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INTRODUCTION

Within the setting of verifiable computing, we propose in this paper interactive certificates with the taxonomy of [START_REF] Dumas | Essentially optimal interactive certificates in linear algebra[END_REF]. Indeed, we consider a protocol where a Prover performs a computation and provides additional data structures or exchanges with a Verifier who will use these to check the validity of the result, faster than by just recomputing it. More precisely, in an interactive certificate, the Prover submits a Commitment, that is some result of a computation; the Verifier answers by a Challenge, usually some uniformly sampled random values; the Prover then answers with a Response, that the Verifier can use to convince himself of the validity of the commitment. Several rounds of challenge/response might be necessary for the Verifier to be fully convinced.

By Prover (resp. Verifier) time, we thus mean bounds on the number of arithmetic operations performed by the Prover (resp. Verifier) during the protocol, while by extra space, we mean bounds on the volume of data being exchanged, not counting the size of the input and output of the computation.

Such protocols are said to be complete if the probability that a true statement is rejected by the Verifier can be made arbitrarily small; and sound if the probability that a false statement is accepted by the Verifier can be made arbitrarily small. In practice it is suffi-cient that those probabilities are < 1, as the protocols can always be run several times. Some certificates will also be perfectly complete, that is a true statement is never rejected by the Verifier. All these certificates can be simulated non-interactively by Fiat-Shamir heuristic [START_REF] Fiat | How to prove yourself: Practical solutions to identification and signature problems[END_REF]: uniformly sampled random values produced by the Verifier are replaced by cryptographic hashes of the input and of previous messages in the protocol. Complexities are preserved.

We do not use generic approaches to verified computation (where protocols check circuits with polylogarithmic depth [START_REF] Goldwasser | Delegating computation: interactive proofs for muggles[END_REF] or use amortized models and homomorphic encryption [START_REF] Costello | Geppetto: Versatile verifiable computation[END_REF]). Rather, we use dedicated certificates as those designed for dense [START_REF] Freivalds | Fast probabilistic algorithms[END_REF][START_REF] Kaltofen | Quadratic-time certificates in linear algebra[END_REF] or sparse [START_REF] Dumas | Essentially optimal interactive certificates in linear algebra[END_REF][START_REF] Dumas | Linear time interactive certificates for the minimal polynomial and the determinant of a sparse matrix[END_REF] exact linear algebra. The obtained certificates are problem-specific, but try to reduce as much as possible the overhead for the Prover, while preserving a fast verification procedure.

We will consider an m×n matrix A of rank r over a field F. The row rank profile of A is the lexicographically minimal sequence of r indices of independent rows of A. Matrix A has generic row rank profile if its row rank profile is (1, . . . , r). The column rank profile is defined similarly on the columns of A. Matrix A has generic rank profile if its r first leading principal minors are nonzero. The rank profile matrix of A, denoted by RA is the unique m × n {0, 1}-matrix with r nonzero entries, of which every leading sub-matrix has the same rank as the corresponding sub-matrix of A. It is possible to compute RA with a deterministic algorithm in O(mnr ω-2 ) or with a Monte-Carlo probabilistic algorithm in (r ω + m + n + µ(A)) 1+o (1) field operations [START_REF] Dumas | Fast computation of the rank profile matrix and the generalized Bruhat decomposition[END_REF], where µ(A) is the arithmetic cost to multiply A by a vector.

We first propose quadratic, space and verification time, non-interactive practical certificates for the row or column rank profile and for the rank profile matrix that are rank-sensitive. Previously known certificates have additional logarithmic factors to the quadratic complexities: replacing matrix multiplications by quadratic verifications in recursive algorithms yields at least one log(n) factor [START_REF] Kaltofen | Quadratic-time certificates in linear algebra[END_REF], graph-based approaches cumulate this and other logarithmic factors, at least from a compression by magical graphs and from a dichotomic search [START_REF] Storjohann | A Relaxed Algorithm for Online Matrix Inversion[END_REF].

We then propose two linear space interactive certificates: one certifying that two non-singular matrices are triangular equivalent, i.e. there is a triangular change of basis from one to the other; the other one, certifying that a matrix has a generic rank profile. These certificates are then applied to certify the row or column rank profile, the Q (permutation) and D (diagonal) factors of a LDUP factorization, the determinant and the rank profile matrix. These certificates require, for the Verifier, between 1 and 3 applications of A to a vector and a linear amount of field operations. They are still elimination-based for the Prover, but do not require to communicate the obtained triangular decomposition. For the Determinant, this new certificates require the computation of a PLUQ decompo-sition for the Prover, linear communication and Verifier time, with no restriction on the field size.

Table 1 compares linear quadratic volumes of communication, as well as sub-cubic (PLUQ, CHARPOLY) or quadratic matrix operations (one matrix-vector multiplication with a dense matrix is denoted fgemv). The results shows first that it is interesting to use linear space certificates even when they have quadratic Verification time. The table also presents a practical constant factor of about 5 between PLUQ and CHARPOLY computations. Computations use the FFLAS-FFPACK library (http://linbox-team.github.io/fflas-ffpack) on a single Intel Skylake core @3.4GHz, while we measured some communications between two workstations over an Ethernet Cat. 6, @1Gb/s network cable. A summary of our contributions is given in Table 3, to be compared with the state of the art in Table 2. We identify the symmetric group with the group of permutation matrices, and write P ∈ Sn to denote that a matrix P is a permutation matrix. There, P [i] is the row index of the nonzero element of its i-th column; Dn(F) is the group of invertible diagonal matrices over the field F and [A] I J is the (I, J)-minor of the matrix A (the determinant of the submatrix of A with row indices in I and column indices in J). Lastly, x $ ← -S denotes that x is sampled uniformly at random from S.

