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Rare earth elements (REE) total concentration and signature in soils are known to be impacted by successive soil-
forming processes. So it can be used as probe of soil processes. However, few studies focus on their behavior in
Podzols. Podzols result from the combination of two main pedogenic processes: (1) the strong weathering in
the surface eluvial horizon; (2) the downward transfer of dissolved organic matter (OM) and mobile Al and Fe,
and their accumulation in the illuvial horizon beneath. Iron oxides and OM are known to have strong affinities
with REE, and to play an important role in transfer and immobilization of REE. In order to decipher the relative
importance of Fe oxide and OM in REE fate during podzolization, and to investigatewhether REE can trace Podzol
formation, we study here the evolution of REE signatures along five pedons, aged from 120 to 530 years, in a
Cambisol-Podzol chronosequence located in the Cox Bay of Vancouver Island. Our results show that the REE con-
tent is strongly correlated to the general loss of elements and mineral weathering. Furthermore, the accumula-
tion of secondary OM, Al and Fe-bearing phases does not impact the REE signature of the bulk soil. Both our
results and the ones available in the literature indicate that the release of REE induced byweathering and subse-
quent leaching in percolatingwater are themain pathways determining the REE fate in Podzols. Furthermore, we
show that REE can be released and mobilized in very short periods of time during podzolization (330 years).

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The group of rare earth elements (REE) consists of 17 elements; the
lanthanides and lanthanum (La) together with scandium (Sc) and yttri-
um (Y) (Saatz et al., 2015). They form a series that behaves geochemi-
cally coherently owing to the small but steady decrease in ionic radius
with increase in atomic number (Henderson, 1984; Panahi et al.,
2000; Yusoff et al., 2013). They are considered as promising tracers in
pedogenesis (Taunton et al., 2000; Aubert et al., 2001; Aide and
Smith-Aide, 2003; Chabaux et al., 2003; Compton et al., 2003; Ndjigui
et al., 2008; Laveuf and Cornu, 2009; Harlavan et al., 2009; Ma et al.,
2011; Gong et al., 2011; Yusoff et al., 2013). The origin of REE in soils
lies in the parent material (PM), since anthropogenic sources are re-
stricted (Hu et al., 2006). During pedogenesis, REE signature is affected
by a variety of processes (dissolution, oxydo-reduction, precipitation
(M.-L. Vermeire),
.inra.fr (Z. Fekiacova),
ux@uclouvain.be (B. Delvaux),
and complexation). These processes induce internal fractionations
and/or anomalies related to REE mass or different oxidation states for
Ce and Eu. Consequently, REE concentrations normalized to a reference
PM and fractionation pattern observed in a soil profile provide a useful
tool for elucidating soil-forming processes leading to the formation of
a specific soil horizon (Yusoff et al., 2013).

Iron- andMn-oxides are known to scavenge REE (Rankin and Childs,
1976; Palumbo et al., 2001) through one or a combination of the follow-
ing mechanisms: coprecipitation, adsorption, surface complex forma-
tion, ion exchange and penetration of the lattice (Chao, 1976; Cao et
al., 2001), in amounts varying with soil type (Li et al., 2006; Wang et
al., 2001; Zhang and Shan, 2001) and depth (Land et al., 1999; Yan et
al., 1999). Soil organic matter (SOM) is more efficient than Fe oxides
in concentrating REE, given the strong complexing ability of organic
molecules (Davranche et al., 2011). Therefore, SOM plays an important
role in the transfer and immobilization of REE, controlling inter-horizon
REE distribution (Koeppenkastrop and De Carlo, 1992; Tang and
Johannesson, 2003; Pourret et al., 2007a; Goyne et al., 2010;
Davranche et al., 2011; Aide andAide, 2012). The differential binding af-
finity of the REE for SOM across the REE series is still poorly understood.
Two general tendencies can be observed in natural waters (Tang and
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Johannesson, 2010): trend M and trend H. The trend M is observed in
the liquid phase if the stability constants of REE-Humic substances com-
plexes are greatest for the middle REE (MREE), followed by the heavy
REE (HREE), and light REE (LREE). The M trend gives a MREE enrich-
ment signature in the liquid phase (Johannesson et al., 2004;
Yamamoto et al., 2005; Pourret et al., 2007b; Pedrot et al., 2008; Tang
and Johannesson, 2010; Davranche et al., 2011; Cidu et al., 2013). The
trend H is observed if the stability constants of REE-Humic substances
increase with increasing atomic number across the REE series. They
are thus largest for the HREE; this is called “lanthanide contraction ef-
fect” (Sonke and Salters, 2006; Sonke, 2006; Stern et al., 2007; Laveuf
and Cornu, 2009; Gangloff et al., 2014; Vázquez-Ortega et al., 2015).

Podzolization combines two main processes: (1) strong mineral
weathering in the eluvial surface E horizon, eventually depleted in ele-
ments and enriched in resistant minerals as quartz and resistant acces-
sory minerals, and characterized by a light-grey color; (2) eluviation
with percolating water of dissolved organic matter (DOM) complexed
with Al and Fe which will precipitate and accumulate in soil horizons
beneath to form dark reddish/brownish colored illuvial horizons (Bh,
Bhs or Bs) (Lundström et al., 2000). Among the mechanisms that have
been proposed to explain mobilization and translocation phenomenon
involved in podzolization, the formation and downward transport of
unsaturated complexes of organic acids with Al and Fe (the fulvate the-
ory, McKeague et al. (1978)) has been generally accepted as the domi-
nant mechanism of eluviation (Lundström et al., 2000). Dissolved
organic acids are crucial components in Podzol development, both be-
cause they demonstrate a large ability to promote dissolution of min-
erals, and they form complexes with Al and Fe, that will transport
those elements deeper in the soil profile (van Hees et al., 2000;
Lundström et al., 2000; Kaiser and Kalbitz, 2012; Gangloff et al., 2014).
These reactions can be fast (~100 years) depending on environmental
conditions (Sauer et al., 2008; Cornu et al., 2008). As metal cations and
DOMplay a key role in podzolization process, it is reasonable to hypoth-
esize that the REE signature of the soil will be impacted by a podzolic
development.

In order to understand the REE's temporal dynamics along with Fe
and OM fate in Podzol, and to assess the ability of REE to trace this ped-
ogenic processes, we study the REE distribution in a podzolic soil
chronosequence. The soilmembers of the chronosequencewere already
characterized. Besides, they exhibit successive processes in terms of dis-
solution, synthesis and transfer of clayminerals (Cornelis et al., 2014) as
well as a strong redistribution in Fe and OM. A chronosequence involves
a sequence of soils developed in the same conditions of soil forming fac-
tors except time (Huggett, 1998;Walker et al., 2010). They are valuable
tools for investigating temporal dynamics of pedogenic processes.

