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Herein, a Mach-sensitive fractional step approach is proposed for Euler-like systems. The
key idea is to introduce a time-dependent splitting which dynamically decouples convection
from acoustic phenomenon following the fluctuations of the flow Mach number. By doing
so, one seeks to maintain the accuracy of the computed solution for all Mach number
regimes. Indeed, when the Mach number takes high values, a time-explicit resolution of the
overall Euler-like system is entirely performed in one of the present splitting step. On the
contrary, in the low-Mach number case, convection is totally separated from the acoustic
waves production. Then, by performing an appropriate low-Mach correction on the acoustic
step of the splitting, the numerical diffusion can be significantly reduced. A study made on
both convective and acoustic subsystems of the present approach has revealed some key
properties as hyperbolicity and positivity of the density and internal energy in the case of
an ideal gas thermodynamics. The one-dimensional results made on a wide range of Mach
numbers using an ideal and a stiffened gas thermodynamics show that the present approach
is as accurate and CPU-consuming as a state of the art Lagrange-Projection-type method.

1 Introduction
In the following paper, Euler-like systems similar to homogeneous models [10] used for the
two-phase flow simulation are at stake. The considered flows have their reference Mach
number M varying between zero and arbitrary high values as time goes on.
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If Godunov-like schemes manage to capture the compressible solutions in highly subsonic,
sonic or supersonic regimes, stationary cases presented in [25, 24] show that they fail to be
accurate in the case of low-Mach number flows on coarse meshes. Different related aspects
can be tackled in order to elaborate a cure.
The first issue raising when M tends towards zero is related to the constraints on the

discrete timestep ∆t brought by Godunov-like schemes. Indeed, consider a wave whose
propagation speed is σ; and consider the Courant number Cσ = |σ|∆t/∆x associated to
it; ∆x being the spacestep of the computational domain. Then, if a time-explicit scheme
such that Cσ � 1 is performed, σ-like waves will be depreciated by the spatial diffusive
operator, whatever its amplitude, because of a too important number of timesteps to reach
the end of the computation. Besides, as presented in [32, 15], studies made on linear wave
equations suggest that implicit-time resolutions such that Cσ � 1 trigger a diffusion and
a dispersion error on σ-like waves. Similar results found in the non-linear Euler system
framework are presented in [40]. Therefore, if time-explicit Godunov-like schemes are
applied to solve Euler-like systems in the case of low-Mach number flows, a natural stability
condition is: C |u|+c = 1/2; with u the speed of material-waves and c the flow speed of
sound characterizing shock-wave front velocities. What is more, C |u|/C |u|+c = M/ (1 +M)
leading to C |u| � 1. Thus, the material waves are largely damped. Besides, if the acoustic
part of the system associated with c is solved using an implicit time integration, then
C |u| ≈ 1, leading to C |u|+c � 1. Hence, material-wave accuracy is improved but shock
waves might be depreciated.

Unfortunately, when the fluid considered is slightly compressible as water, strong shock
waves can occur even in low-Mach flow regimes [36]. In that case, one wishes to be accurate
on the slow material waves as well as the fast and strong shock waves.
A second issue met in low-Mach number regimes is that Godunov-like schemes are not

able to maintain an initial incompressible solution in the incompressible phase-space from
one timestep to another. One way to overcome this difficulty is to apply preconditioning
methods on the viscosity matrix of such schemes as in [43, 25, 24, 10]. More recently,
the Asymptotic-Preserving (AP) approaches are designed such that their non-dimensional
discretization is consistent with the asymptotic incompressible equations at low Mach
number. In [16, 26, 19], the authors derive an implicit-explicit AP scheme based on a
parametrized splitting of the conservative system. It results in a time-explicit resolution of
a "slow" convective part of the system and a time-implicit treatment of a "fast" acoustic
one.

A third low-Mach number difficulty related to the incompressible phase-space invariance
is the spatial numerical diffusion. Indeed, in [17, 18], by transposing the theory of Schochet
[33, 34] at the discrete level on the linearized barotropic Euler system, the authors prove
that the non-centered terms in the acoustic flux of Godunov-like solvers produce a spatial
non-dimensional numerical diffusion of order O(∆x/M). Thus, as M tends towards zero,
the discrete solution on coarse meshes suffers from an important lack of accuracy. The
proposed remedy consists in adding a correction proportional to the local Mach number in
front of the acoustic non-centered terms in the momentum equation.
This paper focuses essentially on the last issue described above but provides ideas to
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tackle the first one too. Indeed, a Weighted Splitting Approach (WSA) is proposed in
order to preserve accuracy for every Mach number regime. It has been inspired from
[1] and [6] in which the Euler flux is split into a pure acoustic flux holding momentum
and energy pressure terms, and a complementary convective flux. In order to circumvent
the lack of hyperbolicity of the convective subsystem, the present approach introduces a
time-weighted amount of pressure into the convective flux. Such a weighting parameter
is sensitive to the time fluctuations of the maximal Mach number of the flow. Contrary
to other splittings [45, 31, 41] which result in Flux-Vector Splitting (FVS) methods, the
present work provides a fractional step approach which adapts itself dynamically to a wide
range of flow behaviors. In the case of a low-Mach number flow, a correction of type [17, 18]
or a straight implicitation of the acoustic flux similar to [13, 8] can be activated. Moreover,
when M is close or superior to one, the splitting is cancelled and the overall Euler-like
system is retrieved. The latter is solved using a Suliciu-like relaxation scheme [39] without
any acoustic implicitation. Then, shock waves and sharp profiles are correctly captured.
The fractional step approach as well as the space discretization of the present work are
close to those introduced in [13, 8] in the context of a Lagrange-Projection method. Besides
both methods provide numerical schemes whose writing is completely independent of the
equation of state.

The paper is structured as follows: in section one, the dynamic splitting is firstly described
at the continuous level. A study of each resulting conservative subsystem is done through
hyperbolicity and positivity analyses. In section two, a special attention is paid to the
non-dimensional version of both subsystems as well as their formal asymptotic behavior
when the Mach number tends towards zero. Section three deals with the approximate
Riemann solvers derived for the subsystems resolution. They stem from the relaxation
scheme theory presented in [30, 9, 39, 4, 12]. Discrete positivity properties brought by the
chosen discretization are also derived. Following the steps of [8], section four is devoted
to different truncation error analyses. The dependence in terms of Mach number as well
as the impact of the low-Mach correction on the numerical diffusive operator is shown.
Eventually, section five presents one-dimensional explicit results obtained on a wide panel
of Mach numbers and compared to the Lagrange-Projection method presented in [8].

2 Convective and Acoustic Effects in Euler-like Systems
2.1 Homogeneous Equilibrium Model Equations
When the non-equilibrium effects are small, one way to model two-phase flows is to assume
that the two phases have the same velocity, pressure and temperature. The conservation
laws are then similar to the Euler system. Define U = [ρ, ρu, ρ e]T the conservative
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variables vector. In one space dimension, mass, momentum and energy conservation read:

∂t ρ+∇ · (ρu) = 0, (1a)
∂t (ρu) +∇ · (ρu⊗ u + p I) = 0, (1b)
∂t (ρ e) +∇ · ((ρ e+ p) u) = 0, (1c)

e = |u|
2

2 + ε, ε = εEOS (ρ, p) , (1d)

ρ c2 =
(
∂p ε|ρ

)−1
(
p

ρ
− ρ ∂ρ ε|p

)
. (1e)

Equality in (1d) is the equation of state for a single phase fluid. It relates ε the specific
internal energy with density and pressure. Its strong level of nonlinearity is known to
produce rarefaction or shock waves inside the flow. Equation (1e) introduces c the sound
speed which strongly depends on the fluid equation of state and governs the acoustic waves
speed. Indeed let us recall that Euler system is strictly hyperbolic, its eigenvalues being in
one-dimension: λE1 = u− c < λE2 = u < λE3 = u+ c. What is more λE1 and λE3 are related
to genuinely non-linear fields whereas λE2 is associated with a linearly degenerate one.
Eventually, let us write the second law of thermodynamics principle, introducing the

specific entropy variable s = sEOS (ρ, ε) related with ρ and ε by the differential equation:

d ε = T d s− p d
(1
ρ

)
,

with: T = TEOS(ρ, s) = ∂s ε|ρ, p = pEOS(ρ, s) = ρ2 ∂ρ ε|s.

(2)

Using equation (2), it can be easily verified that, for smooth solutions, s is also solution
of the PDE:

∂ρ s|p + c2 ∂p s|ρ = 0. (3)

Such a physical entropy is used to characterise admissible weak solutions of Euler system
(1). Indeed, as proved in [23], the mapping (ρ, ρu, ρ e)→ −ρ s is a strictly convex function
and (−ρ s,−ρu s) constitutes a mathematical entropy pair. Thus, any admissible weak
solution of the Euler system should verify the inequality:

∂t (ρ s) +∇ · (ρ su) ≥ 0. (4)

Beyond conservativity and maximum principle, inequality (4) is a key theoretical property
that one would like to obtain, at the discrete level, in a numerical scheme.

Let us end this subsection by defining the one-dimensional Riemann problem associated
to system (1). Let UL and UR be two constant states of the one-dimensional Euler system
(1). It reads:

∂t U + ∂x F (U) = 0,

U(., t = 0) =
{

UL, if x < 0
UR, if x > 0,

with: F (U) =

 ρ u

ρ u2 + p
(ρ e+ p)u

 . (5)
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As proved in [37], in the case of ideal gas or in [23] under more general thermodynamical
hypothesis, Riemann problem (5) admits a unique entropic solution made of contact waves,
rarefaction waves and shock waves as long as UL and UR are close enough.

2.2 A Weighted Splitting Approach
As mentioned in the introduction, different connected issues raise in the case of low-Mach
number flows. First, as pointed out in [17], two different physics are at stake inside
Euler-like systems. The first convects conservative variables using velocity u, the second
contains pressure effects responsible for shock and rarefaction waves propagating at speed
u ± c. Thus, in the case of low-Mach flows, |u| � c and the acoustic physics goes much
faster than the convective one. Therefore, time-explicit schemes restricted by the acoustic
CFL condition tend to diffuse material waves as time goes on. Secondly, as mentioned in
[24], the projection step of the Riemann-like solvers introduces spurious acoustic waves
which force the initial incompressible datum to leave the incompressible phase space after
one timestep. Lastly, when a truncation error analysis is performed on smooth solutions
got from Riemann-like solvers, one can notice [22, 8] that the non-centered terms in the
momentum flux produce non-dimensional numerical diffusion of order O(∆x/M), with M
the flow Mach number. Hence, on coarse meshes, in the case of low-Mach flows, smooth
solutions suffer from strong spatial numerical diffusion.
One can notice that the above three difficulties stem from the acoustic part of the

conservative system. Thus, a first step to overcome these issues is to decouple the convective
from the acoustic physics and proceed to their resolution separately. This can be done by
splitting the Euler system into two new continuous subsystems:

C :


∂t ρ+∇ · (ρu) = 0,

∂t (ρu) +∇ ·
(
ρu⊗ u + E 2

0 (t) p I
)

= 0,

∂t (ρ e) +∇ ·
(
(ρ e) + E 2

0 (t) p) u
)

= 0,
(6)

A :


∂t ρ = 0,

∂t (ρu) +∇ ·
(
(1− E 2

0 (t)) p I
)

= 0,

∂t (ρ e) +∇ ·
(
(1− E 2

0 (t)) pu
)

= 0.
(7)

Here, E0(.) is a time-dependent weighting factor belonging to interval ]0, 1]. Details
about how to build such a parameter will be given later; but one should keep in mind that:

E0(t) ∝ min (Mα
max(t), 1) ,

Mmax(t) = sup
x∈Ω

(
M(x, t) = |u(x, t)|

c(x, t)

)
,

(8)

Ω being the computational domain and α > 0 an appropriate power which will be chosen
in Section 5.
First of all, one can notice that formally summing conservative subsystems C and A

allows to recover the original Euler system (1). Suppose that at instant t the flow is
such that Mmax(t) is close or superior to 1. Then, E0(t) will be close to 1, the subsystem
C formally converges towards the full Euler system while A is a degenerated stationary
subsystem. Hence, if C is solved using a time-explicit Godunov-like scheme, Euler shocks
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would be correctly captured. On the contrary, In the case of a globally low-Mach number
flow, Mmax(t) ≈ E0(t)� 1, and pressure terms completely disappear from C which turns
out to be a pure "convective" subsystem. Pressure terms are treated afterwards in A which
becomes an "acoustic" subsystem. Particularly, in the case of low-Mach number flows, a
correction of type [22, 8, 18] would tackle the spatial numerical diffusion while a straight
implicitation [13, 19] would remove the most constraining part of the CFL condition.
In the sequel, C is referred as the convective subsystem and A the acoustic one. Before

going further into the numerical resolution of C and A, one has to study their basic
mathematical properties: hyperbolicity and maximum principle. This is done in the next
section.

2.2.1 Hyperbolicity of C and A

Above all, the hyperbolicity of the two subsystems C and A is investigated. This ensures
that solutions of C and A do not suffer from definition issues by producing waves with
celerities evolving in the C space. This is the object of the following proposition written in
one space dimension but easily extendable to the multi-dimensional case:

Proposition 1 (Hyperbolicity of convective and acoustic subsystems). Let us introduce
cC (ρ, p) and cA (ρ, p) two modified sound speeds such that:

(ρ cC (ρ, p))2 =
(
∂p ε|ρ

)−1 (
E 2

0 p− ρ2 ∂ρ ε|p
)
,

(ρ cA (ρ, p))2 =
(
∂p ε|ρ

)−1
p.

