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A Partially Collapsed Gibbs Sampler with

Accelerated Convergence for EEG Source

Localization

Facundo Costa, Hadj Batatia, Thomas Oberlin, Jean-Yves Tourneret
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Abstract—This paper addresses the problem of designing
efficient sampling moves in order to accelerate the convergence
of MCMC methods. The Partially collapsed Gibbs sampler
(PCGS) takes advantage of variable reordering, marginalization
and trimming to accelerate the convergence of the traditional
Gibbs sampler. This work studies two specific moves which
allow the convergence of the PCGS to be further improved.
It considers a Bayesian model where structured sparsity is
enforced using a multivariate Bernoulli Laplacian prior. The
posterior distribution associated with this model depends on
mixed discrete and continuous random vectors. Due to the
discrete part of the posterior, the conventional PCGS gets easily
stuck around local maxima. Two Metropolis-Hastings moves
based on multiple dipole random shifts and inter-chain proposals
are proposed to overcome this problem. The resulting PCGS
is applied to EEG source localization. Experiments conducted
with synthetic data illustrate the effectiveness of this PCGS with
accelerated convergence.

Index Terms—MCMC, partially collapsed Gibbs sampler,
hierarchical Bayesian model, Metropolis-Hastings moves

I. INTRODUCTION

Bayesian models and methods have become standard statis-

tical tools to solve inference problems associated with many

signal and image processing applications (e.g., see [1]). Un-

fortunately, it is often not possible to obtain closed-form ex-

pressions for the Bayesian estimators of the target parameters

associated with the posterior distributions of interest. In these

situations, several techniques are now available to estimate the

parameters of interest. These techniques include variational

Bayes [2] and Markov chain Monte Carlo (MCMC) methods

[3]. Variational Bayes methods approximate the posterior as

a product of separable distributions that depend on smaller

subsets of parameters and calculate the MAP estimator of

each subset separately. Conversely, MCMC methods generate

samples that are asymptotically distributed according to the

target posterior and use these generated samples to estimate

the parameters of interest. One of the main disadvantages

of MCMC techniques is that it can be difficult to determine

the amount of iterations required to converge to the posterior

distribution [3], which can result in a very large computational

complexity. Some convergence assessments are available in

the literature to determine whether the convergence has been

obtained or not (e.g., see [4]). However, there are few rules

allowing this convergence to be accelerated. For instance, by

using techniques such as variable reordering, marginalization

and trimming, it is possible to convert the sampler into a

partially collapsed Gibbs sampler (PCGS) that has generally

better convergence properties [5–7].

The main contribution of this paper is to study some

specific schemes that allow the convergence of the PCGS

to be accelerated. For this, we consider a Bayesian model

introduced in [8] to solve an EEG ill-posed inverse problem.

The model approximates an ℓ2,0 mixed norm regularization

using a multivariate Bernoulli Laplacian prior. The posterior

distribution associated with this model depends on mixed

discrete and continuous random vectors. As a consequence,

this posterior has a large number of local maxima, which

can slow down considerably the convergence speed of the

associated PCGS. In order to solve this problem, this paper

considers two kinds of Metropolis-Hastings moves that help

the sampler to escape from the local maxima without affecting

the target distribution. Several chains with the same target

distribution are run simultaneously. The first kind of move

is applied within each MCMC chain allowing the exchange

of source locations using multiple dipole shift proposals.

The second kind operates on pairs of chains and allows the

estimated source locations to be propagated between chains.

The remainder of the paper is organized as follows: Section

II introduces the considered Bayesian model with its multi-

variate Bernoulli Laplacian prior and its posterior distribution.

Section III presents the Metropolis-Hastings moves that are

investigated in this work. The performance of these moves is

studied in Section IV, which shows some simulation results

obtained on realistic synthetic data. Conclusions are reported

in Section V.

II. BAYESIAN EEG SOURCE LOCALIZATION

The EEG source localization problem consists in estimating

the electrically active areas in the brain from EEG measure-

ments [9]. Since the amount of dipoles used to represent the

brain activity is typically much larger than the amount of

electrodes, the problem is ill-posed. Thus, a regularization is

classically used to provide a unique solution. The following

sections summarize the observation model and the priors

adopted to solve the EEG source localization problem.