NON INTERACTIVE AND QUADRATIC COMMUNICATION CERTIFICATES

In this section, we propose two certificates, first for the column (resp. row) rank profile, and, second, for the rank profile matrix. While the certificates have a quadratic space communication complexity, they have the advantage of being non-interactive.

Freivalds' certificate for matrix product

In this paper, we will use Freivalds' certificate [START_REF] Freivalds | Fast probabilistic algorithms[END_REF] to verify matrix multiplication. Considering three matrices A, B and C in F n×n , such that A × B = C, a straightforward way of verifying the equality would be to perform the multiplication A × B and to compare its result coefficient by coefficient with C. While this method is deterministic, it has a time complexity of O(n ω ), which is the matrix multiplication complexity. As such, it cannot be a certificate, as there is no complexity difference between the computation and the verification.

Prover Verifier A, B ∈ F n×n C = AB C -→ v ∈ F n×1 A(Bv) -Cv ? = 0
Protocol 1: Freivalds' certificate for matrix product

Freivalds' certificate proposes a probabilistic method to check this product in a time complexity of µ(A) + µ(B) + µ(C) using matrix/vector multiplication, as detailed in Figure 1.

Column rank profile certificate

We now propose a certificate for the column rank profile.

Prover

Verifier

A ∈ F m×n A P LU Q decomposition of A s.t. U Q is in row echelon form P,L,U,Q ----→ U Q row echelonized? A ? = P LU Q, by cert. 1 Return Q[1], . . . , Q[r]
Protocol 2: Column rank profile, non-interactive

LEMMA 1. Let A = P LU Q be the PLUQ decomposition of an m × n matrix A of rank r. If U Q is in row echelon form then (Q[1], . . . , Q[r]) is the column rank profile of A. PROOF. Write A = P L 1 L 2 [ U 1 U 2 ]
Q, where L1 and U1 are r × r lower and upper triangular respectively.

If U Q is in echelon form, then R = Ir U -1 1 U 2 0 (m-r)×n is in reduced echelon form. Now U -1 1 Im-r L1 L2 Im-r -1 P T A = U -1 1 U Q 0 (m-r)×n = R
is left equivalent to A and is therefore the echelon form of A.

Hence the sequence of column positions of the pivots in R, that is

(Q[1], . . . , Q[r]
), is the column rank profile of A.

Lemma 1 provides a criterion to verify a column rank profile from a PLUQ decomposition. Such decompositions can be computed in practice by several variants of Gaussian elimination, with no arithmetic overhead, as shown in [START_REF] Jeannerod | Rank-profile revealing gaussian elimination and the CUP matrix decomposition[END_REF] or [7, § 8]. Hence, we propose the certificate in Protocol 2. THEOREM 1. Let A ∈ F m×n with r = rank(A). Certificate 2, verifying the column rank profile of A is sound, perfectly complete, with a communication bounded by O(r(m + n)), a Prover computation bounded by O(mnr ω-2 ) and a Verifier computation cost bounded by O(r(m + n)) + µ(A).

PROOF. If the Prover is honest, then, U Q will be in row echelon form and A = P LU Q, thus, by Lemma 1, the Verifier will be able to read the column rank profile of A from Q. If the Prover is dishonest, either A = P LU Q, which will be caught by the Prover with probabilty p ≥ 1 -1 q using Freivalds' certificate [START_REF] Freivalds | Fast probabilistic algorithms[END_REF] or U Q is not in row echelon from, which will be caught every time by the Verifier.

The Prover sends P, L, U and Q to the Verifier, hence the communication cost of O(r(m + n)), as P and Q are permutation matrices and L, U , are respectively m × r and r × n matrices, with r = rank(A). Using algorithms provided in [START_REF] Jeannerod | Rank-profile revealing gaussian elimination and the CUP matrix decomposition[END_REF], one can compute the expected P LU Q decomposition in O(mnr ω-2 ). The Verifier has to check if A = P LU Q, and if U Q is in row echelon form, which can be done in O(r(m + n)).

Note that this holds for the row rank profile of A: in that case, the Verifier has to check if P L is in column echelon form. 

(r ω + µ(A)) O(r 2 + m + n) O(r 2 + µ(A)) ≥ 2 [4] Yes No O(n(µ(A) + n)) O(m + n) 2µ(A) + O(m + n) O(min{m, n}) [9] Yes Yes O(mnr ω-2 ) O(m + r) O(r + µ(A) + m + n) ≥ 2 CRP/RRP [14] over [16] No No O(r ω + m + n + µ(A)) O(r 2 + m + n) O(r 2 + m + n + µ(A)) O(min{m, n}) [14] over [13] No Yes O(mnr ω-2 ) O(mn) O(mn) ≥ 2 RPM [14] over [8] No No O(r ω + m + n + µ(A)) O(r 2 + m + n) O(r 2 + m + n + µ(A)) O(min{m, n}) [14] over [6] No Yes O(mnr ω-2 ) O(mn) O(mn) ≥ 2 DET [11] & PLUQ No Yes O(n ω ) O(n 2 ) O(n 2 ) + µ(A) ≥ 2 [5] & CHARPOLY Yes No O(nµ(A)) or O(n ω ) O(n) µ(A) + O(n) ≥ n 2
Table 2: State of the art certificates for the rank, the row and column rank profiles, the rank profile matrix and the determinant 

