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In this paper, we prove that there exist contractible positive loops of Legendrian embeddings based at any loose Legendrian submanifold. As an application, we define a partial order on Cont0(M, ξ), called strong orderability, and prove that overtwisted contact manifolds are not strongly orderable.

Introduction

In this paper, we focus on the study of positive contact and Legendrian isotopies in a cooriented contact manifold (M, ξ).

A contact manifold (M 2n+1 , ξ) is a 2n + 1 dimensional smooth manifold M with a nonintegrable hyperplane field ξ which is called a contact structure. When ξ is co-oriented, it is given by the kernel of a contact 1-form α. For example, in R 4 with the usual coordinates (x 1 , x 1 , y 1 , y 2 ), the sphere S 3 carries a contact form α std = (y 1 dx 1 -x 1 dy 1 + y 2 dx 2 -x 2 dy 2 )| S 3 . We denote ξ std the contact structure defined by α std . It induces a contact structure on the quotient RP 3 which is also denoted by ξ std .

One class of submanifolds of (M 2n+1 , ξ) with an interesting behavior is that of Legendrian submanifolds. A n-dimensional submanifold L ⊂ M 2n+1 is called a Legendrian submanifold if α| L = 0. A contactomorphism of (M, ξ) is a diffeomorphism which preserves ξ and a contact isotopy (ϕ t ) t∈[0,1] is a path of contactomorphisms with ϕ 0 = id. We say a contact isotopy (ϕ t ) t∈[0,1] is positive if α(∂ t φ t ) > 0. That is to say, the infinitesimal generator of the isotopy is positively transverse to ξ everywhere. An isotopy (ϕ t ) t∈[0,1] based at a Legendrian submanifold L is said to be a Legendrian isotopy if ϕ t (L) is a Legendrian submanifold for all t. Similarly, We say ϕ t is positive if α(∂ t ϕ t ) > 0. This notion of positivity does only depend on the image L t = ϕ t (L) of the isotopy. For us, a Legendrian isotopy will be such a family of unparametrized Legendrian submanifolds.

With the concept of positive contact isotopy, Eliashberg and Polterovich defined a partial order on the universal cover Cont 0 (M, ξ) of the identity component of the contactomorphisms group of (M, ξ). A class of contact isotopy [(ψ t ) t∈ [0,1] ] is greater than another class [(ϕ t ) t∈[0,1] ] if there exists a positive contact isotopy from ϕ 1 to ψ 1 which is homotopic to the concatenation of the opposite of (ϕ t ) t∈[0,1] and (ψ t ) t∈[0,1] . Proposition 0.1. [START_REF] Eliashberg | Partially ordered groups and geometry of contact transformations[END_REF] If (M, ξ) is a contact manifold, the following conditions are equivalent:

(i). (M, ξ) is non-orderable; (ii). There exists a contractible positive loop of contactomorphisms for (M, ξ).

This order is closely related to squeezing properties in contact geometry [START_REF] Eliashberg | Partially ordered groups and geometry of contact transformations[END_REF] as well as to the existence of bi-invariant metrics on Cont 0 (M, ξ) or on the space of Legendrian submanifolds [START_REF] Colin | The discriminant and oscillation lengths for contact and Legendrian isotopies[END_REF].

From the beginning of the 80's, it is known that the world of contact structures splits in two classes with opposite behaviors. Following Eliashberg, we say that a contact structure ξ on M 3 is overtwisted if there exists an overtwisted disk D OT ⊂ M , i.e. an embedded disk which is tangent to ξ along its boundary. The overtwisted contact structures are flexible and classified by an adequate h-principle [START_REF] Eliashberg | Classification of overtwisted contact structures on 3-manifolds[END_REF]. We denote α OT a contact form for an overtwisted contact structure ξ defined on a neighborhood of an overtwisted disk. More recently, the work of Niederküger [START_REF] Niederkrüger | The plastikstufe -a generalization of the overtwisted disk to higher dimensions[END_REF] and Borman-Eliashberg-Murphy [BEM15] have described a similar dichotomy in the higher dimensional case. Following a suggestion of Niederküger, we say a contact structure ξ is overtwisted if (M 2n+1 , α) contains D 3 × D 2n-2 (r) with α| D 3 ×D 2n-2 (r) = α OT -(ydx -xdy) for some constant r > 0 large enough depending on the dimension of M [CMP15]. As in dimension three, Borman, Eliashberg and Murphy [BEM15] have shown that overtwisted contact structures are purely topological objects and are flexible.

