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Structure at Infinity Revisited for Delay Systems

Structure at infinity in a strong sense is considered for delay systems. A sufficient condition for the existence of this canonical form is given. The loss of generality is balanced by the fact that some solutions to control problems by static state feedback without anticipation can be obtained.

Introduction

The structure at infinity or the Smith-McMillan form at infinity are well known tools for the characterization of the solvability of some control problems such as model matching, disturbance rejection, row-by-row decoupling,... For linear finite dimensional systems see [START_REF] Commault | Influence de la structure à l'infini des systèmes linéaires sur la résolution de problèmes de commande[END_REF][START_REF] Silverman | System structure at infinity[END_REF] for instance. The notion of zeros at infinity has been generalized to non-linear systems [START_REF] Moog | Inversion, découplage, poursuite de modèle des systèmes non linéaires[END_REF] and several concepts are available for singular systems [START_REF] Loiseau | A new canonical form for singular systems with outputs[END_REF]. For linear infinite dimensional systems and in the particular case of bounded operators, the structure at infinity was introduced in [START_REF] Hautus | The formal Laplace transform for smooth linear systems[END_REF], described in several equivalent ways and used to solve some control problems in [START_REF] Malabre | On infinite zeros for infinite dimensional systems[END_REF]. The particular case of delay systems was studied in [START_REF] Malabre | Structure at infinity, model matching and disturbance rejection for linear systems with delays[END_REF]. However the structure at infinity defined there is too weak to insure a good solution for control problems: indeed the potential compensators may be anticipative (see also [START_REF] Sename | Decoupling without prediction of linear systems with delays: a structural approach[END_REF]). In this paper we introduce the concept of strong structure at infinity which is more convenient to infinite dimensional systems (and to the delay systems as a particular case). This structure is only well defined for some classes of systems. The positive result is that if this structure at infinity is well available then all potential solutions of control problems are nonanticipative and may be realized by static state feedback.

Preliminaries

We consider delay systems described by

ẋ(t) = A0x(t) + A1x(t -1) + B0u(t) y(t) = C0x(t) (1) 
where x(t) ∈ R n , y(t) ∈ R p and u(t) ∈ R m . Note that some results may be extended to systems with several * Supported by ESPRIT Basic Research project n 0 8924 (SESDIP) commensurate delays in state, input and output. The transfer function matrix of the system is

T (s) = C0(sI -A0 -A1e -s ) -1 B0
which may be decomposed as follows

T (s) = ∞ j=0 Tj(s)e -js , (2) 
where Tj(s) = C0(sI -A0) -1 A1(sI -A0) -1 j B0.

Each matrix Tj(s) may be decomposed as a serie using the following constant matrices introduced by Kirillova and Churakova (see [START_REF] Tsoi | Recent advances in the algebraic system theory of delay differential equations[END_REF]):

Qi(j) = A0Qi-1(j) + A1Qi-1(j -1), Q0(0) = I, Qi(j) = 0, i < 0 or j < 0. (3) 
We have

Tj(s) = ∞ i=0 C0Qi(j)B0s -(i+1)
Another expression which will be used in this paper is the following one

T (s) = ∞ i=0 i j=0 C0Qi(j)B0e -js s -(i+1) . (4) 
Both expression may be obtained by a simple calculation using the relations (3), see for example [START_REF] Sename | Decoupling without prediction of linear systems with delays: a structural approach[END_REF][START_REF] Tsoi | Recent advances in the algebraic system theory of delay differential equations[END_REF]. Note that for the case of a system with simple delays we have Qi(j) = 0, for i < j. The situation is different for delay systems of neutral type.

Structure at infinity

In order to define the structure at infinity (weak and strong) we need the notion of proper functions.

Definition 3.1 A complex valued function f (s) is called weak proper if lim f (s) is finite when s ∈ R tends to ∞.
It is called strictly weak proper if this limit is 0. A matrix B(s) is weak biproper if it is a weak proper and its inverse is also weak proper. Weak proper is replaced by strong proper if the same occurs when e(s) → ∞.