Algorithm Interactive Prover Communication Probabilistic #F Deterministic Time Verifier Time CRP/RRP § 2.2 No Yes O(mnr ω-2 ) O(r(m + n)) O(r(m + n)) + µ(A) ≥ 2 § 4.2 Yes Yes O(mnr ω-2 ) O(m + n) 2µ(A) + O(m + n) ≥ 2 RPM § 2.3 No Yes O(mnr ω-2 ) O(r(m + n)) O(r(m + n)) + µ(A) ≥ 2 § 4.3 Yes Yes O(mnr ω-2 ) O(m + n) 4µ(A) + O(m + n) ≥ 4 DET § 4.1 & PLUQ Yes Yes O(n ω ) O(n) µ(A) + O(n) ≥ 2
= P Ir 0 Q, if and only if P [ L 0 ] P T is lower triangular and Q T [ U 0 ] Q is upper triangular. PROOF.
The only if case is proven in [START_REF] Dumas | Fast computation of the rank profile matrix and the generalized Bruhat decomposition[END_REF]Th. 21]. Now suppose that P [ L 0 m×(m-r) ] P T is lower triangular. Then we must also have that L = P L 0 I m-r P T is lower triangular and nonsingular. Similarly suppose that Q

T [ U 0 ] Q is upper triangular so that U = Q T U 0 I n-r Q is non-
singular upper triangular. We have A = LP Ir 0 QU . Hence the rank of any (i, j) leading submatrix of A is that of the (i, j) leading submatrix of P Ir 0 Q, thus proving that RA = P Ir 0 Q. We use this characterization to verify the computation of the rank profile matrix in the following protocol: Once the Verifier receives P, L, U and Q, he has to:

1. Check that A = P LU Q, using Freivalds' certificate [START_REF] Freivalds | Fast probabilistic algorithms[END_REF] 2. Check that L is echelonized by P and U T by Q T . PROOF. If the Prover is honest, then, the provided P LU Q decomposition is indeed a factorization of A, which means Freivalds' certificate will pass. It also means this P LU Q decomposition reveals the rank profile matrix. According to Lemma 2, P LP T will be lower triangular and Q T U Q upper triangular. Hence the verification will succeeds and RA = P Ir 0 (m-r)×(n-r) Q is indeed the rank profile matrix of A. If the Prover is dishonest, either A = P LU Q, which will be caught with probabilty p ≥ 1 -1 q by Freivalds' certificate or the P LU Q decomposition does not reveal the rank profile matrix of A. In that case, Lemma 2 implies that either P [ L 0 ] P T is not lower triangular or P [ U 0 ] Q is not upper triangular which the will be detected.

If successful, compute the rank profile matrix of

A as RA = P Ir 0 (m-r)×(n-r) Q Prover Verifier A ∈ F m×n a PLUQ decomp. of A revealing RA. P,L,U,Q ----→ 1. A ? = P LU Q by Protoc. 2.
The Prover sends P, L, U and Q to the Verifier, hence the communication cost of O((n + m)r). A rank profile matrix revealing P LU Q decomposition can be computed in O(mnr ω-2 ) operations [START_REF] Dumas | Simultaneous computation of the row and column rank profiles[END_REF]. The Verifier has to check if A = P LU Q, which can be achieved in O((m + n)r) + µ(A) field operations.

LINEAR COMMUNICATION CERTIFI-CATE TOOLBOX

Triangular one sided equivalence

Two matrices A, B ∈ F m×n are right (resp. left) equivalent if there exist an invertible n × n matrix T such that AT = B (resp. T A = B). If in addition T is a lower triangular matrix, we say that A and B are lower triangular right (resp. left) equivalent. The upper triangular right (resp. left ) equivalence is defined similarly. We propose a certification protocol that two matrices are left or right triangular equivalent. Here, A and B are input, known by the Verifier and the Prover. A simple certificate would be the matrix T itself, in which case the Verifier would check the product AT = B using Freivalds' certificate. This certificate is non-interactive and requires a quadratic amount of communication. In what follows, we present a certificate which allows to verify the one sided triangular equivalence without communicating T , requiring only 2n communications. It is essentially a Freivalds' certificate with a more constrained interaction pattern in the way the challenge vector and the response vector are communicated. This pattern imposes a triangular structure in the way the Provers' responses depend on the Verifier challenges which match with the structure of the problem. |S| , perfectly complete, occupies 2n communication space, and can be computed in O(mn ω-1 ) field operations and verified in µ(A) + µ(B) field operations.

Prover Verifier A, B ∈ F m×n A regular, m≥n T lower triangular matrix s.t. AT = B 1: T exists -----→ y1 = T1, * x 1 0 . . . 2 : x 1 ←--- xi $ ← -S ⊂ F 3 : y 1 ---→ . . . . . . yn = Tn, * x 1 . . .
PROOF. If the Prover is honest, then AT = B and she just computes y = T x, so that Ay = AT x = Bx. If the Prover is dishonest, replace the random values x1, . . . , xn by algebraically independent variables X1, . . . , Xn. Since A is regular, there is a unique n × n matrix T (that is, T = A † B with A † the Moore-Penrose inverse of A) such that AT = B. For the same reason, there is a unique vector Y = A † BX such that A Y = BX. The vector Y is then formed by n degree-1 polynomials in X1, . . . , Xn. If T is not lower triangular, let i be the first row such that Ti,j = 0 for some j > i, and let jm be the largest such j. Then Yi has degree 1 in Xj m . Let Y be the vector output by the Prover. At step 2i + 1, the value for Xj m was still not released, hence Yi is constant in Xj m . As A is regular, the verification AY = BX = A Y is equivalent to Y -Y = 0. The i-th component in this equation is Yi -Yi = 0, whose left hand-side contains a non zero monomial in Xj . There is therefore a probability lower than 1/|S| that the random choice for xj makes this polynomial vanish.

