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d’Informatique, d’Hydraulique, et de Télécommunications
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In this paper, we assess the potential of several forms of the

postcoherent differential detectors for the detection of weak Global

Navigation Satellite Systems (GNSS) signals. We analyze in detail

two different detector forms, namely the pair-wise differential

detector (PWD) and noncoherent differential detector (NCDD).

First, we follow a novel approach to obtain analytic expressions to

characterize statistically the PWD. Then, we use these results to

propose a polynomial-like model fitted by simulation to the

sensitivity loss experienced by the differential operation with respect

to coherent summing. This sensitivity loss formula is also used to

characterize the NCDD, which is shown to be more adequate than

the PWD for the acquisition of GNSS signals. A comparison between

the PWD, NCDD, and the traditional noncoherent detector (NCD) is

also carried out in this study. The results highlight the superior

performance of the NCDD over the NCD for the acquisition of weak

signals. For the case of the PWD, its performance is sensitive to

Doppler shift. The conclusions drawn from the simulation results are

confirmed in the acquisition of real Global Positioning System L1

C/A signals.
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I. INTRODUCTION

The first step in the signal-processing chain of a

Global Navigation Satellite Systems (GNSS) receiver is

known as signal acquisition [1–3]. In this phase, the

presence of a signal from a given satellite is decided based

on the estimation of its unknown parameters, in particular

its spreading code phase and Doppler offset. For the

acquisition of signals with nominal power, integration

over a duration equivalent to one period of the incoming

signal’s spreading code is common usage for detection.

For weaker signals, however, integration over several code

periods is necessary [4, 5]. This is typically the case for

positioning in urban canyons, where the signal can be

degraded by different propagation phenomena including

multipath [6], shadowing, signal blockage, and other

sources of attenuation [7].

The maximum sensitivity gain is achievable by

coherent integration of consecutive correlation outputs,

obtained by correlating each code period of the signal with

a code replica generated locally [8, 9]. Nevertheless, the

coherent integration time is limited by factors such as

residual Doppler offset, data bit transition, and the

receiver’s processing capabilities [10, 11]. Therefore, after

a certain number of coherent accumulations, transition to

postcoherent integration strategies is usually employed to

keep on increasing acquisition sensitivity. The most

well-known, and generally applied, postcoherent

integration strategy is noncoherent integration, in which

the coherent outputs’ phase is discarded prior to further

accumulation [1–3]. It is equally well-known, however,

that noncoherent integration is less effective than coherent

integration because the phase removal operation by

squaring the in-phase and quadrature (I&Q) branches of

the coherent output incurs a loss, known as squaring

loss, that reduces the signal’s signal-to-noise ratio (SNR)

[12, 13].

An alternative postcoherent integration approach is

differential, or semicoherent, integration [14–22]. In this

approach, the coherent outputs are not squared, but rather

correlated with a previous output. The product of the two

uncorrelated outputs is statistically less detrimental to

SNR than the squaring operation, given the independence

of the noise terms [14]. Different forms of detection

schemes employing postcorrelation differential integration

can be found in the literature [15–17]. One of the two

main factors that distinguish these detectors is the

generation of the differential outputs. Given the nature of

the differential operation, each coherent output, except the

first and last, may be used more than once. This results in

a dependency between consecutive differential outputs

that is remarkably difficult to characterize statistically.

One approach to avoid this dependency is studied in [16],

where each coherent integration output is used only once,

in an approach termed as pair-wise integration. The

drawback of this approach is that a reduced number of

accumulations naturally lead to a smaller sensitivity

increase than if all differential outputs were exploited [19].



Fig. 1. Noncoherent differential detector block diagram and resulting noise distribution under no signal present case.

The second main factor that distinguishes differential

detectors is the formulation of the detection metric from

the differential integration outputs. In [15], only the

in-phase branch of the differential integration output is

considered in the detection test. A posterior evaluation of

this detection metric in [17] notes that a residual Doppler

offset leads to a partition of the useful signal power

between the I&Q branches of the differential integration

output, and a Doppler-robust noncoherent differential

form is instead adopted in which the detection metric is

obtained as the squared magnitude of the differential

integration output (Fig. 1). Although this form

significantly improves the differential detection scheme

performance in the presence of an unknown Doppler

offset, its detection metric is obtained as the sum of two

dependent random variables. This dependency once again

complicates the statistical analysis of the detector output.

In [19], a complex mathematical approach is followed

that enables the author to derive expressions for

characterizing the pair-wise detector (PWD) from [16] as

well as the noncoherent differential detector (NCDD)

from [17]. The author also notes, however, that, while

exact, the expressions derived are of limited application

due to the presence of functions that easily become both

burdensome and inaccurate for a high number of

differential accumulations. An equally complex analysis

of differential detectors with similar results is also found

in [18]. The approach that is frequently followed in the

analysis of differential detectors is to resort to the central

limit theorem (CLT) through which the noise terms

resulting from differential integration can be approximated

by a Gaussian distribution for a sufficiently high enough

number of integrations [20, 21]. In [19], the author also

develops a Gaussian approximation for each detector and

points out the risk of employing this approximation for a

low number of accumulations, given that the actual

distributions of the I&Q components of the differential

operation are heavier at the tails than the Gaussian

distribution, leading to large inaccuracies in the

threshold-setting process.

Both the multitude of existing differential detector

forms and the complexity of their statistical

characterization have been obstacles to the comparison of

the two postcoherent integration approaches, i.e.,

noncoherent and differential. Although in several

publications it has been found that differential detectors

are a preferable choice for weak signals acquisition, it was

not until [22] that a formal comparison between the

sensitivity losses of the squaring and differential

operations was encountered. The approach developed in

[22] is revised and consolidated in this paper.

In this study, we analyze the PWD and NCDD, and

propose new approaches for the characterization of both.

First, we analyze the PWD form by using a sum of

weighted Laplace distributions to characterize this

detector in the absence of signal, making use of the fact

that the output of the differential integration results in a

noise term following Laplace distribution. This analysis

allows deriving an expression that can be used for setting

the detection threshold, alternative to the one proposed in

[16]. Under the alternative signal-present hypothesis, the

Gaussian approximation is followed, not without first

justifying its adequate use exclusively under this

condition. We then make use of the results obtained to

proceed to the assessment of the sensitivity of the NCDD

detection scheme. Given the complexity of the statistical

analysis of this detector (Fig. 1), we evaluate its detection

performance by introducing and making use of a

sensitivity loss formula of this detector by evaluating the

gain of each operation performed inside this detector. The

final sensitivity loss formula is obtained through a

polynomial fit of simulation results and validated by the

theoretical results for the PWD. This formula finally

allows performing a formal comparison between the two

postcoherent integration strategies, also validated in the

acquisition of real Global Positioning System (GPS) L1

C/A signals.

This paper is organized as follows. Section II

introduces the signal model employed and describes the

coherent processing of the input signal. In Section III, the

PWD is characterized, showing the Laplacian nature of the

differential operation output under noise-only conditions.

In Section IV, the performance of the NCDD in the

acquisition of weak GNSS signals is assessed. In Section

V a comparison between the noncoherent detector (NCD)

and the NCDD is carried out. Finally in Section VI, the

conclusions are validated with real GPS L1 C/A data.

Section VII concludes the paper.



Fig. 2. Coherent processing block of GNSS signal.

