = lim
s↑t∞

N ′u(ϕ(s))
eβ◦ϕ−1([t′0,ϕ(s)]) ,

= lim
s↑t∞

Nu(s)
eβ([t0,s])

= LT(Bu),

which ends the proof.

Proposition A.3 (Characterization of pure-birth processes). Let J = [t0, t∞) be a
real interval, with −∞ < t0 < t∞ ≤ ∞, and β a diffuse Radon measure on J , such
that β(J) =∞.

There is a unique family (Pt)t∈J of distributions on simple trees (T , α, ω,L ) equipped
with a measure L on ∂T := {0, 1}N, such that for all t ∈ J

(i) T =
⋃
n{0, 1}n and α(∅) = t Pt-almost surely.

(ii) Pt(ω(∅) > s) = e−β([t,s)).

(iii) Under Pt, L (∂T ) is an exponential random variable with mean e−β([t0,t)).

(iv) Under Pt, define for i ∈ {0, 1}, αi(u) := α(iu), ωi(u) := ω(iu), Li the mea-
sure on ∂T such that Li(Bu) = L (Biu) for all u ∈ T and finally Ti :=
(T , αi, ωi,Li). Then the conditional distribution of the pair of trees (T0,T1)
given ω(∅) is P⊗2

ω(∅), i.e. they are independent with the same distribution Pω(∅).

Furthermore, for all t ∈ J , Pt is the distribution of the genealogy of a pure-birth
process with birth rate β started with one individual at time t ∈ J , equipped with L
the measure on ∂T introduced in Definition 5.2.

Proof. Let Qt be the law of the genealogy of a β pure-birth process started from
t. We will first show that the family (Qt)t∈J satisfies the assertions (i)-(iv) of the
theorem.

(i) By definition α(∅) = t. Also, the fact that for all t ∈ T , β([t, t∞)) =∞, implies
that for each Poisson point process with intensity β on J , there are infinitely many
points in [t, t∞). This implies that each individual in the process will eventually
split into two, so that T =

⋃
n{0, 1}n Pt-almost surely.
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(ii) Under Qt, ω(∅) is distributed as the first point of a Poisson point process B∅
on [t, t∞) with intensity β. Therefore,

Qt(ω(∅) > s) = Qt(#B∅ ∩ [t, s) = 0) = e−β([t,s)).

(iii) By Proposition A.1, writing Et for the expectation under Qt, we have for t <
T < t∞,

Et(e−αNT ) = 1− (1− e−α)
e−β([t,T ]) + (1− e−α)(1− e−β([t,T ]))

.

Replacing α by αe−β([t0,T ]) and letting T → t∞, we have by dominated convergence:

Et(e−αL (∂T )) = 1
αe−β([t0,t)) + 1,

which implies that L (∂T ) is an exponential random variable with mean e−β([t0,t)).

(iv) Let us define a family (Bu)u∈T of independent Poisson point processes on J with
intensity β. Let us write F for the deterministic function such that for all t ∈ J ,
F (t, (Bu)u∈T ) is the simple tree T = (T , α, ω,L ) constructed as in Definition 5.1,
which follows the distribution Qt. By assumption, the two families (B0u)u∈T and
(B1u)u∈T are independent, and by construction, we have

T0 = F (ω(∅), (B0u)u∈T ) and T1 = F (ω(∅), (B1u)u∈T ),

where T0 and T1 are defined as in the statement of the Proposition. Therefore,
under Qt, the conditional distribution of (T0,T1) given ω(∅) is P⊗2

ω(∅).

Now, let us show that if a family (Pt)t∈J satisfies the assertions (i)-(iv) of the
Proposition, it satisfies also the following one. Let Tn be the complete binary tree
with n generations

Tn :=
n⋃
k=0
{0, 1}k,

and let Pnt be the distribution of (α(u), ω(u),L (Bu))u∈Tn , where (T , α, ω,L ) has
distribution Pt. Now we view Pnt as a probability measure on the space
(R3)Tn = {(x(u), y(u), z(u)), u ∈ Tn}. Then we have

1. x(∅) := t Pnt -almost surely.

2. For all m ≤ n and u ∈ Tm, conditional on x(u) and independently of the
variables (x(v), y(v))v∈Tm\{u}, the distribution of y(u) is given by:

Pnt (y(u) > s) = e−β([x(u),s)) s ≥ x(u).

3. For all u ∈ {0, 1}n, conditional on x(u) and independently of the rest, z(u) is
defined as an exponential random variable with mean e−β([t0,x(u))).