This certificate requires to transmit x and y, which costs 2n in communication. The Verifier has to compute Ay and Bx, whose computational cost is µ(A) + µ(B). The Prover has to compute T , this can be done by a PLUQ elimination on A followed by a triangular system solve, both in O(mn ω-1 ). Then y = T x requires only O(n 2 ) operations.

Note that the case where T is upper triangular works similarly: the Verifier needs to transmit x in reverse order, starting by xn.

Generic rank profile-ness

The problem here is to verify whether a non-singular input matrix A ∈ F m×n has generic rank profile (to test non-singularity, one can apply beforehand the linear communication certificate in [4, Fig. 2], see also Protocol 8 thereafter). A matrix A has generic rank profile if and only if it has an LU decomposition A = LU , with L unit lower triangular and U non-singular upper triangular. The protocol picks random vectors φ, ψ, λ and asks the Prover to provide the vectors z T = λ T L, x = U φ, y = U ψ on the fly, while receiving the coefficients of the vectors φ, ψ, λ one at a time. These vectors satisfy the fundamental equations z T x = λ T Aφ and z T y = λ T Aψ that will be checked by the Verifier.

Prover

Verifier A ∈ F n×n non-singular

A = LU A has g.r.p. -----→ for i from n downto 1 x y = U φ ψ φ i ,ψ i ←--- (φi, ψi) $ ← -S 2 ⊂ F 2 x i ,y i ---→ z T = λ T L λ i ← - λi $ ← -S ⊂ F z i -→ z T x y ? = (λ T A) φ ψ
Protocol 5: Generic rank profile with linear communication THEOREM 4. Certificate 5 verifying that a non-singular matrix has generic rank profile is sound, with probability larger than 1 -1 |S| , perfectly complete, communicates 3n field elements, and can be computed in O(n ω ) field operations for the Prover and µ(A) + 8n field operations for the Verifier.

We will need the following Lemma, used in Dodgson determinant condensation rule. LEMMA 3 (DESNANOT-JACOBI, OR DODGSON RULE [START_REF] Dodgson | Condensation of Determinants, Being a New and Brief Method for Computing their Arithmetical Values[END_REF]). Applying the same permutation, the cyclic shift of order 1 to the left, on the rows and columns of A, yields the following formula with no change of sign:

[A] {1..n} {1..n} [A] {1..n-2} {1..n-2} = [A] {1..n-2,n} {1..n-2,n} [A] {1..n-1} {1..n-2,n} [A] {1..n-2,n} {1..n-1} [A] {1..n-1} {1..n-1} . (1) 
PROOF OF THEOREM 4. The protocol is perfectly complete: if

A = LU , then z T x y = λ T LU φ ψ = λ T A φ ψ .
Now, for the soundness, replace every φ, ψ, λ chosen at random by the Verifier by vectors of algebraically independent variables Φ, Ψ, Λ. Similarly, the responses of the Prover z, x, y are now vectors of algebraically independent variables Z, X, Y . Under the assumption of the success of the Verifier test,

Z T X = Λ T AΦ Z T Y = Λ T AΨ , (2) 
and that A is non-singular, we will prove the following induction hypothesis:

Hi :

     Z T i...n Xi...n = 1 d i-1 i≤j,k≤n Λ k [A] {1...i-1,k} {1...i-1,j} Φj Z T i...n Yi...n = 1 d i-1 i≤j,k≤n Λ k [A] {1...i-1,k} {1...i-1,j} Ψj dj = 0 ∀j < i where di = [A] {1...i} {1...i} , d0 = 1. For i = 1, note that [A] {1...i-1,k} {1...i-1,j} = A k,j
, hence the right handsides of the first two equations of H1 can be written as:

1≤j,k≤n Λ k A k,j Φj = Λ T AΦ = Z T X 1≤j,k≤n Λ k A k,j Ψj = Λ T AΨ = Z T Y by (2). Finally d0 = 1 is obviously nonzero. Now suppose Hi is true for some 0 ≤ i < n. Then            ZiXi + Z T i+1..n Xi+1..n = 1 d i-1 Λi n j=i [A] {1..i} {1..i-1,j} Φj + 1 d i-1 n j=i n k=i+1 Λ k [A] {1..i-1,k} {1..i-1,j} Φj ZiYi + Z T i+1..n Yi+1..n = 1 d i-1 Λi n j=i [A] {1..i} {1..i-1,j} Ψj + 1 d i-1 n j=i n k=i+1 Λ k [A] {1..i-1,k} {1..i-1,j} Ψj . (3)
At the time of choosing the value for Λi, all variables are set, except Zi. Hence for all value assigned to Λi, there is a value for Zi that satisfies the above system of two linear equations in Zi and Λi. Consequently this system is singular and the following two determinants vanish: 5 

