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Abstract— This paper describes a business-oriented analysis 

environment facilitating analyses of coherent data from Data 

Warehouses (DWs) and Linked Open Data (LOD) datasets. 

Specifically, we present a multidimensional modeling solution, 

named Unified Cube, which provides a single, comprehensive 

representation of data from multiple sources. Unified Cubes 

include both concepts close to business terms and user-friendly 

graphical notations. An implementation framework is proposed 

to enable unified analyses of warehoused data and LOD. The 

feasibility of the proposed concepts is illustrated with examples 

based on real-world datasets. 

Keywords— Data Warehouses; Linked Open Data; Unified 

Conceptual Model; On-line Analytical Processing;  

I.  INTRODUCTION 

For over a decade, Data Warehouses (DWs) have been 
widely used to support decision-making processes. In a DW, 
operational data are periodically extracted, transformed and 
loaded in a multidimensional structure called data cube. A 
data cube represents warehoused data according to a fact 
(analysis subject composed of numeric indicators) and 
dimensions (analysis axes composed of attributes organized 
according to hierarchies) [1].  

Coming from the inside of an organization, warehoused 
data do not provide all useful information for decision-making. 
In today's highly dynamic business context, decision-makers 
need to access several information sources, especially the Web, 
to obtain comprehensive analytical perspectives [2]. Among 
the data publically available on the Web, Linked Open Data 
(LOD)1, especially analysis-oriented LOD2, provide promising 
opportunities to enhance business analyses with semantically 
interconnected and machine-readable data [3], [4].  

Motivating example. In an organization studying the 
social housing market, a DW contains quarterly and annual 
submitted and accepted applications for affordable housings 
by districts and counties (cf. Fig. 1(a)). The DW follows a 
Relational On-Line Analytical Processing (ROLAP) schema 
which organizes data according to a fact table (e.g., Affordable 
Housing) composed of numeric indicators (e.g., Applications 
and Acceptance) and several dimension tables (e.g., Area and 
Period) including an ordered set of analytical granularities 
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2 Analysis-oriented LOD refer to a type of Linked Open Data 
describing numeric indicators according to a set of analysis 
axes. Without specification, all LOD discussed in this paper 
belong to analysis-oriented LOD.  

(e.g., Quarter-Year and District-County). The warehoused 
data only provide a partial view of the demand for affordable 
housings. The decision-maker also wants to study the other 
factors (e.g., supply, cost etc.) which affect the affordable 
housing market to obtain complementary points of view 
during analyses. To do so, she/he searches on the Web and 
finds two LOD datasets3 published by the UK Department for 
Communities and Local Government. The first dataset (LOD1) 
reveals the yearly additional supply of affordable housings by 
districts and types, while the other dataset (LOD2) presents the 
evolution of the average rental charges of affordable housings 
according to districts and years. For the sake of readability, 
extracts of both LOD datasets are presented in tabular form in 
Fig. 1(b) and (c). 

Problem Statement. The efficiency of analyzing data 
from multiple sources is low, since decision-makers have to 
manually relate information scattered in several analysis 
results represented in different modeling languages. Carrying 
out analyses of both warehoused data and LOD is also 
difficult. Not to mention most LOD are schema-less or 
schema-light [5], all DWs and LOD datasets involved in 
analyses do not include the same information at the same 
analytical granularities: (a) some analysis axes are only 
available in certain sources, e.g. the analysis axis of the 
affordable housings' type TypeAS only exists in LOD1; (b) the 
same analysis axes present in different sources may include 
data at different analytical granularities. e.g., for the temporal 
analysis axis, the source ROLAP contains two analytical 
granularities Year-Quarter, whereas the sources LOD1 and 
LOD2 only include one analytical granularity Year; (c) the 
same data may have different labels in different sources (e.g., 
2013 is labeled as Year in the source ROLAP and PeriodRC in 
the source LOD2); (d) one analytical granularity may group 
several attributes from heterogeneous sources, e.g., the 
analytical granularity about district is described by a simple 
string in ROLAP (e.g., Adur), a classification code in 
LOD1(e.g., Adur E07000223) and an URI in LOD2 (e.g., 
http://statisticss.data.gov.uk/id/statistical-geography/E07000223). 
(e) each source contains different indicators. Some indicators 
can be analyzed together starting from certain analytical 
granularities. For instance, Fig. 1 shows independent analysis 
results revealing the Applications and Acceptance of 
affordable housings with the supply of affordable housings 
(i.e. Dwellings) and average rental Charges in the same 
district named Adur for the same year of 2013. 
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Fig. 1. A ROLAP DW and two LOD datasets about the social housing market.