(9)

In the case of a stiffened gas thermodynamics, c2
C ≥ 0. Besides, if pressure remains

positive, c2
A ≥ 0. Under this condition, the subsystems C and A are hyperbolic. Their

eigenvalues are:

λC1 = u− E0 cC ≤ λC2 = u ≤ λC3 = u+ E0 cC ,

λA1 = −
(
1− E 2

0

)
cA ≤ λA2 = 0 ≤ λA3 =

(
1− E 2

0

)
cA,

(10)

the 1-wave and 3-wave of both subsystems are associated to genuinely non-linear fields
whereas the 2-wave field are linearly degenerate. What is more, cC, cA and c are related by:

(cC)2 +
(
1− E 2

0

)
(cA)2 = c2. (11)

The proof of this proposition is written in Appendix A. Beside, using relation (11),
it can be observed that, when E0 is close to one, C is approximately equivalent to the
Euler system, and that is why: ∀k, lim

E0→1
λCk = λEk . Moreover, when E0 tends towards zero,

lim
E0→0

λCk = λE2 = u, because of the pressure terms disappearance. C then degenerates into a

pure convective subsystem already exhibited in [1, 6]. However, ∀k ∈ {1, 3} :
∣∣∣λCk ∣∣∣ ≤ ∣∣∣λEk ∣∣∣

and
∣∣∣λAk ∣∣∣ ≤ c even when E0 goes to zero. Thus, the weighted splitting approach always tends
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to underestimate convective and acoustic wave speeds whatever is the thermodynamics.
This can be clearly seen in the case of ideal gas:

cC =
√
γE0 p

ρ
, γE0 = E 2

0 (γ − 1) + 1 ≤ γ,

cA =
√

(γ − 1) p
ρ

< c =
√
γ p

ρ
.

(12)

In Section 4, the transcription, at discrete level, of these non physical wave speeds will
be seen. A numerical way to bypass this difficulty and follow the real physics will also be
proposed.

2.2.2 Positivity of Density and Internal Energy

Positivity requirements reflect the invariance of a given solution towards its thermodynamical
phase space. In this study, one focuses on the ideal (IG) and the stiffened gas (SG)
thermodynamics defined by the following phase-spaces:

ρ ε = p

(γ − 1) , (13a)

ΦPG =
{

U, e = |u|
2

2 + ε, ρ > 0, ρ ε > 0
}
,

(13b)

=
{

U, e = |u|
2

2 + ε, ρ > 0, p > 0
}
,

(13c)

ρ ε = p+ γ P∞
(γ − 1) , (14a)

ΦSG =
{

U, e = |u|
2

2 + ε, ρ > 0, ρ ε > P∞

}
,

(14b)

=
{

U, e = |u|
2

2 + ε, ρ > 0, p > −P∞

}
.

(14c)

Consider Ω a spatial domain of boundary ∂Ω. Define n the outward local normal vector
of ∂Ω. Let φ be a theoretically positive variable endowed with a positive inlet boundary
condition: φ|∂ Ω ≥ 0 if u · n|∂ Ω ≤ 0; and an admissible initial condition: φ(., t = 0) ≥ 0.
Then, as proved in [21] for sufficiently smooth solutions, positivity of density ρ is naturally
obtained from mass equation in subsystem C. Density is also stationary in subsystem A. So,
after having successively solved C and A density remains positive. Furthermore, internal
energy in subsystem C and A verifies:

∂t ε+ u · ∇ε+ E 2
0 (t) p

ρ
∇ · u = 0, (C)

∂t ε+
(
1− E 2

0 (t)
) p

ρ
∇ · u = 0. (A)

(15)

By making the same kind of regularity hypothesis than in [21], one can prove that In
the case of an ideal gas thermodynamics, ε remains positive on Ω throughout time. See
Appendix B for more details. However, In the case of a stiffened gas thermodynamics
(14a), this is p+ P∞

γ − 1 = ρ ε − P∞ = P which has to remain positive. Unfortunately, the
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PDE verified by this variable in C and A contains the term P∞ (1 − E 2
0 )∇ · u. Since

P∞ (1− E 2
0 )/P is a priori unbounded, it is not possible to guarantee that the subsystems C

and A preserve the phase space constraint p ≥ −P∞ ⇔ P > 0 on Ω throughout time unless
E0 = 1 which corresponds to the resolution of Euler system or P∞ = 0 which is the ideal
gas case. More details are given in Appendix B.
Beyond the theoretical properties held by both C and A, one is also interested in their

asymptotic behavior in the case of low-Mach number flows. Details about this singular
matter are given in the next section.

3 Low-Mach Number Asymptotic Behaviors
3.1 Non-dimensional Euler System
The low-Mach number issue deals with the asymptotic non-dimensional model of Euler
system reached when the Mach number tends to zero. Let us recall that, provided an
appropriate rescaling of the Euler system (1) (see [8]), one obtains a non-dimensional
version which reads:

∂t ρ+∇ · (ρu) = 0, (16a)

∂t (ρu) +∇ · (ρu⊗ u + p

M2
r

I) = 0, (16b)

∂t (ρ e) +∇ · ((ρ e+ p)u) = 0, (16c)

e = M2
r

|u|2

2 + ε, p = pEOS (ρ, ε) . (16d)

Here, Mr = ur/cr is a reference Mach number made of a reference velocity out of a
reference speed of sound. In the sequel, for the sake of simplicity, we drop the bars and
rewrite Mr as M . In [35] and [34] the authors have proved that, in the case of well-prepared
initial conditions:

p(., 0) = p0 +O
(
M2

)
,

u(., 0) = u0 +O (M) ,
with p0 constant and ∇ · (u0) = 0,

(17)

the solution of system (16) converges towards the solution of the incompressible system
when M tends to zero:

∂t ρ+ u · ∇ ρ = 0 (18a)
ρ (∂t u + u · ∇u) +∇π = 0 (18b)
∇ · (u) = 0 (18c)

Here, π = lim
M→0

p− p0
M2 is called hydrodynamic pressure. It is a completely independent

unknown and plays the role of Lagrange multiplyer related to the incompressibility constraint
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∇ · (u) = 0. It is worth considering both non-dimensional writings of subsystems C and A.
Particularly, by formally performing a Taylor expansion in Mach powers, one can assess how
the Euler incompressible system has been split between both non-dimensional subsystems
when the Mach number tends to zero.

3.2 Non-dimensional Convective Subsystem
The non-dimensional subsystem C reads:

C :



∂t ρ+∇ · (ρu) = 0,

∂t (ρu) +∇ · (ρu⊗ u) +
(

E0(t)
M

)2
∇p = 0,

∂t (ρ e) +∇ ·
(
(ρ e) + E 2

0 (t) p)u
)

= 0,

e = M2 |u|
2

2 + ε, p = pEOS (ρ, ε) .

(19)

As it can be seen, the weighting factor E0 comes to compensate the 1/M dependency
in front of pressure term in the momentum equation of C. Let us suppose that E0(t) is of
order M and introduce E 0 such that, E0 = M E 0, E 0 = O(1). As previously announced,
let us perform a Mach expansion for any variable φ belonging to {ρ, u, p, e, ε}:

φ = φ0 +M φ1 +M2 φ2 +O(M3)

Then, one can formally observe that, at zero order:

C0 :


∂t ρ0 +∇ · (ρ0 u0) = 0
∂t (ρ0 u0) +∇ · (ρ0 u0 ⊗ u0) + E 0(t)2∇p0 = 0
∂t (ρ0 ε0) +∇ · (ρ0 ε0 u0) = 0

(20)

Combining mass equation with internal energy equation in C0 one can notice that:
dε0
dt = 0. At zero order, the internal energy solution of the convective subsystem remains
constant along the fluid streamlines. Thus, if initially internal energy is constant over all
the domain, it will remain constant throughout the time. In that case, one can write:

εEOS (ρ0, p0) = ε0 (constant)⇔ p0 = pEOS (ρ0) (21)

under the hypothesis that ∂ρ εEOS|p (ρ0, p0) 6= 0. Then , C0 can be viewed as a non-
dimensional barotropic system:

(
C0
)
M→0

{
∂t ρ0 +∇ · (ρ0 u0) = 0
∂t (ρ0 u0) +∇ · (ρ0 u0 ⊗ u0) + E 0(t)2∇p(ρ0) = 0

(22)
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3.3 Non-dimensional Acoustic Subsystem
The non-dimensional acoustic subsystem A can be written:

A :



∂t ρ = 0,

∂t (ρu) + (1− E 2
0 (t))

M2 ∇p = 0,

∂t (ρ e) +∇ ·
(
(1− E 2

0 (t)) pu
)

= 0,

e = M2 |u|
2

2 + ε, p = pEOS (ρ, ε) .

(23)

Using the same Mach expansion than previously, it can be noticed that, at zero order:

A0 :


∂t ρ0 = 0,
∇ (p0 +M p1) = 0,
∂t (ρ0 ε0) +∇ · (p0 u0) = 0.

(24)

Contrary to C0, momentum equation in A0 allows to write pressure as:

p = p0(t) +M2 p2 +O(M3) (25)

Pressure equation at zero order for smooth solutions gives:

−dp0
dt (t)

ρ0 cA (ρ0, p0)2 = ∇ · u0
(26)

By integrating over the whole spatial domain and imposing no-slip boundary conditions
one obtains:

dp0
dt (t) = 0⇔ p =

constant︷︸︸︷
p0 +M2 p2 +O(M3)

∇ · u0 = 0
(27)

Thus, at zero order, solutions of the acoustic subsystem tend "formally" to be solution of:

(
A0
)
M→0

:


ρ0 = ρ0 (x) ,
ρ0 ∂t u0 +∇p2 = 0,
∇ · u0 = 0.

(28)

The above asymptotic system has the particularity to be independent of the weighted
splitting parameter E 0 and looks like an incompressible convection-free system.

Remark 1. One should keep in mind that the above derivations of subsystems
(
C0
)
M→0

and
(
A0
)
M→0

are only formal. Theory allowing to prove the convergence of the compressible
Euler system towards its incompressible equivalent is extremely complex and requires energy
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manipulations which are not considered here. We only see the above calculations as keys to
interpret physically the behavior of the splitting operator process. Particularly, at low-Mach
number, momentum evolutions in the convective subsystem seems to be essentially caused
by momentum convection and by the small density fluctuations. On the contrary, in the
acoustic subsystem, one could say that momentum dynamic is exactly balanced by strong
incompressible pressure forces. Hence, one could expect that the low-Mach numerical issues
happen during the acoustic resolution.

In the following, the derivation of the numerical scheme is described.

4 Relaxation Scheme Applied to the Weighted Splitting
Approach
For the sake of simplicity and with no loss of generality, the scheme description is done
in one dimension. Literature dealing with relaxation schemes is vast. Without being
exhaustive, we refer to [30] for the derivation of relaxation schemes applied to abstract
hyperbolic systems in which the whole flux is relaxed. In [9], the authors question the
existence of solutions for the relaxation systems as well as their convergence towards a
local equilibrium. A detailed study of the entropy-satisfying relaxation method applied to
the isentropic gas dynamics system and extended to the fully compressible Euler system is
given in [5]. It uses a Suliciu-like relaxation technique [39] which is also applied in [2] on a
Drift-Flux model. Besides, the acoustic part of the Lagrange-Projection splitting derived in
[22, 8] is solved the same way too. Eventually in [12], an extension of the Suliciu approach
to general fluid systems is done. Following the same approach, we proceed to a Suliciu-like
relaxation method on both subsystems C and A.

Let us recall that the Suliciu relaxation method applied on Euler-like systems consists in
introducing a new pressure variable Π endowed with a "quasi-linear" dynamics converging
towards the real pressure variable p. This convergence is ensured thanks to a source term
whose timescale µ� 1. The new system is still hyperbolic and has only linearly degenerate
fields which makes the derivation of an exact Godunov solver easier. What is more, the
high level of nonlinearity brought by the pressure variable via the equation of state (1d)
is encapsulated in one single constant. As a consequence, the derivation of the numerical
scheme can be done independently of the thermodynamics law. The cost to be paid is the
increase of the system dimension through an additional equation for Π. What is more, one
has to decide how to treat the equilibrium between Π and p numerically.

4.1 Suliciu Relaxation for the Weighted Splitting Approach
Using internal energy equations (15) associated with the equation of state, one can derive
the following pressure PDEs for both subsystems C and A:

C : ∂t p+ u ∂x p+ ρ (cC)2 ∂x u = 0,
(29)

A : ∂t p+ (1− E 2
0 ) ρ (cA)2 ∂x u = 0.

(30)

11



Then, replace pressure p (ρ, ε) by a new relaxation pressure variable Π which no longer
depends of density and internal energy. One also expects Π to mimic the above physical
pressure dynamics but with an additional linearization effect on the thermodynamics. This
is done by introducing two constants aC > 0 and aA > 0 such that Π verifies:

C : ∂t Π + u ∂x Π + a2
C
ρ
∂x u = (p−Π)

µ
,

(31)
A : ∂t Π + (1− E 2

0 ) a
2
A
ρ
∂x u = (p−Π)

µ
.

(32)
Here, aC (respectively aA) is homogeneous to a density times a velocity and encapsulates

the non-linear effects brought by ρ cC(ρ, ε) (respectively ρ cA(ρ, ε)). Besides, by using
the mass equation, it is possible to rewrite equations (31) and (32) in a conservative way
namely:

C : ∂t (ρΠ) + ∂x
(
(ρΠ + a2

C)u
)

= ρ (p−Π)
µ

,

(33)
A : ∂t (ρΠ) + ∂x

(
(1− E 2

0 )a2
A u
)

= ρ (p−Π)
µ

.