II. SIGNAL MODEL AND COHERENT SIGNAL
PROCESSING

The goal of the acquisition module of a GNSS receiver

is to detect the presence of a signal while providing

a first coarse estimate of the incoming signal’s unknown

code phase and Doppler shift. In stand-alone receivers,

this estimation is usually accomplished using

maximum-likelihood estimation, testing several candidate

code phases and frequency values within a given

uncertainty range. For this, the first two operations within

acquisition are the despreading of the incoming signal and

the conversion to baseband frequency using the candidate

code phase/Doppler shift pair of values. The combination

of the two operations and the posterior accumulation is

known as correlation or coherent signal integration when

more than one code period is used in this process. The

coherent processing chain of a GNSS signal s[·] is shown

in Fig. 2 and is represented as:

S
(

ζ̂i, f̂dk

)

=
N−1
∑

n=0

s [nTs] · c
[(

n − ζ̂i

)

Ts

]

· e−j2πf̂dk
nTs ,

(1)

where ζ̂i is the ith candidate code phase (code delay), f̂dk

is the kth candidate demodulation frequency, c[·] is the

spreading code, Ts is the sampling period, N is the number

of samples to be coherently accumulated (equal to the

product of the number of samples per code period Ns and

the number of coherently integrated code periods Ncoh),

and S(ζ̂i, f̂dk
) is the correlation output for the candidate

satellite, code phase, and demodulation frequency. The

input signal is of the form:

s [nTs] = A · d [nTs − ζTs] · c [nTs − ζTs]

· ej2πfdnTs+φ0 +
∼
w [nTs] , (2)

where A stands for the signal amplitude, ζ and fd ,

respectively, denote the true code phase and frequency of

this specific signal, d[·] = ±1 is the navigation data

included in the signal, φ0 represents the initial signal

phase offset, and
∼
w[·] is the noise component introduced

by the communication channel that can be modeled as

complex-valued zero-mean white Gaussian noise. The

probability distribution is given by [20]:

p(ℜ{
∼
w}, ℑ{

∼
w}) =

1

2πσ 2
exp

(

−
ℜ{

∼
w}2

2σ 2
−

ℑ{
∼
w}2

2σ 2

)

, (3)

where ℜ{
∼
w} and ℑ{

∼
w} denote, respectively, the real and

imaginary parts of
∼
w[·]. The noise variance σ 2 is given by:

σ 2 = E
{

ℜ
{∼
w

}2}

= E
{

ℑ
{∼
w

}2}

= N0B, (4)

where E{·} is the operator for the expectation value,

N0 = k · T0 is the single-sided noise power spectral

density, k being the Boltzman constant and T0 the noise

temperature, and B ≃ 1/Ts the front-end filter bandwidth.

It should be noted that (2) represents the signal from a

single satellite. Given the orthogonality of the different

signals’ spreading codes, all other signals satellites visible

to the receiver can be considered as an extra noise

component included in (2). This signal structure is based

on the GPS L1 C/A signal and will be used in the analysis

presented in this paper. The extension to other signal

structures, such as Galileo E1, is straightforward.

Examples of acquisition applied to this signal structure

can be found, e.g., in [23, 24].

Depending on the presence or absence of signal, the

mth coherent integration output Sm(ζ̂i, f̂dk
) will either be

obtained as noise-only or as a function of signal plus noise,

and can be expressed using the following statistical test:
{

Sm

(

ζ̂i, f̂dk

)

= wm, H0

Sm

(

ζ̂i, f̂dk

)

= sm

(

ζ̂i, f̂dk

)

+ wm, H1

(5)

where H0 corresponds to the case when the signal under

search is not present and H1 is the alternative hypothesis.

Given the distribution of the input signal noise, the

coherent integration output noise term wm is equally a

complex-valued zero-mean Gaussian random variable

with variance σ 2
w = Nσ 2 and distributed according to (3).

Assuming that all the signal parameters are constant over

the observation time, the signal component of the coherent

integration output sm(ζ̂i, f̂dk
) is obtained as:

sm

(

ζ̂i, f̂dk

)

= A · N · d · R (1ζi)

· sinc
(

1fd,k · NTs

)

· ejφm, (6)

φm = 2πm1fd,kNTs + φ0, (7)

where 1ζi = ζ̂i − ζ and 1fd,k = f̂dk
− fd are,

respectively, the code phase and frequency offsets between

the candidate and true parameters of the signal, and R(1ζ )

represents the autocorrelation of the signal spreading code

evaluated at the offset 1ζ . Without loss of generality we

assume that the data bit is constant over the coherent

integration time. This assumption is not restrictive given

the existence of techniques that deal with this issue,

including detection algorithms, subdivision of coherent

integration in two parts and taking the most likely one not

to contain data bit transition, or running several parallel

coherent integrations at different tentative data bit

boundaries [25]. Even if no such techniques are applied,

the mean attenuation of the coherent integration output is

only around 1 dB for a signal integration time inferior to

the data bit duration for the GPS L1 C/A signal [10].



From (6), the limitations of coherent integration can be

observed. For very long coherent integration times, not

only the navigation data bit can no longer be considered

constant, but also the product 1fd,k · NTs has to be

bounded to prevent high attenuations due to the sinc

roll-off. In order to prevent high frequency-derived

attenuations, the 1fd,k offset must be reduced in the same

proportion as Ncoh is increased, leading to a demanding

requirement in terms of frequency resolution and,

consequently, number of candidate points to be searched.

In order to avoid both high attenuations in the final

detection metric and high computational burden, transition

from coherent to postcoherent processing is usually

applied. The next sections will detail the postcoherent

differential integration processing.

III. STATISTICAL CHARACTERIZATION OF
DIFFERENTIAL INTEGRATION

Given that coherent integration is limited by several

factors, transition to postcoherent integration is required in

order to efficiently detect the presence of weak signals.

While the statistical characterization of noncoherent

integration is well established and used in the GNSS

literature, a similar and practical evaluation is still needed

for differential integration. As mentioned in the

Introduction, attempts in the literature to characterize

detectors employing postcoherent differential integration

have repeatedly resulted in either highly complex

expressions or simplifications through Gaussian

approximations. This fact becomes even more significant

considering the variety of such detectors that can be

envisaged. Three different differential detection schemes

are considered in the course of this work:

1) Coherent differential PWD [16]:

SPWD

(

ζ̂i, f̂dk

)

= ℜ

{⌊NC/2⌋
∑

m=1

S2m

(

ζ̂i, f̂dk

)

· S∗
2m−1

(

ζ̂i, f̂dk

)

}

,

(8)

2) Coherent differential detector (CDD) [15]:

SCDD

(

ζ̂i, f̂dk

)

= ℜ

{

NC
∑

m=2

Sm

(

ζ̂i, f̂dk

)

· S∗
m−1

(

ζ̂i, f̂dk

)

}

,

(9)

3) NCDD [17]:

SNCDD

(

ζ̂i, f̂dk

)

=

∣

∣

∣

∣

∣

NC
∑

m=2

Sm

(

ζ̂i, f̂dk

)

· S∗
m−1

(

ζ̂i, f̂dk

)

∣

∣

∣

∣

∣

2

,

(10)

where NC represents the number of available coherent

outputs. The differences between these three detectors are

based firstly on the accumulation of the differential

outputs (note the 2m index for each coherent integration

output for the PWD) and secondly on the generation of the

final detection metric, coherent or noncoherent, depending

if the phase is removed prior to detection or not. The PWD

form is the simplest to analyze due to the absence of

dependency terms both in the differential outputs

accumulation as well as in the generation of the detection

metric. On the contrary, the most difficult one to

characterize statistically is the NCDD. In this section, we

analyze statistically the PWD that will afterward allow

advancing to the characterization of CDD and NCDD.

In both original publications, [19, 26], the PWD

detection metric has been expressed as the difference of

two χ2 random variables (central under H0 and noncentral

under H1) to attempt its characterization. In this work, we

follow a different approach for the characterization of this

detector, making use of the Laplace nature of the

differential operation output under H0 and employing the

Gaussian approximation under H1. We will first

demonstrate that these are appropriate characterizations

for this detection metric.