On the contrary, we say ξ is a tight contact structure if it is not overtwisted. For example, the contact manifolds (S 3 , ξ std ) and (RP 3 , ξ std ) are tight according to the fundamental result of Bennequin [START_REF] Bennequin | Entrelacements et équations de pfaff[END_REF]. Similar results hold in higher dimension, where holomorphic methods give that a Liouville fillable contact structure is tight, see [START_REF] Niederkrüger | The plastikstufe -a generalization of the overtwisted disk to higher dimensions[END_REF].

The orderability property is not shared by all contact manifolds (see the work of Albers, Frauenfelder, Fuchs and Merry [AF12, [START_REF] Albers | Orderability, contact non-squeezing, and Rabinowitz Floer homology[END_REF][START_REF] Albers | Orderability and the Weinstein Conjecture[END_REF] for more examples ).

Theorem 0.2. (i). (S 3 , ξ std ) is non-orderable while (RP 3 , ξ std ) is orderable [EKP06]; (ii).
There are some overtwisted contact manifolds which are non-orderable [START_REF] Casals | On the non-existence of small positive loops of contactomorphisms on overtwisted contact manifolds[END_REF].

It is interesting to see that tight contact manifolds can be orderable or not despite their rigid nature. At the same time we guess overtwisted contact manifolds are non-orderable.

Question 0.3. Are all overtwisted contact manifolds non-orderable?

In order to answer the above question, we transfer the study of positive contact isotopies to that of positive Legendrian isotopies by the trick of contact product. Indeed, a positive contact isotopy of (M, ξ) can be lifted to a negative Legendrian isotopy of the diagonal ∆ M ×M × {0} in the contact product (M × M × R, α 1 -e s α 2 ). Here α 1 and α 2 denote the pull-backs of α by the first and second projection from M × M × R to M . The advantage is that the study of positive Legendrian isotopies should be easier than that of contact isotopies.

In that context, there is a natural question regarding positive Legendrian isotopies: (ii). the zero-section of (T * M ×R, dz -ydx) is not in a positive loop of Legendrian embeddings [START_REF] Vincent Colin | Positive isotopies of Legendrian submanifolds and applications[END_REF].

We let F be the front projection (

T * M × R, dz -ydx) → M × R : (x, y, z) → (x, z). For a Legendrian submanifold L ⊂ (T * M × R, dz -ydx), the subset L F := F (L) ⊂ M × R is the front of L.
We usually identify L F with L, since the y coordinates are given by the slopes of the front. In the case where L and M are of dimension 1, we can replace a smooth segment of L F by a zigzag with two cusps. The zig-zag either has a z-shape, as in Figure 1, or an s-shape (the symmetric of Figure 1 by the vertical axis). The Legendrian submanifold obtained by this operation is denoted by S(L) and is called a stabilization of L. When we want to make it clearer, we will discrimate between the z-shape/positive stabilization denoted S + (L) and the s-shape/negative stabilization S -(L).

We have:

Proposition 0.7. [START_REF] Vincent Colin | Positive isotopies of Legendrian submanifolds and applications[END_REF] Let L be the zero-section of T * S 1 × R and S(L) a stabilization of L.

Then there exists a loop of positive Legendrian embeddings based at S(L).

For a contact manifold (M, ξ) of dimension strictly higher than three, Murphy [START_REF] Murphy | Loose Legendrian Embeddings in High Dimensional Contact Manifolds[END_REF] introduced the class of loose Legendrian submanifolds. This is a higher dimensional generalization of the stabilized S(L) in dimension three. Loose Legendrian submanifolds satisfy a h-principle discovered by Murphy which make them flexible. The main result of this article extends this flexible behavior. Theorem 0.8. Let (M, ξ) be a contact manifold of dimension ≥ 5 and L ⊂ (M, ξ) be a Legendrian submanifold. If L is loose then there exists a contractible positive loop of Legendrian embeddings based at L. Without the looseness assumption, F.Laudenbach has proven that there always exist positive loops of Legendrian immersions [START_REF] Laudenbach | Positive Legendrian regular homotopies[END_REF].

As an application of Theorem 0.8, we obtain a holomorphic curve free proof of the existence of tight (i.e. non overtwisted in the Borman-Eliashberg-Murphy sense [BEM15]) contact structures in every dimensions. The "hard part" of the argument uses Theorem 0.6 whose proof relies on the existence of a generating function for a specific class of Legendrians (in that case the Legendrian fibers of the Legendrian fibration in (R n × S n-1 , ξ std )). Corollary 0.9. [START_REF] Murphy | Loose Legendrians and the plastikstufe[END_REF] The contact manifold (R n × S n-1 , ξ std ) is tight.