2. Material and methods

2.1. Study area

The study site is a chronosequence under Sitka spruce (Picea
sitchensis) forest, located near Cox Bay, on the west coast of Vancouver
Island, British Columbia (latitude 49° 6′N, longitude 125° 52′W). Cli-
mate is characterized by a lack of temperature extremes and abundant
precipitation (annual precipitation 3200 mm and average temperature
8.9 °C) (Singleton and Lavkulich, 1987; Lundström et al., 2000). Due to
rainfall, moderate temperature and close proximity to the ocean, the
humidity remains high throughout the year (between 75 and 95%)
(Cordes, 1972). The incoming ocean spray brings significant amount
of Na,Mg, Ca and K to soils. Such an input improves the soil nutrient sta-
tus, without inducing nutrient accumulation, because of rainfall at the
site (Cordes, 1972). The soils have developed on Cox Bay beach sand de-
posits, which are advancing towards the ocean in a configuration paral-
lel to the existing shoreline at a rate of 0.26 m per year (Singleton and
Lavkulich, 1987). Only slight variations in parent materials suggest a
uniform depositional sequence in the study area (Singleton and
Lavkulich, 1987). The source of the beach sand parent material is the
Tofino Area Greywacke Unit (Muller and Carson, 1969; Singleton and
Lavkulich, 1987).

2.2. Soil chronosequence

Five pedons (P) (P1-120 years, P2-175 years, P3-270 years, P4-
330 years and P5-530 years) were selected along a transect (0–
147 m) perpendicular to the present shoreline (Singleton and
Lavkulich, 1987; Cornelis et al., 2014). One representative sample was
taken per horizon, as described in Table 1. The respective ages of the
profiles were determined by dendrochronology (tree-rings dating). As
a strip of sand of approximately 13 m wide lies between the active
beach and the sand deposits containing tree seedlings, 50 years (time
needed for this strip to accumulate)were added to the tree age estimat-
ed for each site to determine the site ages (Singleton and Lavkulich,
1987). Increasing soil development, and consequently progressive
deepening and differentiation of genetic horizons during podzolization,
is observed in the transect with increasing distance from the active
beach (Cornelis et al., 2014). According to the IUSS Working Group
WRB system (World Reference Base for Soil Resources, 2014) the soils
are classified as Dystric Cambisol at the youngest sites (P1-120 and
P2-175), Albic Podzol at the intermediate site (P3-270), and Placic Pod-
zol at the oldest sites (P4-335 and P5-530). The Placic Podzols are char-
acterized by the following sequence of soil horizons from surface to
depth (Cornelis et al., 2014): an eluvial albic E horizon, strongly weath-
ered; an illuvial spodic Bh horizon (enriched in OM); a Bhs horizon,
enriched in Fe oxyhydroxides and OM; a Bs horizon, enriched in poorly
crystalline aluminosilicates and Fe oxyhydroxides; a Bwhorizon charac-
terized by its color and structure but exhibiting no illuvial accumula-
tion; and a poorly structured BC horizon (Fig. 1, Table 1).

Sitka spruce (P. sitchensis) alone is the forest cover at the youngest
site (P1-120). It is associated with (1) salal (Gaultheria shallon) at P2-
175 and P3-270 sites, and with (2) salal (G. shallon), western red
cedar (Thuja plicata), western hemlock (Tsuga heterophylla), douglas
fir (Pseudotsuga menziesii) and western sword fern (Polystichum
munitum) at the oldest sites (P4-335 and P5-530) (Cornelis et al., 2014).

2.3. Analytical methods

The soil samples were air-dried and sieved at 2 mm according to NF
ISO11464. Classical soil characterizationswere performed (Tables 1 and
2). Soil pHwasmeasured in 5 g:25ml soil:water suspension (Page et al.,
1982). Cation exchange capacity (CEC) and the content of exchangeable
cationswere determined, according to Page et al. (1982), in ammonium
acetate 1M at pH 7 andmeasured by ICP-AES. Soil particle-size analysis
was achieved by quantitative recovery of clay (b2 μm), silt (2–50 μm)
and sand (N50 μm) fractions after sonication and dispersion with
Na+-saturated resins without any previous H2O2 oxidation of OM, as
described in Henriet et al. (2008). Total major elemental contents
were measured by inductively coupled plasma/atomic emission spec-
trometry (ICP–AES) after fusion in Li-metaborate + Li-tetraborate at
1000 °C (Chao and Sanzolone, 1992). This was performed on samples
prepared according to NF ISO 11464 and crushed to b250 μm as recom-
mended by NF × 31147. The total reserve in bases (TRB) is the sum of
the total contents of alkaline and alkaline-earth cations (Na+, K+,
Ca2+, Mg2+; in cmolc·kg−1). TRB directly measures the weathering
stage of soil because it estimates the content of weatherable minerals
(Herbillon, 1986). Total organic carbon concentration was determined
by dry combustion (Flash EA 1112 series elemental analyzer, combus-
tion temperature N 960 °C).

Si, Fe and Al linked to different soil components were selectively ex-
tracted from the fine earth soil fractions (b2 mm fraction, uncrushed)
using sodium pyrophosphate, dark oxalate and dithionite-citrate-bicar-
bonate (DCB) following the methods of Bascomb (1968); Blakemore et
al. (1987), and Mehra and Jackson (1960), respectively. The fractions



Table 1
Major soil characteristics:WRB classification, pH inwater, cationic exchange capacity (CEC), exchangeable cations, base saturation (%BS), particle-size distribution and total organic carbon
(TOC) content.

Profile Age Horizon Depth WRBa pH CEC Exchangeable cations (cmolc kg−1) %BS Particle size
distribution (%)