Contribution. Our aim is to provide decision-makers with 
a business-oriented environment which allows facilitating 
analyses of coherent data from multiple sources. To this end, 
we propose a unified view including, in a single schema, all 
the indicators along with all available analysis axes as well as 
all the attributes and aggregation paths (coming from the 
heterogeneous sources). In the previous example, a unified 
view would enable decision-makers to more easily build the 
following dashboard (cf. Fig. 1(d)). This dashboard allows 
better explaining the lower rental charges in the district Adur 
in 2014 results in more applications for affordable housings, 
while the greater number of accepted applications is related to 
the additional supply of affordable housings in 2014. 

In this paper, we describe a novel multidimensional model, 
named Unified Cube, which unifies related warehoused data 
and LOD in a business-oriented way. First, we discuss related 
work on combining warehoused data with LOD (cf. section II). 
Second, we present conceptual definitions and graphical 
notations of Unified Cubes (cf. section III). Third, we describe 
an implementation framework for Unified Cubes (cf. section 
IV). At last, we detail how analyses of data from multiple 
sources are carried out through an implemented Unified Cube 
(cf. section V). 

II. RELATED WORK 

In the scientific literature, we can find many state-of-art 
papers [2], [6] that put forward the idea of including data from 
DWs and LOD datasets in one analysis. Among these papers, 
one of the consensuses is that a generic modeling solution 
should be proposed to unify warehoused data with LOD. The 
existing work with regards to a unified model can be 
categorized into three approaches.  

Firstly, the DW community tries to build a classical OLAP 
schema based on warehoused data combined with LOD. More 
specifically, the authors of [7]–[9] treat LOD as other external 
data which should be stored in a DW through Extract, 
Transform and Load (ETL) processes. However, due to the 
resource-consuming ETL processing, it is difficult to 

guarantee the freshness of LOD materialized in a local, 
stationary repository. Moreover, since warehoused LOD are 
queried in an offline way, decision-maker can hardly obtain 
up-to-date information during analyses. 

Secondly, the LOD community aims at transforming 
warehoused data into an RDF graph through a customizable 
mapping language such as R2RML4. The resulted schema is 
expressed in an RDF-based modeling vocabulary which 
describes the multidimensional structure of a LOD dataset. 
Among the existing vocabularies, we can cite the RDF Data 
Cube Vocabulary (QB) 5  as the current W3C standard to 
publish multidimensional statistical data. In [10], the authors 
propose the QB4OLAP vocabulary by adding more 
multidimensional characteristics to QB, like multiple 
analytical granularities and aggregation functions associated 
with a measure. Yet, datasets published in QB4OLAP and QB 
vocabularies still become standalone LOD sources on the Web. 
No solution has been proposed to enable interoperability 
between independent data sources. 

Thirdly, a joint effort between the two communities 
consists of combining standalone sources together to enable 
simultaneous analyses of both warehoused data and LOD. The 
authors of [11] discuss research challenges and application 
prospects of merging data from multiple sources without any 
concrete proposal. The first solution was proposed by the 
LOD community. [12] proposes IGOLAP vocabulary to 
represent data from both DWs and LOD datasets according to 
a multidimensional structure. However, the work of [12] 
requires warehoused data to be transformed into a stationary 
RDF dataset before being analyzed with LOD, which reminds 
us of the drawbacks of the work based on ETL processes. 
Moreover, IGOLAP is an RDF-based vocabulary which 
represents data at the logical level. A business-oriented 
modeling solution is still missing to enable non-expert users to 
exploit coherent data at a higher level, i.e., conceptual level. 
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5 http://www.w3.org/TR/vocab-data-cube 



To overcome these drawbacks, Unified Cubes should be 
generic enough to be independent of specific modeling 
solutions in the domains of DW and LOD. Moreover, a 
Unified Cube model should support on-the-fly analyses of 
both warehoused data and LOD. To facilitate the analysis 
tasks of non-expert users, only concepts close to business 
terms should be included in a Unified Cube. 

III. CONCEPTUAL MODELING OF UNIFIED CUBES 

The objective of Unified Cubes is to provide decision-
makers with a single, comprehensive representation of all 
useful data. This representation should be oriented to business 
analyses, so that non-expert users can easily interact with a 
Unified Cube without the need for specific knowledge in DW 
and LOD domains. To this end, a Unified Cube should fix a 
generic modeling language which  

· organizes warehoused data and LOD according to (a) 
one analysis subject containing numeric indicators and 
(b) some analysis axe including analytical granularities 
according to one or several aggregation paths;  

· allows gathering several aggregation paths from 
different sources together in one analysis axis, even 
these aggregation paths do not start from the same 
analytical granularity; 

· describes an analytical granularity with several 
attributes from multiple sources while managing the 
relationships between heterogeneous attribute instances; 

· supports on-the-fly and automatic extraction of detailed 
data from the sources; 

· associates a numeric indicator with only a set of 
summarizable analytical granularities instead of all 
analytical granularities on all analysis axes; 

· provides user-friendly graphical notations to facilitate 
the data exploitation task of decision-makers. 