A. PWD Probability Density Function Under H0

Modeling the output of a detector under no signal

present, only noise, allows establishing a threshold for

deciding if a candidate signal is present or not with a

certain degree of confidence, established by the acceptable

probability of false alarm Pf a . In this case, the coherent

integration outputs consist solely of the accumulation of

Gaussian noise terms, and the output of the PWD is:

SH0
PWD

(

ζ̂i, f̂dk

)

= ℜ







NPW
DC

∑

m=1

S2m

(

ζ̂i, f̂dk

)

· S∗
2m−1

(

ζ̂i, f̂dk

)







=
NPW

DC
∑

m=1

ℜ
{

w2m · w∗
2m−1

}

=
NPW

DC
∑

m=1

ℜ
{

YH0,m

}

=
NPW

DC
∑

m=1

Y I
H0,m, (11)

where NPW
DC = ⌊NC/2⌋ is the number of differential

integrations that can be performed for this detector having

NC coherent outputs available. As demonstrated in

Appendix A, the Y I
H0,m term is a zero-mean

Laplace-distributed random variable with diversity

parameter l equal to σ 2
w. Its probability density function

(PDF) is given by [27]:

fY I
H0,m

(y) =
1

2l
· e− |y|

λ =
1

2σ 2
w

· e
− |y|

σ2
w , (12)

and the corresponding cumulative density function (CDF):

FY I
H0,m

(y) =
1

2

[

1 + sgn (y)
(

1 − e
− |y|

l

)]

. (13)

This way, the PWD detection metric under H0 is

obtained as the sum of NPW
DC such Y I

H0,m terms. Given the

independency between the consecutive differential outputs

characteristic of the PWD, the PDF of SH0
PWD is that of the

sum of independent Laplacian random variables. This



Fig. 3. Distribution of SH0
PWD for NPW

DC = 10 and PDF of sum of 10

independent Laplace random variables with λ = σ 2
w .

PDF is known from [28] as:

fSH0
PWD

(y) =
NPW

DC −1
∑

k=0

(

NPW
DC + k − 1

k

)

×
e− |y|

λ ·
(

|y|
λ

)NPW
DC −k−1

2NPW
DC +k ·

(

NPW
DC − k − 1

)

! · l
, (14)

and the respective CDF is found by integrating (14) with

respect to y:

FSH0
PWD

(y) =
1

2
+ sgn (y)

NPW
DC −1
∑

k=0

(

NPW
DC + k − 1

k

)

×
γNPW

DC −k

(

|y|
l

)

2NPW
DC +k

, (15)

where γa(·) is the lower incomplete Gamma function of

order a. The accuracy of this formulation can be asserted

by comparing the histogram of simulation results with the

theoretical distribution given by (14). This comparison is

shown in Fig. 3 for NPW
DC = 10. As can be seen in this

figure, the PDF corresponding to the sum of Laplace

random variables accurately matches the simulation

results. It is now possible to set the detection threshold Vth

for the PWD according to the specified Pf a by using (15)

and solving:

Pf a = 1 − FSPWD,H0
(Vth) . (16)

This characterization of the PWD under H0 can be used as

an alternative to the existing formulas in [16, 19].

B. PWD PDF Under H1

Under H1, the signal under test is considered to be

present, and the detection performance of the detector as a

function of the input signal power, as well as the threshold

set via the H0 analysis, is assessed. In the presence of

signal, the PWD detection metric results in:

SH1
PWD

(

ζ̂i, f̂dk

)

= ℜ







NPW
DC

∑

m=1

S2m

(

ζ̂i, f̂dk

)

· S∗
2m−1

(

ζ̂i, f̂dk

)







=
NPW

DC
∑

m=1

ℜ
{

s2ms∗
2m−1 + s2mw∗

2m−1 + w2ms∗
2m−1 + w2mw∗

2m−1

}

=
NPW

DC
∑

m=1

ℜ
{

µm + wY,m + YH0,m

}

=
NPW

DC
∑

m=1

ℜ
{

YH1,m

}

. (17)

The first term, i.e., µm, is the deterministic component

originating from the product of the two signal

components, and the third term, i.e., YH0,m, was analyzed

in the previous section. The remaining term, i.e., wY,m, is

obtained as the sum of the products of the deterministic

signal with Gaussian noise and is therefore a Gaussian

random variable. Thus, the statistical analysis of the

differential integration output under H1 involves analyzing

the sum of a Laplace and a Gaussian random variable,

dependent between them. If these two terms were

independent, their distribution could be directly expressed

as a normal-Laplace random variable [29]; however, this is

not the case. In [16] as in [19], it is suggested to rewrite

ℜ{YH1,m} as the subtraction of two χ2 random variables,

but this approach does not lead to a closed-form

expression, having to resort to numerical methods to

compute the integral term and obtain the final result.

Instead, in [20], it is proposed to approximate ℜ{YH0,m}
by a Gaussian random variable under the claim of the CLT

through which the summation of several such terms will

tend to a normal distribution with variance equal to that of

the individual terms. While this is not a recommended

approach to follow under H0 given the low precision at the

tails of the Gaussian approximation vis-à-vis the

requirement for the accurate threshold determination, it

can be considered an acceptable approach under H1.

Furthermore, in [21] four different PDFs are fitted to the

actual distribution of the differential integration outputs

under H1, concluding that the Gaussian distribution is the

one that most accurately matches the true detector output

distribution in these conditions. This will be especially

true when the input signal power is high and the Gaussian

noise term becomes much more significant than the

Laplacian one.

From [27], the variance of a Laplace-distributed

random variable is 2l
2, which leads to:

var
{

ℜ
{

YH0,m

}}

= 2σ 4
w. (18)

Assuming stationarity of all parameters during the signal

integration time, the variance of ℜ{wY,m} can be easily



seen to be given by:

var
{

ℜ
{

wY,m

}}

= 2 · var {ℜ {smwm}} = 2 · |sm|2 · σ 2
w.

(19)

This way, SH1
PWD can be modelled as a noncentral Gaussian

random variable with mean µSH1
PWD

and variance σ 2
SH1

PWD

given by:

µSH1
PWD

≃ NPW
DC · ℜ {µm}

= NPW
DC · |sm|2 · cos

(

2π1fd,kNTs

)

, (20)

σ 2
SH1

PWD

≃ NPW
DC ·

(

ℜ
{

wY,m

}

+ ℜ
{

YH0,m

})

= NPW
DC · 2σ 2

w ·
(

|sm|2 + σ 2
w

)

, (21)

where once again the approximate equalities are obtained

assuming stationarity of all parameters during the signal

integration time. Evidently, this is not the case when

dealing with real signals, but it is an essential assumption

for the characterization of the detectors’ performance.

The drawbacks of the PWD detection metric are now

remarked in (20) because not only is NPW
DC approximately

only half of the number of differential integration outputs

that can be generated, but also given 1fd,k 6= 0, a portion

of the signal power is allocated to the imaginary part of

YH1,m and is therefore not useful. The expression for the

probability of detection Pd for the PWD is finally obtained

as:

Pd,PWD =
1

√

2πσ 2
SH1

PWD

·
∞

∫

Vth

exp











−

(

t − µSH1
PWD

)2

2σ 2
SH1

PWD











dt

=
1

2
erfc





Vth − µSH1
PWD

√

2σ 2
SH1

PWD



 , (22)

where erfc(·) is the complementary error function,

representing the tail probability of the standard normal

distribution. To assess the accuracy of the fit provided by

this expression, a comparison between the predicted and

simulated detection rate for a GPS L1 C/A signal sampled

at twice the chip rate is shown in Fig. 4 for NPW
DC = 1, 5,

and 10, employing 1-ms coherent integration (N = 2046)

and 1fd,k = 1ζ = 0. The theoretical analysis is carried

by first calculating the threshold using (16) and then

employing (22) to predict the detection probability, while

the simulation analysis calculates the threshold based on

the simulated noise distribution and then measures the

detection rate as the percentage of threshold crossings for

each carrier-to-noise (C/N0) value.

