
HAL Id: hal-01465756
https://hal.science/hal-01465756

Submitted on 13 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Environment-Model Based Testing of Control Systems:
Case Studies

Erwan Jahier, Simplice Djoko-Djoko, Chaouki Maiza, Eric Lafont

To cite this version:
Erwan Jahier, Simplice Djoko-Djoko, Chaouki Maiza, Eric Lafont. Environment-Model Based Test-
ing of Control Systems: Case Studies. International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2014), Apr 2014, Grenoble, France. pp.636 - 650,
�10.1007/978-3-642-54862-8_55�. �hal-01465756�

https://hal.science/hal-01465756
https://hal.archives-ouvertes.fr

Environment-Model Based Testing
of Control Systems: Case Studies *

Erwan Jahier1, Simplice Djoko-Djoko1, Chaouki Maiza1, and Eric Lafont2

1 VERIMAG-CNRS, Grenoble, France
2 ATOS-WORLDGRID, Grenoble, France

Abstract. A reactive system reacts to an environment it tries to control. Lurette
is a black-box testing tool for such closed-loop systems. It focuses on environ-
ment modeling using Lutin, a language designed to perform guided random ex-
ploration of the System Under Test (SUT) environment, taking into account the
feedback. The test decision is automated using Lustre oracles resulting from the
formalisation of functional requirements.
In this article, we report on experimentations conducted with Lurette on two in-
dustrial case studies. One deals with a dynamic system which simulates the be-
havior of the temperature and the pressure of a fluid in a pipe. The other one
reports on how Lurette can be used to automate the processing of an existing test
booklet of a Supervisory Control and Data Acquisition (SCADA) library module.

Keywords: Reactive systems, Control-command, Dynamic systems, scada, Test plans,
Black-box testing, Requirements engineering, Synchronous Languages.

1 Introduction

Lurette is a black-box testing tool for reactive systems that automates the tests decision
and the stimulation of the System Under Test (SUT). Lurette is based on two syn-
chronous languages: Lustre [1], to specify test oracles, and Lutin [2], to model reactive
environments. Lurette does not require to analyze the code, thus it can deal with any
kind of reactive systems, as the experimentations reported below illustrate.

The COMON project∗ gathered three industrial companies that conceive control-
command systems of nuclear plants. Corys Tess designs plant simulators used in par-
ticular for training operators. Atos Worldgrid designs software and hardware of com-
puterized control rooms. Rolls-Royce designs the software and hardware of classified
automatisms in charge of the plant security. The goal for this consortium was to take
advantage of the partners complementarity to set up a development framework based
on early simulations, model refinements, continuous integration, and automatic testing.
During the project, the consortium has crafted a case study representative of each of the
partners activity [3]. They also wanted to experiment on their own designs the Lurette
languages and methodology. This article presents those experimentations.

* This work was supported by the COMON Minalogic project [2009-2012] funded by the french
government (DGCIS/FUI), la Metro, and the city Grenoble – http://comon.minalogic.net/

http://comon.minalogic.net/

2

We first recall Lurette principles in Section 2, and briefly present enough of the
Lustre and the Lutin languages to be able to understand the examples. Section 3 presents
the Corys case study and demonstrates the use of Lurette on a library object used to
simulate the behavior of the temperature and the pressure of a fluid in a pipe. Section 4
presents the Atos case study that illustrates how Lurette can be used to automate the run
of existing test plans designed for a Supervisory Control and Data Acquisition (SCADA)
library object. We discuss related work and conclude in Sections 5 and 6.

2 Black-box Testing of Reactive Systems using Lustre and Lutin

Test of reactive systems. A reactive system is an combination of hardware or soft-
ware (or both) that (1) acquires inputs (set_inputs), (2) performs a computation step
(step), (3) and provides outputs (get_outputs). Testing a reactive system consists in
writing or generating scripts that call the set_inputs and the step functions in turn.
Such test scripts can be done offline, but a reactive system is meant to react to stimuli
coming from its environment (e.g., from sensors), and to control it (e.g., using actua-
tors). Thus a realistic test sequence should use get_outputs to provide input vectors
that take into account the SUT inputs/outputs sequence history (i.e., its trace).

Stimulation. The environment is also a reactive system that executes in closed-loop
with the SUT. It can be very versatile or underspecified. This motivated the design of
Lutin [2], a language to program stochastic reactive systems and environment models.