A. Analysis Axis: Dimension 

A dimension corresponds to a unified vision of attributes 
which are related to one analysis axis. The organization of 
these attributes consists of the definition of one or several 
analytical granularities within a dimension. 

The analytical granularities of a dimension may form one 
or several aggregation paths (i.e. hierarchies). Due to the 
unification of attributes belonging to different analytical 
granularities, and contrary to classical multidimensional model, 
a dimension of Unified Cube may contain two hierarchies 
sharing no common lowest analytical granularities. For 
instance, in a temporal dimension, the union of analytical 
granularities week-year and month-quarter-year results in two 
aggregation paths without a common starting point. The 
definition of dimension should be generic enough to include 
this specificity. 

Notations. In the remainder of the paper, a superscript 
represents an element that the base belongs to, e.g., nameAdur 
means the name of Adur. A subscript indicates the index of an 
element in a set, e.g., districtk corresponds to the k-th one in a 
set of districts. 

Definition 1. A dimension representing an analysis axis 
composed of a sequence analytical granularities is denoted as 
Di={n ; L ; }, where: 

· n  is the dimension name; 

· L ={l1;…; lk} is a set of levels, each level represents a 
distinct analytical granularity; 

·  is a reflexive binary relation which associates a 
child level la (laÎL ) with a parent level lb (lbÎL ), 
such as la lb. 

Example. We identify a geographical dimension denoted 
DGeography from the three datasets in Fig. 2. The dimension 
DGeography named Geography includes two levels, such as 
L

Geography={lDistrict; lCounty}. The binary relation Geography 
connects the level lDistrict to its parent level lCounty, such as 
lDistrict

GeographylCounty. 

Remark. By removing the constraint on the unique lowest 
level, a hierarchy including month, quarter and year from one 
source (i.e., L ={lmonth; lquarter; lyear}) and another one 
containing week and year from a different source (i.e., 
L ={lweek; lyear}) can be unified in a dimension DS1S2 which 
includes a set of levels L ={lweek; lmonth; lquarter; lyear}. The 
same hierarchies can be found within the new dimension DS1S2, 
such as lmonth lquarter lyear and lweek lyear which do 
not share a unique lowest level.  

We define a sub-dimension as a part of dimension 
containing only a subset of levels. 

Definition 2. A sub-dimension of Di, denoted 
l

={n l ; 

L l ; }, corresponds to the part of the dimension  
started with the level ls, where  

·  n l  is the name of the sub-dimension; 

· L l  is the subset of levels, L l ÍL , "liÎL l , 
ls li; 

·  is the same binary relation of the one on the 
dimension Di. 

Example. A sub-dimension of the temporal dimension 
may be Time l  named Time-Year with LTime lYear

={lYear}, 
which represent the subpart of the dimension DTime that 
measures from the datasets LOD1 and LOD2 can be 
calculated along. 

B. Analytical Granularity: Level 

A level indicates a distinct analytical granularity by 
grouping together a set of attributes from different sources. 
For each attribute, the level keeps its name and an extraction 
formula allowing querying the attribute instances on-the-fly. 
Some mappings are also included within a level to manage the 
correlation and child-parent relations between heterogeneous 
attributes instances. 

Definition 3. A level represents a distinct analytical 
granularity on a dimension. A level is denoted as ld= {nl ; 
Ald; Cld; Rld}, where: 



· nl  is the name of level; 

· Ald  ={a1;…; ae} is a finite set of attributes. Each 
attribute ax (axÎA

ld) is a pair ána , Ea ñ, where na  is the 
name of the attribute and Ea  is an extraction formula 
through query algebra (i.e., relational algebra[13] and 
SPARQL algebra6) indicating the instances of ax. The 
domain of an attribute is denoted as dom(ax); 

· Cld : dom(ax)® dom(ay)  (axÎ A
ld , ayÎ A

ld \ax) is a 
symmetric correlative mapping which associates an 
attribute ax with its related ones at the same level; 

· Rld : dom(ax)®dom(az) (axÎA
ld , azÎA

le  and ld le.) is a 
rollup mapping implementing the binary relation 
between two levels. It connects the instances of child 
attributes with the instances of a parent attribute at an 
adjacent level. 

Remark. TABLE I. shows the algebraic form of 
commonly used SPARQL queries.  