(34)
One can observe that, when µ → 0 in (31) and (32), the relaxation pressure Π tends

formally towards p at order zero in µ. Hence (p−Π) /µ can be formally interpreted as
a correction term of time scale µ forcing the relaxation pressure to converge towards the
physical pressure instantaneously if µ tends to zero.
Finally, the relaxation convective and acoustic systems read:

Cµ :



∂t ρ+ ∂x (ρ u) = 0,

∂t (ρ u) + ∂x
(
ρ u2 + E 2

0 (t) Π
)

= 0,

∂t (ρ e) + ∂x
(
(ρ e+ E 2

0 (t) Π)u
)

= 0,

∂t (ρΠ) + ∂x
(
(ρΠ + a2

C)u
)

= ρ (p−Π)
µ

.

(35)

Aµ :



∂t ρ = 0,

∂t (ρ u) + ∂x
(
(1− E 2

0 (t)) Π
)

= 0,

∂t (ρ e) + ∂x
(
(1− E 2

0 (t)) Πu
)

= 0,

∂t (ρΠ) + ∂x
(
(1− E 2

0 (t)) a2
A u
)

= ρ (p−Π)
µ

.

(36)

Remark 2. It is worth noting that, in the derivation of the convective and acoustic
relaxation subsystems it would have been possible to skip the forcing term (p−Π) /µ.
Indeed, following [4], one could have simply introduced the notion of projection on the
Maxwellian equilibrium.

One way to calibrate the constant relaxation coefficient aC (respectively aA) is to perform
a Chapman-Enskog expansion by rewriting all the variables φ ∈ {ρ, u, e, Π} in power of µ:

φ = φ0 + µφ1 + µ2 φ2 + ..,

Π0 = p.

By doing so, one can exhibit a subcharacteristic-like condition, also called Whitham-like
condition [44]. It allows to prevent Cµ (respectively Aµ) from triggering instabilities when
µ → 0. What is more, it can be used as a sufficient condition to build an entropy pair
and an extended entropy inequality for the relaxation system (see [9, 5]). As detailed in
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Appendix E, the subcharacteristic conditions obtained are:

Cµ : aC > ρ cC (37a)
Aµ : aA > ρ cA (37b)

Remark 3. By proceeding in the same manner, one could have obtained a Suliciu-like
relaxation Euler system. The relaxation pressure PDE would have been:

∂t Π + u ∂x Π + a2
E

ρ
, ∂x u = (p−Π)

µ
, (38)

with aE the constant relaxation coefficient constrained by the Euler subcharacteristic condi-
tion:

aE > ρ c. (39)

Recall that lim
E0→1

cC = c, and then (37a) becomes (39) in that case. More generally, the
shape of such a Suliciu-like relaxation Euler system can be obtained by formally making E0
tend towards one in Cµ.

Remark 4. In [11], [5], [7], [13] and [12], in order to solve the Euler system using
relaxation techniques, the authors perform an inversion between the role played by total
energy and entropy. The idea is to turn the total energy equation into a mathematical
entropy constraint while injecting the pure transport entropy equation:

∂t s+ u ∂x s = 0. (40)

By doing so, one can lean on good properties brought by relaxation methods applied
on the barotropic Euler system and enforce the entropy inequality (4) in the numerical
resolution of the full Euler system. More details can be found in the above references. In
our splitting approach, such a strategy is avoided. Indeed, it can be shown that the physical
entropy function U → s (U) defined in equation (3) does no longer verify equation (40)
when U is solution of both subsystems C and A. An additional non-conservative term
appears and prevents from applying directly the barotropic-relaxation system results. That
is why, in our case, a simple Suliciu-relaxation method is performed on the conservative
system including total energy. Note that a similar relaxation treatment is done in [8] for
the acoustic subsystem.

Remark 5. As previously noted in Subsection 2.2.1, the lower bound in the acoustic
subcharacteristic condition (37b) uses an artificial celerity naturally provided by subsystem
A. In the case of an ideal or a stiffened gas thermodynamics, cA < c, and inequality (37b)
could violate the natural acoustic subcharacteristic condition (39) based on the real sound
speed which is found in [7], [13] and [22].

So far, no theoretical results allowing to prove the stability of the overall weighted splitting
approach under condition (37b) have been found. However, from a numerical point of view,
we think that it is relevant and easy to compare conditions (37b) and (39). This will be
done in Subsection 6.2.
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4.2 Derivation of the Relaxation Scheme
Let us define ∆x (respectively ∆t) the space step (respectively the time step) of the
scheme. For i ∈ [1, .., Ncells] let us set xi = i∆x, the coordinate of the cell center i and
xi+1/2 = xi + ∆x/2, the coordinate of face i+ 1/2. Let us consider W = [ρ, ρ u, ρ e, ρΠ]T
the extended relaxation conservative vector. The Riemann problem related to (35) or (36)
writes:

∂t W + ∂x Fµ (W) = Sµ (W) W(t = 0, .) =
{

WL if x < 0
WR if x > 0

(41)

With Sµ (W) =


0
0
0

ρ (p−Π)/µ

 and Fµ ∈

Fµ
C (U) =


ρ u

ρ u2 + E 2
0 Π

(ρ e+ E 2
0 Π)u

(ρΠ + (aC)2)u

 , Fµ
A (U) = (1− E 2

0 )


0
Π

Πu

(aA)2 u


.

Let us introduce Un+1
i the discrete approximation of 1

∆x

∫ xi+1/2

xi−1/2

L(WGod)
(

x

tn+1 ; Wn
i , Wn

i+1

)
dx

on cell i at time tn+1 = tn + ∆t, WGod(.; Wn
i , Wn

i+1) being the self similar solution of the
Riemann problem (41) and L : W = [w1, w2, w3, w4]T ∈ R4 → [w1, w2, w3]. Therefore
Un+1
i represents the discrete approximation of the relaxation Riemann solver without the

component ρΠ. Then, the Godunov solver can be derived easily and reads:

Un+1
i = Un

i −
∆t
∆x

(
Hn
i+1/2 −Hn

i−1/2

)
with: Hn

i+1/2 = L
(
Fµ
(
WGod(0; Wn

i , Wn
i+1)

))
= Hn

i+1/2
(
Un
i , Un

i+1
) (42)

The study of Cµ and Aµ leading to the explicit expression of the Godunov flux has been
done in non-conservative variables ZT = [ρ, u, Π, e]T . In the following, the structure of
the fields, the eigenvalues and the Riemann invariants are described.

4.2.1 Convective Part

The relaxation system Cµ is strictly hyperbolic, its eigenvalues being: λC, µ1 = u −
E0 aCτ, λ

C, µ
2 = λC, µ3 = u, λC, µ4 = u + E0 aCτ with τ = 1/ρ. Furthermore, each field

is linearly degenerate and admits simple Riemann invariants:

IC, µE0, 1 =
{
u− E0 aCτ, Π + a2

Cτ, e+ E0
aC

Πu

}
IC, µE0, 2, 3 = {u, Π}

IC, µE0, 4 =
{
u+ E0 aCτ, Π + a2

Cτ, e−
E0
aC

Πu

} (43)

Let us notice that, for smooth solutions, mass equation in subsystem Cµ can be rewritten
∂t τ + u ∂x τ − τ ∂x u = 0. By multiplying this equation by a2

C and summing it with the Π
equation in (36), one obtains:
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∂t
(
Π + a2

Cτ
)

+ u ∂x
(
Π + a2

Cτ
)

= 0 (44)

Thus, Π + a2
Cτ remains constant along the characteristic curves of speed u. Besides, it is

a 2,3-strong Riemann invariant meaning that it is invariant through the 1-wave and the
4-wave. Eventually one can notice that this quantity is solution of the following equation:

∂ρ (ψ)|Π +
(
aC
ρ

)2
∂Π (ψ)|ρ = 0 (45)

which can be related to the entropy equation (3). Pressure term linearization induced
by the relaxation method has logically implied a linearization of the equation originally
verified by entropy and Π + a2

Cτ seems to play the same role.
Beside, the knowledge of the Riemann invariants allow to easily solve the one-dimensional

Riemann problem at a given face f , with ZL and ZR taken as initial conditions. Figure 1
describes the different states and waves produced:

xf
x

t
uL − E0 aCτL

u∗C

uR + E0 aCτR

ZL

Z∗f, C

ZR

Z∗∗f, C

Figure 1: Subsystem Cµ: waves and
states

xf
x

t
−
(
1− E 2

0

)
aAτL

0 (
1− E 2

0

)
aAτR

ZL

Z∗f,A

ZR

Z∗∗f,A

Figure 2: Subsystem Aµ: waves and
states

xf
x

t
−
(
1− E 2

0

)
aAτL

0 (
1− E 2

0

)
aAτR

ZL

Z∗f, θ

ZR

Z∗∗f, θ

Figure 3: Approximate Riemann Solver
of Subsystem Aµ: waves and
states
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The two intermediate states Z∗f, C and Z∗∗f, C are:

Z∗f, C =


ρ∗L, C
u∗C
Π∗C
e∗L, C

 Z∗∗f, C =


ρ∗R, C
u∗C
Π∗C
e∗R, C

 (46) with:



u∗C = uR + uL
2 − E0

2 aC
(pR − pL)

E 2
0 Π∗C = E 2

0
pR + pL

2 − E0 aC
2 (uR − uL)

ρ∗k, C = 1/τ∗k, C , τ∗k, C = τk + (−1)ik+1

E0 aC
(u∗C − uk)

e∗k, C = ek + E0
(−1)ik
aC

(Π∗C u∗C − pk uk)

k ∈ {L, R} , iL = 1, iR = 2
(47)

Remark 6. In (47), one can observe that the non-centered terms of the intermediate
velocity and the intermediate pressure flux are systematically multiplied by the weighting
parameter E0. In Section 5, it will be shown that this dependence has a strong impact in
the numerical diffusion reduction in the case of a low-Mach number flow.

Define W∗, n
i+1/2 (respectively W∗∗, n

i+1/2) using Z∗i+1/2, C (respectively Z∗∗i+1/2, C) and introduce
U∗, ni+1/2 = L

(
W∗, n

i+1/2

)
, U∗∗, ni+1/2 = L

(
W∗∗, n

i+1/2

)
. The convective numerical flux then reads:

Hc
n
i+1/2 =



L (Fµ
C) (Un

i ) if uni − E n
0 (anC)i+1/2τ

n
i > 0

L (Fµ
C)
(
U∗, ni+1/2

)
if uni − E n

0 (anC)i+1/2τ
n
i ≤ 0 < (u∗C)ni+1/2

L (Fµ
C)
(
U∗∗, ni+1/2

)
if (u∗C)ni+1/2 ≤ 0 < uni+1 + E n

0 (anC)i+1/2τ
n
i+1

L (Fµ
C)
(
Un
i+1
)

if uni+1 + E n
0 (anC)i+1/2τ

n
i+1 ≤ 0

(anC)i+1/2 = Kmax
(
ρni (cC)ni , ρni+1 (cC)ni+1

)
, K > 1

(48)

Furthermore, using the exact Godunov structure and the fact that all the fields are
linearly degenerate, one can rewrite the relaxation flux in a more compact way (see [2, 3])
as:

Hc
n
i+1/2 =



1
2
(
L (Fµ

C) (Un
i ) + L (Fµ

C)
(
Un
i+1
))

− 1
2

∣∣∣uni − E n
0 (anC)i+1/2 τ

n
i

∣∣∣ (U∗, ni+1/2 −Un
i )

− 1
2

∣∣∣(u∗C)ni+1/2

∣∣∣ (U∗∗, ni+1/2 −U∗, ni+1/2)

− 1
2

∣∣∣uni+1 + E n
0 (anC)i+1/2 τ

n
i+1

∣∣∣ (Un
i+1 −U∗∗, ni+1/2)

(49)

4.2.2 Acoustic Part

The acoustic system Aµ is also hyperbolic and its eigenvalues are: λA, µ1 = −(1 −
E 2

0 ) aAτ, λA, µ2 = λA, µ3 = 0, λA, µ4 = (1− E 2
0 ) aAτ . Once again the Riemann invariants can
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be easily found and read:

IA, µE0, 1 =
{
ρ, u+ Π

aA
, e+ Πu

aA

}
IA, µE0, 2, 3 = {u, Π}

IA, µE0, 4 =
{
ρ, u− Π

aA
, e− Πu

aA

} (50)

It can be noticed that:

∂t

(
u+ Π

aA

)
+ λA, µ4 ∂x

(
u+ Π

aA

)
= 0

∂t

(
u− Π

aA

)
+ λA, µ1 ∂x

(
u− Π

aA

)
= 0

(51)

Thus, ω+
A = u+ Π

aA
(respectively ω−A = u− Π

aA
) remains constant along the characteristic

curves of speed λA, µ4 (respectively λA, µ1 ). Besides, ω+
A is a 4-strong Riemann invariant

whereas ω−A is a 1-strong Riemann invariant. Following the steps of [13] and [22], equations
(51) associated with the strong Riemann invariants natural properties provides a simple
way to derive a time-implicit relaxation scheme for the acoustic subsystem. More details
will be given in [28, 29].

The one-dimensional Riemann problem can be solved exactly without difficulty. The
solution is described on Figure 2.