This corollary is proved in Subsection 3.1. In the last section, we define a new partial order on certain groups Cont 0 (M, ξ), called strong orderability, based on the transfer of an isotopy of contactomorphisms to a Legendrian isotopy of their graphs in the contact product. We then drop the graph condition to stick to Legendrian isotopies and get a (possibly) different notion than that of Eliashberg-Polterovich's [START_REF] Eliashberg | Partially ordered groups and geometry of contact transformations[END_REF]. Proposition 0.10. Let (M, ξ) be a contact manifold. Then (M, ξ) is strongly orderable if and only if there does not exist a contractible positive loop of Legendrian embeddings based at the diagonal of the contact product of (M, ξ).

As an example we prove that the contact manifold (S 1 , dθ) is strongly orderable.

In that context, we explain the following result which was first suggested by Klaus Niederkrüger and also observed by Casals and Presas.

Proposition 0.11. Let (M 2n+1 , α) be a compact overtwisted contact manifold. Then the contact product (M ×M ×R, α 1 -e s α 2 ) is also overtwisted and the diagonal ∆ ⊂ (M ×M ×R, α 1 -e s α 2 ) is loose.

Therefore, according to Proposition 0.11, we have the following result: Theorem 0.12. Overtwisted contact manifols are not strongly orderable.

Organisation of the paper:

In section 1, we recall some basic definitions including Murphy's loose Legendrian embeddings. In section 2, we give the proof of Theorem 0.8. Finally, we prove all the other results mentioned above in the last section.
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Basic definitions in Contact Geometry

Let L : Y → (J 1 (Y ), α) be a smooth Legendrian embedding. We denote its front map by

L F : Y → Y × R.
Given a Legendrian submanifold L , there is a neighborhood U (L ) of L contactomorphic to a neighborhood of the zero section in J 1 (L , α), according to the Weinstein neighborhood theorem. If L a Legendian submanifold close to L then we can talk about the front L F of L in this Weinstein neighborhood.

If φ t : Y → Y × R is an homotopy of fronts (with φ t (Y ) transverse to the R factor), we denote φ t its Legendrian lift and write v φt and v φt for the corresponding generating time dependent vector fields.

1.1. Positive Legendrian isotopies. Definition 1.1. [CFP10, CN10](Positive Legendrian isotopy) Let (M, ξ = kerα) be a contact manifold, L ⊂ M a Legendrian submanifold, ϕ : L × [0, 1] → M a Legendrian isotopy and let X t = dϕ dt where t ∈ [0, 1]. We say ϕ is positive if X t is transverse to ξ positively, i.e. α(X t ) > 0.
Moreover, ϕ is said to be a positive loop if in addition ϕ 0 (L) = ϕ 1 (L).

The following remark is the starting point of our study.

Remark 1.2. [START_REF] Vincent Colin | Positive isotopies of Legendrian submanifolds and applications[END_REF] Let L : S 1 → (J 1 (S 1 ), ξ std ) be a Legendrian embedding whose front have positive slopes everywhere. Then there exists a positive Legendrian loop based at L. Proof. Regard S 1 as R/Z with coordinate x. Denote Z = L F (S 1 ). On Z, the slopes ∂z/∂x > 0 are positive. See figure 1. Consider the vector field X t := -∂ x on J 1 (S 1 ) and its flow ϕ t . Because α(X t ) > 0 on ϕ t (Z) for every t ∈ [0, 1], then ϕ t is a positive Legendrian isotopy. Since ϕ 1 = Id, then we have a positive loop.

Remark 1.3. If the front of L has negative slopes everywhere, we can choose v = ∂ x so that its flow is a positive loop. 1.2. Loose Legendrian embeddings. In this section, we recall Murphy's notion of loose Legendrian embeddings, wrinkled Legendrian embeddings and the idea for resolving wrinkles [START_REF] Murphy | Loose Legendrian Embeddings in High Dimensional Contact Manifolds[END_REF]. For simplicity, we give the following equivalent definition of a loose Legendrian. Definition 1.4. Let L : Y n → (J 1 (Y n ), ξ std ) be a Legendrian embedding. Let Λ be a one dimensional zigzag and N be a closed n -1 dimensional manifold. We say L is loose if its front contains Λ × N . In particular, it is obtained from a Legendrian L by replacing a neighborhood of N ⊂ L by N times a zigzag. We denote L = S N ± (L ), where ± stands for the z-or s-shape of the zig-zag. Definition 1.5. [START_REF] Yakov | Wrinkled Embeddings[END_REF](Wrinkled embeddings) See figure 3. Let W : R n → R n+1 be a smooth, proper map, which is a topological embedding. Suppose W is a smooth embedding away from a finite collection of spheres {S n-1 j }. Suppose, in some coordinates near these spheres, that W can be parametrized by