Oracles. The test decision is deterministic and can be automated by formalizing the
SUT expected properties via predicate over traces. A Lurette oracle is a program that
returns as first output a Boolean that formalizes some requirements. Lurette reports a
property violation each time one oracle returns false. As oracles for reactive systems
often involve time, a language where time is a first-class concept like Lustre [1] is a
legitimate choice. Moreover, Lustre can formalise any safety property [4].

Coverage. To decide when to stop generating tests, we use a notion of requirements
coverage. Consider the requirement “stable(X,30) ⇒ stable(Y,5)” where the
“stable(V,n)” predicate states if a variable V was stable during the last n seconds;
it is always satisfied if X is never stable. But from a coverage point of view, it is more
interesting to generate input sequences where X is stable. That is an example where ran-
dom simulations are not sufficient and a language to program some guided scenarios is
useful. Note also that if X is a SUT input, covering this requirement is easy. If X is an
output, it is more complicated as it requests to drive the SUT, which sometimes require
a deep expertise on its internals (but it is always the case when designing tests).

Lurette. Lurette handles the test harness, by reading test parameters, executing all the
reactive systems in turn (SUT, environment, oracles), computing requirements cover-
age, and displaying a test report3. It does not impose the use of Lustre or Lutin. The
reaction steps can be either time-triggered, event-triggered, or both. In the experimenta-
tions we report in this article, the SUT was time-triggered. More detailed presentations

3 cf http://www-verimag.imag.fr/lurette.html for tools, manuals, and tutorials.

http://www-verimag.imag.fr/lurette.html

3

of Lurette can be found in [3,5]. We now present a few Lustre and Lutin programs to
illustrate their main characteristics. We use those examples in the forthcoming sections.

Lustre. Lustre allows defining reactive programs via sets of data-flow equations that
are virtually executed in parallel. Equations are structured into nodes. Nodes transform
input sequences into output sequences. The Lustre node r_edge below processes one
Boolean input sequence, and computes one Boolean output sequence.

node r_edge(x:bool)returns(r:bool);
let

r = x -> x and not pre(x);
tel

x

r_edge(x)

This node defines its output with one equation and four operators (i.e., predefined
nodes). The memory operator “pre” gives access to the previous value in a sequence:
if x holds the sequences (x1,x2,. . .), then pre(x) holds (⊥,x1,x2,. . .), where ⊥ denotes
an undefined value. The arrow operator “->” modifies the value of the first element of a
sequence: if x holds (x1,x2,x3,. . .), then init->x holds (init,x2,x3,. . .). This operator is
useful for sequences that are undefined at their first instant, such as pre(x). The “and”
and “not” operators are the logical conjunction and negation lifted over sequences.
Hence, r_edge(x) is equal to x at the first instant, and then is true if and only if x is
true at the current instant and false at the previous one. This node detects rising edges.

Lutin. Lutin is a probabilistic extension of Lustre with an explicit control structure
based on regular operators: sequence (fby, for “followed by”), Kleene star (loop), and
choice (|). At each step, the Lutin interpreter (1) computes the set of reachable con-
straints, which depends on the current control-state; (2) removes from it unsatisfiable
constraints, which depends on the current data-state (input and memories); (3) draws a
constraint among the satisfiable ones (control-level non-determinism); (4) draws a point
in the solution set of the constraint (data-level non-determinism). This chosen point de-
fines the output for the current reaction. The solver of the current Lutin interpreter uses
Binary Decision Diagrams (BDD) and convex polyhedron libraries [6]. It is thus able
to deal with any combination of logical operators and linear constraints. Let us first
illustrate the Lutin syntax and semantics with a program using equality constraints.

node sn_gen () returns (sn:int) =
loop [10 ,20] sn=1 fby
loop [20 ,30] sn=2 1

2
sn_gen()

0

3

This node generates an integer finite sequence, without using any input. It first uses an
atomic constraint that binds sn to 1, during between (uniformly) 10 and 20 reaction
steps. Then it uses sn=2 during between 20 and 30 steps, and then stops. A constraint
can actually have any number of solutions, as in the x_gen node below.

node x_gen(i:real) returns (x:real) = loop { 0<x and x<i }

At each step, the elected constraint is simplified by constant propagation of inputs and
memories values, and solved. Here, when i is negative, the constraint is not satisfiable
and the program stops. Otherwise, one solution is drawn in the solution set]0;i[.