Z∗f,A =


ρL
u∗A
Π∗A
e∗L,A

 Z∗∗f,A =


ρR
u∗A
Π∗A
e∗R,A

 (52) with:



u∗A = uR + uL
2 − 1

2 aA
(pR − pL)

Π∗A = pR + pL
2 − aA

2 (uR − uL)

e∗k,A = ek + (−1)ik
aA

(Π∗A u∗A − pk uk)

k ∈ {L, R} , iL = 1, iR = 2
(53)

One can notice that the weighting parameter E0 does not appear in the different inter-
mediate quantities. Besides, the intermediate velocity, pressure and energy formulas are
similar to those obtained using the Lagrange-Projection method [22, 8]. The only difference
is that, in the present approach, aA is bounded by the modified acoustic subcharacteristic
condition (37b) whereas in [22, 8] it is (39). The related numerical flux writes:

Hac
n
i+1/2 =

(
1− (E n

0 )2
)  0

(Π∗A)ni+1/2
(Π∗A)ni+1/2 (u∗A)ni+1/2


(anA)i+1/2 = Kmax

(
ρni (cA)ni , ρni+1 (cA)ni+1

)
, K > 1

(54)
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4.2.3 General Remarks on the Splitting Operator Algorithm:

The overall algorithm to update the discrete solution from tn to tn + ∆t is the following:
starting from a given state Un, a given relaxation pressure Πn = pEOS (Un) and a given
splitting parameter E n

0 , subsystems Cµ and Aµ are successively solved using the relaxation
scheme fluxes presented in (48) and (54). Note that in each resolution step, the relaxation
right hand side "(p−Π) /µ" is immediately taken into account by supposing that the
equilibrium timescale is zero. In the formalism of [4], it corresponds to the solution
projection of the relaxation Riemann problem on the Maxwellian equilibrium. Afterwards,
the weighting factor E0 is updated. One can notice that the overall operator splitting
procedure is conservative since C and A are conservative subsystems and the resolution of
Cµ and Aµ is performed using an exact conservative Godunov scheme. The global relaxation
scheme including both steps writes: Un+

i = Un
i −

∆t
∆x

(
Hci+1/2

(
Un
i , Un

i+1
)
−Hci−1/2

(
Un
i−1, Un

i

))
,

Πn+
i = pEOS

(
Un+
i

)
, Un+1

i = Un+
i −

∆t
∆x

(
Haci+1/2

(
Un+
i , Un+

i+1

)
−Haci−1/2

(
Un+
i−1, Un+

i

))
,

Πn+1
i = pEOS

(
Un+1
i

)
.

(55)

Written in one single conservative step, the scheme reads:

Un+1
i = Un

i −
∆t
∆x

(
Hci+1/2

(
Un
i , Ui+1

)
−Hc

n
i−1/2

(
Un
i−1, Un

i

))
,

−∆t
∆x

(
Haci+1/2

(
Un+
i , Un+

i+1

)
−Haci−1/2

(
Un+
i−1, Un+

i

))
.

(56)

So far the time-dependent weighting factor E n
0 has not been defined exactly. However,

following the insights of Subsection 2.2, one can define:

E n
0 = max (Einf , min ((Mn

max)α, 1))

with: Mn
max = max

i∈[1, Ncells]

(
|uni |
cni

)
(57)

Here, cni = c (ρni , pni ) where c(., .) is the sound speed function defined in equation (1e). α
is a positive power which will be determined in Section 5. Eventually, 0 < Einf � 1 is
only a lower bound preventing E n

0 from being exactly equal to zero if velocity is initially
null everywhere.

4.3 CFL Condition Choice
Definition 1 (CFL condition based on the Euler system). In order to adapt timesteps
to the real waves produced by the Euler system, let us define the discrete time step at
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iteration n as:
∆tnE = σ

2
∆x

max
i+1/2

(
max

(
|uni |+ cni ,

∣∣∣uni+1

∣∣∣+ cni+1

)) ,
0 < σ < 1.

(58)

CFL condition (58) is adapted to the resolution of the overall Euler system. However,
because of the weighted splitting approach, one can exhibit two additional CFL conditions
which would be sufficient to guarantee stability of both C and A subsystems if they were
solved independently. These CFL conditions write:

∆tnC = σ

2
∆x

max
i+1/2

(
max

(∣∣∣uni − E n
0 (aC)ni+1/2 τ

n
i

∣∣∣ , ∣∣∣uni+1 + E n
0 (aC)ni+1/2 τ

n
i+1

∣∣∣)) ,
∆tnA = σ

2
∆x

(1− (E n
0 )2)max

i+1/2

(
(aA)ni+1/2max

(
τni , τ

n
i+1

)) ,
0 < σ < 1.

(59)

One should keep in mind that it is absolutely not sufficient, in a fractional-step method,
to constrain the timestep by only substeps CFL condition in order to guarantee the stability
of the overall algorithm. A very simple hand-made but rather convincing example described
in [14] shows that the CFL condition of the unsplit system has to be taken into account
too. Hence, the final CFL condition reads:

∆tn = min (∆tnE , ∆tnC , ∆tnA) . (60)

We now study the discrete properties of our weighted splitting approach. Special attention
will be held on positivity of both density and internal energy.

4.4 Discrete Properties of the Overall Scheme
4.4.1 Discrete Density Positivity

Let us first notice that the acoustic resolution step of Aµ does not modify density. Then,
one has just to check that discrete density remains positive after the convective step. This
is classically done in [2] by rewriting the convective relaxation scheme (42), (48) as:

Un+1
i =

U+ (Wn
i , Wn

i−1
)

+ U−
(
Wn

i+1, Wn
i

)
2

with: U+ (WL, WR) = 2 ∆t
∆x

∫ ∆x
2 ∆t

0
L
(
WGod

)
(ξ, WL, WR) d ξ

U− (WL, WR) = 2 ∆t
∆x

∫ 0

− ∆x
2 ∆t

L
(
WGod

)
(ξ, WL, WR) d ξ

(61)

Hence, positivity of the discrete density ρn+1
i is maintained if all the intermediate

densities appearing in the Riemann problem described on Figure 1 and equalities (47) are
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positive. This can be done by adding an additional lower bound for constant aC into the
subcharacteristic condition (37a):

Lemma 1 (Positivity of intermediate density). Consider the Riemann problem related
to subsystem C, producing waves described on Figure 1 with UL and UR as initial data.
Assume that the global CFL condition (60) holds and that the initial data are such that:

−ρL (uR − uL)2

8 ≤ E 2
0 (pR − pL) ≤ ρR (uR − uL)2

8 , (62)

then, the intermediate densities ρ∗L, C and ρ∗R, C defined in (47) are positive under the modified
subcharacteristic condition:

Cµ : aC ≥ max (ρL (cC)L, ρR (cC)R, aρL, a
ρ
R) , (63)

with:

aρL = 1
2

(
−ρL (uR − uL)

2 E0
+
√
ρ2
L (uR − uL)2

4 E 2
0

+ 2 ρL (pR − pL)
)
,

aρR = 1
2

(
−ρR (uR − uL)

2 E0
+
√
ρ2
R (uR − uL)2

4 E 2
0

− 2 ρR (pR − pL)
)
.

(64)

Furthermore, if the first (respectively the second) inequality in (62) does no longer hold,
aρL (respectively aρR) can be removed from (63). Eventually, it is equivalent to guarantee the
intermediate density positivity and the ordering of the waves speeds: uL − E0 aC τL ≤ u∗C ≤
uR + E0 aC τR.

The proof of this lemma is written in Appendix C. The same kind of results can be
found in [2] in order to enforce the mass fraction positivity. One can notice that the non
dimensional expressions of aρL and aρR are of order O(1 + M/E0). The order one term is
inherited from the pressure difference under the square root while (uR − uL)/E0 provides
the order O(M/E0) term. Therefore, in order to make sure that aρL and aρR remain of order
one one could impose α ≥ 1 in the definition of E0 (8).

4.4.2 Discrete Internal Energy Positivity

As already presented in Subsection 2.2.2, in the case of an ideal gas thermodynamics,
specific internal energy ε remains positive throughout space and time. Although ε is not
a conservative variable, we can still consider equation (61) seen as a continuous convex
combination of conservative states and notice that ΦPG defined in (13) is a convex set in
the conservative phase-space. Thus, similarly to density, a sufficient condition to guarantee
the positivity of εn+1 is to make sure that for k ∈ {L, R}, ε∗k, C = e∗k, C − (u∗C)2/2 as well
as ε∗k,A = e∗k,A − (u∗A)2/2 are positive. Such a sufficient condition is presented in the next
lemma:

Lemma 2 (Positivity of the intermediate internal energy). Consider the Riemann problem
related to subsystems C and A, producing waves described on Figure 1 and Figure 2 with
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UL and UR as initial data. Assume that the global CFL condition (60) holds and that the
initial data are such that:

max
(
−ρL (uR − uL)2

8 , −E 2
0 ρ

ε
R (uR − uL)2

8

)
≤ E 2

0 (pR − pL) ≤ min
(
ρR (uR − uL)2

8 ,
E 2

0 ρ
ε
L (uR − uL)2

8

)
,

with: ρεk = pk/εk, k ∈ {L, R} .
(65)

then, the intermediate internal energies ε∗k, C and ε∗k,A, k ∈ {L, R} defined above are positive
under the modified subcharacteristic conditions:

Cµ : aC ≥ max (ρL (cC)L, ρR (cC)R, aρL, a
ρ
R, a

ε
L, a

ε
R) ,

Aµ : aA ≥ max (ρL (cA)L, ρR (cA)R, aεL, aεR) ,
(66)

with:

aεL = 1
2

−ρεL (uR − uL)
2 E0

+

√√√√(ρεR (uR − uL))2

4 E 2
0

− 2 ρεL (pR − pL)

 ,
aεR = 1

2

−ρεR (uR − uL)
2 E0

+

√√√√(ρεR (uR − uL))2

4 E 2
0

+ 2 ρεR (pR − pL)

 .
(67)

Furthermore, as for Lemma1, if any of the inequalities (65) does not hold, it allows to
remove either aρk or aεk (according to the case) from (66).

The proof of this lemma is written in Appendix D. Once again, if α ≥ 1 in the definition
of E0, the non-dimensional expressions of aεk are of order one.
In the following section, a truncation error analysis performed on smooth solutions is

derived in order to exactly determine the power α.

5 A Truncation Error Analysis to Fit E 2
0 (t)

As studied in [22, 8] and mentioned in Subsection 2.2, most of low-Mach flows issues
result in substantial non-dimensional spatial diffusion at discrete level, the order of the
diffusion coefficient being O(∆x/M). That is why, in this section, we are interested in
performing a truncation error analysis on the convective, the acoustic and the overall
relaxation schemes. This will allow us to determine how our weighting parameter E0 should
be designed in order to tackle the numerical diffusion in the case of low-Mach flows.

5.1 Truncation Error of the Weighted Splitting Subsystems
Here is the truncation error analysis performed on the convective subsystem C:

Proposition 2 (Truncation error analysis of the convective subsystem). Consider the
convective numerical scheme defined by equations (42), (48) and (49). Under the CFL
condition (58), This scheme is consistent with the non-dimensional convective subsystem:
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Ctrunc :



∂t ρ+ ∂x (ρ u) = O(M∆x) +O

(
(1 + E0

M
+ M

E0
)∆x

)
,

∂t (ρ u) + ∂x

(
ρ u2 + E 2

0 (t)
M2 p

)
= O(M∆x) +O

(
(1 + E0

M
+ M

E0
)∆x

)
,

∂t (ρ e) + ∂x
(
(ρ e+ E 2

0 (t) p)u
)

= O(M∆x) +O

(
(1 + E0

M
+ M

E0
)∆x

)
.

(68)

The proof is given in Appendix G. As previously announced in Remark 6, the factor E0
in front of the non-centered terms of the intermediate velocity and pressure flux defined in
(47) naturally compensates the 1/M terms of the non-dimensional diffusive operator. Thus,
considering that there is a smooth function t→ E0(t) such as E0(tn) = E n

0 , with E n
0 defined

in (57), one can notice that:

O

(
M

E0

)
= O

(
E0
M

)
= O(1)⇔ α = 1 in (57). (69)

Therefore, by re-defining

E n
0 = max (Einf , min (Mn

max, 1)) ,

with: Mn
max = max

i∈[1, Ncells]

(
uni
cni

)
,

(70)

the numerical diffusion produced by the convective subsystem C is of order O(∆x) in every
Mach regime. If the convective part of the present weighted splitting approach structurally
avoids low-Mach numerical diffusion, the acoustic one continues to suffer from it. Indeed:

Proposition 3 (Truncation error analysis of the acoustic subsystem). Consider the acoustic
numerical scheme defined by equations (42) and (54). Under the CFL condition (58), This
scheme is consistent with the non-dimensional acoustic subsystem:

Atrunc :



∂t ρ = O(M∆x),

∂t (ρ u) + ∂x

(
(1− E 2

0 (t))
M2 p

)
= O(M∆x) +O

(
(1− E 2

0 )
M

∆x
)
,

∂t (ρ e) + ∂x
(
(1− E 2

0 (t)) p u
)

= O(M∆x) +O

(
(1− E 2

0 )(M + 1
M

)∆x
)
.