It is obvious that strong properness implies weak properness. The strong properness was used in [START_REF] Hautus | The formal Laplace transform for smooth linear systems[END_REF] and [START_REF] Malabre | On infinite zeros for infinite dimensional systems[END_REF] in the description of the structure at infinity for infinite dimensional systems. In [START_REF] Malabre | Structure at infinity, model matching and disturbance rejection for linear systems with delays[END_REF] and [START_REF] Sename | Decoupling without prediction of linear systems with delays: a structural approach[END_REF] the weak notion was used in order to define the structure at infinity of delay system and to solve some control problem. However, this structure at infinity cannot be used, in general, to solve control problems with non predictive control laws in an efficient way. For example, if the transfer function of the system is T (s) = s -3 + s -2 e -s , the weak structure at infinity is s -3 since T (s) = s -3 (1 + se -s ), and since 1 + se -s is weak biproper. Suppose one has to solve the model matching problem for a given model Tm(s) = s -3 . As the structure at infinity of the plant and the model are the same, there exist a proper compensator C(s) such that T (s)C(s) = Tm(s), see [START_REF] Malabre | Structure at infinity, model matching and disturbance rejection for linear systems with delays[END_REF]. In fact the unique compensator solving this problem is C(s) = 1 + se -s which is not realizable by linear static state feedback even if one uses distributed delays.

If we consider the notion of strong properness to define the structure at infinity, some difficulties occur in the construction of the canonical form at infinity. For the given example the structure at infinity is not s -3 because 1 + se -s is not proper in the strong sense and it is not possible, in fact, to define strong structure at infinity for the given example. Is there a structure at infinity in the strong sense for every delay system? For the moment it is not possible to give a positive answer.

The importance of the strong properness is given by the following considerations. Consider the problem of rowby-row decoupling for a square system (m = p). If the problem is solvable by static state feedback (see Definition 4.1), then the corresponding compensator is given by C(s) = (W0 + W (s)) with a strictly strong proper matrix W (s). The same consideration may be made for other control problems: disturbance rejection, model matching.

As the matrices Ti(s) are rational functions with the degree of the denominator greater than the degree of the numerator, Ti(s) are strictly proper in the strong sense which is, in this case, the same as the weak sense and the structure at infinity is well defined in the classical (finite dimensional) sense. The orders of the zeros at infinity of the matrices Ti(s) may be compared in the following sense. We say that the orders of Ti(s) are increasing if the maximal order of the zeros at infinity of Ti(s) is less than or equal to the minimal order of those of Ti+1(s), for all i ≥ 0. This hypothesis excludes the example given above . The conterpart of this loss of generality allows us to solve control problem with good compensators. We have the following main result. Theorem 3.2 If the structure at infinity of each matrix Ti(s) are increasing, there then exist two strong biproper matrices B1(s) and B2(s) such that

B1(s)T (s)B2(s) =       ∆0(s) 0 • • • 0 0 0 ∆1(s)e -s • • • 0 0 . . . . . . . . . . . . . . . 0 0 • • • ∆ k (s)e -ks 0 0 0 • • • 0 0      
, where ∆i(s) = diag s -n i,1 , . . . , s -n i,j i and ni,j ≤ ni,j+1, i = 1, . . . , k and ni,j i ≤ ni+1,j i+1 .

Proof: Let Λ0(s) be the canonical form at infinity of the matrix T0(s), there then exist two rational strong biproper matrices B 0 1 (s) and B 0 2 (s) such that

B 0 1 (s)T (s)B 0 2 (s) = Λ0(s) + ∞ i=1 B 0 1 (s)Ti(s)B 0 2 (s)e -is , and 
Λ0(s) = ∆0(s) 0 0 0 .
This may be written as:

T ( s) = B 0 1 (s)T (s)B 0 2 (s) = ∆0(s) + θ11(s) θ12(s) θ21(s) θ22(s) ,
moreover by our assumption, ∆ -1 0 (s)θ11(s), ∆ -1 0 (s)θ12(s) and θ21(s)∆ -1 0 (s) are strictly proper in the strong sense. This gives

T (s)B(s) = ∆0(s) θ12(s) θ21(s)β -1 (s) θ22(s)
, where β(s) = I + ∆ -1 0 (s)θ11(s) and B(s) being the strong biproper matrix:

B(s) = β -1 (s) 0 0 I .
Here and in what follows I denote the identity matrix with adequate dimension which is not precised in each case. Let us define B 1 1 and B 1 2 as follows:

B 1 1 (s) = I 0 θ21(s)β -1 (s)∆ -1 0 (s) I , B 1 2 (s) 
I -∆ -1 0 (s)θ12(s) 0 I . Then B 1 1 (s)T (s)B 1 2 (s) = ∆0(s) 0 0 θ22(s) = T (s), i. e. T (s) = Λ0(s) + ∞ i=1 Ti(s)e -is , (5) 
where

Ti(s) = 0 0 0 Ri(s) ,
the matrices Ri(s) being strictly proper. The same procedure may then be applied to the matrix

∞ i=1 Ri(s)e -is = e -s ∞ i=1
Ri(s)e -(i-1)s because the rational matrices Ri(s) have also increasing orders.

Control problems

We consider two control problems: row-by-row decoupling and disturbance rejection with static state feedback of the form:

u(t) = k i=0 Fix(t -i) + k i=0 Giv(t -i), t ∈ [0, k + 1]
with G0 invertible for the row-by-row decoupling problem and Gi = 0 when we consider only the disturbance rejection problem. which means that the global structure of TF,G is equal to the union of the rows' structures at infinity. On the other hand, as G0 is regular, one can see that

TF,G(s) = T (s)B(s),
with a strong biproper matrix B(s). This means that T and TF,G have the same structure at infinity. For the converse, assume now that Ti(s) have increasing orders and the condition of the theorem is satisfied. Let s -n i e -j i be the strong structure at infinity of the row i, i = 1, . . . , m. Our assumption gives

ciQ l (j)B0 = 0 forl < ni -1, j ≥ ji.
Then the first non zero moment of the decomposition ( 4) is

n i -1 j=0 ciQn i -1(j)B0e -js m i=1 , ( 6 
)
where ci is a row of C0 and we have ciQn i -1(j)B0 = 0 for j < ji.

Let us denote

E l = [ciQn i -1(ji + l)B0] m i=1 , l = 0, . . . , ni -1 -ji.
The condition of the theorem yields to the invertibility of the matrix E0. The first moment of the decomposition (4) given in ( 6) is expressed by:

E = E0 + E1e -s + . . . + E k e -ks ,
where k = sup{ni -1, i = 1, . . . , m}.

Let us denote by F and G the needed feedback:

F = F0 + F1e -s + . . . , G = G0 + G1e -s + . . . ,
and by A the matrix A0 + A1e -s . A formal calculation gives, as in the classical paper [START_REF] Falb | Decoupling in the design and synthesis of multivariable control systems[END_REF]:

ci(A + B0F ) l = ciA l , l ≤ ni -1,
and then

ci(A + B0F ) l B0 = ciA l B0 = 0 l < ni -1,
and

ci(A + B0F ) n i -1 B0 m i=1 = ciA n i -1 B0 m i=1 = E diag {e -j 1 s , . . . , e -jms }. Let us remark that E is invertible. If G = E -1 , then ci(A + B0F ) n i -1 B0 m i=1 G = diag {e -j 1 s , . . . , e -jms }.
In the same way we can write:

[ci(A + B0F ) n i ] i=1 = ciA n i -1 (A + B0F ) m i=1 = [ciA n i ] m i=1 + ciA n i -1 B0 m i=1 F = [ciA n i ] m i=1 + EF.
Then F may be calculated from this relation:

F = -G [ciA n i ] m i=1 .
For the disturbance rejection problem the definition is Definition 4.3 The disturbance rejection problem for the system

ẋ(t) = A0x(t) + A1x(t -1) + B0u(t) + D0q(t) y(t) = C0x(t) (7) 
is solvable if there exist a feedback

u(t) = k i=0 Fix(t -i), t ∈ [0, k + 1]
such that the output of the system is not affected by the disturbance q(t).