di-1Xi n j=i [A] {1..i} {1..i-1,j} Φj di-1Yi n j=i [A] {1..i} {1..i-1,j} Ψj = 0 (4) n j=i [A] {1..i} {1..i-1,j} Φj di-1Z T i+1..n Xi+1..n -FA(Λ, i, Φ) n j=i [A] {1..i} {1..i-1,j} Ψj di-1Z T i+1..n Yi+1..n -FA(Λ, i, Ψ) = 0 (5) where FA(Λ, i, R) = n j=i n k=i+1 Λ k [A] {1..i-1,k} {1..i-1,j} Rj, for R = Φ, Ψ. Actually, Equation (
               di-1Z T i+1..n Xi+1..n = 1 d i n j,k=i+1 Λ k di [A] {1..i-1,k} {1..i-1,j} -[A] {1..i-1,k} {1..i} [A] {1..i} {1..i-1,j} Φj di-1Z T i+1..n Yi+1..n = 1 d i n j,k=i+1 Λ k di [A] {1..i-1,k} {1..i-1,j} -[A] {1..i-1,k} {1..i} [A] {1..i} {1..i-1,j} Ψj Applying variant (1) of Lemma 3 to [A] {1..i,k} {1..i,j} , yields di-1Z T i+1..n Xi+1..n = 1 d i n j,k=i+1 Λ k di-1 [A] {1..i,k} {1..i,j} Φj di-1Z T i+1..n Yi+1..n = 1 d i n j,k=i+1 Λ k di-1 [A]
{1..i,k} {1..i,j} Ψj and Hi+1 is verified.

We have proven that if Hi is true, then either Hi+1 is also true or the system (3) has a single solution and the Verifier randomly chose precisely that λi. Therefore, suppose that A has not generic rank profile, it means that some dj = 0 and Hj is false. But the Verifier checks that H1 is true. If this is the case, then at least once, did the Verifier choose the value expected by the dishonest Prover. This happens with probability lower than 1/|S|.

Finally, for the complexity, the Prover needs one Gaussian elimination to compute LU in time O(n ω ), then her extra work is just three triangular solve in O(n 2 ). The extra communication is three vectors, φ, ψ, λ, and the Verifier's work is four dot-products and one multiplication by the initial matrix A.

LDUP decomposition

With Protocol 5, when the matrix A does not have generic rank profile, any attempt to prove that it has generic rank profile will be detected w.h.p. (soundness). However when it is the case, the verification will accept many possible vectors x, y, z: any scaling of zi by αi and xi, yi by 1/αi would be equally accepted for any non zero constants αi. This slack correspond to our lack of specification of the diagonals' shape in the used LU decomposition. Indeed, for any diagonal matrix with non zero elements, LD × D -1 U is also a valid LU decomposition and yields x, y and z scaled as above. Specifying these diagonals is not necessary to prove generic rank profileness, so we left it as is for this task.

However, for the determinant or the rank profile matrix certificates of Sections 4.1 and 4.3, we will need to ensure that this scaling is independent from the choice of the vectors φ, ψ, λ. Hence we propose an updated protocol, where L has to be unit diagonal, and the prover has to first commit the main diagonal D of U .

For an n × n triangular matrix T , its strictly triangular part is denoted T ∈ F (n-1)×(n-1) : for instance if T is upper triangular, then ti,j = ti,j+1 for j ≥ i and 0 otherwise.

For U an invertible upper triangular matrix we have for its diagonal (d1, . . . , dn) and the associated diagonal matrix D, that U1 = D -1 U is unitary. Thus, for any

F n ∋ ψ = [ψ1, ψ] T : U ψ = DU1ψ = D ψ + U 1 ψ 0 .
So the idea is that the Prover will commit D beforehand, and that within a generic rank profile certificate, the Verifier will only communicate φ, ψ and λ to obtain z = λ T L, x = U1 φ and y = U1 ψ. Then the Verifier will compute by herself the complete vectors. This ensures that L is unitary and that U = DU1 with U1 unitary.

Finally, if an invertible matrix does not have generic rank profile, we note that it is also possible to incorporate the permutations, by committing them in the beginning and reapplying them to the matrix during the checks. The full certificate is given in Figure 6. THEOREM 5. The Protocol of Figure 6, committing a permutation matrix P and a diagonal matrix D for an invertible matrix A, such that there exists unitary triangular matrices L and U with A = LDU P , is sound, with probability larger than 1 -1 |S| , and perfectly complete. For an n×n matrix, it requires less than 8n extra communications and the computational cost for the Verifier is bounded by µ(A) + 12n + o(n).

PROOF. If the Prover is honest, then A = LU P = LDU1P , so that for any choice of λ and ψ we have:

λ T AP T ψ = λ T LDU1ψ, that is λ T λn I + 0 0 L 0 D 0 U 0 0 + I ψ ψn = z T y and
the same is true for λ and φ, so that the protocol is perfectly complete. Now, the last part of the Protocol of Figure 6 is actually a verification that AP T has generic rank profile, in other words that there exists lower and upper triangular matrices L * and U * such that AP T = L * U * . This verification is sound by Theorem 4. Next, for i from n downto 2:

x y ← U 1 φ ψ φ i ,ψ i ← --------φ i , ψ i $ ← -S 2 x i-1 ,y i-1 --------→ z ← λ T L λ i ← --------λ i $ ← -S z i-1 --------→ . . . φ 1 , ψ 1 , λ 1 $ ← -S 3 x y ← φ ψ + x y 0 0 z T ← λ T + z T 0 z T D x y ? = (λ T A)P T φ ψ
Protocol 6: LDUP decomposition (linear communication) the multiplication by the diagonal D is performed by the Verifier, so he is actually convinced that there exists lower and upper triangular matrices L * and U * 1 such that AP T = L * DU * 1 . Finally, the construction of the vectors with the form a + b 0 is also done by the Verifier, so he in fact has a guaranty that L * and U * 1 are unitary. Overall, if the Prover is dishonest, the Verifier will catch him with the probability of Theorem 4.