A. Observation model

The EEG measurements can be classically expressed as [9]

Y = HX +E (1)



where X ∈ R
N×T contains the amplitudes of the N

dipoles considered for the corresponding T time samples,

Y ∈ R
M×T contains the measurements of the M electrodes,

H ∈ R
M×N is the head operator and E ∈ R

M×T is a noise

term.

B. Likelihood

Considering an additive white Gaussian noise [9], the

probability density function (pdf) of Y is

f(Y |θ) =
T
∏

t=1

N
(

yt
∣

∣

∣
Hxt, σ2

nIM

)

(2)

where IM is the M × M identity matrix, σ2
n is the noise

variance and θ = {X, σ2
n} is the unknown parameter vector.

C. Priors

Dipole amplitudes X

Considering the brain activity as sparse and structured spatio-

temporally, we adopt an ℓ2,0 pseudo norm regularization for

X . In the Bayesian framework, we propose to approximate

ℓ2,0 using a multivariate Bernoulli Laplace prior for each

row xi of X (for i = 1, ..., N) by considering the prior

f(xi|zi, a, σ
2
n) ∝

{

δ(xi) if zi = 0

exp
(

−
√

via
σ2
n

||xi||2
)

if zi = 1

(3)

where z and a are hyperparameters, vi = ||h
i||2 is a weight

to compensate the depth-weighting effect (a known problem

in the literature [9] that is due to the fact that the different

dipoles produce measurements of different amplitude) and

||v||2 is the ℓ2 norm. Parameter a regulates the amplitude

of the non-zero elements whereas the elements of z indicate

which vectors xi are zeros. They are assigned a Bernoulli

prior (such that P (zi = 1) = ω = 1−P (zi = 0)) defined by

zi|ω ∼ B (zi|ω) , ω ∈ [0, 1]. (4)

Inspired by [10], we introduced in [8] a latent variable τ2i for

each row xi allowing the indicators zi to be sampled more

efficiently. The resulting prior distribution of (τ2i ,xi) is

f(τ2i |a) =G
(

τ2i

∣

∣

∣

T + 1

2
,
via

2

)

(5)
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2
i , σ

2
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N
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xi

∣

∣

∣
0, σ2

nτ
2
i IT

)

if zi = 1
(6)

where G and N denote the gamma and normal distributions.

It is straightforward to show that the marginal distribution of

xi computed from (5) and (6) agrees with (3).

Noise variance σ2
n

The noise variance σ2
n is assigned a Jeffrey’s prior

f(σ2
n) ∝

1

σ2
n

1R+(σ2
n) (7)

where 1R+(ξ) = 1 if ξ ∈ R
+ and 0 otherwise.

D. Hyperparameter priors

The hyperparameters ω and a are assigned uniform and

conjugate gamma priors

f(ω) = U(ω|0, 1), f(a|α, β) = G
(

a
∣

∣

∣
α, β

)

with α = β = 1 (corresponding to a vague prior for a).

E. Posterior distribution

Using the priors defined above and denoting the hyperpa-

rameter vector φ = {ω, a}, the posterior distribution of the

proposed Bayesian model can be derived as follows

f(θ, z, τ 2,φ|Y ) ∝ f(Y |θ)f(θ|z, τ 2)f(z, τ 2|φ)f(φ) (8)

where f(Y |θ) has been defined in (2) and

f(θ|z, τ 2) ∝ f(σ2
n)

N
∏

i=1

f(xi|zi, τ
2
i , σ

2
n)

f(z, τ 2|φ) =
N
∏

i=1

f(zi|ω)f(τ
2
i |a)

f(φ) = f(a|α, β)f(ω).