4. For all u ∈ Tn−1, x(u0) = x(u1) := y(u).

5. For all u ∈ Tn−1, z(u) := z(u0) + z(u1).
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Indeed, assertion 1 is directly deduced from (i), 5 is trivial because L is additive,
and 2, 3 and 4 are proved by induction on n using (iv). One can check that 2 stems
from (ii) and (iv), 3 from (iii) and (iv), and 4 from (i) and (iv).

Now it is clear that these five assumptions define Pnt uniquely for n ≥ 0 and t ∈
J . Also, a measured simple tree (T , α, ω,L ) for which T =

⋃
n{0, 1}n is entirely

described by (α(u), ω(u),L (Bu))u∈T ∈ (R3)T . This implies that Pt is uniquely
determined by its marginal distribution (Pnt )n≥0.

Finally, we have shown that the family (Qt)t∈J , where Qt is the law of the genealogy
of a β pure-birth process started from t, satisfies assertions (i)-(iv). In addition,
we have shown that there is at most one family (Pt) of simple tree distributions
satisfying assertions (i)-(iv). Therefore, such a family exists and is unique, which
concludes the proof.

A.2 Proof of Lemmas 4.3 and 5.5

Let us write Pz for the distribution of a CPP(ν, z). Let N be a Poisson point
process with intensity dt ⊗ ν as in our construction of CPP trees. Recall that
T (z) = inf{t ≥ 0, (x, t) ∈ N , x ≥ z} and define

Nz := N ∩ ([0, T (z))× [0, z]).

Define also Tz as the comb function tree given by Nz with distribution denoted Pz.
Write Pz for the distribution of the pair (Nz, T (z)).

In Proposition A.3, we characterized the distributions of pure-birth processes. As a
result, to conclude the present proof, it is sufficient to show that the family (Pz)z∈J
satisfies the following conditions:

(i) We have T =
⋃
n{0, 1}n and α(∅) = z Pz-almost surely.

(ii) We have Pz(ω(∅) < x) = e−β((x,z]).

(iii) Under Pz, L (∂T ) is an exponential random variable with mean e−β((z,z0]).

(iv) Under Pz, define for i ∈ {0, 1}, αi(u) := α(iu), ωi(u) := ω(iu), Li the mea-
sure on ∂T such that Li(Bu) = L (Biu) for all u ∈ T and finally Ti :=
(T , αi, ωi,Li). Then the conditional distribution of the pair of trees (T0,T1)
given ω(∅) is P⊗2

ω(∅), i.e. they are independent with the same distribution
Pω(∅).

Let us now prove each assertion.

(i) Since ν([0,∞)) =∞ we have a.s. for any 0 ≤ a < b ≤ T (z):

#(Nz ∩ [a, b]× [0,∞)) =∞.

Also, since ν is diffuse, we have a.s. for all x > 0 that #(N ∩ [0,∞) × {x}) ≤ 1
Those two conditions imply that Tz is a complete binary tree.

(ii) – (iii) The first branching point of the tree Tz is ω(∅) = max{x > 0, (t, x) ∈
Nz}. Also the total mass of the tree is L (∂T ) = T (z), which is an exponential
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random variable with mean (ν(z))−1 = e−β((z,z0]). We can easily compute the dis-
tribution of ω(∅) under Pz, since conditional on T (z), Nz is a Poisson point process
on [0, T (z))× [0, z] with intensity dt⊗ ν. Therefore, for x ∈ (0, z]:

Pz(ω(∅) < x) =
∫ ∞

0
P(T (z) ∈ dt)e−tν([x,z])

=
∫ ∞

0
ν(z)e−ν(z)te−t(ν(x)−ν(z))dt

=
∫ ∞

0
ν(z)e−ν(x)tdt

= ν(z)
ν(x) = e−β((x,z]).

(iv) Finally it remains to prove the branching property for the family (Pz)z∈(0,z0].

Under Pz, conditional on ω(∅), let (N1, T1) and (N2, T2) be independent random
variables of identical distribution Pω(∅). We concatenate N1 and N2, adding a point
of height ω(∅) between the two sets:

Ñ = N1 ∪ {(T1, ω(∅))} ∪ {(T1 + t, x), (t, x) ∈ N2}.

We claim that the following equality in distribution holds:

(Ñ , T1 + T2) (d)= (Nz, T (z)), (9)

which formulates the branching property for the family (Pz)z∈(0,z0].

From basic properties of Poisson point processes, we know that conditional on T (z),
the highest atom of Nz is (U,Z), with U having a uniform distribution on [0, T (z)]
and Z := ω(∅) independent of U , such that

Pz(Z ≤ x | T (z)) = e−T (z)(ν(x)−ν(z)).