TOC

cm (Water) cmolc/kg Ca2+ K+ Mg2+ Na+ Sand Silt Clay g kg−1

P.M.b 0 C 7.7 1.55 0.19 0.23 0.33 0.73 95.57 99.9 0.1 0.0 0.32
P1 120 BC1 0–35 DC 5.9 3.72 0.25 0.10 0.35 0.18 23.76 99.2 0.6 0.3 9.12
P1 120 BC2 35–60 DC 5.9 3.32 0.23 0.06 0.33 0.18 24.21 7.79
P2 175 BW 3–44 DC 5.8 4.34 0.23 0.07 0.35 0.25 20.66 99.0 0.6 0.4 3.33
P2 175 BC 44–75 DC 5.9 2.38 0.12 0.08 0.18 0.22 25.30 99.6 0.2 0.1 2.55
P3 270 E 0–7 AP 4.6 6.04 0.48 0.05 0.56 0.11 19.94 90.8 6.1 3.1 12.63
P3 270 Bh 7–23 AP 5.1 5.94 0.59 0.04 0.41 0.13 19.76 97.2 1.7 1.1 16.17
P3 270 BW 23–57 AP 5.3 5.57 0.52 0.04 0.40 0.11 19.14 97.4 1.8 0.9 8.18
P3 270 BC N57 AP 5.4 5.71 0.39 0.10 0.22 0.11 14.53 98.2 1.1 0.7 6.87
P4 330 E 0–10 PP 4.9 5.66 0.07 0.02 0.05 0.04 3.22 82.3 14.4 3.3 8.48
P4 330 Bh 10–17 PP 5.5 15.72 0.22 0.04 0.10 0.06 2.67 88.0 8.7 3.2 16.18
P4 330 Bhs 17–17.5 PP 15.18 0.13 0.04 0.07 0.06 1.96 90.0 6.8 3.2 22.99
P4 330 Bs 17.5–23 PP 5.3 5.88 0.04 0.03 0.01 0.03 1.80 94.9 4.2 0.9 4.53
P4 330 Bw 23–63 PP 5.4 4.31 0.03 0.03 0.01 0.04 2.58 96.1 2.4 1.5 2.67
P4 330 BC1 63–113 PP 5.3 3.15 0.02 0.06 0.00 0.02 3.21 1.26
P4 330 BC2 113–193 PP 5.3 2.72 0.02 0.01 0.00 0.02 2.33 1.48
P4 330 BC3 N193 PP 5.2 2.71 0.02 0.04 0.00 0.02 3.14 98.2 1.8 0.0 1.03
P5 530 E 0–8 PP 4.5 5.31 0.22 0.04 0.15 0.06 8.63 31.90
P5 530 Bh 8–9.5 PP 4.5 15.32 0.33 0.03 0.16 0.06 3.78 31.18
P5 530 Bhs 9.5–10 PP 4.5 23.35 0.24 0.08 0.13 0.07 2.23 40.48
P5 530 Bs 10–15 PP 4.8 9.85 0.04 0.04 0.03 0.04 1.60 11.60
P5 530 Bw 15–40 PP 5.0 3.53 0.02 0.01 0.00 0.03 2.02 1.17
P5 530 BC 40–60 PP 5.1 2.45 0.03 0.02 0.00 0.01 2.56 0.64

a WRB classification: DC stands for Dystric Cambisol, AP for Albic Podzol and PP for Placic Podzol.
b PM: parental material.
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obtained with pyrophosphate (Alp, Fep) indicate principally Al and Fe
present in organo-metallic complexes. The fraction obtained with oxa-
late (Alo, Feo, Sio) comprises principally i) Al and Fe in organic
Fig. 1. Cross section of the Cox Bay chronosequence, showing site locations and soil horizons, de
270 years, P4-330 years and P5-530 years (modified from Cornelis et al., 2014).
complexes, ii) Al and Fe in non-crystalline (hydr)oxides, iii) Al and Si
in poorly crystalline aluminosilicates. The fractions obtained with sodi-
um dithionite/citrate (Ald, Fed) comprise i) Al and Fe in organic
pending on their respective age of soil formation: C-0 year, P1-120 years, P2-175 years, P3-



Table 2
Total elemental contents of the bulk soil, total reserve in bases (TRB) and proportion of ‘free iron’ as measured by the ratio between DCB-extractable iron and total iron (Fed/Fet).

Profile Horizon Depth Total elemental content (g kg−1) TRB Fed/Fet

cm Si Al Fe Ca K Mg Na Ba Mn P Sr Zr Ti cmolc/kg

P.M. C 285.27 75.87 48.92 55.63 5.93 18.03 21.50 0.29 1.18 0.67 0.44 0.23 7.14 534.67 0.03
P1-120 BC1 0–35 302.71 70.95 34.47 42.72 6.57 13.31 22.94 0.31 0.74 0.55 0.38 0.10 4.37 439.32 0.05
P1-120 BC2 35–60 293.11 73.67 41.94 49.93 6.23 16.01 21.58 0.30 0.96 0.57 0.42 0.13 5.89 490.74 0.05
P2-175 Bw 3–44 309.65 70.01 33.62 39.85 6.89 13.20 24.23 0.32 0.68 0.87 0.38 0.09 4.10 430.49 0.04
P2-175 BC 44–75 328.63 68.07 25.00 31.16 7.98 9.85 25.67 0.36 0.49 0.47 0.35 0.07 2.95 368.66 0.08
P3-270 E 0–7 335.69 62.66 18.99 23.85 7.89 6.99 26.45 0.35 0.37 0.19 0.35 0.08 2.87 311.77 0.13
P3-270 Bh 7–23 324.81 63.76 20.67 22.96 8.30 7.59 26.14 0.39 0.37 0.40 0.33 0.06 2.33 311.96 0.13
P3-270 Bw 23–57 341.35 62.58 18.43 22.14 8.28 6.82 25.69 0.36 0.34 0.34 0.32 0.08 2.20 299.55 0.12
P3-270 BC N 57 323.13 69.07 25.87 29.10 7.68 10.03 26.11 0.35 0.45 0.39 0.34 0.07 3.02 361.04 0.08
P4-330 E 0–10 362.91 54.13 10.81 17.29 8.05 3.48 23.24 0.32 0.27 0.06 0.27 0.20 3.39 236.55 0.10
P4-330 Bh 10–17 317.90 65.90 25.29 24.23 7.88 9.44 23.95 0.36 0.44 0.35 0.30 0.09 3.50 322.84 0.13
P4-330 Bhs 17–17.5 303.58 66.76 37.76 25.69 7.27 10.12 22.91 0.30 0.46 0.34 0.30 0.08 3.67 329.71 0.57
P4-330 Bs 17.5–23 314.20 71.50 31.18 30.53 7.97 11.84 24.85 0.34 0.53 0.37 0.31 0.08 3.59 378.19 0.12
P4-330 Bw 23–63 327.76 68.38 25.27 28.12 7.92 9.80 24.89 0.34 0.49 0.32 0.33 0.10 3.04 349.44 0.10
P4-330 BC1 63–113 330.87 66.73 24.87 28.71 8.11 9.93 24.51 0.34 0.48 0.43 0.32 0.07 3.01 352.30 0.05
P4-330 BC2 113–193 336.78 65.32 22.31 26.90 8.37 8.84 25.08 0.38 0.47 0.37 0.34 0.07 2.59 337.48 0.05
P4-330 BC3 N193 320.47 70.02 28.95 33.61 7.96 11.44 25.21 0.34 0.59 0.47 0.34 0.07 3.47 391.87 0.04
P5-530 E 0–8 365.59 41.04 10.66 11.85 5.97 2.28 17.63 0.26 0.27 0.11 0.21 0.23 3.11 169.85 0.14
P5-530 Bh 8–9.5 326.16 53.98 19.06 18.48 7.16 4.68 21.20 0.31 0.35 0.19 0.28 0.08 4.11 241.26 0.35
P5-530 Bhs 9.5–10 315.66 58.03 37.94 19.49 7.48 6.44 21.97 0.30 0.30 0.16 0.27 0.10 4.04 264.89 0.60
P5-530 Bs 10–15 321.61 66.62 29.29 21.90 7.55 8.65 22.50 0.33 0.42 0.18 0.29 0.07 3.00 297.65 0.33
P5-530 Bw 15–40 327.80 68.02 26.79 27.30 8.05 10.44 25.15 0.35 0.51 0.25 0.32 0.07 3.21 352.22 0.07
P5-530 BC 40–60 329.07 66.98 26.28 28.45 7.99 10.44 25.02 0.34 0.51 0.26 0.32 0.07 3.09 357.10 0.05
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complexes ii) Al and Fe in non-crystalline (hydr)oxides, and iii) Fe (and
to a smaller extent the Al) in crystalline hydrous oxides.