TABLE I.  SPARQL QUERY AND ALGEBRAIC REPRESENTATION 

 

Example. The level lDistrict of the dimension DGeography 
contains a set of attributes (i.e., AlDistrict ={aDistrict; aDecription; 
aAreaRC; aAreaAS}) from different sources: the attributes aDistrict 
and aDecription come from the ROLAP DW, while the aAreaRC and 
aAreaAS are extracted from the LOD1 and LOD2 datasets 
respectively (cf. Fig. 2). To indicate how attribute instances 
can be retrieved from sources, an extraction formula is defined 
for each attribute within a level. For instance, the attribute 
aDistrict is associated with an extraction formula 
Ea = (Area), while the attribute aAreaAS is 
connected with an extraction formula as follows: 

 

The correlative mapping ClDistrict associates the instances of 
the attribute aDistrict with the ones of its descriptive attribute 
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algebra.html 

aDecription coming from the same ROLAP DW and the related 
attributes aAreaRC and aAreaAS in LOD datasets, for instance, 

 

The rollup mapping RlDistrict  aggregates the instances of 
aDistrict, aAreaAS and aAreaRC at the level lDistrict to the ones of 
aCounty at the level lCounty, for instance, 

 

C. Analysis Subject: Fact 

To always provide up-to-date information to decision-
makers, the definition of analysis subject should enable on-
the-fly querying of numeric indicators from the sources. To 
this end, each numeric indicator is associated with an 
extraction formula.  

Definition 4. A Fact corresponds to an analysis subject 
composed of a set of measures. A fact is denoted as F={nF; MF} 
where:  

· nF is the name of the fact; 

· M
F={m1;…; mp} is a finite set of numeric indicators 

called measures. Each measure me (meÎM
F) is a pair 

ánm , Em ñ, where nm  is the name of the measure, Em  
is an extraction formula pointing to the images of the 
measure in the source. The set of values of a measure 
me is denoted as val(me). 

Example. The fact named Affordable Housing contains 
four measures, namely mApplications, mAcceptance, mDwelling and 
mCharges. The measure mApplications has an extraction formula: 
Em = F (AffordableHousing). The 
measure mDwellings has an extraction formula as follows: 

 

D. Unified Cube 

A Unified Cube contains an analysis subject (i.e., fact) 
described by a set of analysis axes (i.e., dimensions). A 
measure from one source may only be computed with regards 
to a subset of levels on a dimension (i.e., a sub-dimension). A 
generalization of the dimension-measure relationship is 
needed to associate a measure with a sub-dimension starting 
from any level in Unified Cube. 

Definition 5. A Unified Cube is a n-dimensional finite 
space describing a fact with some dimensions. A Unified Cube 
is denoted as UC={F; D; LM}, where 

· F is a fact containing a set of measures; 

· D={D1;…; Dn} is a finite set of dimensions; 



· LM: 2
L \lp

´ ´L \lq ®me is a level-measure mapping 
which associates a set of summarizable levels with a 
measure me (meÎM), such as "iÎ[1..n], L \lk

 (k£|Li|) is 
the set of levels on the sub-dimension Di\lk

 of Di (DiÎD) 
starting from lk. 

We propose a set of user-friendly graphical notations for a 
Unified Cube based on the fact-dimension model [14] with 
minor modifications (cf. Fig. 2). The graphical notation aims 
at facilitating data exploitation at the schema level for non-
expert users. Measures sharing the same related dimensions at 
the same levels are grouped together. For readability purposes, 
the graphical notations do not include concepts involving data 
instances (e.g., correlative mapping and rollup mapping). 

 
Fig. 2. A Unified Cube about affordable housings. 

Example. Fig. 2 shows a Unified Cube which is built upon 
the warehoused data and the two LOD datasets in the 
motivating example. It contains three dimensions 
D={DGeography; DTime; DType}. Each measure is associated with 
its related levels. For the sake of readability, in the graphical 
notation the level-measure mappings are represented only 
between the lowest levels of sub-dimension and measures:  

 

IV. IMPLEMENTATION OF A UNIFIED CUBE  

In this section, we describe a generic, reusable 
implementation framework for Unified Cubes (cf. Fig. 3). The 
objective of the framework is to enable analyses of both 
warehoused data and LOD by representing different 
components of a unified schema and relationships among data 
from multiple sources. To do so, the implementation 
framework should include:  

 
Fig. 3. Implementation framework for Unified Cubes 

· a metamodel for Unified Cubes with a compatible 
instantiation algorithm. (cf. section IV.A Schema 
module); 

· tables of correspondences allowing keeping related 
data in a coherent environment (cf. section IV.B 
Relationships module). 

A. Schema Module  

The Schema module aims at representing the overall 
structure of data from multiple sources. A metamodel 
representing the concepts related to the multidimensional 
schema of a Unified Cube is included within this module. Fig. 
4 shows the class diagram representation of the metamodel. 

 
Fig. 4. Metamodel of Unified Cubes' schema.  

In this metamodel, each class implements one concept of 
Unified Cubes. Note that binary relations between level (i.e., 

) and level-measure mappings (i.e., LM) are implemented 
through associations. Moreover, each attribute and each 
measure are associated with an executable query (i.e., queryM 
or queryA) translated from the extraction formulae. By 
executing a query in a corresponding source whose query 
endpoint (i.e., URLM and URLA) is recorded, data can be 
extracted in real-time, so that decision-makers can always 
obtain up-to-date information during analyses. 