(71)

As it can be seen in the momentum equation (71), the order 1/M terms of the correction
part of the flux are solely weighted by (1 − E 2

0 ). What is more, as noted in Appendix
G, the overall relaxation scheme suffers from an additional numerical diffusion of order
(1− E 2

0 )∆x
M

. Indeed, after the convective step, and under the CFL condition (58), it can
be shown that a smooth non-dimensional updated solution Un+

i is such that:
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Un+
i = Un

i + Bn
iM∆x+O

(
M(1 + E0

M
+ M

E0
)∆x2

)
,

with: Bn
i = −∂x L (Fµ

C) (Un
i ) An,

with: An = σ

max
i+1/2

(
|uni |+ cni ,

∣∣∣uni+1

∣∣∣+ cni+1

) , 0 < σ < 1.
(72)

Then, if no additional hypothesis is done on the initial input Un
i , Bn

i is of order one a priori.
Injected inside the centered pressure part of the acoustic momentum flux, the fluctuation

generated by the convective step entails a new diffusion term of order (1− E 2
0 )∆x

M
. However

if the initial input lies into the discrete well-prepared space:

ρni = ρ0 +O (M) ,
uni = u0 +O (M) ,

pni = p0 +O
(
M2

)
,

with: ρ0, u0, p0 constants of order one,

(73)

then Bn
i becomes of order M and the dependence in 1/M of the new diffusive term vanishes.

In any case, a last special treatment has to be implemented to remove theO
(

(1− E 2
0 )∆x

M

)
diffusive terms brought by the acoustic correction part in the momentum flux.

5.2 Low-Mach Correction of the Acoustic Splitting Step
The low-Mach correction inspired from [17, 22] consists in adding artificially a term of order
O(M) in front of the correction part in the acoustic momentum flux. This new term can
be built using the local velocity and sound speed. The modified acoustic flux reads:

Hac
n
i+1/2 =

(
1− (E n

0 )2
)  0

(Π∗A, θ)ni+1/2
(Π∗A, θ u∗A)ni+1/2

 ,
with: (Π∗A, θ)ni+1/2 =

pni+1 + pni
2 −

(aA θ)ni+1/2
2

(
uni+1 − uni

)
,

and: θni+1/2 = min


∣∣∣(u∗A)ni+1/2

∣∣∣
max

(
cni+1, c

n
i

) , 1

 .
(74)

As noticed in [22], the introduction of this low-Mach correction does not alter the
consistency of the numerical scheme because it solely impacts the non-centered part in
the momentum flux which is only responsible for the numerical diffusion. Furthermore, it
is possible to build an approximate Riemann solver in the sense of Harten, Lax and Van
Leer [27] with the same eigenvalues than those produced by the exact Riemann problem
associated to the acoustic relaxation system Aµ. Details on this approximate Riemann
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solver are given in Figure 3, and equations (75), (76). The insensitivity of the eigenvalues
to the low-Mach correction allows to maintain the same kind of CFL condition (60) for the
modified acoustic scheme.

Z∗f, θ =


ρL
u∗L, θ
Π∗A, θ
e∗L, θ

, Z∗∗f, θ =


ρR
u∗R, θ
Π∗A, θ
e∗R, θ


(75)

with:


u∗k, θ = u∗A + (−1)ik (1− θ)(uR − uL)

2 ,

e∗k, θ = e∗k,A + (−1)ik (1− θ)(uR − uL)u∗A
2 ,

k ∈ {L, R} , iL = 1, iR = 2.
(76)

Thanks to this low-Mach correction term, numerical diffusion of the subsystem A is
modified, namely:

Proposition 4 (Truncation error analysis of the acoustic subsystem with low-Mach
correction). Consider the acoustic numerical scheme defined by equations (42) with the low-
Mach corrected flux (74). Suppose that pressure follows the well-prepared initial condition
written in (73). Then, under the CFL condition (58), This scheme is consistent with the
non-dimensional acoustic subsystem:

Atrunc :



∂t ρ = O(M∆x),

∂t (ρ u) + ∂x

(
(1− E 2

0 (t))
M2 p

)
= O(M∆x) +O

(
(1− E 2

0 )θ
M

∆x
)
,

∂t (ρ e) + ∂x
(
(1− E 2

0 (t)) p u
)

= O(M∆x) +O
(
(1− E 2

0 )(1 + θ)M∆x
)
.

(77)

Assume that there exists a smooth function (x, t)→ θ(x, t) such that ∀(i, n), θ(xi+1/2, t
n) =

θni+1/2. Then the numerical diffusion contained in the term of order O
(

(1− E 2
0 )θ

M
∆x
)

is

actually of order O
(
(1− E 2

0 )∆x
)
. Moreover, the global truncation error analysis writes:

Proposition 5 (Truncation error analysis of the overall scheme with low-Mach correction).
Consider the global relaxation scheme defined by equations (56) endowed with the low-Mach
corrected acoustic flux (74). Suppose that initial state Un

i follows the well-prepared initial
condition written in (73). Then, under the CFL condition (58), this scheme is consistent
with the non-dimensional system:

E trunc :



∂t ρ+ ∂x (ρ u) = O(M∆x) +O

(
(1 + E0

M
+ M

E0
)∆x

)
,

∂t (ρ u) + ∂x

(
ρ u2 + p

M2

)
= O(M∆x) +O

(
(1 + E0

M
+ M

E0
)∆x

)
+O

(
(1− E 2

0 )(1 + θ

M
)∆x

)
,

∂t (ρ e) + ∂x ((ρ e+ p)u) = O(M∆x) +O

(
(1 + E0

M
+ M

E0
)∆x

)
+O

(
(1− E 2

0 )(1 + θ)M∆x
)
.

(78)
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The proofs of the above propositions are written in Appendix G. In the low-Mach regime,
the correction is by construction of order M . In areas where the solution is sufficiently
smooth, it allows to reduce considerably the numerical diffusion induced by the momentum
equation.
In the next section, one-dimensional numerical results of the present weighted splitting

approach are presented.

6 Numerical Results
6.1 Ideal Gas Thermodynamics
In order to assess the above weighted splitting approach ability to follow slow contact
discontinuities as well as fast shock fronts, a one-dimensional configurable shock-tube test-
case is considered. The fluid has been firstly endowed with an ideal gas thermodynamics
(13a) with the heat capacity ratio γ = 7/5. The simulation has been conducted on a domain
of length 1m, the initial discontinuity of the Riemann problem being located at x = 0.5m.
The initial inputs of the Riemann problem are summed up on Table 1:

Left state Right state
ρ (kg.m−3) ρ0, L = 1. ρ0, R = 0.125
u (m.s−1) u0, L = 0. u0, R = 0.
p (bar) p0, L = p0, R (1 + ∆) p0, R = 0.1

Table 1: Ideal gas shock tube initial conditions

Recall that the analytical solution is made of a left rarefaction wave, a contact discontinuity
propagating to the right and a right shock wave. The maximal Mach number is reached
at the tail of the left rarefaction wave and can be controlled by increasing or diminishing
∆. When ∆ = 9, the classical Sod shock-tube described in [38] is retrieved, and the
maximal Mach number Mmax is about 0.92. We will refer to it as a Mach one case. When
∆ = 2 × 10−2, Mmax ≈ 9.5 × 10−2. This will be considered as an intermediate regime.
Finally, when ∆ = 8× 10−4, Mmax ≈ 4.2× 10−3 and we call it low-Mach case.

In terms of quality measurement, three criteria have been studied: mesh convergence in
L1 norm, profiles of the different computed solutions and efficiency.

6.1.1 Convergence Curves

Convergence curves have been built using a wide range of cells number:
Ncells ∈

{
102, 103, 104, 3× 104, 5× 104, 7× 104, 9× 104

}
. Convergence rates have been

calculated with the last two points. For each variable of interest, three convergence curves
are plotted according to the three different maximal Mach numbers defined above. Besides,
five different schemes have been tested: "no-Sp" corresponds to the case where E n

0 = 1 is
imposed along the simulation. Thus, the weighted splitting is not triggered. "Sp-(

√
M)" is
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the weighted splitting approach with E n
0 = max

(
Einf , min

(√
Mn
max, 1

))
while "Sp-(M)"

involves the optimal E n
0 defined in formula (57). Eventually, "LP" is the Lagrange-Projection

splitting method, fully described in [8] and taken as a benchmark. The mention "-corr"
means that the low-Mach correction defined in (74) is triggered. Figure 4 corresponds to
the velocity convergence curve while Figure 5 is associated to the pressure variable. Density
convergence curve has intentionally not been plotted because results were extremely close.
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Figure 4: Velocity Convergence Curves
As it can be seen, every numerical scheme converges towards the analytical solution as

mesh is refined. In the Mach one regime, convergence curves overlap quasi perfectly. It
is coherent with the fact that, in such a regime, subsystem C is almost similar to the full
Euler system. By construction, the numerical contribution of the acoustic subsystem A is
negligible. Still, the proximity between the Lagrange-Projection scheme and the weighted
splitting schemes is less straightforward.
Furthermore, as Mmax decreases one can observe that the low-Mach corrected schemes

Sp-(
√
M)-corr and Sp-LP-corr are clearly more accurate than the other ones. For example

on Figure 4, for M = 9.5× 10−2, Sp-(
√
M)-corr reaches the precision level of 2× 10−3 with

a 3× 103 cells mesh whereas it requires more than 7× 103 for No-Sp. This is in agreement
with the acoustic truncation error result of Proposition 4 derived for a smooth solution.
Moreover, as it can be seen on Figure 5, for M = 4.2 × 10−3, switching the weighting
parameter E n

0 from
√
Mn
max to its optimal value Mn

max has only a very slight positive effect
on the scheme accuracy. This is due to the fact that, in case of low-Mach number flow,
most of the numerical diffusion is generated by the acoustic part of the weighted splitting
approach. To complete this comparison, one could have wished to see the case Sp-(M)-corr
which, according to Proposition 5, is supposed to reduce the convective and acoustic
numerical diffusion for a smooth solution initially in the well-prepared space. Unfortunately
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this case suffers from strong non-physical oscillations located in the left rarefaction wave
area. Plots of these oscillations for different cells numbers can be seen on Appendix F.
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Figure 5: Pressure Convergence Curves
They have already been observed for low-Mach corrected numerical schemes written in

Eulerian coordinates (see [22], chapter 3, section 3.G). However, these spurious perturbations
are damped in the sense of the L∞ and L1 norms as mesh is refined. So far finding the
optimal choice for the couple (E0, θ) in order to prevent the acoustic momentum flux from
being completely centered and thus triggering such oscillations is still an open issue.
Let us do a last remark about the ability of these numerical schemes to approximate

analytical solution when the Mach number tends to zero. This can be measured by studying
the convergence rates of the different curves as Mach tends towards zero.

M = 0.92 M = 9.5× 10−2 M = 4.2× 10−3

No-Sp 0.870 0.803 0.530
Sp-(
√
M) 0.868 0.814 0.531

Sp-M 0.860 0.829 0.597
Sp-(
√
M)-corr 0.868 0.833 0.580

Sp-LP-corr 0.882 0.806 0.572
HLLC 0.879 0.802 0.528

Table 2: Pressure Convergence Rate (L1 norm)

Table 2 presents these orders of convergence for pressure. One can see that for every
schemes based on a splitting, the order of convergence is depreciated as the Mach number
decreases. Indeed for pressure, it passes from 0.87 at M = 0.92 (the expected order already
obtained in [20]) to 0.82 at M = 9.5 × 10−2 and 0.56 in the low-Mach case. Seeking to
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confirm this behavior, the same test case has been computed using an HLLC-type scheme
[42]; once again, at M = 4.2× 10−3 the convergence rate is 0.528. This suggests that: the
lowest the Mach number is, the slowest Godunov-like schemes are to reach the analytical
solution as mesh is refined. The same order of magnitude seems to be found in [19] for a
double rarefaction wave problem performed on Euler barotropic system withM ≈ 3.1×10−2.
The implicit-explicit AP scheme used to obtain this order is based on a Rusanov spatial
discretization. One could think that this result stresses a behavior already noticed in [25]
and [24] for steady cases: Godunov-like schemes have difficulty to converge towards the
low-Mach (incompressible) solution. Further investigations have to be undertaken in order
to understand this trend.
Beyond convergence curves and rates, one must also have a look on the solution profile

obtained with the different numerical schemes at a fixed mesh size. This is done in the next
subsection.

6.1.2 Solution Profiles

Figure 6 and Figure 7 show the velocity and pressure final profiles calculated with the
different numerical solutions in the low-Mach regime. We only plot the left rarefaction and
the right shock waves through which u and p change. Mesh is made of Ncells = 103 cells.

One can notice that No-Sp is always the most diffusive scheme. Besides, the positive effect
of the E n

0 = max (Einf , min (Mn
max, 1)) choice compared to E n

0 = max
(

Einf , min
(√

Mn
max, 1

))
is exclusively located in the left rarefaction wave fan where the solution is continuous. In
addition, No-Sp, Sp-(

√
M) and Sp-(M) profiles overlap in the shock front region.
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Figure 6: Velocity profile at M = 4.2× 10−3, with Ncells = 103

Eventually, the low-Mach correction globally improves the computed solution accuracy.
The Sp-(

√
M)-corr case produces profiles closer to the analytical solution than Sp-LP-corr

at the cost of little overshoots in the tail of the left rarefaction wave and before the shock
front.
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Figure 7: Pressure profile at M = 4.2× 10−3, with Ncells = 103

6.1.3 Efficiency Curve

Computational cost at fixed accuracy level is now investigated. Figure 8 and Figure 9
describe the pressure efficiency curves of the different numerical schemes for the three Mach
regimes. In the Mach one regime, every schemes seem to behave equivalently, the proposed
weighted splitting approach requiring slightly more CPU time than No-Sp or Sp-LP-corr.
When M = 9.5× 10−2, the weighted splitting approach is still slower than No-Sp, however
the low-Mach corrected schemes are clearly less time consuming, at fixed error than the
other ones. Indeed Sp-(

√
M)-corr and Sp-LP-corr reach the precision of 7× 10−5 in about

one hour and a half whereas it requires six hours for No-Sp and more than seven hours
for Sp-(

√
M). Eventually, in the low-Mach case, Sp-(

√
M)-corr seems to produce better

results than Sp-LP-corr. For a fixed precision of 4× 10−6 the weighted splitting method
needs about one hour and forty minutes whereas the Lagrange-Projection method requires
a little less than three hours.