W (u, v) = (v, u 3 -3u(1 -|v| 2 ), 1 5 u 5 - 2 3 u 3 (1 -|v| 2 ) + u(1 -|v| 2 ) 2 ,
where our domain coordinates lies in a small neighborhood of the sphere

{|v| 2 + u 2 = 1} ⊂ R n .
Then W is called a wrinkled embedding, and the spheres S n-1 j are called the wrinkles. Remark 1.8. We will put the C ∞ -topology on the space of wrinkled Legendrian embeddings. Thus we can talk about a smooth family of wrinkled embeddings (L t , Φ t , N t ).

Given a Legendrian L, we denote L w a wrinkled Legendrian obtained by adding some wrinkles to L. Given a twist marking N on L w and η > 0, we denote W -1 η,N (L w ), or W -1 η (L w ) when N is understood, be the operation of resolving the wrinkles along N with an η-small operation.

To measure proximity, we can first perform an immersed resolution W -1 0 (L w ), where along N we incorporate a completely flat zig-zag, covering a segment times N . Then

W -1 η (L w ) is η-C ∞ - close to W -1 0 (L w )
. This operation can be done parametrically, as summarized in the following theorem of [START_REF] Murphy | Loose Legendrian Embeddings in High Dimensional Contact Manifolds[END_REF].

Theorem 1.9. [START_REF] Murphy | Loose Legendrian Embeddings in High Dimensional Contact Manifolds[END_REF] Let L w t be a smooth family of wrinkled Legendrian embeddings, let (Φ t , N t ) be the twist markings. Then there is a smooth family of Legendrian embeddings L t , such that L t is identical to L w t outside of any small neighborhood of N t for all t. Also, the resolution L t can be taken to be as close as we want from L w t .

Theorem 1.10. In our case, we note that the stabilization operation passing from L to S N + (L) might change the formal isotopy class of the Legendrian L, even if N has Euler characteristic zero. However, we can go back to the original formal class by stabilizing again to S N -(S N + (L)). This fact will be used later on in the proof of our main theorem to correct formal classes.

Contractible positive Legendrian loops

In this section we prove our main theorem 0.8 in a geometric way.

Proof. We start with a loose Legendrian L and work in a compact region of its standard neighborhood J 1 (L).

A. Construction of a positive loop

We first describe an elementary operation that will be applied repeatedly. Recall L F is the front projection of L. Since L is the zero-section in J 1 (L), one can canonically identify L F with L.

We consider a n-disk D n 0 ⊂ L F , written as D n-2 0 × D 2 (2) together with coordinates (u, ρ, θ), where (ρ ≤ 3, θ) are polar coordinates on D 2 . We let L w be the wrinkled Legendrian obtained by adding one wrinkled disk D w 0 along the (n -1)-disk

D 0 = {1 ≤ ρ ≤ 2, θ = 0} to L F , so that D w 0 ⊂= {1 ≤ ρ ≤ 2}.
We moreover slightly modify L w along D 0 × S 1 = {1 ≤ ρ ≤ 2}, where S 1 corresponds to the θ direction, by propagating the slope of the wrinkle in the θ-direction so that:

• every circle L w ∩ {ρ = ρ 0 ∈ (1, 2), u = u 0 }, contained in the {(u 0 , ρ 0 , θ, z)} cylinder, has a positive slope, i.e. is positively transverse to ∂ θ as in Figure 1;

• L w is equal to L F away from {1 ≤ ρ ≤ 2}.
The situation is pictured in Figure 6. We take a twist marking N ⊂ D n 0 for D w 0 so that if N is the closed submanifold N ∪ D 0 ⊂ L F then the Euler characteristic χ(N ) of N is zero.

Step 1. We rotate the wrinkle positively in the θ-direction.

Given some constant K 0 > 0, we rotate positively the wrinkle in the θ-direction with (large) speed K 0 ∈ N: We take a z-invariant path of diffeomorphisms φ 0 t in the front such that φ 0 t (u, ρ, θ, z) = (u, ρ, θ -2K 0 πt, z) and φ 0 t globally preserves L w \ {1 ≤ ρ ≤ 2}. By construction 

L w t,K 0 = φ 0 t (L w
) is a loop of wrinkled fronts, even if φ 0 t is only a path. Its lift L w t,K 0 is a nonnegative loop of wrinkled Legendrians based in L w . Non-negativity comes from the fact that the infinitesimal generator of the isotopy φ 0 t is either tangent (outside {1 ≤ ρ ≤ 2}) or positively transverse (inside {1 ≤ ρ ≤ 2}) to the front of L w t,K 0 .