As shown in Fig. 4, the predicted PWD performance

according to (22) is very close to the one observed in the

simulations, which validates the Gaussian approximation

under H1. The accuracy of this approximation can also be

observed by comparing the normal PDF and the histogram

of the detector outputs. Two examples are shown in Fig. 5

From the plots in this figure, it is clear that the Gaussian

approximation is very accurate for high input C/N0 values

even for a low number of accumulations. This is due to the

Fig. 4. Comparison between theoretical and simulated detection

probability for NPW
DC = 1, 5, and 10 (1 ms coherent integration,

1fd,k = 1ζ = 0).

higher influence of the cross-noise-signal multiplication,

i.e., wY,m in (17), with respect to the noise-only Laplacian

term. Contrarily, for weak signals and a low number of

accumulations, the Gaussian fit is not an accurate

representation of the detector output distribution, but the

closeness between the two distributions is still high. In

fact, the area matched in the top plot of Fig. 5 is close to

90%. This also explains why the difference between the

predicted and simulated results in Fig. 4 is not substantial

even for low C/N0 values. Additional simulations confirm

that the Gaussian approximation becomes gradually more

accurate for a higher number of accumulations, where the

area match in these cases is even greater than for the two

presented here. Alternatively, one may estimate the PDF

of the detector under H1 from data using nonparametric

kernel estimation with a cost of additional computation

[30].

The expressions for the probability of false alarm and

probability of detection derived in this section completely

characterize the PWD. The derivation of similar

expressions for the CDD and NCDD is significantly more

complex due to the rise of dependency between terms.

Therefore, we follow a different approach in the next

section to assess the performance of these two detectors by

evaluating their sensitivity gain.

IV. SENSITIVITY OF DIFFERENTIAL DETECTORS

In the previous section, the PWD has been studied,

highlighting its drawbacks for GNSS signal acquisition,

particularly in the presence of a nonzero residual Doppler

offset in the coherent output. A more suitable detector in

presence of Doppler frequency shift is the NCDD whose

detection metric removes the phase information by a

squaring operation as [17]:

SNCDD

(

ζ̂i, f̂dk

)

=

∣

∣

∣

∣

∣

NDC+1
∑

m=2

Sm

(

ζ̂i, f̂dk

)

· S∗
m−1

(

ζ̂i, f̂dk

)

∣

∣

∣

∣

∣

2

,

(23)



Fig. 5. Accuracy of Gaussian approximation of differential integration

output under H1 for NPW
DC = 1 and C/N0 = 34 dB-Hz (top) or

C/N0 = 44 dB-Hz (bottom).

where NDC = NC − 1 is the number of differential

integrations achievable with this detector form having NC

correlation outputs available. The advantage of this

detector with respect to the PWD can be directly observed

in simulations. In Fig. 6, the detection performance of the

two detectors is compared for three different simulation

scenarios whose details are shown in Table I. For scenario

S1, where the residual Doppler offset is null and the same

number of accumulations is performed for both detectors,

the PWD outperforms the NCDD, due to the of the

squaring loss paid by the NCDD. However, this gain with

respect to the NCDD will be limited as the Doppler offset

grows, according to (20). For scenario S3 in particular,

where cos(2π1fd,kNTs) = 0, the nonzero detection rate

for the PWD at high input signal power is achieved merely

due to the influence of the cross-signal-noise Gaussian

terms wY,m in (17).

Because the statistical characterization of the NCDD is

not easy to accomplish, studies in literature commonly use

the Gaussian approximation under both H0 and H1

hypotheses. However, as previously noted, this cannot be

considered a reasonable option under H0 for a low number

of differential accumulations given the required precision

Fig. 6. Comparison of PWD and NCDD for simulation scenarios

described in Table I.

TABLE I

Simulation Scenarios for Detectors Comparison in Fig. 6

Simulation Scenario

Simulation Parameters S1 S2 S3

Signal GPS L1 C/A

Sampling frequency 2.046 MHz

Coherent integration time 1 code period—1 ms/2046 samples

Number of code periods 2 6 11

Differential integrations NCDD 1 NCDD 5 NCDD 10

PWD 1 PWD 3 PWD 5

Residual Doppler offset 0 Hz 125 Hz 250 Hz

at the tails of the distribution. Instead we propose to

follow an alternative to the formal statistical analysis of

this detector, establishing a comparison with a reference

scheme whose analysis is mathematically viable. This

approach is followed in [31] for the characterization of the

NCD applied to radar systems. In [31], a sensitivity loss

term is defined that allows predicting the detection

performance of a noncoherent detection scheme operating

at a target receiver working point (Pd , Pf a) with respect to

the one that would be obtained if a coherent solution was

instead applied. The formula provided in [31] is usually

adopted in GNSS literature for analysis of the squaring

loss of noncoherent integration [1, 4, 7]. The same

procedure is followed in this section to propose a loss

formula for the NCDD, i.e., LNCDD . This procedure was

previously followed in [22] and [32], but given the lack of

accurate expressions for the statistical characterization of

the differential operation, the formulas proposed were

solely based on simulation data. Returning to the analysis

described in the previous section, an analytical approach

can now be followed to validate and complement the work

in [22].

This section starts by reviewing the optimal GNSS

detector as well as the procedure to derive a sensitivity

loss formula with respect to this detector. Next, a formula

for the differential integration loss is proposed, and the



sensitivity loss of the NCDD is obtained as a combination

of the differential and squaring losses.

A. Sensitivity Loss of a Nonoptimal GNSS Detector

1) Methodology of Evaluation: The optimal detector in

the presence of a stationary signal and known signal phase

is the purely coherent detector (CD) [8]. The detection

metric for the CD is defined as:

SCD

(

ζ̂i, f̂dk

)

= ℜ

{

NC
∑

m=1

Sm

(

ζ̂i, f̂dk

)

}

. (24)

It should be noted that this detector is only possible to

apply in theory given the assumption of knowledge of the

input signal phase. However, it serves as a reference for

the evaluation of the detection loss of nonoptimal, but

practical, detectors. The equation that characterizes this

detector’s performance is [31]:

Pd,CD =
1

2
erfc

[

erfc−1
(

2Pf a

)

−
√

NC Ns snrin

]

=
1

2
erfc

[

erfc−1
(

2Pf a

)

−
√

snrcoh

]

, (25)

where snrin and snrcoh are, respectively, the SNR,

expressed in linear dimensions, at the detector input and

after coherent integration (in this case coincident with the

detector output), and Ns the number of samples per code

period. Inverting (25), the SNR at the coherent integration

output can be expressed as a function of the target working

point:

snrcoh =
[

erfc−1
(

2Pf a

)

− erfc−1 (2Pd )
]2

= Dc

(

Pd , Pf a

)

. (26)

This SNR is also known as ideal detectability factor

Dc and represents the minimum SNR at the coherent

integration output that allows detection of signal at the

target receiver working point (Pd , Pf a). The minimum

input precorrelation SNR is then expressed as a function

of Dc as:

snrin,min =
Dc

NcNs

. (27)

The product NcNs in this equation corresponds to the

gain of coherently integrating the NcNs signal samples

and is the maximum achievable signal integration gain.

Consequently, the required input SNR, i.e., snrin,req , for

achieving a similar working point with detectors

employing other integration approaches (such as

noncoherent or differential integration), must always be

higher than snrin,min given the nonideality of the

operations involved. A sensitivity loss characteristic of the

nonideal detector Ldetector with respect to the ideal

coherent one may then be expressed as [31]:

Ldetector =
snrin,req

snrin,min

=
snrin,req · Ns

Dc/Nc

. (28)

Given the linearity of the correlation operation,

Ldetector can also be interpreted as the ratio of the two

Fig. 7. Coherent (optimal) and nonoptimal integration strategies

diagram and SNR measuring points.

correlation output SNRs (Fig. 7). This can also be noted in

(28) because the product snrin,req · Ns corresponds to the

SNR at the correlation output of the nonoptimal detector

and Dc/Nc corresponds to the SNR at the correlation

output of the CD. Finally, the required SNR to acquire a

signal at a given working point with the nonoptimal

detector can be expressed as:

SNRin,req,dB = SNRin,min,dB + Ldetector,dB

= 10 · log10

(

Dc

NsNc

)

+ Ldetector,dB. (29)

The ratio Dc/Ns corresponds to the input SNR that

would be required by the CD if only one code period

would be available and can be denoted as snrin,min,Nc=1.