29



10−1 100 101

10−4

10−3

CPU time (h) (log scale)

p
L

1
er
ro
r
(lo

g
sc
al
e)

10−3 10−2 10−1 100 101

10−4

10−3

CPU time (h) (log scale)

Figure 8: Pressure Efficiency Curves: M = 0.92 (left), M = 9.5× 10−2 (right)
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Figure 9: Pressure Efficiency Curves: M = 4.2× 10−3

6.2 Stiffened Gas Thermodynamics
In the above subsection, some elements seem to suggest that the weighted splitting approach
produces satisfying results for a wide range of Mach number when the fluid is modeled as an
ideal gas. A natural extension is the stiffened gas thermodynamics (14a) which strengthen
the quasi-incompressible property of the studied fluid. Then, new initial conditions for the
Riemann problem have been defined on Table 3. As it can be seen, initial density is of
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order 103 kgm−3 while pressure jump is 3 bars. The heat capacity ratio of the stiffened gas
law is γ = 7.5 whereas P∞ = 3× 108 Pa. These two constants have been taken in order
to produce sound speeds c =

√
γ(p+ P∞)/ρ ≈

√
γ P∞/ρ of order 1500ms−1 like in water

at atmospheric conditions and a temperature of 295 K. In this case the maximal Mach
number is about Mmax ≈ 4.6× 10−5. Thus, we are still in a very low-Mach regime.

Left state Right state
ρ (kg.m−3) ρ0, L = 103 ρ0, R = 9× 102

u (m.s−1) u0, L = 0. u0, R = 0.
p (bar) p0, L = 3 p0, R = 1

Table 3: Stiffened gas shock tube initial conditions

6.2.1 Acoustic Relaxation Coefficient Calibration

Let us go back to Remark 5. Testing a stiffened gas thermodynamics allows to compare
the acoustic subcharacteristic condition (37b) derived from the weighted splitting approach
and (39) obtained directly from the relaxation of the full Euler system and found in
[22]. Let us recall that the inferior bound of (37b) uses an artificial acoustic sound
speed cA whereas (39) is based on the physical sound speed c. In the previous ideal gas
thermodynamics case cA =

√
(γ − 1)p/ρ =

√
(γ − 1)/γ c and

√
(γ − 1)/γ ≈ 0.53 such

that this non-physical acoustic celerity was of the same order that the real sound speed.
However, with a stiffened gas thermodynamics, cA does not change while c becomes√
γ (p+ P∞)/ρ ≈

√
γ P∞/ρ. Thus cA/c ≈

√
(γ − 1)/γ

√
p/P∞ � 1. One could wonder if

considering the subcharacteristic condition (37b) based on a non-physical celerity rather
than the one based on the real sound speed (39) has an effect on the overall scheme accuracy?
So far, numerical arguments seem to go in favor of an acoustic relaxation coefficient based
on the real sound speed. Indeed, Figure 10 shows two weighted splitting simulations of type
Sp-(
√
M). The first one, noted Sp-(

√
M)-aA, takes the subcharacteristic condition (37b)

into account whereas the second one, Sp-(
√
M)-aE , involves (39). The mesh was composed

of 103 cells.
It turns out that Sp-(

√
M)-aA produces non-physical oscillations inside the rarefaction

fan and before the shock front. Things are even worse when Sp-(M)-aA and Sp-(M)-aE
are compared. Indeed, even if the non-physical subcharacteristic condition (37b) is fulfilled,
the amplitude of the spurious oscillations is such that pressure becomes negative after
several timesteps. Simulation crashes because cA becomes a complex number. On the
contrary, Sp-(M)-aE does not suffer from any oscillations or stability issues. Recall that
the relaxation coefficient aA multiplies the non-centered part of the acoustic momentum
flux responsible for most of the numerical diffusion of the scheme. Hence, by considering
subcharacteristic condition (39) rather than (37b) this coefficient has been considerably
increased as well as the numerical diffusion coefficient. Non-physical oscillations are then
removed. Nevertheless, a theoretical motivation for preferring (39) instead of (37b) it is
still to be found.
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Figure 10: Effect of the Estimation of the Relaxation Coefficient

In the sequel, the acoustic relaxation coefficient aA has been calculated using the physical
sound speed: aA > ρ c. The global CFL condition (60) is modified in consequence.

6.2.2 Convergence Curves and Computed Solutions Profiles

Similarly to the ideal gas thermodynamics configuration, pressure convergence curve plotted
on Figure 11 shows that the low-Mach corrected schemes are the most accurate as mesh is
refined. However, one can notice that the Sp-(

√
M)-corr curve remains above of the LP

one until Ncells ≥ 5× 104. This can be explained by observing the solutions profiles drawn
on Figure 12. The low-Mach correction centers the pressure flux since the Mach number is
very small in every computational region. Hence, it triggers oscillations in areas where the
solution is sharp. Such oscillations are present in the case of Sp-LP-corr but their amplitude
is smaller. So far this difference remains unexplained. In any case, the more the mesh is
refined, the more localized are these oscillations. For Ncells = 9× 104 the Sp-(

√
M)-corr

becomes more accurate than the Sp-LP-corr one. This sudden descent can be measured by
pressure convergence rate written on Table 4 which is 0.783 for Sp-(

√
M)-corr contrary to

Sp-LP-corr which only reaches 0.561. Additional points should be added to see the trend
evolution.
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M = 4.6× 10−5

No-Sp 0.506
Sp-(
√
M) 0.502

Sp-M 0.503
Sp-(
√
M)-corr 0.783

Sp-LP-corr 0.561

Table 4: Pressure Convergence Rate (L1 norm)
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7 Conclusion
In this work, a conservative fractional step approach based on a time-weighted splitting
has been proposed for Euler-like models. The weighting parameter is proportional to
the instantaneous maximal flow Mach number M . When the latter takes high values
the splitting allows to directly solve the overall Euler-like system in one step with an
explicit time integration. Thus, shock waves are correctly captured without any diffusion or
dispersion induced by the acoustic implicitation process. On the contrary, if M is close to
zero, convection is completely decoupled from acoustic. In that case, the acoustic discrete
flux is modified by a stable low-Mach correction. This results in a uniform truncation error
with respect to M for smooth and initially well-prepared solutions.

What is more, the Suliciu-like relaxation method used to discretize both convective
and acoustic subsystems provides the density and internal energy positivity under the
introduction of new admissible lower bounds for the relaxation constants. Besides, such
relaxation constants encapsulate the thermodynamic nonlinearity and offer an easy way to
deal with general equations of state.

The one-dimensional results performed with an ideal and a stiffened gas thermodynamics
show that the weighted splitting approach is as accurate and efficient as the Lagrange-
Projection method [8] for a wide range of Mach numbers.

Additional developments whose results are presented in [28, 29] deal with the adaptation of
the acoustic implicitation technique proposed in [13, 8] to the present splitting. Particularly,
if one is interested in following the material waves of low-Mach number flows, the implicit-
explicit version of the present approach avoids the time-diffusion issues described in the
introduction. However, when applied to the non-stationary low-Mach number shock tubes
described above, the implicit-explicit strategy seems to be less efficient than a full time-
explicit resolution; meaning that at a given error level, it is still more CPU-consuming. This
echoes a difficulty pointed out in the introduction: a slightly compressible fluid flow can
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generate high-amplitude pressure waves even if the flow Mach number is small; and acoustic
implicitation methods based on a material Courant number seem to damp them. Another
improvement would concern the definition of the discrete weighting parameter E n

0 : in the
same manner as for the relaxation constants, it could be transformed in a local weighting
factor (E0)ni+1/2 = max

(
Einf , min

(
max(Mn

i , M
n
i+1), 1

))
which is spatially constant for the

Riemann problem solved at the interface. By doing so, the present weighted splitting
approach could react to the spatial fluctuations of the flow Mach number and could improve
even further the global accuracy of the method. Eventually, a reflection about the relevance
of an extension of the present weighted splitting approach to homogeneous relaxed models
will be undertaken.
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Appendix A
For the sake of simplicity, we prove Proposition 1 in 1D. Let us consider the set of non
conservative variables V = [ρ, u, p]T . If the solutions of subsystems C and A are smooth,
one can rewrite them equivalently as:

CNC :


∂t ρ+ u ∂x ρ+ ρ ∂x u = 0

∂t u+ u ∂x u+ 1
ρ
∂x
(
E 2

0 (t) p
)

= 0

∂t p+ u ∂x p+ ρ c2
C ∂x u = 0

(79)

ANC :


∂t ρ = 0

∂t u+ 1
ρ
∂x
(
(1− E 2

0 (t)) p
)

= 0

∂t p+ (1− E 2
0 (t))ρ c2

A∂x u = 0
(80)

In variables V the Jacobian matrices of subsystems CNC and ANC are:

CNC :

u ρ 0
0 u E 2

0 /ρ
0 ρ c2

C u

 (81) ANC :

0 0 0
0 0 (1− E 2

0 )/ρ
0 (1− E 2

0 )ρ c2
A 0


(82)

Supposing that c2
C ≥ 0 and c2

A ≥ 0, the eigenvalues and eigenvectors can be easily
obtained and read:

CNC :
λC1 = u− E0 cC

λC2 = u

λC3 = u+ E0 cC

rC1 =

 ρ
−E0 cC
ρ c2
C

 , rC2 =

1
0
0

 , rC3 =

 ρ
+E0 cC
ρ c2
C

 , (83)
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ANC :

λA1 = −
(
1− E 2

0

)
cA

λA2 = 0

λA3 =
(
1− E 2

0

)
cA

rA1 =

 0
1

−ρ cA

 , rA2 =

1
0
0

 , rA3 =

 0
1
ρ cA

 , (84)

Then one can notice that, for the two subsystems, the 1-field and 3-field are genuinely non
linear whereas the 2-field is linearly degenerate. Let us now study the sufficient conditions
for which c2

C ≥ 0 and c2
A ≥ 0. Consider the ideal gas thermodynamics presented in equation

(13). Then:

c2
C =

(
1 + E 2

0 (γ − 1)
) p
ρ

= γE0

p

ρ

c2
A = (γ − 1)p

ρ

(85)

Since E 2
0 ∈ [0, 1], γE0 ∈ [1, γ]. What is more the ideal gas phase-space ensures that p

is positive too. Thus, in case of an ideal gas thermodynamics, c2
C and c2

A are naturally
positive. On the contrary, when the stiffened gas thermodynamics is at stake one obtains:

c2
C = γE0 p+ γP∞

ρ

c2
A = (γ − 1)p

ρ

(86)

The stiffened gas phase-space ensures that p > −P∞ ⇒ γE0 p + γ P∞ > (γ − γE0)P∞.
And γ − γE0 is positive. Once again, c2

C is positive without any condition. However
c2
A ≥ 0⇔ p ≥ 0 which is not guaranteed in the stiffened gas case.

Appendix B
Consider Ω a bounded spatial domain of Rd, d ∈ {1, 2, 3} which boundary is ∂ Ω. The
specific internal energy of both subsystems verifies the following PDEs:

∂t ε+ u · ∇ ε+ E 2
0 (t) p

ρ
∇ · (u) = 0 (C)

∂t ε+
(
1− E 2

0 (t)
) p

ρ
∇ · (u) = 0 (A)

(87)

Consider ε− = ε− |ε|
2 the negative part of the specific internal energy. Consider

the following hypothesis about the solution’s smoothness and the initial and boundary
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conditions:

∀t ≥ 0, u(t, .) ∈ L∞ (Ω) , ∇ · (u) (t, .) ∈ L∞ (Ω) (88a)
∀t ≥ 0, ε(t, .) ∈ L∞ (Ω) , ∇ (ε) (t, .) ∈ L∞ (Ω)d (88b)

∀t ≥ 0, p
ρ

(t, .) ∈ L∞ (Ω) (88c)

∀x ∈ Ω, ε(0,x) > 0⇔ ε−(0,x) = 0 (88d)
ε|∂ Ω ≥ 0 if u · n|∂ Ω ≤ 0 (88e)

By multiplying equation (87) by ε− and integrating over Ω one obtains:


d

dt

∫
Ω

(ε−)2

2 dΩ +
∫

Ω
u · ∇ (ε−)2

2 dΩ +
∫

Ω
E 2

0 (t) ε
− p

ρ
∇ · (u) dΩ = 0 (C)

d

dt

∫
Ω

(ε−)2

2 dΩ +
∫

Ω

(
1− E 2

0 (t)
) ε− p

ρ
∇ · (u) dΩ = 0 (A)

(89)

By using Green’s formula the above equations can be transformed into:


d

dt

||ε−||2L2

2 =
∫

Ω
∇ · (u)

(
(ε−)2

2 − E 2
0 (t) ε

− p

ρ

)
dΩ−

∫
∂ Ω

(ε−)2

2 u · n dΓ (C)

d

dt

||ε−||2L2

2 = −
∫

Ω
∇ · (u)

(
1− E 2

0 (t)
) ε− p

ρ
dΩ (A)

(90)

If the ideal gas thermodynamics is considered, ε
−p

ρ
= (γ − 1) (ε−)2. Because of the

admissible inlet boundary condition (88e), −
∫
∂ Ω

(ε−)2

2 u · n dΓ is always negative so that
we can derive the following inequalities:

d

dt

||ε−||2L2

2 ≤

LC(t)︷ ︸︸ ︷
sup

Ω

∣∣∣∇ · (u)
(
1− 2 E 2

0 (t) (γ − 1)
)∣∣∣ ||ε−||2L2

2 (C)

d

dt

||ε−||2L2

2 ≤ sup
Ω

∣∣∣2∇ · (u)
(
1− E 2

0 (t)
)

(γ − 1)
∣∣∣︸ ︷︷ ︸

LA(t)

||ε−||2L2

2 (A)
(91)

Thus, because of Gronwall’s lemma:
∣∣∣∣ε−∣∣∣∣2L2 (t) <≤

∣∣∣∣ε−∣∣∣∣2L2 (0) e
∫ t

0 LC(s) ds = 0⇒
∣∣∣∣ε−∣∣∣∣2L2 (t) = 0 (C)∣∣∣∣ε−∣∣∣∣2L2 (t) ≤

∣∣∣∣ε−∣∣∣∣2L2 (0) e
∫ t

0 LA(s) ds = 0⇒
∣∣∣∣ε−∣∣∣∣2L2 (t) = 0 (A)

(92)
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One can notice that, beyond hypothesis presented in (88), a sufficient condition to derive
inequalities (91) is p

ρ
= O

(
ε−
)
on Ω.