Step 2. We resolve the wrinkle. We now parametrically resolve the wrinkle φ 0 t (D w 0 ) ⊂ L w t,K 0 along the marking φ 0 t (N ) ⊂ L w t,K 0 to get a loop W -1 η 0 (L w t,K 0 ) of Legendrian fronts (notice that φ 0 1 (N ) = N ). Doing so, we might introduce some negative displacement near φ 0 t (N ), but, taking the size of the resolution η 0 small enough in front of K 0 and the slope of the circles {ρ = ρ 0 ∈ [5/4, 7/4], u = u 0 }, we can make sure that the isotopy is still positive in the region {5/4 ≤ ρ ≤ 7/4}.

Here, we notice that the loop of fronts W -1 η 0 (L w t,K 0 ) is obtained from L F by replacing a neighborhood of φ 0 t (N ) by the product of N with a z-shape. In particular, the loop of fronts W -1 η 0 (L w t,K 0 ) admits a parametrization by a loop of homeomorphisms (which are diffeomorphisms except at the cusps of the fronts) ψ 0 t,K 0 : L → W -1 η 0 (L w t,K 0 ) which is constant away from D n 0 . When we lift the loop of fronts W -1 η 0 (L w t,K 0 ) to a loop of Legendrians L 0 t,K 0 in J 1 (L), we can lift the loop of parametrizations ψ 0 t,K 0 to a loop of smooth parametrizations Ψ 0 t,K 0 , which is constant away from D n 0 . The loop L 0 t,K 0 is positive along Ψ 0 t,K 0 ({5/4 ≤ ρ ≤ 7/4}).

Step 3. We adjust the formal class. In steps 1 and 2, we have constructed a loop for a stabilization S N + (L) of L, which might not be formally Legendrian isotopic to L. Following Proposition 1.10, we correct this by stabilizing again parametrically along a parallel copy of ψ 0 t,K 0 (N ) to obtain a loop of Legendrians based at S N -(S N + (L)). This second stabilization can be made small at will (in the sense that the s-shape is squashed) so that the positivity property of step 2 is still unchanged and we still have a loop of parametrizations, that we persist to write Ψ 0 t,K 0 .

This preparatory work been done, the proof starts from a covering of L by open sets

A i ⊂ D n i , i = 0, . . . , k, of the form S 1 × D n-1 = {5/4 ≤ ρ ≤ 7/4} ⊂ D n i as before.
We then construct our loop by induction: by step 1,2,3, we construct a loop of Legendrians L 0 t,K 0 = Ψ 0 t,K 0 (L) which is positive along Ψ 0 t,K 0 (A 0 ), by rotating a wrinkle with speed K 0 . We now take a loop of standard Weinstein neighborhoods N (L 0 t,K 0 ) of L 0 t,K 0 parametrized by t ∈ S 1 , in which L 0 t,K 0 is the zero section diffeomorphic to L. This is given by a family of embeddings J 1 (L) → J 1 (L) sending the zero section to L 0 t,K 0 = Ψ 0 t,K 0 (L). These embeddings can be chosen to extend Ψ 0 t,K 0 , so we still denote them Ψ 0 t,K 0 : J 1 (L) → N (L 0 t,K 0 ). We then apply steps 1,2,3 to A 1 , D n 1 in J 1 (L), though of as the source of Ψ 0 t,K 0 , by rotating a wrinkle with (relative) speed K 1 and resolving it with size η 1 . This means we are performing this step in the moving neighborhood Ψ 0 t,K 0 (J 1 (L)) of L 0 t,K 0 . We get a loop of Legendrians L 1 t,K 1 = Ψ 1 t,K 1 (L) in the moving neighborhood J 1 (L). Viewed in the original jet-space, we are considering the loop Ψ 0

t,K 0 (L 1 t,K 1 ) = Ψ 0 t,K 0 (Ψ 1 t,K 1 (L)
). We see that if we take K 1 large enough, in particular with respect to η 0 and K 0 , then the loop Ψ 0 t,K 0 (Ψ 1 t,K 1 (L)) becomes positive along Ψ 0 t,K 0 (Ψ 1 t,K 1 (A 1 )) -where it was before possibly negative. We also have to take η 1 small enough so that the isotopy remains positive along Ψ 0 t,K 0 (Ψ 1 t,K 1 (A 0 )) after resolving the wrinkle with size η 1 . Precise computations are described by the following composition of speeds:

Since v Ψ 0 t,K 0 • Ψ 1 t,K 1 (x) = v Ψ 0 t,K 0 ( Ψ 1 t,K 1 (x)) + D Ψ 0 t,K 0 (v Ψ 1 t,K 1 (x)), we have α(v Ψ 0 t,K 0 • Ψ 1 t,K 1 (x)) = α(v Ψ 0 t,K 0 ( Ψ 1 t,K 1 (x))) + ( Ψ 0 t,K 0 ) * α(v Ψ 1 t,K 1 (x)).
Now, we have that α(v Ψ 0 t,K 0

) > -k 0 independent of K 1 . Moreover, since the isotopy of Legendrians is compactly supported, there exists some c 0 > 0 independent of K 1 such that Ψ 0 * t,K 0 α = f α, where f > c 0 > 0 in a neighborhood of the original L which contains all the deformations.

We can thus see that in the neighborhood of Ψ 0 t,K 0 (Ψ 1 t,K 1 (A 1 )) where the slope of the front is larger than some

c 1 > 0, α(v Ψ 1 t,K 1 • Ψ 0 t,K 0 ) > -k 0 +c 0 c 1 K 1 . Thus, for K 1 large enough Ψ 0 t,K 0 • Ψ 1 t,K 1 is positive in the neighborhood of Ψ 0 t,K 0 (Ψ 1 t,K 1 (A 1 )
). Near A 0 where the loop was already positive, we do not alter positivity if the size η 1 of the resolution is small enough.

Once this is understood, it is clear that we can repeat the process until we get a loop which is positive everywhere. At each step the rotation speed has to be higher and higher with respect to previous operations.

To conclude, we observe that we have been producing a loop based at a loose Legendrian which is formally isotopic to L, and thus by Murphy's theorem [START_REF] Murphy | Loose Legendrian Embeddings in High Dimensional Contact Manifolds[END_REF] Legendrian isotopic to L.

B. Contractibility

We show that the positive loop that we have been constructing is contractible amongst Legendrian loops.

The construction was inductive on the set of annuli (A i ) and thus it is enough to check that the first loop W -1 η 0 (L w t,K 0 ) is homotopic to a constant loop. We first treat the case when the dimension of the Legendrian L is greater of equal to 3. Define φ 0 s,t such that φ 0 s,t (u, ρ, θ, z) = (u, ρ -s, θ -2K 0 πt, z). We can see that φ 0 s,t (L w ) is a homotopy from φ 0 t,K 0 (L w ) to φ 0 1,t (L w ) which is a loop of rotation of a wrinkled disk D w around some point, says x 0 . Up to homotopy, the wrinkled disk φ 0 1,t (D w ) is completely determined by its normal vector in L at x 0 , and thus by a map S 1 → S n-1 . Since n ≥ 3, this map is homotopic to a point and thus we can deform our loop of wrinkled Legendrians to a constant loop. Moreover, this homotopy can be extended to a homotopy of twist markings from the original loop of twists markings to a constant loop. Resolving parametrically the markings, we get a homotopy from W -1 η 0 (L w t,K 0 ) to a constant loop. The extra stabilization of step 3 to fix the formal isotopy class enters the same scheme and can be also homotoped to a constant operation. This concludes the proof.

The case when the dimension of L is two follows the same scheme, except that we homotope the loop of resolved wrinkles Ψ 0 t,K 0 (U ), where U is a circle times a z-shape segment, to a constant annuli around the circle {ρ = 1}.

Applications

In this chapter, we give some applications of our main theorem. First, we reprove tightness of (S n-1 × R n , ξ std ). Second, we define a partial order on the universal cover Cont 0 (M, ξ) of the identity component of the group of contactomorphisms of a contact manifold (M, ξ) and prove that overtwisted contact structures are not orderable.

3.1. Tightness of (S n-1 × R n , ξ std ). In this section we prove Corollary 0.9. A similar proof for S 1 × R 2 was given in [START_REF] Vincent Colin | Positive isotopies of Legendrian submanifolds and applications[END_REF].

Proof. Assume (S n-1 × R n , ξ std ) is overtwisted, and D OT ⊂ (S n-1 × R n , ξ std ) is an overtwisted disk. Denote π : S n-1 × R n → R n the projection. There exists some point x ∈ R n such that the fiber π -1 (x) ∩ D OT = ∅. According to [CMP15], the fiber π -1 (x) is loose. Thus, there exists a positive loop based at it by Theorem 0.8. That contradicts Theorem 0.6. Therefore, the manifold (S n-1 × R n , ξ std ) is tight.

Positive loops and orderings.