F. Partially collapsed Gibbs sampler

To estimate the model parameters, we proposed in [8]

to draw samples from (8) using a PCGS, sampling zi and

xi jointly. The corresponding conditional distributions are

summarized in Table I, where GIG, IG and Be are the gener-

alized inverse Gaussian, inverse gamma and beta distributions

(see also [8]). Note that X−i denotes the matrix X whose

i-th row has been set to zero and that the following notations

have been used
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σ2
i h

iT (Y −HX−i)

σ2
n
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i =
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ω Be
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)

TABLE I: Conditional distributions f(τ2i |xi, σ
2
n, a, zi),

f(zi|Y ,X−i, σ
2
n, τ

2
i , ω), f(xi|zi,Y ,X−i, σ

2
n, τ

2
i ), f(a|τ

2),
f(σ2

n|Y ,X, τ 2, z) and f(ω, z) used in [8].



III. METROPOLIS-HASTINGS MOVES

A. Multiple dipole shift proposals

We have observed that the standard PCGS developed in [8]

gets sometimes stuck around local maxima of the posterior

8. This section studies two kinds of moves which allow

the sampler to escape from these local maxima, and thus

ensure a faster convergence of the PCGS. The multiple dipole

shift (MDS) is a move changing several elements of z

simultaneously after each sampling iteration. The proposed

move is accepted or rejected using a Metropolis-Hastings

criterion to preserve the target distribution. This move is

inspired by an idea developed by Bourguignon et al [11]. The

authors of [11] proposed to move a single non-zero element

of a binary sequence to a random neighboring position after

each iteration of the MCMC sampler. We generalize here

their scheme by proposing to move a random subset of K

non-zeros simultaneously to random neighboring positions.

Our experiments have shown empirically that K = 1 is not

enough to escape from local maxima but that K = 2 provides

an improved convergence. Since there is a high correlation

between the variables τ 2 and z, we propose to update their

values jointly. The proposal is detailed in Algorithm 1.

Algorithm 1 Multiple dipole shift proposal.

z̄ = z

repeat K times

Set indold to be the index of a random non-zero of z

Set p = [indold, neighγ(indold)]
Set indnew to be a random element of p

Set z̄indold
= 0 and z̄indnew

= 1
end

Sample X̄ from f(X̄|z̄,Y , σ2
n, τ

2).
Sample τ̄ 2 from f(τ̄ 2|X̄, σ2

n, a, z̄).
Set {z, τ 2} = {z̄, τ̄ 2} with probability

min
(

f(z̄,τ̄2|.)
f(z,τ2|.) , 1

)

Resample X if the proposal was accepted

Neighborhood

The difficulty of sampling the posterior distribution

(8) is mainly due to the fact that some columns of H are

highly correlated. Consequently, the neighborhood should

not be strictly topological but should depend on the structure

of H . Thus we propose to define the neighborhood of xi as

follows

neighγ(i) ,
{

j "= i
∣

∣

∣
|corr(hi,hj)| ≥ γ

}

(9)

where corr(v1,v2) is the correlation between the two vectors

v1 and v2 and where the neighborhood size can be adjusted

by the value of γ ∈ [0, 1] (neighγ(i) contains all the dipoles

for γ = 0, whereas neighγ(i) is empty for γ = 1).

In order to maximize the move efficiency, the value of γ

has to be selected carefully. Indeed, a too large value of γ

will prevent the algorithm to escape from local maxima. Con-

versely, a too low value of γ yields many useless proposals

requiring a large number of iterations to obtain useful moves.

Our results obtained by cross validation have shown that a

good compromise is obtained for γ = 0.8.

Algorithm 2 Inter-chain proposals.

Define c = {1, .., L} where L is the amount of chains

for i = {1, .., L}
Choose (and remove) a random element k from c

Denote as {z̄k, τ̄
2
k} the sampled values of {z, τ 2} of

MCMC chain number #k

For the chain #i set {zi, τ
2
i } = {z̄k, τ̄

2
k} with

probability
f(z̄k,τ̄

2
k
|.)

f(z,τ2|.)
Resample X if the proposal has been accepted

end

B. Inter-chain proposals

The MDS proposal described in the previous section allows

the algorithm to find the active dipoles correctly provided the

number of active dipoles is small. However, when a higher

amount of non-zeros is present in the ground truth, it is

possible for the chains to get stuck around different values of

z. In order to help these chains to converge to the same value,

we propose to exchange information between parallel chains

as suggested in [12–14]. We do this by introducing inter-

chain (IC) moves exchanging the values of z and τ 2 between

different chains. These moves are accepted with a Metropolis-

Hastings acceptance probability to ensure the target posterior

distribution is preserved. More precisely, an IC proposal is

made after each iteration with probability p (adjusted to 1
100

by cross validation) according to Algorithm 2.