When a stiffened gas thermodynamics defined by (14a) and (14b) is at stake, one is
interested in the positivity of P = ρ ε− P∞. Such a variable follows the PDEs:{

∂t P +∇ · (P u) + E 2
0 (t) (γ − 1)P ∇ · (u) + P∞ (1− E 2

0 (t))∇ · u = 0, (C)
∂t P + (1− E 2

0 (t)) (γ − 1)P ∇ · (u)− P∞ (1− E 2
0 (t))∇ · u = 0. (A)

(93)

By doing exactly the same kind of hypothesis and calculations than for the ideal case,
one can obtain:

d

dt

∣∣∣∣P−∣∣∣∣2L2 ≤ (2 E 2
0 (γ − 1) + 1) sup

Ω
|∇ · u|

∣∣∣∣P−∣∣∣∣2L2 − (1− E 2
0 (t))P∞

∫
Ω
P−∇ · (u) dΩ, (C)

d

dt

∣∣∣∣P−∣∣∣∣2L2 ≤ 2 (1− E 2
0 )(γ − 1) sup

Ω
|∇ · u|

∣∣∣∣P−∣∣∣∣2L2 + (1− E 2
0 (t))P∞

∫
Ω
P−∇ · (u) dΩ. (A)

(94)
Because 1/P− is a priori not bounded, it is not possible to bound the last term in equations

(94) by a positive quantity times
∣∣∣∣P−∣∣∣∣2L2 except in the E 2

0 (t) = 1 or P∞ = 0 cases. Thus,
Gronwall’s lemma cannot be applied and one cannot be sure that

∣∣∣∣P−∣∣∣∣L2 (t) = 0.

Appendix C
Consider the Riemann problem presented on Figure 1 related to the convective subsystem.
It produces intermediate states described in relations (46) and (47). Let us find a sufficient
condition on the subcaracteristic coefficient aC so that the intermediate densities ρ∗k, C , k ∈
{L, R} are positive.

ρ∗k, C ≥ 0⇔ τ∗k, C ≥ 0

⇔ τk + (−1)ik+1

E0 aC
(u∗C − uk) ≥ 0

⇔ a2
C + ρk (uR − uL)

2E0
aC + (−1)ikρk (pR − pL)

2 ≥ 0

(95)

The second order polynomial function admits real roots if and only if ∆ρ
k ≡

ρk (uR − uL)2

8 E 2
0

+

(−1)ik+1 (pR − pL) ≥ 0. Let us notice that ∆ρ
L < 0⇒ ∆ρ

R > 0 and conversely. In that case
the polynomial constraint (95) related to ∆ρ

L is automatically verified. Thus, consider the
most demanding case where ∆ρ

L ≥ 0 and ∆ρ
R ≥ 0, namely:

−ρL (uR − uL)2

8 ≤ E 2
0 (pR − pL) ≤ ρR (uR − uL)2

8
(96)

If uL 6= uR, inequality (96) holds easily with low-Mach flows when E0 tends toward zero.
Let us define aρk, k ∈ {L, R} the highest roots related to the above polynomial functions:
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aρL ≡
1
2

(
−ρL (uR − uL)

2 E0
+
√
ρ2
L (uR − uL)2

4 E 2
0

+ 2 ρL (pR − pL)
)

aρR ≡
1
2

(
−ρR (uR − uL)

2 E0
+
√
ρ2
R (uR − uL)2

4 E 2
0

− 2 ρR (pR − pL)
) (97)

By noticing that ∀A ≥ 0,−A+
√
A2 +B > 0⇔ B > 0, one can build the following table

which gives the sign of aρL and aρR:

uR > uL uR < uL
pR > pL aρL > 0, aρR < 0 aρL > 0, aρR > 0
pR < pL aρL < 0, aρR > 0 aρL > 0, aρR > 0

Table 5: Positivity Domain of aρL and aρR

In practice, when either aρL or aρR are positive, we add it as an additional constraint into
the subcaracteristic condition (37a) leading to the modified subcaracteristic condition (63).
The non-dimensional expressions of aρL and aρR are:

aρL ≡
1
2

−M
E0

ρL (uR − uL)
2 +

√(
M

E0

)2 ρ2
L (uR − uL)2

4 + 2 ρL (pR − pL)


aρR ≡

1
2

−M
E0

ρR (uR − uL)
2 +

√(
M

E0

)2 ρ2
R (uR − uL)2

4 − 2 ρR (pR − pL)

 (98)

Thus, if E0 is proportional to the Mach number as defined in (70), the above non-
dimensional roots are of order one.

Concerning the equivalence between the intermediate density positivity and the ordering
of the eigenvalues of subsystem Cµ, one can notice that:

uL − E0 aC τL ≤ u∗C

⇔ 0 ≤ E0 aC

(
τL + 1

E0 aC
(u∗C − uL)

)
⇔ 0 ≤ τ∗L, C

(99)

By doing the same calculation, one can see that u∗C ≤ uR + E0 aC τR ⇔ τ∗R, C ≥ 0.
Finally, let us recall that, in the acoustic Riemann problem presented on Figure 2,

ρ∗L,A = ρL and ρ∗R,A = ρR. The intermediate densities are then already positive. No
additional constraint on aA needs to be provided in order to preserve the density positivity.
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Appendix D
Relaxed Convective Subsystem
Once again, for the Riemann problem related to the convective relaxed subsystem C, the
specific internal energy reads:

ε∗k, C = e∗k, C −
(u∗C)2

2

= ek −
(u∗C)2

2 + E0
(−1)ik
aC

(Π∗C u∗C −Πk uk)

= εk + u2
k − (u∗C)2

2 + E0
(−1)ik
aC

(Π∗C u∗C −Πk uk)

= εk + u2
k + (u∗C)2

2 + E0
(−1)ik
aC

u∗C

(
Π∗C + (−1)ik+1 aC

E0
u∗C

)
− E0

(−1)ik
aC

Πk uk

(100)

By combining, u+ (−1)ik E0 aC τ and Π + (aC)2 τ which both are 1-Riemann invariants

of subsystem Cµ, one can build a new one: Π + (−1)ik+1 aC
E0

u. Then, one can simplify the
above expression of ε∗k, C , namely:

ε∗k, C = εk + u2
k + (u∗C)2

2 + E0
(−1)ik
aC

u∗C

(
Πk + (−1)ik+1 aC

E0
uk

)
− E0

(−1)ik
aC

Πk uk

= εk + E0
(−1)ik
aC

Πk (u∗C − uk) + (u∗C − uk)
2

2

(101)

Thus, a sufficient condition which would guarantee that ∀k ∈ {L, R} , ε∗k, C ≥ 0 is:

εk + E0
(−1)ik
aC

pk (u∗C − uk) ≥ 0⇔ a2
C − E0 ρ

ε
k

(uR − uL)
2 aC + (−1)ik+1E 2

0 ρ
ε
k

(pR − pL)
2 ≥ 0

(102)
with ρεk = pk

εk
, and considering that pk = Πk. Inequality (102) is very similar to the one

obtained for the intermediate density positivity. The most demanding case is the one where

∀k ∈ {L, R} , ∆ε
k ≡ ρεk

(uR − uL)2

8 + (−1)ik (pR − pL) ≥ 0:

−ρ
ε
R (uR − uL)2

8 ≤ pR − pL ≤
ρεL (uR − uL)2

8
(103)

Once again the highest roots related to the polynomial functions written in (102) are:

40



aεC, L ≡
E0
2

ρεL (uR − uL)
2 +

√
(ρεL)2 (uR − uL)2

4 − 2 ρεL (pR − pL)


aεC, R ≡

E0
2

ρεR (uR − uL)
2 +

√
(ρεR)2 (uR − uL)2

4 + 2 ρεR (pR − pL)

 (104)

The sign of aεL and aεR is given by the following table:

uR > uL uR < uL
pR > pL aεC, L > 0, aεC, R > 0 aεC, L < 0, aεC, R > 0
pR < pL aεC, L > 0, aεC, R > 0 aεC, L > 0, aεC, R < 0

Table 6: Positivity Domain of aεC, L and aεC, R

The non-dimensional version of these roots reads:

aεC, L ≡
E0
2

M ρεL (uR − uL)
2 +

√
M2 (ρεL)2 (uR − uL)2

4 − 2 ρεL (pR − pL)


aεC, R ≡

E0
2

M ρεR (uR − uL)
2 +

√
M2 (ρεR)2 (uR − uL)2

4 + 2 ρεR (pR − pL)

 (105)

Then, unlike for the non-dimensional roots involved in the intermediate density positivity
they are of order O(E0). When either aεL or aεR are positive, they are injected in the
subcaracteristic condition (37a).

Relaxed Acoustic Subsystem
The acoustic relaxed subsystem Aµ also produces intermediate specific internal energies

ε∗k,A = e∗k,A−
(u∗A)2

2 = εk + (−1)ik
aA

Πk (u∗A − uk) + (u∗A − uk)
2

2 . The proof is similar to the
one done for the convective relaxed subsystem. Sufficient conditions allowing to guarantee
the intermediate specific energy positivity turns into the positivity of two polynomial
functions of order two in aA. The most demanding case corresponds exactly to inequalities
(103). Finally the roots above which the relaxation coefficient has to be are:

aεA, L ≡
aεC, L
E0

; aεA, R ≡
aεC, R
E0

. (106)

Since for k ∈ {L, R}, aεC, k = O(E0), the non-dimensional expressions of aεA, k are of
order one. One can notice that, in case of low-Mach flows, the constraint imposed by
the relaxation convective subsystem on the specific internal energy positivity is negligible
compared to the one of the relaxed acoustic subsystem. This is in agreement with the
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formal non-dimensional asymptotic analysis made in Subsection 3.2: the convective
subsystem converges formally toward a barotropic system where specific internal energy
remains constant.

Appendix E
The below proof is only formal. It aims at exhibiting subcaracteristic conditions under which
the relaxed subsystems contain diffusive operators. The latter would avoid instabilities
which could prevent the convergence of the relaxation subsystems Cµ and Aµ towards C
and A.

Relaxed Convective Subsystem
Consider the relaxed convective subsystem Cµ:

Cµ :



∂t ρ+ ∂x (ρ u) = 0

∂t ρ u+ ∂x (ρ u2) + ∂x
(
E 2

0 (t) Π
)

= 0

∂t ρ e+ ∂x
(
(ρ e+ E 2

0 (t) Π)u
)

= 0

∂t Π + u ∂x Π + a2
C
ρ
∂x u = 1

µ
(p−Π)

(107)

Define W = [ρ, ρ u, ρ e, ρΠ]T and U = [ρ, ρ u, ρ e]T . Assume that one can perform a
Chapman-Enskog expansion on U and Π and write them in powers of µ, namely:

U = U0 + µU1 +O(µ2),
Π = p (U0) + µΠ1 +O(µ2),

(108)

with U0 and p(U0) solutions of subsystem C and U1, Π1 of order one. Making µ tend
formally toward zero, the relaxed pressure equation becomes at order zero:

∂t p(U0) + u0 ∂x p(U0) + a2
C
ρ0
∂x u0 = −Π1 ⇔

(
a2
C
ρ0
− ρ0 cC(U0)2

)
∂x u0 = −Π1 (109)

In order to make Cµ converge towards C, a basic step is to make sure that U1 remains
of order one throughout time. Its evolution is influenced by non linear convective effects
which mix order zero and order one terms as well as pressure effects related to E 2

0 ∂x Π1 for
the momentum equation and E 2

0 ∂x (Π1 u0 + p0 u1) for the energy equation. Using equation
(109), one can notice that:

−E 2
0 ∂x Π1 = E 2

0 ∂x

((
a2
C
ρ0
− ρ0 cC(U0)2

)
∂x u0

)
(110)
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Thus, under the convective subcaracteristic condition aC > ρ0 cC(U0), order zero terms
results in a diffusive effect on the order one momentum equation. One can believe that this
diffusion will be sufficient to prevent U1 from exploding when µ tends toward zero.

Relaxed Acoustic Subsystem
The same argumentation can be done on the relaxed acoustic subsystem Aµ. It gives the
expected subcaracteristic condition (37b).