Equation (29) can then be rewritten as:

SNRin,req,dB = SNRin,min,Nc=1,dB

−
(

10 · log10 (Nc) − Ldetector,dB

)

= SNRin,min,Nc=1,dB − Gdetector,dB (Nc) ,

(30)

where Gdetector corresponds to the detector sensitivity gain

of integrating a number Nc of code periods and is defined

as the difference between the ideal gain of coherent

integration and the loss of the nonoptimal operations

performed with respect to the ideal detector.

2) Application to the Squaring Loss: These expressions

can be used in the quantification of the squaring loss Lsq

that is incurred by the phase-removal operation,

representing the price to pay in terms of additional input

SNR for not knowing the input signal phase. In this case,

the optimal detector is the square-law detector (SLD),

whose detection metric is expressed as [8]:

SSLD

(

ζ̂i, f̂dk

)

=

∣

∣

∣

NC
∑

m=1

Sm

(

ζ̂i, f̂dk

)

∣

∣

∣

2

. (31)



The equation that characterizes the detection

performance of the SLD is [19]:

Pd,SLD = Q1

(

√

2NCNs snrin,

√

−2 ln
(

Pf a

)

)

= Q1

(

√

2 snrcoh,

√

−2 ln
(

Pf a

)

)

, (32)

where QK (a, b) is the Kth-order Marcum Q-function. The

squaring loss can now be expressed as the ratio between

the input SNRs required by the two detectors in order to

achieve similar detection performance:

Lsq =
snrin,SLD

snrin,CD

=
snrcoh,SLD

snrcoh,CD

=
snrcoh,SLD

Dc

. (33)

This loss can be promptly obtained by solving (26) and

(32) for any (Pd , Pf a) pair and using the results in (33).

Nevertheless, solving these equations is a nontrivial

mathematical process, and in [31], a simple approximation

for Lsq is suggested:

Lsq =
snrcoh,SLD

Dc

≃ 1 +
2.3

snrcoh,SLD

≃
1 +

√
1 + 9.2/Dc

2
. (34)

The sensitivity gain of the SLD in the presence of Nc

code periods is then given by:

GSLD,dB (Nc) = Gcoh,dB (Nc) − Lsq,dB, (35)

where Gcoh(Nc) = Nc. As an example, the input signal

power required by the SLD for the acquisition

of a single GPS C/A code period, sampled at twice the

chip rate (Ns = 2046) and for a working point

(Pd , Pf a) = (0.9, 10−5), can be found through:

Dc,dB

(

0.9, 10−5
)

=
[

erfc−1
(

2 · 10−5
)

− erfc−1 (2 · 0.9)
]2 = 11.9 dB,

Lsq,dB = 10 · log10

(

1 +
√

1 + 9.2/Dc

2

)

= 0.6 dB,

GSLD,dB (1) = Gcoh,dB (1) − Lsq,dB = −0.6 dB,

SNRin,SLD,dB = 10 · log10

(

Dc

Ns

)

− GSLD,dB (1)

≃ −20.6 dB.

Naturally, a very similar result is obtained by solving

(32):

0.9 = Q1

(

√

2 · 1 · 2046 · snrin,

√

−2 ln
(

10−5
)

)

⇔ SNRin,dB ≃ −20.6 dB.

This approach can be generalized to any number of

squaring operations and is the basis for obtaining the loss

of the noncoherent integration scheme in [31]. This

method of evaluating the nonoptimal detectors’ sensitivity

loss differs from the traditional approach of calculating a

Fig. 8. Comparison for determination of differential operation

sensitivity loss.

deflection coefficient as a measure of the output SNR. This

approach has been followed for both the differential and

noncoherent detection schemes in several studies such as

[13, 21], but its inapplicability in these cases is explicitly

illustrated in [33] and, therefore, is not considered here.

B. Sensitivity Loss of the Differential Operation

In order to be able to quantify exclusively the loss of

the differential operation with respect to coherent

summing, the detection scheme employed in this analysis

must avoid any other operations, in particular the squaring

of the signal for phase removal. This can be achieved by

concentrating all the signal power on the in-phase branch

of the differential integration output (zero residual

Doppler offset) and then taking just its real part as the

detection metric (Fig. 8). By comparing the required input

SNRs for the two schemes in Fig. 8, it is guaranteed that

the difference in performance between both is exclusively

due to the nonoptimality of differential operation with

respect to coherent summing. The differential detector

employed in this case corresponds to the CDD:

SCDD

(

ζ̂i, f̂dk

)

= ℜ

{

NDC+1
∑

m=2

Sm

(

ζ̂i, f̂dk

)

· S∗
m−1

(

ζ̂i, f̂dk

)

}

.

(36)

As for the moment, we are focusing in the assessment

of the sensitivity loss of a single differential operation, and

the detection metric of interest is:

SCDD

(

ζ̂i, f̂dk

)

= ℜ
{

S2

(

ζ̂i, f̂dk

)

· S∗
1

(

ζ̂i, f̂dk

)}

. (37)

To characterize the sensitivity of this detector using its

probability of detection, we need the PDF of the detection

metric in (37) under H1. Because this detection metric is

equivalent to the PWD one for NPW
DC = 1, the results from

the previous section can be directly applied. Making use

of (13), (16), and (20)–(22), the equation that



Fig. 9. Comparison of Gaussian and normal-Laplace approximations

for CDD for NDC = 1.

characterizes this detector for NPW
DC = 1 is:

Pd,CDD =
1

2
erfc

(

(

Vth − µSH1
PWD

)

/

√

2σ 2
SH1

PWD

)

=
1

2
erfc



−
σ 2

w · ln
(

Pf a

)

+ |sm|2
√

4σ 2
w ·

(

|sm|2 + σ 2
w

)





=
1

2
erfc

(

−
ln

(

Pf a

)

+ 2σ 2
w · NS · snrin√

8NS · snrin + 4

)

. (38)

According to (28), the sensitivity loss of a single

differential operation as function of Dc, i.e., Ldiff (1, Dc),

can be expressed as:

Ldiff (1, Dc) =
snrin,req

snrin,min

=
snrin,req · Ns

Dc/2
, (39)

where snrin,req in this case is the input SNR required by

the CDD detection scheme to achieve the working point

specified by Dc. This required input SNR can be directly

obtained by solving (38) for any pair (Pd , Pf a), but it

should be noted that this expression is based on the

Gaussian approximation under H1, which was seen not to

be entirely accurate. Another option is simply to consider

the Gaussian and Laplace terms independent, in which

case a normal-Laplace random variable is obtained [29].

The expression that characterizes this detector under this

assumption is shown in Appendix B. The accuracy of

these two approximations of Pd,CDD can be assessed by

comparing the predicted Pd from (38) and (55) with the

results obtained from the simulation. This comparison is

shown in Fig. 9 for the acquisition of a GPS C/A signal,

sampled at twice the chip rate (Ns = 2046), Pf a = 10−5,

and 1fd,k = 1ζ = 0. As expected, none of the

approximations represents an entirely accurate prediction

of the detector performance. In fact, the predicted

performances according to both approximations are

almost coincident, from which it can be concluded that the

Fig. 10. Sensitivity loss due to differential operation—theory,

simulation, and approximation.

oddity of the differential detector behavior is mostly due

to the dependence between the two stochastic terms under

analysis.

Fig. 10 shows Ldiff (1, Dc) calculated through (39)

using the snrin,req values for the approximations and

simulation values shown in Fig. 9. All curves are

expressed as function of Dc/2. Although the difference

between the approximations and simulation loss values is

not considerable, the profile exhibited is significantly

different. This fact complicates the proposal of an

expression for Ldiff (1, Dc) based on the theoretical loss

curves that is consistent at both high and low SNR values.

The issue is with the sensitivity loss formula and not with

the metric PDF approximation, meaning that even with a

good model of the PWD distribution, it is difficult to obtain

a closed formula of the sensitivity loss Ldiff (NDC, Dc).

Therefore, the simulation-derived loss curve is considered.