Definition 3.1. Given a contact manifold (M, α), the manifold (Γ M , α) = (M ×M ×R, α 1 -e s α 2 ) is called a contact product. Here α i = π * i α where π i project Γ M to the i-th factor. The Legendrian submanifold of (Γ M , α) ∆ = {(x, x, 0)} is called the diagonal.

The contact product Γ M is a special case of a contact fibration. We recall the definition from [START_REF] Presas | A class of non-fillable contact structures[END_REF]. Definition 3.2. Let (E, ξ = kerα) be a contact manifold, and E -→ B is a fibration with fiber F . Then (E, ξ = kerα) -→ B is called a contact fibration if (F, α| F ) is a contact manifold. Let (E, ξ = kerα) -→ B be contact fibration we say that the horizontal distribution H = (T F ∩ ξ) ⊥dα is the contact connection associated to the fibration. Note that Γ M is a contact fibration with F = (M, α) and B = M × R. We now explain the following result which was first suggested by Klaus Niederkrüger and also observed by Casals and Presas.

Proposition 3.6. Let (M 2n+1 , α) be a compact overtwisted contact manifold and let (Γ M , α) be the associated contact product. Then (Γ M , α) is also overtwisted and the diagonal ∆ ⊂ Γ M is loose.

Proof. We apply the overtwisted criterion from [CMP15]. If λ = ydx -xdy, it is enough to construct a higher dimensional overtwisted ball D = (B 2n+1 OT × D 2n+2 (r), α OT -λ) ⊂ (Γ M , α) for some r large enough, such that D does not intersect ∆.

Let S 2n+1 = {(x, y) | x 2 +y 2 = 1} with its standard contact form α std , and let ϕ 0 : S 2n+1 ×R → R 2n+2 , (x, y, s) → (e s x, e s y). Note that ϕ * 0 λ = α std . We take a Darboux ball B ⊂ (M, α) and we regard it as a subset of (S 2n+1 , α std ). Then we can construct a contact embedding ϕ

: (M × B × R, α) → (M × R 2n+2 , α 1 -λ) by the following series of contact embeddings (M × B × R, α) i → (M × S 2n+1 × R, α 1 -e s α std ) id×ϕ 0 -→ (M × R 2n+2 , α 1 -λ). Let B 2n+1 OT ⊂ M be a overtwisted ball, then D 0 = (B 2n+1 OT × D 2n+2 (r), α 1 -λ) is the overwisted ball in (M × R 2n+2 , α 1 -λ).
We can move D 0 away from ϕ(∆) by Corollary 3.5. More precisely, we take the vector field V = 2r∂ x + 2r∂ y on R 2n+2 , then lift it to a contact vector field V = V + 2r(y -x)R α on M × R 2n+2 where R α is the Reeb vector field of (M, α). Let φ t be the contact isotopy of on (Γ M , α). We denote gr(φ) = φ| ∆ which is in Leg(M, Γ M ). In fact, given a positive contact isotopy φ t , we can see that gr(φ t ) is a negative Legendrian isotopy. Therefore, we would like to transfer the study of positive contact isotopies to that of negative Legendrian isotopies.

V . Denote C = {rx | x ∈ B, r > 0} the cone defined by B. Then D 1 = φ 1 (D 0 ) ⊂ M × (C \ {0}) = ϕ(M × B) does not intersect ϕ(∆). Therefore D = ϕ -1 (D 1 )
Definition 3.8. Let f = [f t ] and g = [g t ] be two elements in Cont 0 (M, ξ). We say f g if there exists a non-positive path L t ∈ Leg(M, Γ M ) from gr(g 1 ) to gr(f 1 ) and gr(g t ) * L t is homotopic to gr(f t ). The space Cont 0 (M, ξ) and (M, ξ) are said to be strongly orderable if defines a partial order 1 on it. Otherwise, they are said to be non strongly orderable.

Remark 3.9. Let C be the set generated by all the homotopy classes of non-positive paths in Leg(M, Γ M ). Then f g equals to gr(g

-1 f ) ∈ C. Given [L t ] ∈ C and φ ∈ Cont 0 (M, ξ), then we have [ φL t ] ∈ C.
Therefore, the order is left invariant, that is to say, given f and g in Cont 0 (M, ξ), if f g, then hf hg for all h ∈ Cont 0 (M, ξ). Because if L t is a non-positive path from g 1 to f 1 , then h1 L t is a non-positive path from h 1 g 1 to h 1 f 1 . Proposition 3.10. Let (M, ξ) be a contact manifold. Then (M, ξ) is strongly orderable if and only if there does not exist a contractible negative loop of Legendrian embeddings based at ∆.