The soil mineralogy of the fine earth fraction (b2 mm fraction,
crushed to a fine powderwith an agate mortar and pestle) has been de-
termined using X-Ray diffraction (XRD). All diffractograms were stud-
ied using the X-Ray peak matching software EVA (Bruker) and its
database of minerals patterns. The proportions of different crystalline
minerals were calculated using SIROQUANT© 4.0, one of the most re-
cent software using Rietveld refinement (Rietveld, 1969) for quantita-
tive analysis of XRD patterns. SIROQUANT uses full profile fitting
routines to generate a synthetic pattern that can be systematically re-
fined via a least-squaresminimization of the difference with the diffrac-
tion pattern obtained experimentally. The output data also show the
error associated with each individual component, the ESD value (“esti-
mated standard deviations” of the weight percentages). These errors
are the square roots of the diagonal elements of the least-squares vari-
ance covariance matrix. An estimate of the overall goodness of fit for
each analysis is also provided in the output, expressed as a global chi-
squared value. Errors given by Siroquant for each individual mineral de-
termination has to be multiplied by the square root of the global chi^2
value for the analysis in question to give the total error per mineral.

2.4. Rare earth elements analysis and data treatment

Sample preparations for the rare earth elements (REE) analyses
were carried out in clean environment (CEREGE, Aix en Provence). Ap-
proximately 250 mg of sample powder (b2 mm fraction, crushed to a
fine powder with an agate mortar and pestle) was first treated with
30% H2O2 in order to eliminate OM and then dissolved using a mixture
of concentrated HF-HNO3, followed by concentrated HCl acids, at
~130 °C. The dissolution was made under laminar flow box in order to
minimize sample contamination. The dissolved samplesweremeasured
for REE by ICP-MS (NexION 300×, PerkinElmer). To ascertain the accu-
racy of the REE analysis, two international standards (GSS-2 and GSS-3)
were analyzed, using the same technique and during the same analyti-
cal session than the “unknown” samples. Those standardswere selected
because they were estimated to have a REE concentrations close to the
ones of the samples, based on the REE concentrations in other podzols
in the literature. Furthermore, the repeatability of the analytical tech-
nique was verified by analyzing one sample (C horizon) in triplicate.
The accuracy of the ICP-MS was estimated by measuring four times
the concentrations of each international standards, as anunknown sam-
ple. One blank of the sample processing procedure was also included in
the analytical session. During the course of the ICP-MS analysis, one
blank and one international standardwasmeasured every four samples.
The reference and measured values of the international standards, as
well as the measured values for the triplicates of the C horizon sample
are presented in table S1. All reagents were ultrapure distilled acids
and overall procedural blanks contained negligible quantities of REE
compared to the sample REE content. REE concentrations measured in
the reference samples were within 90% of the reference concentrations
for these elements and the errors on the measure were b5% for most of
the REE.

Measured REE concentrations were normalized to both an external
(the Upper Continental Crust-UCC (Rudnick and Gao, 2003; Laveuf
and Cornu, 2009)) and an internal reference (the parent material from
which the soil profile develops after Braun et al., 1998; Aubert et al.,
2001; Dequincey et al., 2006), and presented as distribution patterns
with the individual REE listed in the order of their atomic number in
the x-axis.

Depletion or enrichment of a groupor of an individual REE relative to
the others was quantified through the calculation of fractionation ratios
and anomalies. The fractionation between light REE (LREE, i.e., from La
to Nd), medium REE (MREE, i.e. from Sm to Ho) and heavy REEs
(HREEs, i.e., from Er to Lu) was quantified by the ratios La/Gd, Gd/Lu
and La/Lu, calculated after normalization of the concentrations to the
parent material. The magnitude of Eu and Ce anomalies (Eu/Eu* and
Ce/Ce*), the only two REE encountered in two oxidation states under
earth surface conditions, and that can consequently display a specific
behavior, was calculated by the following ratios:

Ce−anomaly ¼ Ce
Ce�

� �
¼ Cesoil=Cerefð Þ

Lasoil=Larefð Þ1=2 Prsoil=Prrefð Þ1=2
h i ð1Þ

Eu−anomaly ¼ Eu
Eu�

� �
¼ Eusoil=Eurefð Þ

Smsoil=Smrefð Þ1=2 Gdsoil=Gdrefð Þ1=2
h i ð2Þ

where the subscript “ref” correspond to the REE concentration in the
reference material (UCC or soil parent material) and the subscript
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“soil” correspond to the REE concentration in the soil sample (Mourier
et al., 2008; Ndjigui et al., 2008; Vázquez-Ortega et al., 2015).
3. Results and discussion

3.1. REE pattern normalized to the UCC as tracers of soil parent material

Fig. 2 shows the REE signature of the beach sand (C) and of the
deepest BC horizons of the P1-120, P2-175, P3-270, P4-330 and P5-
530 years profiles normalized to the UCC, while REE concentrations
are reported in Table 3. All the considered samples present the same
REE pattern depleted in LREE with a strong positive Eu anomaly (Fig.
2), confirming that the sediment material at the origin of theses hori-
zons comes from the same source. The strong positive Eu anomaly
may be related to the large content in plagioclase of the sediment (Fig.
3), since feldspars are known to be enriched in Eu (Vázquez-Ortega et
al., 2015).

The C horizon exhibits the highest total content in REE
(107.15 μg REE g−1 soil). This content decreases in the P1-120 BC hori-
zons (82.52 μg REE g−1 soil) and in the deep BC horizons of the P2-175,
P3-270, P4-330 and P5-530. These four last horizons show similar total
REE concentrations (48.89, 54.03, 57.37 and 51.87 μg REE g−1 soil, re-
spectively). There is no significant evolution of the Eu anomalies, vary-
ing from 1.45 to 1.63 when normalized to the UCC.