In our previous work [15], we describe the designing of a 
conceptual Unified Cube through a schema definition process. 
In the remainder of this section, we complete our previous 
work by detailing how a Unified Cube is implemented. To 
automate implementations of Unified Cubes' schemas, we 
propose an algorithm which instantiates the metamodel with a 
conceptual Unified Cube (cf. Algorithm 1). 

We apply the algorithm to the conceptual Unified Cube in 
Fig. 2. The obtained instantiated metamodel is composed of (a) 
1 instance of the Fact class, (b) 4 instances of the Measure 
class, (c) 3 instances of the Dimension class, (d) 5 instances of 
the Level class with 12 associations implementing the level-
measure mapping and 4 associations representing the binary 
relation between levels, and (e) 10 instances of the Attribute 
class. Fig. 3 shows an extract of the instantiated metamodel 
related to the measure mCharges. 

Algorithm 1. Unified Cube Schema Implementation 

Input: A Unified Cube={F; D; LM}. 
Output: An instantiated metamodel.  



Begin 

1. For each DiÎD 
2.     For each ldÎL  
3.         Instantiate the Level class: l  = new Level(nl ); 

        For each axÎA
ld  

4.             Translate the query algebra of the extraction  

            formula Ea  into a query Q
ax

; 

5.             Get the attribute's query endpoint URLax
; 

6.             Instantiate the Attribute class:  
            a  = new Attribute (na , Q

ax
, URLax

); 

7.             Instantiate the association between a  and l  
8.         End for 
     End for 
9.     For each le lf (le, lfÎL ) 
10.        Instantiate the association between child level l   

       and the parent level l ; 
11.     End for 
12. End for 
13. Instantiate the Fact class Fmeta = new Fact(nF); 
14. For each mgÎM

F 
15.     Translate the query algebra of the extraction formula 

    Em  into a query Q
mg

; 

16.     Get the measure's query endpoint URLmg
; 

17.     Instantiate the Measure class: m  = new Measure  
    (nm , Q

mg
, URLmg

); 

18.     Instantiate the association between m  and Fmeta; 
19.     Find the set of levels L \lh

´ ´L \lk
 associated with mg,  

    L \lh
´ ´L \lk

ÍL ´…´L , LM: L \lh
´ ´L \lk

®mg 
20.     For each level lhÎL \lh

´ ´L \lk
 

21.         Instantiate the association between l  and m ; 
22.     End for 
23. End for 
End 

B. Relationships Module  

The Relationships module handles related data from 
different sources. It includes (a) a toolkit identifying related 
attribute instances and (b) tables of correspondences keeping 
the obtained relationships between attribute instances. 

a) Step I: Identification of Related Data. 

In the context of Unified Cubes, identifying the 
relationships between data consists of assessing the 
correlation and the child-parent relations between attribute 
instances from different sources. Numerous techniques have 
been proposed in the scientific literature to identify the 
relationships between warehoused data and LOD. Two 
comprehensive surveys of automatic matching between related 
schemas and data instances can be found in [16], [17]. The 
authors of [18] focus on some semi-automatic techniques 
which take users' needs into account. 

Among all above-mentioned work, one consensus is that 
there is no "one-size-fits-all" method for aligning data of all 
types [19], and such a universal method does not fall within 

the scope of our work. One objective of the Relationships 
module is to provide schema designers with a toolkit 
facilitating the task of discovering related data. A designer can 
simply specify an appropriate method implemented within the 
toolkit. Then the implementation framework automatically 
searches for related data in corresponding sources according to 
the chosen method. 

In the context of the Unified Cube of our running example, 
we implement some of the most effective methods allowing 
identifying the correlation and child-parent relationships 
between data. These methods can be categorized into three 
groups. 

· The first group is based on an intermediate ontology 
with a comprehensive coverage of the related concepts 
in several datasets (i.e., containing enough matches 
between related data). 

· The second group is applicable to data instances 
sharing related labels by calculating the string-based 
similarity. Normalization techniques and external 
thesaurus are often used to improve the obtained result. 

· The third group includes methods use reasoning 
techniques to deduce the relations between data. This 
group of methods is especially useful to obtain rollup 
mappings between attributes at two adjacent levels. By 
referring to existing correlative and/or rollup mappings 
within a Unified Cube, the reasoning process is as 
follows:  

 

TABLE II. shows five correlative and six rollup mappings 
identified after applying suitable methods implemented in the 
Relationships module. Note that no method is needed to 
identify mappings already existing in the sources. For 
instance, mappings 1, 6 and 9 are obtained by directly 
referring to the ROLAP DW, while mapping 4 is directly 
identified because the instances of the attributes aPeriodAS and 
aPeriodRC are denoted by using the same identifier (e.g., the year 
of 2013 is denoted as <http://reference.data.gov.uk/id/ 
government-year/ 2013-2014> for both aPeriodAS and aPeriodRC). 
The relations between attribute instances involved in the 
above-mentioned mappings are called direct, since it can be 
identified by directly querying the corresponding sources. 
Relations embedded in other mappings are called deductive, 
because it is identified by using additional processing methods. 
For instance, the correlative mapping between the attributes 
aDistrict and aAreaAS (cf. mapping 2 in TABLE II. ) is obtained by 
calculating the substring test similarity , such as 

, where s1 and s2 are two attribute instances, 

s is the longest common substring between s1 and s2.  