4

Lutin also has a notion of typed macro, which is useful to structure constraints.
let abs(z: real):real = if z < 0.0 then -z else z
let zone1(x,y:real):bool = abs(x+3.0*y) < 3.0 and abs (20.0*x-y+2.0) <5.0
let zone4(x,y:real):bool = abs(x-y+6.0) < 3.0 and abs(-5.0*x+y-2.0) <7.0

The first macro defines the absolute value of any real. The next ones define two zones
where a couple of real values (x,y) evolve. We present below a last example (used later)
that illustrates how to use Lutin to guide the random exploration of the environment.
node x_y_gen () returns (x,y:real) =
loop { {|3: zone1(x,y) |1: zone4(x,y)} fby loop ~50:5 x=pre x and y=pre y }

For the first reaction, a point is drawn in zone1 with a probability of 3/(3+1)=0.75 or
in zone4 with a probability of 1/(3+1)=0.25. Then x and y keep their previous values
for 50 steps in average, with a standard deviation of 5. This process then starts again
thanks to the outer loop. Preventing the environment outputs to change at each reac-
tion produces better coverage for requirements guarded by stability conditions (which
is common in control-command applications). More generally, a too chaotic environ-
ment might set the SUT into degraded modes, which would prevent the test of nominal
modes. Lutin also has constructs to execute in parallel nodes (run) or constraints (&>),
as well as exceptions 4.

3 Automatic Testing of an Alices Library Object

In this section we report on a case study provided by Corys, a 300 persons company
that develops and commercializes the Alices workbench. Alices is a data-flow graphical
programming language tool for modeling, simulating and analyzing dynamic systems
in the domain of energy and transportation. Simulators of energy production plants
implemented in Alices are typically used to train operators.

3.1 The SUT: the Node_Liquid_SPL Alices object

Corys asked us to test one of their most frequently used library object, which is named
Node_Liquid_SPL. This object simulates the behavior of the temperature and the pres-
sure of a fluid in a pipe transporting homogeneous liquids through hydraulic networks.
It is defined using mass and energy conservation equations:

dM
dt

= ∑
i

Qmi
dh
dt

=

∑
i

Qei−h∑
i

Qmi

M

where ∑i Qmi and ∑i Qei are respectively the sum of the mass flow (kg/s) and the sum
of the powers arriving in the node; M and h are the mass (kg) and the mass enthalpy
(J/kg) of the system; t is the time. The SUT is made of this object connected to two
pipes, themselves connected to two objects (load loss) that models the fluid mass flow
and transported power. The resulting equations are discretized and solved using the
Newton-Raphson method. Table 1 describes the SUT input/output variables. We have
shortened some variable names for the sake of readability.

4 cf http://www-verimag.imag.fr/Lutin.html for more information.

http://www-verimag.imag.fr/Lutin.html

5

Name Producer Meaning Unit
Pin Env. Limit condition for input pressure Pa
Pout Env. Limit condition for output pressure Pa
Tin Env. Limit condition for input temperature °c
Tout Env. Limit condition for output temperature °c
T_amb Env. Temperature of the ambiant env °c
Qe_amb SUT Power exchanged with the ambiant env W
Qe1 SUT Power exchanged with the first pipe W
Qe2 SUT Power exchanged with the second pipe W
Qm1 SUT Mass flow exchanged with the first pipe kg/s
Qm2 SUT Mass flow exchanged with the second pipe kg/s
M SUT Mass of the system kg
h SUT Mass enthalpy of the system J/kg
T SUT Temperature of the system °c

Table 1. Description of the SUT input/output variables

3.2 The SUT Environment

The input variables to stimulate this node are the limit conditions for the pressure (Pin
and Pout), the temperature (Tin and Tout), and the ambient temperature (T_amb).
The admissible values for those inputs are part of the object documentation, which
states that pressure values vary within [10000.0, 190.0e5], and temperature values vary
within [5.0, 365.0]. Moreover, Corys wanted to test this node in average conditions, and
therefore required that the stimuli generator satisfies the following constraints:

– temperature and pressure cannot vary more than 10% between two instants;
– orders change only when mass and temperature values are stable (i.e., they do not

change of more than 1% between two steps).