Proof. Let f = [f t ], g = [g t ] and h = [h t ] be elements in Cont 0 (M, ξ). The relation is reflective, since we have f f by the definition of . If there are two non-positive paths L 1 t from gr(g 1 ) to gr(f 1 ) and L 2 t from gr(h 1 ) to gr(g 1 ), then L 2 t * L 1 t is a non-positive path 1 in the sense of a partial order on sets from gr(h 1 ) to gr(f 1 ). Thus, the relation is transitive. Now we check the antisymmetry of . According to [START_REF]Universal orderability of Legendrian isotopy classes[END_REF][Propostion 4.5], the existence of contractible non-positive non-trivial loop of Legendrian embeddings is equivalent to the existence of contractible negative loop of Legendrian embeddings. Thus, for any f = 1, on one hand, if there does not exist any negative loop based at ∆, we can not find a non-negative path L 1 t and a non-positive path L 1 t in the homotopy class of gr(f t ) at the same times. Otherwise, L 1 t * L 2 t would be a contractible nonnegative loop. On the other hand, if there exists a non-positive loop f t based at ∆, then f 1/2 1 and 1 f 1/2 . That means (M, ξ) is not strongly orderable.

Our definition is stronger than that of [START_REF] Eliashberg | Partially ordered groups and geometry of contact transformations[END_REF], since we do not require the path of Legendrian embeddings φ t to be graphical for all t.

Corollary 3.11. Let (M, ξ) be a contact manifold. If (M, ξ) is strongly orderable, then it is orderable.

A contact manifold which is not strongly orderable is said to be weakly non-orderable. Immediately, according to Proposition 3.6 and Corollary 3.7, we deduce theorem 0.12 saying that overtwisted contact manifols are weakly non-orderable. We have the following example of strong orderability.

Theorem 3.12. (S 1 , ξ std ) is strongly orderable.

Proof. Denote dθ the standard contact form for S 1 . We have a contactomorphism ϕ : (Γ S 1 , dθ 1e s dθ 2 ) → (S 1 × T * S 1 , dz -ydx), (θ 1 , θ 2 , s) → (z = θ 1 -θ 2 , x = θ 2 , y = e s -1) such that ϕ(∆) is the zero-section. Assume there exists a contractible positive loop based at the zerosection of (S 1 × T * S 1 , dz -ydx), then it lifts to a positive loop based at the zero-section of (R 1 × T * S 1 , dz -ydx). However, such loops do not exist according to [START_REF] Vincent Colin | Positive isotopies of Legendrian submanifolds and applications[END_REF] (notice this is not a trivial result). Thus (S 1 , ξ std ) is strongly orderable.

Question 3.13. Is (RP 3 , ξ std ) strongly orderable?

Figure 1 .

 1 Figure 1. A positive stabilized front.

Figure 2 .

 2 Figure 2. A loose embedding of S 2 .

Figure 3 .

 3 Figure 3. Wrinkled embedding.

Figure 4 .

 4 Figure 4. A wrinkled sphere.

[ Mur12 ]

 Mur12 Let L n be a loose Legendrian and N ⊂ L be a closed codimension 1 submanifold of Euler characteristic 0. If we stabilize L positively and negatively along N , we obtain a Legendrian S N -(S N + (L)) which is isotopic to L. Sketch of proof. First of all, the stabilized Legendrian S N -(S N + (L)) is loose. By Murphy's hprinciple, have to show that S N -(S N + (L)) is formally Legendrian isotopic to L. This is a consequence of the fact that S N -(S N + (L)) is obtained from a Murphy N -stabilization of L by an

Figure 5 .

 5 Figure 5. Resolve a wrinkle.

Figure 6 .

 6 Figure 6. Rotation of the wrinkle.

  Remark 3.3. The horizontal distribution depends on the contact form α.The connection defined above has the following properties: Proposition 3.4.[START_REF] Presas | A class of non-fillable contact structures[END_REF] For a path γ : [0, 1] → B, the monodromy m γ : F (γ(0)) → F (γ(1)) induced by γ is a contactomorphism. Corollary 3.5. Let φ ∈ Dif f 0 (B). Then it lifts to a contactomorphism φ.

  is one of the overtwisted balls we want.Corollary 3.7. Let (M, α) be a compact overtwisted contact manifold and (Γ M , α) the contact product. Then there exists a positive loop of Legendrian embeddings based at ∆.Let Leg(M, Γ M ) be the set of Legendrian embeddings M → (Γ M , α). Given φ ∈ Cont 0 (M, ξ = kerα) with φ * α = e g(x) α, it induces a contactomorphism φ(x, y, s) := (x, φ(x), s -g(y))