 
Fig. 5. Extract of metamodel instantiated with the ROLAP DW and the two LOD datasets 

TABLE II.  LIST OF MAPPINGS AND IDENTIFICATION METHODS 

Mapping  Method 

1. ClDistrict: dom(aDistrict)®dom(aDescription) n/a 
2. ClDistrict: dom(aDistrict)®dom(aAreaAS) substring test similarity 
3. ClDistrict: dom(aAreaAS)®dom(aAreaRC) intermediate ontology7  
4. ClYear: dom(aPeriodAS)®dom(aPeriodRC) n/a 
5. ClYear: dom(aYear)®dom(aPeriodAS) substring test similarity 
6. RlDistrict: dom(aDistrict)®dom(aCounty) n/a 
7. RlDistrict: dom(aAreaAS)®dom(aCounty) reasoning (cf. mappings 2 and 6) 
8. RlDistrict: dom(aAreaRC)®dom(aCounty) reasoning (cf. mappings 3 and 7) 
9. RlQuarter: dom(aQuarter)®dom(aYear) n/a 
10. RlQuarter: dom(aQuarter)®dom(aPeriodAS) reasoning (cf. mappings 5 and 9) 
11. RlQuarter: dom(aQuarter)®dom(aPeriodRC) reasoning (cf. mappings 4 and 10) 

 

b) Step II: Materialization of Related Data. 

To avoid repetitive execution of processing methods 
during analyses, mappings involving deductive relations 
should be materialized in the Relationships module for future 
uses. The point at issue here is whether it is feasible to 
materialize correlative mappings and rollup mappings in a 
Unified Cube without saturating the implementation 
framework. To answer this question, we show an extreme case 
by calculating the maximum number of attribute instances 
which can be possibly materialized, so that we shall know to 
what extent the volume of the materialized data can reach. 

A correlative mapping associates one attribute instance 
with at most one instance of another attribute. Therefore, for a 
pair of attributes ax and ay (ax, ayÎA

ld), attributes instances that 
can possibly be materialized corresponds to the smaller set of 
attribute instances (i.e., min{|dom(ax)|, |dom(ay)|}). Within a 

level ld (ldÎ L ), there exist at most 
A

ld A
ld

2
 non-

redundant pairs of attributes that can possibly be associated 
together through correlative mappings. Let C

k

ld  : 
dom(ax)®dom(ay) be a correlative mapping between attributes 
ax and ay, for a n-dimensional Unified Cube, the Relationships 
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administration 

module materializes at most the following number of 
attributes instances involved in correlative mappings. 

dom(ax) dom(ay)

A
ld A

ld
L

 

A rollup mapping associates one or several instances of a 
child attribute with at most one instance of a parent attribute. 
The maximum number of attributes instances possibly being 
materialized for a rollup mapping between a pair of attributes 
ax and az (axÎA

ld, azÎA
le, ld le) is |dom(ax)|. Therefore, for a n-

dimensional Unified Cube, the Relationships module 
materializes no more than the following number of attributes 
instances for the implementation of rollup mappings. 

dom(ax)
A

ldL

 

In both formulae, only dimensions are involved. For a 
multidimensional dataset, the size of dimension is much 
smaller than the size of fact. For instance, in a test set of SSB 
benchmark [20], dimensions represent basically 1% to 6% of 
the total data volume, and the larger the data scale becomes, 
the lower the proportion of dimensions accounts for [21].  

From the above discussions, it is apparent that the 
materialization of deductive mappings allows managing 
related data from different sources with minimum cost. Within 
the implementation framework, two types of table of 
correspondences are used to materialize correlative mappings 
and rollup mappings. As shown in Fig. 6, the one 
implementing correlative mappings associates the instances 
(i.e., INSTANCE) of an attribute (i.e., ATTRIBUTE) with the 
related ones (i.e., COR_INS) of a correlative attribute (i.e., 
COR_ATT) within the same level, while the other one 
managing rollup mappings connects a set of instances (i.e., 
CHILD_INS) of a child attribute (i.e., CHILD_ATT) with an 
instance (i.e., PARENT_INS) of a parent attribute (i.e., 
PARENT_ATT). The content of a table of correspondence is 
preprocessed and updated at the beginning of an analysis 
process to keep the materialized data up-to-date. 



 
Fig. 6. Two types of tables of correspondences. 

After implementing the Unified Cube of our running 
example, 1474 attribute instances are materialized in the 
Relationships module, which corresponds to about 5.1% of 
data in the sources. Selective materialization allows reducing 
significantly the amount of data stored in the implementation 
framework, which minimizes the cost of updating and storing 
data from the sources.  