Appendix F
According to the truncation error analyses derived in Section 5, the scheme Sp-(M)-corr
allows to reduce the spatial numerical diffusion in the convective as well as in the acoustic
subsystem in the case of low-Mach number flows. On Figure 13 velocity profiles are plotted
for different meshes. The diffusion reduction results in non-physical oscillations in the tail
of the left rarefaction wave. However, the L∞ and the L1 norms of the induced error decay
as the cells number increases. Hence, the scheme is stable and converges to the analytical
solution.
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Figure 13: Velocity profile at M = 4.2× 10−3, Sp-(M)-corr

Appendix G
Truncation Error of the Convective Subsystem
Let us consider the convective numerical flux located at face indexed by i+ 1/2. For the
sake of notations simplicity and in order to adopt an unstructured formalism, let us rewrite
the index i+ 1/2 as f for "face". Finally let us call L (respectively R) the index of the left
(respectively the right) neighbor cell of the face f . Typically, in 1D L = i and R = i+ 1.
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As mentioned in Subsection 4.2.1 the relaxation scheme for the convective subsystem
can be written:

Hc
n
f = Hc

n(UL, UR) = 1
2 (L(Fµ

C) (UL) + L(Fµ
C) (UR))−1

2 |uL − E0 aC τL|
(
U∗f −UL

)
−1

2 |u
∗
C |
(
U∗∗f −U∗f

)
−1

2 |uR + E0 aC τR|
(
UR −U∗∗f

)
L(Fµ

C) (U) =
[
ρ u, ρ u2 + E 2

0 p, (ρ e+ E 2
0 p)u

]T
(111)

Using the classical rescaling presented on Section 3 the non-dimensional version of this
numerical flux writes:

Hc
n
f = Hn(UL, UR) = 1

2 (L(Fµ
C) (UL) + L(Fµ

C) (UR))−1
2

∣∣∣∣uL − E0
M

aC τL

∣∣∣∣ (U∗f −UL

)
−1

2 |u
∗
C |
(
U∗∗f −U∗f

)
−1

2

∣∣∣∣uR + E0
M

aC τR

∣∣∣∣ (UR −U∗∗f
)

L(Fµ
C) (U) =

[
ρ u, ρ u2 + (E0/M)2 p, (ρ e+ E 2

0 p)u
]T
, ρ e = ρ ε+ M2

2 ρ u2

(112)
For the sake of notations, let us rewrite U∗f as U∗L and U∗∗f as U∗R. The non-dimensional

intermediate states U∗k, k ∈ {L, R} can be expressed as:

U∗k =

 ρ∗k, C
ρ∗k, C u

∗
C

ρ∗k, C e
∗
k, C

 (113)

with: 

u∗C = uR + uL
2 − E0

M

(pR − pL)
2 aC

p∗ = pR + pL
2 − M

E0

aC (uR − uL)
2

ρ∗k, C = 1/τ∗k , τ∗k = τk + M

E0

(−1)ik+1

aC
(u∗C − uk)

e∗k, C = ek + E0M
(−1)ik
aC

(p∗ u∗C − pk uk)

aC = K ·max (ρL cC(ρL, pL), ρR cC(ρR, pR)) , K > 1
k ∈ {L, R} , iL ≡ 1, iR ≡ 2

(114)

44



Let us define xf , xL and xR the positions of the face, left cell and right cell barycenters.
In 1D: xL = xi, xR = xi+1 and xf = xL + ∆x/2 = xR −∆x/2. At a given time t, for a
smooth function φ(., t) let us write φf for φ(xf , t) and φL for φ(xL, t) . Particularly, we
will consider x→ a(x, t) a smooth function such that aC(xi+1/2, t

n) = (aC)ni+1/2.
Let us consider a non-dimensional smooth state (x, t)→ U(x, t) verifying:

U(xi, tn + ∆t)−U(xi, tn)
∆t + Hc (U(xi, tn), U(xi+1, t

n))−Hc (U(xi−1, t
n), U(xi, tn))

∆x = 0
(115)

One wonders which partial differential equation does such a smooth solution verify?
It can be first noticed that U(xi, tn + ∆t)−U(xi, tn)

∆t is consistent with ∂t Ui +O (∆t).
Let us now focus on Hc

n(UL, UR): first, ∀k ∈ {L, R}:

U∗k −Uk =

 ρ∗k, C − ρk
(ρ∗k, C − ρk)u∗C + ρk (u∗C − uk)

(ρ∗k, C − ρk) e∗k, C + ρk (e∗k, C − ek)

 (116)

Furthermore, performing a Taylor expansion around xf , and setting iL = 1, iR = 2, one
obtains:



ρ∗k, C − ρk =

−ρ2
f

af

(
M

E0

)
∂x u|f + (−1)ik+1

(
ρf
af

)2

∂x p|f

 ∆x
2 +O

(
(1 + M

E0
)∆x2

)

u∗C − uk =
[
(−1)ik+1∂x u|f −

(
E0
M

) 1
af
∂x p|f

]
∆x
2 +O

(
(1 + E0

M
)∆x2

)

e∗k, C − ek = M E0

[
− 1
af
∂x p u|f + (−1)ik+1

((
E0
M

)
pf
a2
f

∂x p|f +
(
M

E0

)
uf∂x u|f

)]
∆x
2

+O

(
M E0(1 + E0

M
+ M

E0
)∆x2

)
u∗C = uf −

(
E0
M

) 1
af
∂x p|f

∆x
2 +O

(
(1 + E0

M
)∆x2

)
e∗k, C = ef + (−1)ik∂x e|f

∆x
2 + e∗k, C − ek

(117)
Then:
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U∗k −Uk = ∆x
2



−
ρ2
f

af

(
M

E0

)
∂x u|f + (−1)ik+1

(
ρf
af

)2

∂x p|f

ρf

(
(−1)ik+1 − ρf uf

af

M

E0

)
∂x u|f + ρf

af

(
(−1)ik+1 ρf uf

af
− E0
M

)
∂x p|f

ρf ef

((
ρf
af

M

E0
+ (−1)ik+1uf

ef
E0
M

E0

)
∂x u|f + (−1)ik+1

(
ρf
a2
f

+ E0
E0
M

pf
a2
f ef

)
∂x p|f

)
+E0

E0
M

pf
a2
f ef

∂x p u|f


+O

(
(1 + E0

M
+ M

E0
)∆x2

)
(118)

One can finally observe that, for the terms in order one in space, the Mach number is
always compensated with the weighting parameter E0. Thus ∀k ∈ {L, R}:

U∗k −Uk = O

(
(1 + E0

M
+ M

E0
)∆x

)
f

(119)

Similarly:

U∗R −U∗L = (U∗R −UR) + (UR −UL) + (UL −U∗L)

= O

(
(1 + E0

M
+ M

E0
)∆x

)
f

(120)

Furthermore, one can easily see that ∀k ∈ {L, R}:∣∣∣∣uk + (−1)ik E0
M
aC τk

∣∣∣∣ =
∣∣∣∣uf + (−1)ik E0

M
af τf

∣∣∣∣+O

(
(1 + E0

M
)∆x

)
|u∗C | = |uf |+O

(
(1 + E0

M
)∆x

) (121)

Thus, at a given face f we have:

Hc
n
f = Hc

n(UL, UR) = 1
2 (L(Fµ

C) (UL) + L(Fµ
C) (UR)) +O

(
(1 + E0

M
+ M

E0
)∆x

)
f

(122)
Besides, 1

2 (L(Fµ
C) (UL) + L(Fµ

C) (UR)) is consistent with L(Fµ
C) (Uf ) +O

(
∆x2

)
.

Finally
Hn
i+1/2 −Hn

i−1/2
∆x is consistent with ∂x L(Fµ

C) (Ui)+O
(

(1 + E0
M

+ M

E0
)∆x

)
. Thus

we have found that the smooth solution U(x, t) verified the PDE ∀xi, tn:

∂t Un
i + ∂x L(Fµ

C) (Un
i ) = O (∆t) +O

(
(1 + E0

M
+ M

E0
)∆x

)
(123)
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Truncation Error of the Acoustic Subsystem
Keeping the same notations than previously, the non-dimensional relaxation flux for the
acoustic subsystem writes:

Hac
n
f =

(
1− E 2

0

)  0
Π∗A

Π∗A u∗A

 =
(
1− E 2

0

)



0
1
M2

pR + pL
2

pR uR + pL uL
2

−


0
1
M

aA
2 (uR − uL)

M aA
4

(
u2
R − u2

L

)
+ 1

4
1

M aA

(
p2
R − p2

L

)



with: aA = K ·max (ρL cA(ρL, pL), ρR cA(ρR, pR)) , K > 1
(124)

It is easy to check that
(
1− E 2

0

)
0

1
M2

pR + pL
2

pR uR + pL uL
2

 is consistent with

(
1− E 2

0

)
0
pf
M2
pf uf

+


0

O
(
(1− E 2

0 )(∆x/M)2
)

O
(
(1− E 2

0 )∆x2
)

. Besides, −(1−E 2
0 )


0

1
M

aA
2 (uR − uL)

M aA
4

(
u2
R − u2

L

)
+ 1

4
1

M aA

(
p2
R − p2

L

)


is consistent with−(1−E 2
0 )∆x

2


0

1
M
af∂x u|f

M af uf∂x u|f + 1
M af

pf∂x p|f

+


0

O

(
(1− E 2

0 )
M

∆x2
)

O

(
(1− E 2

0 )(M + 1
M

)∆x2
)

f

.

Finally, one obtains at order one in space:

Hac
n
f =

(
1− E 2

0

)
0
pf
M2
pf uf

+


0

O

(
(1− E 2

0 )
M

∆x
)

O

(
(1− E 2

0 )(M + 1
M

)∆x
)

f

(125)

Thus we have found that the smooth solution U(x, t) verified the PDE ∀xi, tn:

∂t ρ = O(∆t)

∂t (ρ u) + ∂x
(
(1− E 2

0 (t)) p
)

= O(∆t) +O

(
(1− E 2

0 )
M

)∆x
)

∂t (ρ e) + ∂x
(
(1− E 2

0 (t)) p u
)

= O(∆t) +O

(
(1− E 2

0 )(M + 1
M

)∆x
) (126)

The non-dimensional version of the CFL condition (58) reads:
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∆tn < M ∆x
max
i+1/2

(
|uni |+ cni ,

∣∣∣uni+1

∣∣∣+ cni+1

) . Thus O(∆t) is actually a O(M∆x). Injected in

equations (123) and (126), we obtain the results of proposition 2 and proposition 3.

Truncation Error of the Acoustic Subsystem with low-Mach Correction
Endowed with the low-Mach correction described in equation (74), the acoustic flux at face
xf reads:

Hac
n
f =

(
1− E 2

0

)  0
Π∗

Π∗ u∗

 =
(
1− E 2

0

)



0
1
M2

ΠR + ΠL

2ΠR uR + ΠL uL
2

−


0
θ

M

aA
2 (uR − uL)

Mθ aA
4

(
u2
R − u2

L

)
+ 1

4
1

M aA

(
Π2
R −Π2

L

)



(127)
The correction part is now consistent with:

−(1− E 2
0 )∆x

2


0

θf
M
af∂x u|f

Mθf af uf∂x u|f + 1
M af

pf∂x p|f

+


0

O

(
(1− E 2

0 ) θ
M

∆x2
)

O

(
(1− E 2

0 )(M θ + 1
M

)∆x2
)

f

.

At order one in space:

Hac
n
f =

(
1− E 2

0

)
0
pf
M2
pf uf

+


0

O

(
(1− E 2

0 )θ
M

∆x
)

O

(
(1− E 2

0 )(Mθ + 1
M

)∆x
)

f

(128)

For a smooth solution U(x, t), the truncation error analysis made on the acoustic scheme
with low-Mach correction gives ∀xi, tn:

∂t ρ = O(∆t)

∂t (ρ u) + ∂x
(
(1− E 2

0 (t)) p
)

= O(∆t) +O

(
(1− E 2

0 )θ
M

)∆x
)

∂t (ρ e) + ∂x
(
(1− E 2

0 (t)) p u
)

= O(∆t) +O

(
(1− E 2

0 )(Mθ + 1
M

)∆x
) (129)

Truncation Error of the Global Relaxation Scheme
Consider the overall relaxation scheme described in equation (56). Thanks to the truncation
error analysis of the convective subsystem one can notice that:
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Un+
i = Un

i − ∂x Fµ
C (Un

i ) ∆t+O

(
(1 + E0

M
+ M

E0
)∆x∆t

)
= Un

i − ∂x Fµ
C (Un

i ) AnM∆x+O

(
M(1 + E0

M
+ M

E0
)∆x2

)
with: An = σ

max
i+1/2

(
|uni |+ cni ,

∣∣∣uni+1

∣∣∣+ cni+1

) , σ < 1

(130)

Then, for order one in space, ∀k ∈ {L, R}: Un+
k = Un

k +Bn
kM∆x, with B a continuous

function of order one. Injecting Un+
k into the non-dimensional acoustic flux detailed in

equation (124), one can notice that the only contribution of order (1− E 2
0 )∆x
M

brought by
the fluctuation Bn

kM∆x is created by the centered pressure terms since:

1
M2

pEOS
(
Un+
R

)
+ pEOS

(
Un+
L

)
2 = 1

M2

(
pEOS

(
Un
f

)
+∇U pEOS

(
Un
f

)
·Bn

fM∆x+O(∆x2)
)

=
pnf
M2 +O

(∆x
M

)
+O

(
(∆x
M

)2
)

(131)

Thus, Hac
n
i+1/2

(
Un+
L , Un+

R

)
is consistent with:

(
1− E 2

0

)
0
pnf
M2
pnf u

n
f

+O
(

(1− E 2
0 )(1 +M + 1

M
)∆x

)
f
.

The end of the proof falls naturally.
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