The theoretical analysis, nevertheless, is useful to validate

the simulation results. Several different models can be

employed in an attempt to approximate the simulation

points of Ldiff (1, Dc) shown in Fig. 10. Although various

approximations of different orders of 1/(Dc/2) offer a

good fit in the SNR area under consideration in the figure,

their behavior at high and, especially, low SNR values

makes them unsuitable for the approximation sought. One

approximation that closely matches the simulation results

in the SNR range under consideration and that is

consistent for both low and high SNR values is:

Ldiff (1, Dc) ≃ 1 +
0.2

Dc/2
+

0.45
3
√

Dc/2
. (40)

This curve is also shown in Fig. 10, where its accuracy

in predicting the sensitivity loss induced by one

differential operation is verified. In order to generalize this

loss formula to any number of differential operations

Ldiff (NDC, Dc), it suffices to note that the SNR at the

correlation output of the CD is written as Dc/NC or, for

the case of the NCDD, Dc/(NDC + 1). Equation (40)



Fig. 11. NCDD block diagram and SNR measuring points.

then be rewritten as:

Ldiff (NDC, Dc) ≃ 1 +
0.2 · (NDC + 1)

Dc

+
0.45 · 3

√
(NDC + 1)

3
√

Dc

. (41)

This formula expresses the sensitivity loss incurred by

a number NDC of differential integrations (employing

NDC + 1 coherent outputs) and a receiver working point

specified by Dc(Pd , Pf a) with respect to the coherent

operation. It should be noted that this simple passage from

(40) to (41) does not actually take into account the

dependence between the consecutive differential outputs.

Nevertheless, as it will be seen further, it still seems to be

a good approximation of the actual loss experienced by the

NCDD.

C. Sensitivity Loss of the NCDD

After characterizing the loss of differential integration,

we now extend the analysis to the NCDD loss LNCDD ,

which, according to the block diagram shown in Fig. 11, is

a combination of both differential integration and squaring

loss. According to the procedure previously described, the

NCDD sensitivity loss is defined as the additional input

SNR required by this detector with respect to the input

SNR required by the coherent detection scheme to achieve

a similar target working point. The sensitivity gain of the

NCDD scheme having Nc coherent outputs available is

then expressed as follows (Dc is omitted in the loss

formulas for simplicity of notation and all the terms are in

dB):

GNCDD (Nc) = Gcoh (Nc) − LNCDD (Nc)

= Gcoh (NC) −
(

Ldiff (NDC) + Lsq

)

= GSLD (NC) − Ldiff (NDC) . (42)

This way, we can directly relate the sensitivity gain of

the NCDD with that of the SLD by Ldiff (NDC). This will

be particularly useful in the comparison of the NCDD and

NCD because the sensitivity loss formula proposed in [31]

for the latter, i.e., (47), is also related to the SLD. It should

be noted that, even if Ldiff (NDC) was obtained for the

CDD scheme by concentrating all the signal power in the

real branch of the correlation output, it expresses the

sensitivity loss of the differential operation as function of

the SNR of the coherent output and is independent of its

phase. This way, it can be directly applied in (42).

It then suffices to express the differential operation

loss as function of the SNR prior to the phase-removal

operation snrdiff in Fig. 11. This can be done by recurring

to the squaring loss formula:

Lsq =
snrdiff

snrout

≃
1 +

√
1 + 9.2/snrout

2
, (43)

where snrout is the SNR at the output of the NCDD as

shown in Fig. 11. Given that all the loss formulas have

been developed with respect to the CD, it then follows that

snrout = Dc and therefore:

Lsq =
snrdiff

snrout

=
snrdiff

Dc

≃
1 +

√
1 + 9.2/Dc

2

⇔ snrdiff ≃ Dc ·
1 +

√
1 + 9.2/Dc

2
. (44)

The sensitivity loss of the NCDD with respect to SLD

is finally given by:

Ldiff (NDC) ≃ 1 +
0.2 · (NDC + 1)

snrdiff

+
0.45 · 3

√
(NDC + 1)

3
√

snrdiff

. (45)

The accuracy of this formula can be assessed by

comparing the predicted and observed sensitivity losses

obtained through simulations. Defining a target Pd = 0.9,

the predicted and observed sensitivity loss of the NCDD

detection scheme with respect to the SLD in the

acquisition of a GPS L1 C/A signal (Ns = 2046) is shown

in Fig. 12 for three different values of Pf a . From this

figure, it can be seen that there is a very close match

between the observed and expected loss profiles for this

detector. In fact, the prediction is accurate to within

±0.3 dB in the interval presented for each of the three Pf a

values considered. An example of the accuracy of this

formula is shown in Fig. 12 for NDC = 20. It can be

noticed from this figure that the predicted NCDD

sensitivity loss at (Pd , Pf a) = (0.9, 10−5) with respect to

SLD is very close to the actual value. For NDC between 50

and 100, the maximum error is still within ±0.5 dB.

D. Applications of the NCDD Sensitivity Loss Formula

One of the applications of the proposed formula is for

characterizing the detection performance of the NCDD.



Fig. 12. Predicted and observed losses for the NCDD scheme with

respect to SLD as function of NDC and Pfa for Pd = 0.9.

Fig. 13. Illustration of NCDD sensitivity loss with respect to SLD for

NDC = 20 and accuracy of loss formula.

We can use this formula to construct the sensitivity curve

of the detector using as reference the curve of the SLD

given by (25), as was done in Fig. 13. The comparison

between the simulated and predicted detector performance

for the scenarios of Table I is plotted in Fig. 14. From this

figure, it can be seen that the NCDD sensitivity prediction

curve is also accurate when a nonzero Doppler offset is

accounted for in the curves of scenarios S2 and S3. More

details on the use of this formula for a nonzero Doppler

offset are given in sub-Section VB.

Another application of this formula is in the estimation

of the number of differential integrations required for the

acquisition of a GPS L1 C/A signal at a given input C/N0.

Fig. 15 shows this estimation for three different values of

coherent integrations. Having obtained a loss formula

capable of quickly providing an estimation of the NCDD’s

performance, it is now of interest to compare this detector

with its noncoherent counterpart. This analysis is carried

in the next section.

Fig. 14. Comparison between simulated and theoretical results for

NCDD for simulation scenarios of Table I.

Fig. 15. Number of differential integrations required for NCDD to

achieve detection at (Pd , Pf a) = (0.9, 10−5) as function of coherent

integration time and input C/N0.

V. DIFFERENTIAL AND NONCOHERENT DETECTION
SCHEMES COMPARISON

The performance comparison of differential and

noncoherent detection schemes has been the subject of

several studies in recent years [8, 18–21], but to the

authors’ best knowledge, the first formal comparison

between the NCDD and the NCD is found in [22], based

on (45). In this section, the results from [22] are reviewed

and extended by evaluating the sensitivity loss of each

detector for a nonzero Doppler offset.

A. NCDD and NCD Sensitivity Loss in the Absence
of Doppler

The detection metric for the NCD is defined as:

SNCD

(

ζ̂i, f̂dk

)

=
NNC
∑

m=1

∣

∣Sm

(

ζ̂i, f̂dk

)
∣

∣

2
, (46)

where NNC = NC is the number of noncoherently

accumulated correlation outputs. The sensitivity loss of

the NCD LNCD with respect to the SLD is given in [1, 31]



Fig. 16. Sensitivity loss of NCDD and NCD with respect to SLD for

1fd,k = 0 and NNC = NDC + 1 ∈ [2, 50] (leftmost point corresponding

to NNC = 2 and rightmost one to NNC = 50).