V. ANALYSIS PROCESSING 

Besides the two modules presented in section IV, the 
implementation framework also includes a third module, 
named Mediator, whose aim is to enable decision-makers to 
analyze both warehoused data and LOD. It (a) deals with an 
analytical need expressed through the graphical notations of a 
Unified Cube (cf. arrow 1 in Fig. 7) and (b) yields an analysis 
result based on data extracted from multiple sources (cf. arrow 
5 in Fig. 7). 

 
Fig. 7. Analysis processing within the implementation framework 

Since most decision-makers are not expert in neither DW 
nor LOD domain, the Mediator module should facilitate 
analysis tasks by including functionality to: 

· automatically extract data related to the analysis from 
the sources. To do so, we propose an algorithm which 
generates a set of executable queries based on the 
measures and attributes chosen by a decision-maker (cf. 
arrows 2 and 3);  

· include all data in one unique analysis result to offer 
comprehensive analytical perspectives. To this end, we 
present an algorithm which combines all partial results 
together by referring to the related attribute instances 
materialized in the implementation framework (cf. 
arrows 4.1, 4.2 and 5).  

A. Partial Query Generation  

By referring to the extraction formulae implemented in the 
metamodel, the Mediator module can directly extract the 
instances of one measure or one attribute from one source. In 
the case of a unified analysis including several measures and 
attributes, a simple concatenation of the extraction formulae 
from the metamodel is not enough. The Mediator module 
must enrich and/or rewrite the queries hosted in the 
metamodel to adapt to the specificities of data sources. 

· When an analysis involves attributes at different levels, 
the Mediator module complete queries by adding joins 
and grouping predicates.  

· When an analysis includes measures and attributes 
from multiple sources, the Mediator module generates 
queries containing the corresponding attributes and 
measures from the same source.  

To automate the generation of queries within the Mediator 
module, we propose the following algorithm.  

Algorithm 2. Partial Query Generation 
Input: A set of chosen attributes Asub (AsubÍ Alk

lk LiDi D
8), 

a set of chosen measures Msub (MsubÍM
F) 

Output: A set of partial queries Q  
Begin  

1. For each meÎMsub 
2.     Get associated levels of me: L  =me.getLvls(); 
3.     Get the query of the measure =me.getQueryM(); 
4.     Remove irrelevant attributes from  
5.     For each axÎAsub 
6.         Get the level of ax:  l = ax.getLevel(); 
7.         If me.getURLM() ≠ax.getURLA() 
             Find an attribute ay, such as ay.getLvl()=l  

            Ù me.getURLM() =ay.getURLA(); 
8.             Let ax=ay; 
9.         End if 
10.         Get the query  of the attribute ax; 
11.         Add  in ; 
12.         Find a set of level Lsub (LsubÍL ) such as "ljÎLsub,  

        lj.getDim()=l .getDim() Ù lj l ; 
13.         If |Lsub|>1 
14.             Add join predicates between me and ax in ;  
15.             Add a grouping predicate at the end of ; 
16.         End if 
17.     End for 
18.     Q=QÈ ; 
19. End for 
End. 

To better explain how the algorithm works, we illustrate its 
execution process with an example. An analysis need about 
"the number of applications (i.e., mApplications) for social 
housings with the average rental charges (i.e., mCharges) by year 

                                                           
8 "DiÎD, Alk

lk Li
 = Al1È…ÈA

l Li  is the set of attributes 

within the dimension Di. Thus, Alk
lk LiDi D

 represents all 
attributes of a Unified Cube.  



(i.e., aYear)" consists of a cross-source analysis. It calculates 
two measures from ROLAP DW and LOD2 dataset according 
to an attribute from the ROLAP DW. Two queries are 
generated for this analysis after the execution of the algorithm 
(cf. Fig. 8). The first query Q1 is sent to the ROLAP DW. It 
contains the measure mApplications and the attribute aYear with 
corresponding join and grouping predicates. For the second 
query Q2, the algorithm firstly refers to the metamodel to find 
a correlative attribute (i.e., aPeriodRC) in the LOD2 dataset 
which is at the same level of aYear. Then a query is directly 
generated from the extraction formulae of mCharges and aPeriodRC 
by simply adding a grouping predicate. 

 
Fig. 8. Generated partial queries 

B. Generation of Analysis Result 

At the end of an analysis, the Mediator module returns a 
global result unifying all related information to decision-
makers. Since n-dimensional cubes are difficult to be 
exploited by decision-makers [22], [23], we model the 
analysis result in tabular form, called Multidimensional Table. 