We observe a decrease in REE concentrations from the beach sand to
the BC horizon of the P1 and a further decrease in the P2-BC horizons of
the other soil profiles. Such decreasemay be due tomineralweathering.
No further REE decrease is recorded in the BC horizons deeper than
50 cm for older soil profiles (from P2 to P5). In addition, concentrations
of Zr and Ti, two poorly mobile elements that are expected to accumu-
late with an increasing weathering stage, decrease from the sand
beach to P1 andP2 BC horizons (0.23, 0.13 and0.07 g kg−1, respectively,
for Zr, and 7.14, 5.89 and 2.95 g kg−1, respectively, for Ti), and then re-
main constant from P2 BC to P5 BC (Table 2). Furthermore, the surface
P2 Bw horizon displays higher total concentrations in major elements,
Zr, Ti and REE than the deeper P2 BC horizon (Tables 2, 3 and 4). All
these observations do not support the hypothesis of an earlyweathering
as explanation for the observed decrease of REE signature in the deep
horizons from sand beach to BC horizon of the P2. It suggests that the
decrease in REE from the sand beach to the BC of the P2 ismost probably
due to a change in the sedimentation dynamic leading to a variable con-
tent of sand, silt and clay in the C beach and BC horizons. This is consis-
tentwith the significant increase in quartz content between C and P1 BC
(Fig. 3). Quartz is known to be REE-free and thus acts as a diluting agent
of these elements (Compton et al., 2003).
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Fig. 2. REE patterns of the C beach parental material and P1-120, P2-175, P3-270, P4-330
and P5-530 BC, normalized to the UCC. Error bars correspond to the result of error
propagation calculations, based on the RSD given by the machine for each measure.
The three podzols, P3-270, P4-330 and P5-530, have similar REE pat-
terns and Zr and Ti concentrations in their BC horizons. They may thus
be considered as developed from the same parental BC material. This
is confirmed by the similar mineralogical composition of the three BC
horizons (Fig. 3).

In order to identify the impact of podzolization on REE signature, we
normalized the REE concentrations of the pedological features to the
REE concentrations of the parent material (Braun et al., 1998; Aubert
et al., 2001; Dequincey et al., 2006; Laveuf et al., 2008). Therefore, in
the following, the mean composition of the 270–330–530 years BC ho-
rizons (mean BC, MBC) will be used as reference value for the parental
material of the three podzols, and the REE composition of the three pod-
zolic profiles horizons will be normalized to this value.

3.2. REE evolution with depth in podzolic soil chronosequence as a tracer of
pedogenesis

Within the podzolic profiles P3-270, P4-330 and P5-530 years, the
REE contents of the upper E-horizons are lower than the ones of the
BC horizons (a loss of total REE content of 24, 34 and 37%, respectively,
in the E horizon compared to the deep BC horizon, Fig. 4a, e, i, Fig. 5, and
Table 4). The E horizon is the most depleted in the P5 profile. In P3–
270 years, the REE content already decreases in the Bw horizons com-
pared to the BC and then remain stable up to the upper E horizon
(Table 3), while in P4, REE concentrations start to decrease from the
Bh horizon and from the Bhs in P5. Significant positive correlation was
observed between the evolution with depth of REE patterns and of
TRB (r = 0.896) while a negative correlation was observed with the
Si/Al ratio (r = −0.866) (Table 2, Fig. 4 b, f, j). The TRB is classically
used as a weathering index in soils (Herbillon, 1986) and Si/Al ratio
can be considered as a proxy for quartz accumulation at the surface
since quartz is a non weatherable mineral in soils. Therefore REE losses
are linked to an increase of the weathering stage. Principal mineralogi-
cal evolutions with increasing age in the surface horizon (from the P3 E
to the P4 E) of the Vancouver chronosequence is a decrease of themodal
abundance of primary minerals, except for quartz (Fig.3). Feldspars and
quartz are known to contain negligible amounts of REE with the excep-
tion of Eu in feldspars (Towell et al., 1969; Condie et al., 1995; Compton
et al., 2003). Preferential dissolution of feldspars relative to other REE-
bearing primary minerals should, therefore, result in negative solid
Eu-anomalies. However, no significant evolution of the Eu anomaly
was observed in E horizons. The observed signature can originate from
the dissolution of other mineral phases present in this horizon (illite,
hornblende, augite, chlorite), less abundant in the chronosequence.
For example, amphiboles can contain high concentrations in REEs and
negative anomalies in Eu (Skublov and Drugova, 2003). Theweathering
of twominerals with opposite Eu anomalies may explain the absence of
change in this anomaly through time. Furthermore, accessory minerals
(i.e. heavy minerals and phosphates) are known to present high REE
concentrations (Bea, 1996), and to control the presence and dynamics
of REE in weathering profiles (Braun et al., 1998).

Heavy minerals known to host REEs are Zr- and Ti-bearing phases,
such as titanite (sphene), anatase, ilmenite and zircon (Braun et al.,
1990; Braun et al., 1998; Aubert et al., 2001; Takahashi et al., 2003).
Since most of the heavy minerals are rather stable through weathering
(Nickel, 1973), the REEs included in these minerals are expected to ac-
cumulate in the weathered horizons. Consequently, those phases can-
not explain the loss of REE with weathering observed in the E horizon.

Phosphate-bearing minerals (apatite and monazite, xenotime,
rhabdophane, etc.) typically contain thousands of mg kg − 1 of REEs
(Henderson, 1984; Hughes et al., 1991; Frietsch and Perdahl, 1995;
Taunton et al., 2000; Jordens et al., 2013). Consequently, they can largely
influence REE content even if small quantity of primary phosphates is
present and weathered (Braun et al., 1993; Braun et al., 1998; Aubert
et al., 2001; Galan et al., 2007; Stille et al., 2009; Berger et al., 2014;
Hissler et al., 2015). Some of these phosphate phases, like apatite, tend



Table 3
REE contents in the studied podzol samples and in the Upper Continental Crust (UCC).