Fig. 17. Sensitivity loss of NCDD and NCD with respect to SLD as

function of number of correlation outputs for 1fd,k = 0 and

(Pd , Pf a) = (0.9, 10−5).

as an extension of the squaring loss formula in (34):

LNCD (NNC) =
1 +

√
1 + 9.2 · NNC/Dc

1 +
√

1 + 9.2/Dc

. (47)

If the Doppler offset is small enough for its effect on

the coherent integration output to be disregarded, a direct

comparison between the two loss formulas, (45) and (47),

can be used to compare the relative performance of the

detectors. In Fig. 16, the losses that would be observed by

each scheme with respect to the SLD for three different

working points are presented. The number of available

code periods is varied from 2 to 50 to obtain the curves

shown. According to Fig. 16, for a low number of

differential integrations, the combined effect of the

differential and squaring loss leads to an inferior

performance of the NCDD with respect to the NCD. This

can also be seen in Fig. 17 where the curves for the

sensitivity loss of each detector are shown for

(Pd , Pf a) = (0.9, 10−5). As the predictions from both loss

formulas are not exact, conclusions about the precise

crossing point should not be taken from these plots. In any

case, it is safe to state that for the acquisition of weak

signals, requiring a high number of postcoherent

accumulations, the differential detector is a preferable

choice.

The effect of the inferior sensitivity loss of the NCDD

with respect to the NCD for the acquisition of weak

signals is reflected in the acquisition time that each

detector needs to achieve the required degree of

confidence in the detection of a given signal with a certain

power. In the detection of the presence of signal, the

allocation of the signal integration time between the

coherent and postcoherent strategy involves a trade-off

between sensitivity and complexity. The ultimate practical

restriction to the increase of the coherent integration time

(considering no navigation data bit influence or dynamics

and clock instability effects) is the number of frequency

grid points Nfd
to be evaluated in the acquisition process.

The usual practice is to define a maximum allowable

frequency attenuation for the coherent output that should

not be exceeded, resulting in a rule such as [1]:

Nfd
=

1Fd

δfd

=
1Fd

x/Tcoh

= Tcoh

1Fd

x
,

where 1Fd is the width of the Doppler frequency search

space (typically around 10 kHz), δfd is the frequency grid

resolution (not to be confused with 1fd , the residual

frequency estimation error as defined in Section II), and x

is the coefficient resulting from the maximum desired

amplitude attenuation [1]:

Lδf,max = sinc
(

Tcoh · δfd
/

2

)

⇔ δfd =
x

Tcoh

• Lδf,max,dB = 0.5 dB ⇒ x = 1/2

• Lδf,max,dB = 1.9 dB ⇒ x = 1

This way, even if the maximum integration gain is

obtained through the increase of the coherent integration

time, it directly affects the acquisition process complexity

(number of operations required). As an example, we

consider a total signal observation time of 20 ms. The

highest sensitivity gain possible corresponds to coherently

integrating throughout the 20 code periods, i.e.,

Gcoh,dB (20) = 10log10 (20) = 13dB.

The other alternatives imply trading off the coherent

and postcoherent integration gains according to the

equations (values in dB):

GNCD (NNC) = Gcoh (NC) − LNCD (NNC) ,

GNCDD (NDC) = Gcoh (NC) − LNCDD (NDC) .

In Table II, the number of correlator outputs required

for each different postcoherent integration strategy to

achieve the 13-dB gain for a working point of

(Pd , Pf a) = (0.9, 10−5) and for different number of

coherent integrations is shown. The number of frequency

grid points is calculated for a grid employing



TABLE II

Integration Strategies Comparison

Correlation Outputs Required
Integration

Time (ms)

Frequency

Grid Points NCD NCDD

1 10 64 40

2 20 21 16

4 40 8 7

5 50 6 6

10 100 3 3

20 200 – –

Fig. 18. Sensitivity loss of NCDD and NCD with respect to SLD for

1fd,k = 500 Hz and NNC = NDC + 1 ∈ [2, 50] (leftmost point

corresponding to NNC = 2 and rightmost one to NNC = 50).

δfd = 1/Tcoh. Naturally, the strategy requiring the shortest

observation time is the one employing the longest

coherent integration time. It can also be seen that the

performance of the NCDD and NCD schemes become

very similar when low postcoherent integration gains are

sought. The preferable solution from the ones presented in

the table should be found as a compromise between

integration time and complexity.

B. NCDD and NCD Sensitivity Loss in the Presence of
Doppler

In the presence of a nonzero and stationary Doppler

offset, the coherent processing output is affected by the

sinc function, as in (6). This means that the SNR at the

coherent-processing output will be less than what would

be expected for a zero Doppler offset [3, 34]. This way, the

effective coherent output SNR, i.e., snrcoh,eff , is given by:

snrcoh,eff = snrcoh · sinc2
(

1fd,k · NTs

)

< snrcoh,1fd,k=0,

This extra attenuation in the coherent processing is

translated into (44) and (47) as an increase of Dc by

1/sinc2(1fd,k · NTs). The comparison for a Doppler

offset of 500 Hz (typically middle of a frequency bin for

one coherent integration) is shown in Fig. 18. Although in

this figure it can be seen that the crossing point between

the NCD and NCDD sensitivity losses occurs at a higher

Fig. 19. Sensitivity loss of NCDD and NCD with respect to SLD as

function of number of correlation outputs for 1fd,k = 500 Hz and

(Pd , Pf a) = (0.9, 10−5).

loss value, this crossing occurs in fact for a lower number

of accumulations, comparing Figs. 17 and 19. According

to these plots, it can be seen that the NCDD remains as the

most suitable detector for the acquisition of weak signals.

VI. REAL DATA PROCESSING

The validation of the theoretical analysis described in

Sections III and IV as well as the comparison between the

differential and noncoherent detectors in Section V have

been carried using simulated data. In this section, the

performance of the NCDD and NCD is assessed with real

GPS L1 C/A signals collected at the ISAE, Toulouse. The

data acquisition was carried with a NordNav R30 receiver

operating at a sampling frequency of 16.4 MHz.

The focus of this work is in the acquisition of weak

signals; however, the reception of such signals is

unpredictable, and their actual signal power difficult to

assess. This way, an alternative approach is followed in

which a strong signal is identified and then corrupted with

an extra Gaussian noise component. For this purpose, it is

essential to demonstrate that the noise environment is

effectively Gaussian. As the signal provided by the

NordNav R30 receiver is already digitized, this can be

achieved by analyzing the noise distribution at the output

of correlation when testing the presence of an absent

pseudorandom noise (PRN) code, which, according to (5)

enables us to estimate the input signal variance. The result

of this analysis is shown in Fig. 20. From the histogram

shown in this figure, the Gaussian nature of the

environment noise is well remarked. It should be noted

that this Gaussian feature was verified in data collections

also in deep urban scenarios, e.g., the city center of

Toulouse. This validates the methodology employed for

the emulation of weak signals and allows testing the

algorithms under a wide range of signal strengths.

Two types of analysis are carried out. First, the

detectors are compared employing data blocks of fixed

size, and their sensitivity curve is drawn. In the second

analysis, a fixed attenuation is imposed, and the detectors’



Fig. 20. Noise-only correlation output histogram.

detection rate is plotted as function of the number of

available code periods. The Doppler search grid

considered in the following examples spans from –5 to

5 kHz, and the frequency resolution in every case

considered is 1/Tcoh. For each analysis, a mean of 1 false

alarm per 100 detections is fixed, so the detection

thresholds are set by running the detectors for 100

independent data blocks extracted from the short

collection time while testing a nonpresent PRN code. The

detectors are then run for these same 100 blocks using the

PRN code of the strong signal previously identified. This

procedure is repeated for each C/N0 point shown in the

plots.

A. Detectors Sensitivity Comparison

The first comparison of the performance of the NCDD

and NCD in real data acquisition is performed employing

a coherent integration time of 1 ms and 2, 5, and 10

correlation outputs. The signal C/N0 is varied as shown in

the plots of Fig. 21. In these plots, it is clear that the

NCDD becomes more effective than NCD as the input

signal C/N0 decreases and, consequently, a longer signal

observation time is required for reliable signal detection. It

should be noted that in this analysis no methods for

attempting compensation of data bit transition were

applied, so in several data blocks, the change in data bit

value is encountered. Given the long data bit duration for

the GPS L1 C/A signal with respect to its code period, the

data bit transition affects both detectors nearly in the same

way, even if noncoherent integration is naturally more

robust. Nevertheless, the data bit transition issue requires

further attention in modern GNSS signals, e.g., Galileo

E1, in which the navigation data period is similar to the

spreading code period.