Finally, for the complexity bounds, the extra communications are: one permutation matrix P , a diagonal matrix D and 6 vectors λ, φ, ψ and z, x and y. That is n non-negative integers lower than n and 6(n -1) + n field elements. The arithmetic computations of the Verifier are one multiplication by a diagonal matrix, 3 vector sums, 4 dot-products and one matrix-vector multiplication by A (for (λ T A)), that is n + 3(n -1) + 4(2n -1).

We, furthermore, have some guaranties on the actual values of x, y, z: PROPOSITION 1. Let S be a finite subset of F in Protocol 6, if x y = U1 φ ψ then the verification will pass with probability at most 2 |S| . PROOF. Equation (4) implies that, if the verification check passes, with (z, x, y), then the vector xi yi T must be co-linear with the right column of this determinant, that can be written in the form diφi + b diψi + c

T with di = 0 and b and c depending only on φ k , ψ k , x k , y k , λ k , z k with k > i. Hence, any value xi, yi, supplied by the Prover, must satisfy

φi + xi diφi + b ψi + yi diψi + c = 0, (6) 
when φi and ψi are still unknown. This condition is ensured for any φi and ψi if and only if xi yi = 1 d i b c . If the Prover is dishonest and if x y = U1 φ ψ then at least one couple ( xi, yi) is incorrect. Then, either the Verifier has chosen a couple of values (φi, ψi) making the degree 1 determinant (6) vanish, this happens with probability at most 1/|S|, or System (3) has a unique solution (zi, λi). But if the latter is true and the final check succeeds then, as for Theorem 4, at least once the Prover chose to have 1/|S| chances that the Verifier picked the unique possibility for λj, i ≥ j ≥ 1. Overall, the Verification thus fails with probability at most 1 -2 |S| .

REMARK 1. Correctness of the vector z can also be ensured with the same probability: for the singular System (3), with respect to the unknowns Λi and Zi, to have rank at least one, it is sufficient that one of Xi or Yi is non zero. The Verifier, knowing xi, can ensure this by restricting the set of choices for φi ∈ S\{-xi}. Thus if xi and yi are correct, the Prover will have to provide a correct associated zi or increase the probability of being caught.

LINEAR COMMUNICATION INTERAC-TIVE CERTIFICATES

In this section, we give linear space communication certificates for the determinant, the column/row rank profile of a matrix, and for the rank profile matrix.

Linear communication certificate for the determinant

Existing certificates for the determinant are either optimal for the Prover in the dense case, using the strategy of [14, Theorem 5] over a PLUQ decomposition, but quadratic in communication; or linear in communication, using [START_REF] Dumas | Linear time interactive certificates for the minimal polynomial and the determinant of a sparse matrix[END_REF]Theorem 14], but using a reduction to the characteristic polynomial. In the sparse case the determinant and the characteristic polynomial both reduce to the same minimal polynomial computations and therefore the latter certificate is currently optimal for the Prover. Now in the dense case, while the determinant and characteristic polynomial both reduce to matrix multiplication, the determinant, via a single PLUQ decomposition is more efficient in practice [START_REF] Pernet | Faster algorithms for the characteristic polynomial[END_REF]. Therefore, we propose here an alternative in the dense case: use only one PLUQ decomposition for the Prover while keeping linear extra communications and O(n) + µ(A) operations for the Verifier. The idea is to extract the information of a LDUP decomposition without communicating it: one uses Protocol 6 for A = LDU P with L and U unitary, but kept on the Prover side, and then the Verifier only has to compute Det(A) = Det(D)Det(P ), with n-1 additional field operations. COROLLARY 1. For an n×n matrix, there exists a sound and perfectly complete protocol for the determinant over a field using less than 8n extra communications and with computational cost for the Verifier bounded by µ(A) + 13n + o(n).

As a comparison, the protocol of [START_REF] Dumas | Linear time interactive certificates for the minimal polynomial and the determinant of a sparse matrix[END_REF]Theorem 14] reduces to CHAR-POLY instead of PLUQ for the Prover, requires 5n extra communications and µ(A) + 13n + o(n) operations for the Verifier as well. Also the new protocol requires 3n random field elements for any field, where that of [START_REF] Dumas | Linear time interactive certificates for the minimal polynomial and the determinant of a sparse matrix[END_REF]Theorem 14] requires 3 random elements but a field larger than n 2 .

For instance, using the routines shown in Table 1, the determinant of an 50k×50k random dense matrix can be computed in about 24 minutes, where with the certificate of Figure 6, the overhead of the Prover is less than 5s and the Verifier time is about 1s.

Column or row rank profile certificate

In Figure 7 and8, we first recall the two linear time and space certificates for an upper and a lower bound to the rank that constitute a rank certificate. We present here the variant sketched in [9, § 2] of the certificates of [START_REF] Dumas | Essentially optimal interactive certificates in linear algebra[END_REF]. An upper bound r on the rank is certified by the capacity for the Prover to generate any vector sampled from the image of A by a linear combination of r column of A.