Profile Horizon Depth LREE (μg g−1) MREE (μg g−1) HREE (μg g−1)

cm La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

P.M. C 20.72 37.94 5.09 21.07 4.69 1.38 4.32 0.72 4.52 0.90 2.68 0.37 2.41 0.35
P1 BC 0–60 14.69 29.80 3.87 16.28 3.70 1.16 3.50 0.57 3.59 0.72 2.15 0.30 1.92 0.27
P2 Bw 3–44 10.45 21.10 2.79 11.93 2.90 0.97 2.89 0.48 3.01 0.60 1.83 0.25 1.75 0.23
P2 BC 44–75 8.54 16.99 2.22 9.49 2.19 0.76 2.26 0.37 2.38 0.47 1.49 0.20 1.32 0.20
P3 E 0–7 7.67 14.25 1.92 7.84 1.77 0.64 1.71 0.26 1.83 0.37 1.16 0.17 1.09 0.16
P3 Bh 7–23 7.18 13.60 1.84 7.47 1.79 0.65 1.69 0.30 1.85 0.38 1.08 0.15 1.01 0.16
P3 Bw 23–57 6.88 13.23 1.77 7.08 1.63 0.61 1.63 0.27 1.68 0.35 1.06 0.16 1.07 0.16
P3 BC N57 9.76 18.55 2.52 10.97 2.40 0.82 2.37 0.40 2.48 0.50 1.51 0.21 1.32 0.22
P4 E 0–10 7.34 13.33 1.80 7.45 1.60 0.52 1.35 0.23 1.51 0.30 0.92 0.14 0.96 0.13
P4 Bh 10–17 10.13 17.84 2.45 10.07 2.30 0.77 2.10 0.37 2.42 0.47 1.46 0.20 1.28 0.19
P4 Bhs 17–17.5 11.37 20.30 2.90 11.84 2.72 0.84 2.42 0.44 2.69 0.55 1.61 0.22 1.44 0.22
P4 Bs 17.5–23 10.27 19.32 2.74 11.83 2.77 0.91 2.62 0.47 3.09 0.61 1.82 0.25 1.67 0.24
P4 Bw 23–63 9.78 19.71 2.67 11.48 2.70 0.89 2.64 0.45 2.81 0.56 1.67 0.23 1.53 0.24
P4 BC1 63–113 10.76 19.02 2.72 11.37 2.72 0.85 2.63 0.42 2.68 0.54 1.69 0.22 1.52 0.23
P5 E 0–8 7.33 12.18 1.54 6.10 1.22 0.38 0.96 0.18 1.09 0.23 0.69 0.11 0.73 0.13
P5 Bh 8–9.5 8.28 14.42 1.99 7.93 1.71 0.53 1.40 0.24 1.60 0.34 1.02 0.14 1.06 0.16
P5 Bhs 9.5–10 8.67 14.68 1.95 8.29 1.63 0.58 1.49 0.27 1.68 0.35 1.09 0.16 1.09 0.16
P5 Bs 10–15 8.65 15.66 2.20 9.64 2.25 0.74 2.06 0.37 2.37 0.47 1.39 0.21 1.32 0.20
P5 Bw 15–40 10.33 17.41 2.43 10.26 2.51 0.74 2.17 0.40 2.57 0.51 1.52 0.22 1.42 0.21
P5 BC 40–60 9.67 16.72 2.41 10.42 2.57 0.81 2.14 0.39 2.64 0.52 1.65 0.21 1.48 0.22
UCCa 30.00 64.00 7.10 26.00 4.50 0.88 3.80 0.64 3.50 0.80 2.30 0.33 2.20 0.32

a Values for the UCC comes from Laveuf and Cornu (2009).
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to disappear in highly weathered material, with significant organic ma-
terial (Taunton et al., 2000; Berger et al., 2014). In the Vancouver
chronosequence podzols, we observe a correlative behavior between
the total REE content and the total P content (r = 0.624), suggesting
that P-phases might play a significant role controlling the REE budget
in the weathering profile. The total P content in the E horizon of the
P3, P4 and P5 profiles is respectively, 51, 86 and 56% lower than the con-
tent in the BC horizon (Table 2). As those phases, if present, are in small
amount, they could not be quantified using the classical XRD method
combined with Rietveld analysis.

Furthermore, the signature in the surface horizons is impacted by a
preferential decrease of the MREE content, as observed in the profiles
P4 and P5 in Fig. 5. This specific signature could result from “M trend”,
a preferential complexation of the MREE by DOM, impoverishing the
solid residue (Tang and Johannesson, 2010). Indeed, some authors ob-
served a MREE enrichment into soil solutions, and hypothesized that
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this could be a fingerprint of the solubilization of REE bound to OM
(Davranche et al., 2011). We observe diagnostic horizons of podzoliza-
tion in the three podzolic profiles, with an accumulation of OM mainly
in the Bh and Bhs horizons in P3, P4 and P5 (Table 1). In addition,we ob-
serve an accumulation of Al and Fe secondary phases (i.e. organo-metal-
lic complexes and short range-ordered Fe- and Al-(hydr)oxides, in the
Bh, Bhs and Bs horizons of P4 (Fig. 4 g and h) and P5 mature podzols
(Fig. 4 k and l). The majority of the Fe secondary phases are measured
in the P4-330 and P5-530 Bhs horizons, as shown by the increase of
the ratio Fed/Fet in these horizons (Table 2). These are also the horizons
with the highest C content, Fe oxides being known to provide an impor-
tantmineral surface for the sorptionofOM(Dümig et al., 2012). Surpris-
ingly, no accumulation of REE is observed in the Bh-Bhs-Bs horizons of
the podzols, despite these horizons contain a high amount of OM and
Fe and Al oxyhydroxides (Fig. 4 f and j, Fig. 5), known to scavenge REE
(Rankin and Childs, 1976; Palumbo et al., 2001; Davranche et al.,
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Table 4
Total REE content (Σ REE), Ce (Ce/Ce*) and Eu (Eu/Eu*) anomalies calculated according to both the Upper Continental Crust (UCC— from Laveuf and Cornu, 2009) and the average of the
studied BC horizons (MBC), and REE fractionation ratios (La/Gd, Gd/Lu, La/Lu) normalized to MBC.