B. Weak Signal Acquisition

To show how detection of weak signals is achieved

with the different detectors, a signal at an average C/N0 of

33 dB-Hz is emulated by adding extra noise to the real

signal. The attenuated signal is then attempted to be

Fig. 21. NCDD and NCD sensitivity comparison in acquisition of real

signals using 2, 5, and 10 correlation outputs and 1-ms coherent

integration.

acquired with the SLD, NCD, and NCDD. The detection

rate verified for each detector is shown in Fig. 22 as a

function of the number of code periods integrated. From

this plot, it can be seen that this signal can be reliably

acquired with any of the three detectors, provided the

number of code periods to be integrated is sufficiently

high. While the SLD is the best performing one, its



Fig. 22. NCDD, NCD, and SLD sensitivity comparison in acquisition

of emulated signal at 33 dB-Hz using 2 to 10 correlation outputs.

complexity of execution is considerably higher than the

other two detectors, employing only 1-ms coherent

integration and consequently presenting a less stringent

requirement on the frequency grid resolution. Also, here,

the superior performance of the NCDD with respect to the

NCD is observed.

VII. CONCLUSION

In this paper, the performance of post-CDDs in the

acquisition of weak GNSS signals was studied. First, we

characterized statistically the PWD. Under the noise-only

hypothesis, we made use of the fact that the output of

pair-wise differential integration corresponds to a sum of

independent Laplace random variables to propose a new

expression for its characterization. Under the assumption

that both signal and noise are present, it was shown that the

approximation of the output of this detector by a Gaussian

random variable matches closely its true distribution, and

an expression for its probability of detection was derived.

Given the complexity of following a similar procedure

for the NCDD, we instead characterized this detector

through its sensitivity loss with respect to the SLD. Firstly,

the methodology to characterize a detector in this way was

described, and subsequently a formula for assessing the

sensitivity loss of the NCDD (combining both differential

and squaring losses) with respect to the SLD was

proposed. The theoretical results were validated by

simulations, showing that this is a valid approach to follow

in such cases when the statistical analysis of the detectors

is overly complex.

The results obtained enabled the comparison of the

NCDD and NCD, allowing a decision on the most

adequate integration strategy for achieving a predefined

sensitivity level. It was confirmed that differential

integration is in fact preferable to noncoherent integration

in the acquisition of weak signals. The theoretical

conclusions were confirmed with the acquisition of real

GPS L1 C/A signals, highlighting the potential of the

NCDD in weak signal acquisition.

APPENDIX A

Under H0, the differential operation output, YH0, is

expressed as:

YH0 = wm · w∗
m−1 =

(

wI
mwI

m−1 + wQ
mw

Q
m−1

)

+ j
(

wQ
mwI

m−1 − w
Q
m−1w

I
m

)

= Y I
H0 + jY

Q
H0.

(48)

The Y I
H0 term can be rewritten as:

Y I
H0 = wI

mwI
m−1 + wQ

mw
Q
m−1

= σ 2
w/2 ·

[(

U 2
1 + U 2

3

)

−
(

U 2
2 + U 2

4

)]

= σ 2
w/2 · [x1 − x2] , (49)

where all the Un terms are normal-distributed with zero

mean and variance 1:

U1 =
(

wI
m + wI

m−1

) /
√

2σw, U2 =
(

wI
m − wI

m−1

) /
√

2σw,

U3 =
(

wQ
m + w

Q
m−1

)

/
√

2σw, U4 =
(

wQ
m − w

Q
m−1

)

/
√

2σw,

(50)

and, consequently, both x1 and x2 are independent χ2

random variables with two degrees of freedom [27]. From

[35], the distribution of the subtraction of two independent

random variables is given by:

fZ (z) =































∞
∫

0

fX1
(z + x2)fX2

(x2) dx2, z ≥ 0

∞
∫

−z

fX1
(z + x2) fX2

(x2) dx2, z < 0

(51)

where z = x1 − x2, and fX1
(x1) and fX2

(x2) are the PDFs

of x1 and x2, respectively, i.e., [35]:

fX (x) =
xn/2−1

2n/2 · Ŵ (n/2 )
e−x/2 =

e−x/2

2
, x ≥ 0 (52)

with n = 2 the number of degrees of freedom of the χ2

distribution for both x1 and x2. This way, fZ(z) can be

easily rewritten as:

fZ (z) =

{

1
4

· e−z/2, z ≥ 0

1
4

· ez/2, z < 0
=

1

4
· e−|z|/2 (53)

which corresponds to a Laplace distribution of zero mean

and diversity or scale parameter l equal to 2 [27]. From

this same reference, it comes that the variance of the

Laplace distribution is 2l
2. Thus, the variance of

c · Laplace(l) is then c2 · 2l
2 = 2l

′2, implying that:

σ 2
w/2 · Laplace (l) = Laplace

(

σ 2
w/2 · l

)

,

resulting finally in Y I
H0 ∼ Laplace(σ 2

w). The same

reasoning can be followed to demonstrate that

Y
Q
H0 ∼ Laplace(σ 2

w) by simply defining a normal random

variable x = −wQ
m and analyzing the distribution of

wQ
mwI

m−1 + xwI
m−1.



APPENDIX B

Given two independent random variables Z and W ,

such that Z ∼ N(µ, σ 2) and W ∼ Laplace(l), their sum

Y = Z + W results in a normal-Laplace distribution

whose PDF and CDF are given by [29]:

fY (y) =
φ (γ )

2l
· [R (σ/l − γ ) + R (σ/l + γ )] , (54)

FY (y) = 8 (γ ) − φ (γ ) ·
R (σ/l − γ ) + R (σ/l + γ )

2
,

(55)

with γ = (y − µ)/σ , 8(·) and φ(·) the CDF and PDF

functions of a standard normal random variable,

respectively, and R(·) the Mills ratio, defined as [29]:

R (z) =
8c (z)

φ (z)
=

1 − 8 (z)

φ (z)
. (56)

Given a threshold Vth, the tail probability of Y ,

equivalent to Pd in detection of a signal distributed

according to fY (y), is:

Pd = 1 − FY (Vth) . (57)

This equation can be employed in the characterization of

the output of the CDD under H1, considering the Gaussian

and Laplace noise terms to be independent. For the case of

a single differential operation, the terms in (55) and (57)

are given by:

l = σ 2
w,

µ = µSH1
PWD

≃ |sm|2,

σ 2 = var
{

ℜ
{

wY,m

}}

≃ 2σ 2
w · |sm|2,

Vth = −σ 2
w · ln

(

Pf a

)

.
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[30] Deroye, L., and Lugosi, G.

Combinatorial Methods in Density Estimation. New York,

NY: Springer, Feb. 2001.

[31] Barton, D.

Modern Radar System Analysis, Norwood, MA: Artech

House, Jun. 1988.

[32] Liu, W., Li, J., Ge, R., and Wang, F.

Optimization and convenient evaluation model of differential

coherent post detection integration.

Presented at the Proceedings of ION GNSS 2011, Portland,

OR, Sep. 19–23, 2011.

[33] Borio, D., Gernot, C., Macchi, F., and Lachapelle, G.

The output SNR and its role in quantifying GNSS signal

acquisition performance.

Presented at the Proceedings of ENC 2008, Toulouse, France,

Apr. 22–25, 2008.

[34] Esteves, P., Sahmoudi, M., Ries, L., and Boucheret, M.-L.

Accurate Doppler-shift estimation for increased sensitivity of

computationally efficient GNSS acquisition.

Presented at the Proceedings of ENC 2013, Austria, Vienna,

Apr. 2013.

[35] Papoulis, A., and Pillai, S.

Probability, Random Variables and Stochastic Processes (4th

ed.). New York, NY: McGraw-Hill, Jan. 2002.

Paulo Esteves graduated as an aerospace engineer from Instituto Superior Técnico Lisbon, Portugal, in 2007, and has
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