A lower bound r is certified by the capacity for the Prover to recover the unique coefficients of a linear combination of r linearly independent columns of A.

Prover Verifier A ∈ F m×n r s.t. rank(A) ≤ r r -→ Choose S ⊂ F w ← - v $ ← -S n , w = Av Aγ = w γ -→ |γ|H ? = r Aγ ? = w
Protocol 7: Upper bound on the rank of a matrix THEOREM 6. Let A ∈ F m×n , and let S be a finite subset of F. The interactive certificate 7 of an upper bound for the rank of A is sound, with probability larger than 1 -1 |S| , perfectly complete, occupies 2n communication space, can be computed in LIN SY S(r) and verified in 2µ(A) + n time.

Prover Verifier A ∈ F m×n c1, .., cr indep. cols of A c 1 , .., cr -----→ Choose S ⊂ F v ← - α = αc j $ ← -S * 0 otherwise v = Aα Solve Aβ = v β -→ β ? = α
Protocol 8: Lower bound on the rank of a matrix THEOREM 7. Let A ∈ F m×n , and let S be a finite subset of F. The interactive certificate 8 of a lower bound for the rank of A is sound, , with probability larger than 1 -1 |S| , perfectly complete and occupies n + 2r communication space, can be computed in LIN SY S(r) and verified in µ(A) + r operations.

We now consider a column rank profile certificate: the Prover is given a matrix A, and answers the column rank profile of A, J = (c1, . . . , cr). In order to certify this column rank profile, we need to certify two properties:

1. the columns given by J are linearly independent; 2. the columns given by J form the lexicographically smallest set of independent columns of A. Property 1 is verified by Certificate 8, as it checks wether a set of columns are indeed linearly independent. Property 2 could be certified by successive applications of Certificate 7: at step i, checking that the rank of A * ,(0,...,c i -1) is at most i -1 would certify that there is no column located between ci-1 and ci in A which increases the rank of A. Hence, it would prove the minimality of J . However, this method requires O(nr) communication space.

Instead, we reduce these communication by seeding all challenges from a single n dimensional vector, and by compressing the responses with a random projection. The right triangular equivalence certificate plays here a central role, ensuring the lexicographic minimality of S. More precisely, the Verifier chooses a vector v ∈ F n uniformly at random and sends it to the Prover. Then, for each index c k ∈ S the Prover computes the linear combination of the first c k -1 columns of A using the first c k -1 coefficients of v and has to prove that it can be generated from the k-1 columns c1, . . . , c k-1 . This means, find a vector γ (k) solution to the system:

A * ,c 1 A * ,c 2 . . . A * ,c k-1 γ (k) = A   v 1 . . . v c k -1 0 . . .   .
Equivalently, find a strictly upper triangular matrix Γ such that:

A * ,c 1 A * ,c 2 . . . A * ,c r-1 Γ = A        v 1 v 1 ••• ••• v 1 . . . . . . . . . . . . . . . v c 1 -1 . . . . . . . . . . . . 0 v c 2 -1 . . . . . . . . . 0 0 . . . . . . . . . 0 0 0 v cr -1 . . . 0 0 0 0 vn        V .
Note that V = Diag(v1, . . . , vn)W where W = [1i<c j+1 ]i,j (with cr+1 = n + 1 by convention) In order to avoid having to transmit the whole r ×r upper triangular matrix Γ, the Verifier only checks a random projection x of it, using the triangular equivalence Certificate 4. We then propose the certificate in Figure 9.

Prover Verifier A ∈ F m×n (c1, .., cr) CRP of A (c 1 , .., cr ) ------→ rank A ? ≥ r by Cert. 8 Choose S ⊂ F v ← - v $ ← -S n V = Diag(vi)W W = [1i<c j+1 ] Γ upper tri. s.t. A * ,{c 1 ,..,cr } Γ = AV D ← Diag(vi) y = Γx x (Cert. 4) y ← -----→ x $ ← -S r z ← D(W x) zc j ← zc j -yj, j = 1..r Az ? = 0
Protocol 9: Certificate for the column rank profile THEOREM 8. For A ∈ F m×n and S ⊂ F, certificate 9 is sound, with probability larger than 1-1 |S| , perfectly complete, with a Prover computational cost bounded by O(mnr ω-2 ), a communication space complexity bounded by 2n + 4r and a Verifier cost bounded by 2µ(A) + n + 3r.

PROOF. If the Prover is honest, the protocol corresponds first to an application of Theorem 7 to certify that J is a set of independent columns. This certificate is perfectly complete. Second the protocol also uses challenges from Certificate 7, which is perfectly complete, together with Certificate 4, which is perfectly complete as well. The latter certificate is used on A * ,J , a regular submatrix, as J is a set of independent columns of A. The final check then corresponds to A(D(W x)) -A * ,{c 1 ,..cr } y ? = 0 and, overall, Certificate 9 is perfectly complete.