Profile Horizon Depth cm Σ REE
μg g−1

Ce/Ce* UCC Eu/Eu* UCC Ce/Ce* MBC Eu/Eu*MBC La/Gd MBC Gd/Lu MBC La/Lu MBC

P.M. C 107.15 0.84 1.45 1.03 0.92 1.14 1.14 1.30
P1 BC 0–60 82.52 0.90 1.51 1.11 0.96 0.99 1.19 1.18
P2 Bw 3–44 61.16 0.89 1.57 1.09 0.99 0.86 1.18 1.01
P2 BC 44–75 48.89 0.89 1.61 1.09 1.02 0.89 1.05 0.94
P3 E 0–7 40.85 0.85 1.74 1.04 1.10 1.06 0.99 1.05
P3 Bh 7–23 39.15 0.85 1.75 1.05 1.11 1.01 1.00 1.01
P3 Bw 23–57 37.57 0.86 1.74 1.06 1.10 1.00 0.94 0.93
P3 BC N57 54.03 0.85 1.62 1.05 1.03 0.97 1.01 0.99
P4 E 0–10 37.58 0.84 1.65 1.03 1.04 1.29 0.94 1.21
P4 Bh 10–17 52.06 0.82 1.65 1.00 1.04 1.14 1.03 1.18
P4 Bhs 17–17.5 59.57 0.81 1.53 0.99 0.97 1.11 1.03 1.14
P4 Bs 17.5–23 58.60 0.83 1.58 1.02 1.00 0.93 1.03 0.95
P4 Bw 23–63 57.36 0.88 1.57 1.08 0.99 0.88 1.04 0.91
P4 BC1 63–113 57.37 0.80 1.50 0.98 0.95 0.97 1.07 1.03
P5 E 0–8 32.86 0.83 1.67 1.02 1.06 1.80 0.70 1.27
P5 Bh 8–9.5 40.84 0.81 1.62 0.99 1.03 1.40 0.80 1.12
P5 Bhs 9.5–10 42.09 0.81 1.76 1.00 1.11 1.37 0.84 1.16
P5 Bs 10–15 47.54 0.82 1.62 1.00 1.03 0.99 0.97 0.96
P5 Bw 15–40 52.69 0.79 1.48 0.97 0.94 1.13 0.96 1.08
P5 BC 40–60 51.87 0.79 1.63 0.97 1.03 1.07 0.91 0.97
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2011; Cidu et al., 2013). In addition, no significant correlationwas found
between total REE, MREE, LREE and HREE, and the Al, Fe and Si extract-
able secondary phases, nor positive Ce anomalies, which would be a
characteristic feature of REE association with Mn and Fe (Tripathi and
Rajamani, 2007; Yusoff et al., 2013). Thus, we suggest that sorption, ad-
sorption, co-precipitation, surface complexes formation, ion exchange
and penetration of the lattice of the secondary Al and Fe phases did
not affect significantly the total content of REE in the bulk soil samples
of Bh, Bhs and Bs horizons.

We can conclude that the REE patterns in the E-horizons are impact-
ed by weathering but they do not follow the fate of Fe- and Al-
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oxyhydroxides and OM in the soil profile. However, to further examine
the potential of REE to trace illuviation process, we completed our re-
sults with additional REE data analyzed in Podzols, available in the liter-
ature (see Section 3.3).

3.3. Pedological processes behind the evolution of the REE signature

We compared the REE signature evolution of our studied Podzols
with those published in the literature (Öhlander et al., 1996; Land et
al., 1999; Öhlander et al., 2000; Aubert et al., 2004; Tyler, 2004;
Mourier et al., 2008; Vodyanitskii et al., 2011). Our compilation contains
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only studies where the REE contents in the E, Bh/Bhs/Bs horizons and
the parent material are available (Fig 6). The described podzols devel-
oped under a coniferous forest, and in a temperate humid climate. Yet,
they are older (between 8700 and 15,000 years old), they have different
parent material and they received less precipitations compared to the
Podzols from the Vancouver chronosequence (Table 5).

In all Podzols, we observe that the topsoil E and B horizons are deplet-
ed in REE compared to the parentmaterial (Fig. 6). Losses of REE from the
parent material due to weathering has been demonstrated not only for
Podzols (Vodyanitskii et al., 2010; Vodyanitskii et al., 2011) but also for
other different soil types developed on various parent materials such as
granodiorite, Archean granite, serpentinite, shale, etc. (Nesbitt, 1979;
Marsh, 1991; Prudencio et al., 1993; Mongelli, 1993; Panahi et al., 2000;
Aubert et al., 2001; Ndjigui et al., 2008; Ma et al., 2011).

A second similitude between the podzols is that REE do not accumu-
late significantly in the B(h, hs, s) horizons compared to the BC parent
material (Figs. 5 and 6). Mourier et al. (2008) also measured the DCB,
oxalate and pyrophosphate-extractable Al and Fe content in the soil
samples (Supplementary material, S2), and observed an accumulation
of secondary Al and Fe phases. The accumulation of secondary phases
is one order of magnitude lower than the one observed in the P4 and
P5 profiles of the Vancouver chronosequence, making even more sur-
prising the absence of REE accumulation in the latter. This confirms
our observation that the distribution of Fe, Al-OM complexes and co-
precipitates in the soil profile do not significantly contribute to the
accumulation of REE in the bulk soil during Podzol development. The
main pathway followed by REE during podzolization is a release from
theminerals during weathering, and a subsequent leachingwith perco-
lating water, resulting to a net loss of REE from the soil profile. This
trend is different from the one observed in laterites under (sub)tropical
conditions, where REE accumulation in B-horizon is quite common,
often associated with Fe- and Mn-phases in their oxidized form
(Braun et al., 1990; Braun et al., 1993; Sanematsu et al., 2011; Berger
et al., 2014; Janots et al., 2015). The difference observed between pod-
zolic pedosystems and lateritic soil profiles in humid tropical regions
might come from a difference in soil process involved in the REE redis-
tribution and accumulation. Indeed, the podzolization process is mainly
controlled by organo-metallic complexation, but the ones involved in
the mentioned studies are due to the ferralitization process, where
OM mineralization is fast and where the organo-mineral association
phenomenon is less important. The nature of redox process might ex-
plain the development or not of an anomaly in Ce, a redox-sensitive el-
ement (Nakada et al., 2013). In our chronosequence, we observed no Ce
anomaly. Speciation of Ce with organic ligands might be a way to solu-
bilize both Ce(III) and Ce(IV) without fractionating them (e.g., Janots et
al., 2015).

Comparing REE patterns analyzed in the Vancouver Podzols with
those published in the literature shows that there is no homogeneity
in the fractionation signatures observed in the bulk soil horizons of Pod-
zols (Fig. 6). Land et al. (1999) observe a preferential depletion in LREE,
Tyler (2004) a similar depletion of all REE, and Mourier et al. (2008) a
preferentialMREE depletion, as also observed in our study. This variabil-
ity can be explained by the variety of factor that can impact the REE
signature.

First, various compositions and solubility of minerals present in the
soil parent material can partly govern the REE released with
weathering. However, the lack of quantification of mineral composition
in the published studies, including accessory minerals, prevents further
comparison among studies.

Secondly, the type of OM present in solution can play a role in the
process of REE complexation, and consequently in the REE mobilized
with the organic carrier within the soil profile. The LREE are known to
be preferentially bound to carboxylic groups, whereas the HREE are
preferentially bound to carboxy–phenolic and phenolic groups
(Marsac et al., 2011; Gangloff et al., 2014). Some authors (Yamamoto
et al., 2005; Pourret et al., 2007a; Tang and Johannesson, 2010;
Davranche et al., 2011; Cidu et al., 2013) make the distinction between
a “colloidal pool” (humic acids) in soil waters, enriched in MREE, and a
“dissolved pool” with a low REE concentration (complexed with fulvic
acids), LREE depleted, but HREE enriched. The type of chemical bonds
with organic molecules and the resulting size of the organo-REE com-
plexes can therefore impact the fractionation of REE during weathering
and as such the signature of the REE leached from the soil profile.