Our result is

Theorem 4.4 If the zeros at infinity of Ti(s) are increasing, then the disturbance rejection problem is solvable if and only if

Σ∞[ s -1 T (s) T D (s) ] = Σ∞[ s -1 T (s) 0 ]
where T (s) is the transfer function matrix of the control:

T (s) = C0(sI -A0 -A1e -s ) -1 B0
and T D (s) is the transfer function matrix of the disturbance:

T D (s) = C0(sI -A0 -A1e -s ) -1 D0.
Proof: Suppose that the problem is solvable. Then, for all k, the problem is solvable for the systems (see [START_REF] Malabre | Structure at infinity, model matching and disturbance rejection for linear systems with delays[END_REF])

żk (t) = A k z k (t) + B k u(t) + D k q k (t), w k (t) = C k z k (t), (8) 
where A k , B k , D k and C k are given as in [START_REF] Malabre | Structure at infinity, model matching and disturbance rejection for linear systems with delays[END_REF]:

A k =     A0 0 • • • 0 A1 A0 • • • 0 . . . . . . . . . . . . 0 0 • • • A0     , B k =   B0 • • • 0 . . . . . . . . . 0 • • • B0   , C k =   C0 • • • 0 . . . . . . . . . 0 • • • C0   , D k =   D0 • • • 0 . . . . . . . . . 0 • • • D0   .
Let Φ k and Φ D k be the transfer function matrices of the control and disturbance of the systems [START_REF] Picard | Model matching for linear systems with delays[END_REF]. Then,

Σ∞[ s -1 Φ k (s) Φ D k (s) ] = Σ∞[ s -1 Φ k (s) 0 ]. As Φ k =   T0 • • • 0 . . . . . . . . . T k • • • T0   , Φ D k =   T D 0 • • • 0 . . . . . . . . . T D k • • • T D 0   ,
and according to the assumption on the zeros of Tj(s),

this gives Σ∞[ s -1 T (s) T D (s) ] = Σ∞[ s -1 T (s) 0 ].
The converse may be obtained in the same way and using the fact that, for the systems (8), we can choose the feedback with a lower triangular form which insures that for the system (7) the feedback is without anticipation [START_REF] Malabre | Structure at infinity, model matching and disturbance rejection for linear systems with delays[END_REF].

Note that the assumption on increasing zeros orders at infinity concerns the matrices Tj, but are verified for the matrices T D j in the context of the theorem. Other problems may be considered as invertibility, model matching. The result given in [START_REF] Malabre | Structure at infinity, model matching and disturbance rejection for linear systems with delays[END_REF] may be adapted to the strong structure at infinity. Remark 4.5 For systems without strong structure at infinity defined here, further investigations are needed to characterize the solution of control problems (see [START_REF] Picard | Model matching for linear systems with delays[END_REF] for another approach). Consider the above mentioned example: T (s) = s -3 + s -2 e -s . Let T m (s) = ∞ j=0 T m j e -js be a model. What are the conditions which insure the existence of a strong proper compensator C(s) = ∞ j=0 Cj(s)e -js such that T C = T m (it is the classical model matching problem). Suppose that T m (s) = s -5 -s -3 e -2s . A simple calculation yields to the following strong proper compensator: s -2 -s -1 e -s . We can see that [ T (s) Tm(s) ] B(s) = [ T (s) 0 ] , with strong biproper matrix B(s). Hence, [ T (s) Tm(s) ] and [ T (s) 0 ] are equivalent at infinity. The problem which needs some investigation is: how to define the canonical form corresponding to this equivalence relation?

Conclusion

For a class of delay systems we define the strong structure at infinity which allows to solve control problems by static state feedback without anticipation. However, it is not clear how to do when this structure at infinity is not defined. Further investigations on the structure at infinity in every time interval [k, k + 1] may give solution in a general case. The weak structure at infinity is always available in solving such problems but the solution must be taken with care.

Definition 4 . 1

 41 For m = p we say that the row-by-row decoupling problem is solvable iff there exist a feedback of the given type such that the transfer function matrix of the closed loop system is of the formTF,G(s) = diag [h1(s), . . . , hp(s)]where hi(s) are non zero strictly strong proper functions.The result isTheorem 4.2 If the zeros at infinity of Ti(s) are increasing, then the row-by-row decoupling problem is solvable if and only if Σ∞(C0, A0, A1, B0) = {Σ∞(c1, A0, A1, B0), . . . , Σ∞(cp, A0, A1, B0)}, where ci's are the rows of the matrix C0, and Σ∞ denotes the strong structure at infinity. Proof: Assume that the zeros at infinity of Tj are increasing and that the row-by-row decoupling problem is solvable. Then TF,G(s) = diag [h1(s), . . . , hp(s)] ,