The joint distribution of (Z, T (z)) is therefore given by:

E[f(T (z))1Z≤x] =
∫ ∞

0
ν(z)e−ν(z)te−t(ν(x)−ν(z))f(t)dt

=
∫ ∞

0
ν(z)e−ν(x)tf(t)dt

=
∫ ∞

0
ν(z)

∫ ∞
ν(x)

te−utdu f(t)dt

=
∫ ∞
ν(x)

ν(z)
u2

∫ ∞
0

tu2e−utf(t)dt du

In other words, the random variable ν(Z) has a density ν(z)
u2 1u≥ν(z)du, and condi-

tional on ν(Z), T (z) follows a Gamma distribution with parameter (ν(Z), 2). As
U/T (z) is uniform on [0, 1] and independent of Z, one can check that (Z, T (z), U)
has the same distribution as (Z, T1 + T2, T1), where conditional on Z, the variables
T1 and T2 are independent with the same exponential distribution with parame-
ter ν(Z). This concludes the proof of (9) since conditional on (Z, T (z), U) (resp.
(Z, T1 + T2, T1)), Nz \ {(U,Z)} (resp. Ñ \ {(T1, Z)}) is a Poisson point process on
[0, T (z))× [0, Z] (resp. on [0, T1 + T2)× [0, Z]) with intensity dt⊗ ν.
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A.3 Subordinators and Regenerative Sets

We use some classical results about regenerative sets and subordinators, whose
proofs can be found in the first two sections of Bertoin’s Saint-Flour lecture notes [6].

Definition A.4. A subordinator is a right-continuous, increasing Markov process
(σt)t≥0 started from 0 with values in [0,∞], where ∞ is an absorbing state, such
that for all s < t, conditional on {σs <∞}, we have

σt − σs
(d)= σt−s.

Theorem A.5. The distribution of a subordinator is characterized by its Laplace
exponent defined as the increasing function ϕ : [0,∞) → [0,∞), such that for all
λ, t ≥ 0,

E[e−λσt ] = e−tϕ(λ),

with the convention e−λ∞ = 0 for all λ ≥ 0. The Laplace exponent can be written
under the form

ϕ(λ) = k + dλ+
∫

(0,∞)
(1− e−λx)π(dx),

where k is called the killing rate, d the drift coefficient and π the Lévy measure
of the subordinator. Necessarily, we have k, d ≥ 0 and π satisfies∫

(0,∞)
(1 ∧ x)π(dx) <∞.

Letting ζ := inf{t ≥ 0, σt = ∞} be the lifetime of the subordinator, ζ follows an
exponential distribution with parameter k (if k = 0, then ζ ≡ ∞). Also we have
almost surely for all t < ζ,

σt = dt+
∑
s≤t

∆σs,

and the set of jumps {(s,∆σs), ∆σs > 0} is a Poisson point process with intensity
ds⊗ π.

The renewal measure of a subordinator is defined as the measure U(dx) on [0,∞)
such that for any non-negative measurable function f∫

[0,∞)
f(x)U(dx) = E

[∫ ζ

0
f(σt)dt

]
.

This renewal measure characterizes the distribution of σ since its Laplace transform
is the inverse of ϕ

1
ϕ(λ) =

∫
[0,∞)

e−λxU(dx).

Remark also that setting Lx := inf{t ≥ 0, σt > x} the right-continuous inverse of σ,
we have

U(x) := U([0, x]) = E
[∫ ∞

0
1σt≤x dt

]
= E[Lx].

Definition A.6. Given a probability space (Ω,F ,P) equipped with a complete,
right-continuous filtration (Ft)t≥0, a regenerative set R is a random closed set
containing 0 for which the following properties hold
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• Progressive measurability. For all t ≥ 0, the set {(s, ω) ∈ [0, t]×Ω, s ∈ R(ω)}
is in B([0, t])⊗Ft.

• Regeneration property. For a (Ft)t≥0-stopping time T such that a.s. on {T <
∞}, T ∈ R and T is not right-isolated in R, we have:

R ∩ [T,∞[−T (d)= R,

where R ∩ [T,∞[−T is defined formally as the set {t ≥ 0, T + t ∈ R}.

We define the range of a subordinator σ as the closed set {σt, t ≥ 0}, and see that
all regenerative sets can be expressed in this form.

Theorem A.7. The range of a subordinator is a regenerative set. Conversely, if
R is a regenerative set without isolated points, there exists a subordinator σ whose
range is R almost surely.

Remark A.8. In the case where λ(R) > 0 a.s., one can define such a subordinator as

σt := inf{x ≥ 0, λ([0, x] ∩R) > t}.

Then σ is the unique subordinator with drift 1 and range R, and its renewal measure
is U(dx) = P(x ∈ R) dx. Notice that λ(R) = inf{t ≥ 0, σt =∞} = ζ by definition.
Therefore λ(R) is an exponential random variable with parameter k, the killing rate
of σ.
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