Finally, the physico-chemical conditions of the solution (e.g. the pH)
and the other elements present in solution can have an impact on the
mobility of REE and interfere with the complexation of REE by OM.
Some studies show that for a same OM, the metal loading can affect
the preferential affinity for MREE or HREE. Al and Fe may compete
with REE in forming organic complexes, and an increase in concentra-
tions of these cations can cause a decrease in the amount of REE
bound to dissolved OM (Tang and Johannesson, 2003; Pourret et al.,
2007a; Cidu et al., 2013). A MREE enrichment in the liquid phase is
shown by patterns at high metal loading, whereas patterns at low
metal loading display a regular increase from La to Lu (Marsac et al.,
2010), that would imply a preferential loss of HREE from the horizon.
The ion activity in soil solution can therefore also substantially govern
the preferential leaching of MREE during soil weathering over time.

Further studies, including a characterization of the accessory min-
erals and the type of DOMpresent, are needed to determine the relative
importance of these factors on the REE fractionation during
podzolization.
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3.4. Kinetic of weathering in the E horizon of the Podzol chronosequence

The Fig. 7a presents the evolution of parameters in the E horizon rel-
ative to parent material over time in the podzolic soil chronosequence:
total REE content, La/Gd ratio (tracing the MREE depletion), TRB (index
of soil weathering degree) and Al/Si ratio (index of quartz enrichment).
Both normalized REE concentrations and TRB decrease in the E horizon
over time. However they do not decrease with the same rate, the TRB
decreasing more rapidly than the REEs.

In parallel, both normalized Si/Al and La/Gd ratios increase over time
with the same rate. This confirms the hypothesis that MREE depletion
during soil evolution is partly controlled by the weathering of specific
Table 5
Parent material, total REE content in the parent material, vegetation, mean annual rainfall,
comparison.

Reference Parent material and/or primary minerals Total REE
in the PM

Vegeta

μg.g−1

Mourier et al., 2008
Loup 2

Quartz, muscovite graphite 255.8 Conifer
decidua
unders
Vaccini
ferrugi

Mourier et al., 2008
Orelle 2

Quartz, muscovite graphite
traces of k-feldspar, albite and zircon
tourmaline apatite

155.7 Conifer
decidua
Abies a
vitis-id

Land et al., 1999 quartz, plagioclase, K-feldspar, biotite accessory
amounts of amphibole, epidote, zircon,
ilmenite, apatite, garnet, and clay minerals

180.3 Conifer

Tyler, 2004 moraine, derived from a mixture of quartzite
(Cambrian sandstone) and gneiss (rich in
potassium feldspar)

94.0 At leas
vulgari
Ground
myrtill
Descha
silicate minerals (e.g., feldspars, amphiboles, illite) and the enrichment
of quartz and some accessory phases.

Previously published studies, focused on REE content in Podzol,
present parent material ages ranging between 8700 and
15,000 years (Öhlander et al., 1996; Land et al., 1999; Tyler, 2004;
Mourier et al., 2008), or more (Aubert et al., 2001; Aubert et al.,
2004), which does not allow determination of the early rates of
REE losses, nor the early temporal evolution. Here we show a signif-
icant depletion in REE content in the surface E horizon relative to the
parent material after ~300 years. This proves that REE can be re-
leased and mobilized in very short periods of time after the begin-
ning of podzolization.
mean temperature and soil age for the four podzolic profiles in the literature used for

tion Mean annual
rainfall

Mean t° Soil age

mm/year °C years

ous forest (Pinus cembra and Larix
, Picea abies and Abies alba) Forest
torey: Vaccinium ulliginosum,
um myrtillus and Rhododendron
neum

947 ± 184 7.1 ± 0.6 b15,000

ous forest (Pinus cembra and Larix
, with scattered Picea abies and
lba). Forest understorey: Vaccinium
ea and Juniperus sibirica

947 ± 184 7.1 ± 0.6 b15,000

ous forest (spruce and pine) 500 −0.2 8700

t since the Middle Ages: Heather (Calluna
s). After 1950s: spruce (Picea abies).
vegetation nowadays: Vaccinium

us, Dicranum scoparium, C. vulgaris,
mpsia lexuosa and Pleurozium schreberi

700 16
(July)–2
(January)

13,000–14,000
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When REE loss in the surface E horizon, compared to the PM, of the
Podzols in the literature for which the information is available is plotted
in function of time (Fig. 7b), a logarithmic decrease is observed for all
Podzols, except the two Podzols of Mourier et al. (2008). Such a trend
is consistentwith the fact thatweathering processes are faster at the be-
ginning of pedogenesis, and decrease with time, as the easily
weatherable minerals stock decrease. This significant trend (r2 =
0.9837) of the weathering kinetics is observed for Podzols developed
under different climates (rainfall N4 times larger in Vancouver Island
than in the sites of Land et al., 1999 and Tyler, 2004; Table 5) and
from a PM having different total REE content. The mineralogy, even if
different between the compared Podzols, has a common point of
being rich in quartz and feldspars. The Podzols studied by Mourier et
al. (2008) have a very different kinetics, with much lower REE losses
compared to the PM. The main difference between the Podzols of
Mourier et al. (2008) and the ones of Vancouver Island, Land et al.
(1999) and Tyler (2004), is the parent material composed of quartz,
muscovite and graphite. Muscovite is known to be more stable than
feldspars (Dixon and Weed, 1989), which could explain the weak REE
loss after 15,000 years in the surface horizon, even if the PM is relatively
rich in REE. The content and composition of accessory minerals, not
quantified in this study, may also explain the differences observed.

4. Conclusion

Our study shows that a large proportion of REE initially present in
the parent material is rapidly lost from the soil profile through mineral
weathering and leaching of dissolved elements and/or colloidal parti-
cles with percolating water (34 and 37% of loss in the E horizon com-
pared to the BC horizon after 330 and 530 years, respectively). Soil-
forming factors, such as vegetation and parent material composition
can influence soil physico-chemical properties that in turn play a key
role in the fractionation of REE during weathering. Environmental con-
ditions are therefore important drivers controlling the rate of REE
leached out of soil profile but also the REE signature of soil solution
and the preferential leaching of some lanthanides to the hydrosphere.

Furthermore, the accumulation of secondary OM, Al and Fe-bearing
phases does not impact the REE signature of the bulk soil. Sorption, ad-
sorption, co-precipitation, surface complexes formation, and ion ex-
change with the secondary Al and Fe phases are consequently not
mechanisms affecting significantly the total content of REE in the Bh,
Bhs and Bs horizons.

At last, the demonstration, for the first time, that a large proportion
of REE initially present in the parentmaterial can be released andmobi-
lized in very short periods of time during podzolization (330 years) has
an important implication for the geochemical behavior of REE at the
ecosystem scale and in the hydrological system. Further studies are
needed to explain the differential evolutions of signatures in different
podzols, and to better understand how the OM and physico-chemical
factors impact the release, fractionation and leaching of REE outside
the soil profile.
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