If the Prover is dishonest, then either the set of columns in J are not linearly independent, which will be caught by the Verifier with probability at least 1 -1 |S| , from Theorem 7, or J is not lexicographically minimal, or the rank of A is not r. If the rank is wrong, it will not be possible for the prover to find a suitable Γ. This will be caught by the verifier with probability 1 -1 |S| , from Theorem 3. Finally, if J is not lexicographically minimal, there exists at least one column c k / ∈ J , ci < c k < ci+1 for some fixed i such that {c1, . . . , ci} ∪ {c k } form a set of linearly independant columns of A. This means that rank(A * ,1,...,c i+1 -1) = i + 1, whereas it was expected to be i. Thus, the prover cannot reconstruct a suitable triangular Γ and this will be detected by the verifier also with probability 1 -1 |S| , as shown in Theorem 3). The Prover's time complexity is that of computing a P LU Q decomposition of A. The transmission of v, x and y yields a communication space of n + 2r. Finally, in addition to Protocol 8, the Verifier computes W x as a prefix sum with r -1 additions, multiplies it by D, then substracts yi at the r correct positions and finally multiplies by A for a total cost bounded by 2µ(A)+n+3r-1.

Rank profile matrix certificate

We propose an interactive certificate for the rank profile matrix based on [START_REF] Dumas | Fast computation of the rank profile matrix and the generalized Bruhat decomposition[END_REF]Algorithm 4]: first computing the row and column support of the rank profile matrix, using Certificate 9 twice for the row and column rank profiles, then computing the rank profile matrix of the invertible submatrix of A lying on this grid.

In the following we then only focus on a certificate for the rank profile matrix of an invertible matrix. It relies on an LUP decomposition that reveals the rank profile matrix. From Theorem 2, this is the case if and only if P T U P is upper triangular. Protocol 10 thus gives an interactive certificate that combines Certificate 6 for a LDUP decomposition with a certificate that P T U P is upper triangular. The latter is achieved by Certificate 4 showing that P T and P T U are left upper triangular equivalent, but since U is unknown to the Verifier, the verification is done on a random right projection with the vector φ used in Certificate 6. PROOF. If the Prover is dishonest and U = P T U P is not upper triangular, then let (i, j) be the lexicographically minimal coordinates such that i > j and U i,j = 0. Now either x y = U φ ψ , and the verification will then fail to detect it with probability less than 2 |S| , from Proposition 1. Or one can write e T P T xf T P T φ = (e T U -f T )P φ = 0. If e T P T U P -f T = 0.

Prover

is not satisfied, then a random φ will fail to detect it with probability less than 1 |S| , since e, U and f are set before choosing for φ. At the time of commiting fj , the value of ei is still unknown, hence fj is constant in the symbolic variable Ei. Thus the j-th coordinate in ( 7) is a nonzero polynomial in Ej and therefore vanishes with probability 1/|S| when sampling the values of e uniformly. Hence, overall if P T U P is not upper triangular, the verification will fail to detect it with probability at most 2/|S|.

Finally, the rank profile matrix of any matrix, even a singular one, can thus be verified with two applications of Certificate 9 (one for the row rank profile and one for the column rank profile, themselves calling Certificate 8 only once), followed by Certificate 10 on the r×r selection of lexicographically minimal independent rows and columns. Overall this is 4µ(A) + 2n + 21r operations for the Verifier, and 3n + 16r communications.

1 2 .

 2 Is P LP T lower triangular? 3. Is Q T U Q upper triangular? Protocol 3: Rank profile matrix, non-interactive THEOREM 2. Certificate 3 verifies the rank profile matrix of A, it is sound and perfectly complete, with a communication cost bounded by O(r(n + m)), a Prover computation cost bounded by O(mnr ω-2 ) and a Verifier computation cost bounded by O(r(m+ n)) + µ(A).

Protocol 4 :

 4 Lower triang. right equivalence of regular matrices THEOREM 3. Let A, B ∈ F m×n , and assume A is regular. Certificate 4 proves that there exists a lower triangular matrix T such that AT = B. This certificate is sound, with probabilty larger than 1 -1

  ) is thus of the form diΦi + b aΦi + e diΨi + c aΨi + f = 0 where di = [A] {1..i} {1..i} , a = -n k=i+1 Λ k [A] {1..i-1,k} {1..i} and b, c, e, f are constants with respect to the variables Φi, Ψi. If di = 0, then, at least one [A] {1..i} {1..i-1,j} for j > i must be nonzero, otherwise A would be singular. Similarly, at least one [A] {1..i-1,k} {1..i} for k > i is nonzero, hence a is a nonzero polynomial in Λi+1, . . . , Λn and b, c are nonzero polynomials in Φj , Ψj for j > i, but constant in Φi and Ψi. This is a contradiction, as the first column of the determinant, b c can not be colinear with the second one. Hence di = 0.

Protocol 4 :THEOREM 9 .

 49 Verifier A ∈ F n×n invertible A = LDU P , with P = RA P T and P T U are left up. tri. equiv. with random proj. U ← P T U P U is upper tri. Now x y = U φ ψ e T P T x ? = f T P T φ Protocol 10: Rank profile matrix of an invertible matrix Protocol 10 is sound, with probability greater than 1 -2 |S| , and perfectly complete. The Prover cost is O(n ω ) field operations, the communication space is bounded by 10n and the Verifier cost is bounded by µ(A) + 16n.

Table 1 :

 1 Communication of 64 bit words versus computation modulo 131071

	Dimension	2k	10k	50k
	PLUQ	0.28s	17.99s 1448.16s
	CHARPOLY	1.96s 100.37s 8047.56s
	Linear comm.	0.50s	0.50s	0.50s
	Quadratic comm.	1.50s	7.50s	222.68s
	fgemv	0.0013s	0.038s	1.03s

Table 3 :
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This paper's contributions 2.3 Rank profile matrix certificate LEMMA 2. A decomposition A = P LU Q reveals the rank profile matrix, namely RA
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