Definition 6. A Multidimensional Table includes one 
analysis subject containing measures and up to three analysis 
axes composed of attributes. A Multidimensional Table is 
denoted as MT={SMT; AxMT}, where: 

· SMT is the analysis subject containing a set of measures 
M  (M ÍM); 

· AX
MT={ ;…; } (1£m£3) is the set of analysis 

axes. Each analysis axis  ( ÎAX
MT) includes a 

set of attributes denoted A . 

An example of Multidimensional Table can be found in 
Fig. 1(d). From this example, we can see measures and 
attributes from different sources are displayed together in one 
Multidimensional Table, so that decision-makers can analyze 
all related data in a unified way. We propose the following 
algorithm to produce a Multidimensional Table based on the 
partial query results received from the Mediator module and 
the mappings of related attributes instances obtained from the 
Relationships module. 

Algorithm 3. Generation of Analysis Result  

Input: A set of partial results Res, each result ri (riÎRes) 
contains a set of measures M  and a set of attributes A  from 
one data source; A set of mappings Map, each mapping, pq: 
dom(ap)®dom(aq) represents either the correlative mapping or 
the rollup mapping between the attributes ap and aq.  
Output: A Multidimensional Table MT={SMT; AXMT} 
Begin  

1. For each riÎRes 
2.     For each aeÎA  
3.         Get the dimension of ae: D =ae.getLvl().getDim(); 
4.         Add ae in the set of attribute on the corresponding 

        analysis axis of MT, such as $ ÎAX
MT
Ù = 

        D : A = A È{ae}; 
5.         For each attribute instance i , i Îdom(ae) 
6.             If $ : dom(ae)®dom(af) ( ÎMap) Ù afÎA

7.                 Associate i  with the related instances of the 

                attribute af;  
8.             Else 
9.                 Create a new header i  in the MT 
10.             End if 
11.         End for 
12.     End For 
13.     For each mjÎM  
14.         Add mj in M ; 
15.         For each measure value v , v Îval(mj) 
16.             If there exists a measure value v  (mkÎM ) 

                described by the same related attributes  
                instances as v  in the MT 

17.                 Display v  in the same cell as v ; 
18.             Else 
19.                 Display v  in a new cell 
20.             End if 
21.         End For 
22.     End for 
23. End For 

End. 

During the execution of the algorithm, each analysis axis 
in a Multidimensional Table is built by (a) combining different 
attributes referring to the same dimension (cf. lines 3 and 4) 
and (b) organizing related attribute instances into the same 
headers (cf. lines 5 to 11). The analysis subject in a 



Multidimensional Table is obtained by (a) unifying the 
measures from all partial results of query (cf. line 14) and (b) 
displaying multiple measure values together if they are 
described by related attribute instances involved in correlative 
mappings or rollup mappings (cf. lines 15-21). 

VI. CONCLUSION AND DISCUSSIONS 

Under today's highly competitive business environment, 
warehoused data alone do not provide enough information 
during analyses. External data, especially analysis-oriented 
LOD, should also be included in a decision-making context to 
offer multiple perspectives to decision-makers. In this paper, 
we describe a novel modeling solution, named Unified Cube, 
which represents data from DWs and LOD datasets in a 
generic and business-oriented way. 

As an extension of classical multidimensional models, a 
Unified Cube organizes warehoused data and LOD according 
to one analysis subject (i.e., fact) and a set of analysis axes 
(i.e., dimensions). Due to the unification of analytical 
granularities (i.e., levels) from different sources, we generalize 
the definition of dimension to allow including several 
hierarchies sharing no common lowest level. The concept of 
level is also extended to regroup multiple attributes if they 
refer to the same analytical granularity. Heterogeneity among 
attribute instances from multiple sources is managed by 
correlative mappings, while the child-parent relations between 
attribute instances at adjacent levels are implemented through 
rollup mappings. The concept of level-measure mapping is 
also included in Unified Cubes to associate a numeric 
indicator (i.e., measure) with a set of summarizable levels. 

To enable non-expert users to analyze warehoused data 
with LOD, we propose an implementation framework 
compatible with Unified Cubes. Three modules are included 
within the framework. The Schema module hosts a metamodel 
implementing the multidimensional structure of a Unified 
Cube. The instantiation of the metamodel yields a non-
materialized Unified Cube supporting on-the-fly analyses 
among multiple data sources. The Relationships module 
provides a toolkit allowing identifying related attributes 
instances from heterogeneous sources. A set of tables of 
correspondences materializes the mappings between related 
data to avoid repetitive relationship processing during analyses. 
The third module named Mediator automatically translates a 
unified analysis need into a set of executable queries. At the 
end of an analysis, the Mediator module provides one unique 
result including all useful data for an analysis. 

In the future, we intend to include a graphical querying 
language within our implementation framework to further 
facilitate the analysis tasks of non-expert users. We also intend 
to extend correlative and rollup mappings to more generic 
ones, e.g., n-ary mappings between three or more attributes. A 
more long-term objective consists of maximizing the analysis 
efficiency by finding an optimized selective materialization 
strategy according to different data types. 
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