IV. EXPERIMENTAL VALIDATION

Realistic synthetic data was used to illustrate the effec-

tiveness of the proposals. A three-shell head model with 41
electrodes and 212 dipoles was built. Two different values

of the dipole activity X were considered, one with a single

active dipole and one with five active dipoles. Active dipoles

were assigned damped sinusoidal excitations with frequencies

between 5 and 20Hz, a time duration of 500ms and a sampling

frequency 200Hz. The single dipole activation was used to

show the effectiveness of MDS proposals whereas the five

dipole activation was used to test the IC moves. In each

case, eight MCMC chains were run in parallel with 10.000
iterations. The probability of dipole activity was estimated as

the proportion of chains that found an activity for this dipole.

Single dipole

The first way of comparing the convergence of the

samplers (with and without using MDS proposals) is to

consider the potential scale reduction factor (PSRF) defined

in [15],[16, p. 332]. After 10.000 iterations, the highest value

of PSRF calculated using the MDS moves was 1.15 whereas



(a) Ground truth

(b) 10.000 iterations without MDS moves

(c) 80 iterations with MDS moves

Fig. 1: Actual/estimated activity probabilities (single dipole).

Axial, coronal and sagittal views respectively.
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0

Fig. 2: Logarithmic MSE of X with (blue) and without (red)

MSD moves for the single dipole simulation.

it was 32 without using these moves (we recall here that a

PRSF less than 1.2 is recommended for deciding that the

sampler has converged). The probability of finding activity in

each dipole with and without proposals is illustrated in Fig.

1 and is compared to the ground truth. Without using our

proposals, the different chains are unable to converge to the

correct solution in 10.000 iterations. Conversely, the MDS

proposal allows the correct dipole activity to be estimated in

less than 100 iterations. A last way of analyzing the MDS

proposal is to study the evolution of the mean square error

(MSE) of X versus the number of iterations as displayed in

Fig. 2 that shows that MDS moves accelerate convergence.

Multiple dipoles

This section illustrates the use of IC moves in addition to

MDS moves in presence of multiple active dipoles. For

this, we considered 5 active dipoles and used both kinds

of proposals. The highest value of PSRF (after 10.000
iterations) obtained when using the MDS proposal only

(a) Ground truth

(b) 10.000 iterations without IC moves

(c) 1.000 iterations with IC moves

Fig. 3: Actual/estimated activity probability (five dipoles).

Axial, coronal and sagittal views respectively.
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0
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Fig. 4: Logarithmic MSE of X with (blue) and without (red)

IC moves for the five-dipole simulation.

is 171 whereas it equals 1.01 when using the MDS and

IC proposals, which shows the benefit of introducing IC

proposals. Each estimated activity probability is displayed in

Fig. 3 with its corresponding ground truth. The advantage of

introducing IC moves is finally confirmed in Fig. 4, which

shows the MSEs of X obtained with and without them.

V. CONCLUSION

This paper studied the efficiency of two Metropolis-

Hastings moves to accelerate the convergence of a partially

collapsed Gibbs sampler used for EEG source localization.

These moves were based on multiple dipole shifts for the

elements of a given chain and on inter-chain exchanges. The

advantages of these moves were clearly shown on synthetic

data with controlled ground truth. Even if the results were

obtained for a specific hierarchical Bayesian model based on

a multivariate Bernoulli Laplacian prior, we think that these

moves are also of interest in other contexts. Our future work

will be devoted to extend our results to situations where the

head operator is only partially known and has to be estimated

jointly with the other model parameters.
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