To stimulate the SUT, we therefore designed a Lutin program that is a direct for-
malization of the preceding constraints. We use the limit_der macro, which can be
used both to test if an input varies more than a given percentage (limit_der(1.0,M)
to test if M varies less than 1%), or to constraint the derivative of some output
(limit_der(10.0,Pin) to constraint Pin to vary less than 10%).

let limit_der(pc:real; x:real ref):bool = abs(x-pre x) < abs(pc /100.0* pre x)
node liquid_spl_env(M, T: real) returns(

Pin , Pout: real [10000.0; 190.0e5]; Tin ,Tout ,Tamb: real [5.0; 365.0];
) =
-- a few aliases to make it more readable

let inputs_are_stable = limit_der (1.0,M) and limit_der (1.0,T) in
let dont_change = -- outputs keep their previous values

Pin = pre Pin and Tin = pre Tin and
Pout = pre Pout and Tout = pre Tout and Tamb = pre Tamb in

let change = -- outputs do not vary more than 10%
limit_der (10.0 ,Pin) and limit_der (10.0 , Pout) and
limit_der (10.0 ,Tin) and limit_der (10.0 , Tout) and limit_der (10.0, Tamb)

in -- a simple scenario
true -- the first instant
fby loop {if inputs_are_stable then change else dont_change}

The main node liquid_spl_env has two real inputs (produced by the SUT), and
five real outputs. At the first instant, the only constraints on output variables are the

6

ones mentioned in their declarations; a random value is drawn in their respective inter-
val domains. For example, Tamb is drawn between 5 and 365. Then, for the remaining
instants, variables keep their previous values if one of the environment input (M or T)
varies more than 1%; otherwise they vary at random, but without exceeding 10%. One
could of course imagine scenarios that are more complex. However, it hasn’t been nec-
essary to cover the expected properties we present in the following.

Note the feedback loop: the SUT reacts to its environment, which itself reacts to
the SUT by testing the stability of M and T. This is typical of what offline test vectors
generators cannot do when they ignore the reactive nature of the SUT.

3.3 The oracles

In order to automate the test decision, we need to formalize the SUT expected proper-
ties. Actually, such requirements were not explicitly written in the object documenta-
tion. Hence we asked to the Corys engineer responsible for the Alices library to write
down how he expects this object to behave. He came up with the following require-
ments.

1. if the sum of powers (coming from Qe1, Qe2, and Qe_amb sensors), and the sum
of incoming mass flows (coming from Qm1 and Qm2 sensors) are positive, then the
mass and the temperature of the node increase;

2. if the sum of powers Qe, and the sum of flows mass Qm are negative, then the mass
and temperature of the node decrease;

3. if the sum of powers is zero, and the sum of mass flow rate Qm is positive, then the
mass increases;

4. if the sum of Qe is zero, and the sum of mass flow rate Qm is negative, then the
mass decreases;

5. if the sum of mass flows Qm is zero, and the sum of powers Qe is negative, then the
temperature decreases;

6. if the sum of mass flows Qm is zero, and the sum of powers Qe is positive, then the
temperature increases.

A possible Lustre formalization of the first requirement is:

Qe = Qe1+Qe2+Qe_amb;
Qm = Qm1+Qm2;
ok1 = (Qe >= 0.0 and Qm >= 0.0) => (increase(M, 0.0) and increase(T, 0.0));

where increase is defined like that:

node increase(x: real; threshold: real) returns (y: bool);
let y = true -> (x-pre(x) >= threshold); tel

When we run Lurette with the SUT, the environment, and the oracles we described,
all oracles are violated after a few steps. After several discussions with the person who
wrote down the requirements, we ended up in Lurette runs that worked fine for hours.
We now sum-up the fixes we needed to perform.

First problem. We have formalized the sentence “the sum of powers (coming from Qe1,
Qe2, and Qe_amb sensors)”, and “the sum of mass flows (coming from Qm1 and Qm2”)

7

as Qe=Qe1+Qe2+Qe_amb and Qm=Qm1+Qm2. However, the node connectors are oriented:
the first pipe flows in, whereas the second pipe flows out. Hence the correct interpreta-
tion leads to the following definitions: Qe=Qe1-Qe2+Qe_amb and Qm=Qm1-Qm2.

Second problem. We have performed a bad interpretation of “are positive/negative” in
the requirements. Indeed, when one compares to 0 a sum of values that are computed up
to a certain precision (0.1 for flow mass, and 100 for powers), one has to specify some
tolerance levels. Hence, for example, the second property should be rewritten as: “if
Qe<=-Tol_Qe and Qm<=-Tol_Qm then the mass and temperature of the node decrease”,
where Tol_Qe=300 (three times the precision of power sensors) and Tol_Qm=0.2 (two
times the precision of flow mass sensors).

Third problem. In properties 5 and 6, the statements “the sum of powers Qe is positive”
should take into account the mass enthalpy of the node (Qe-h.Qm instead of just Qe).

Fourth problem. At this stage, the requirements fixes we have performed allow run-
ning simulations that last several minutes without violating oracles. After more steps
(around 1000 steps in average), property 5 is violated. This time, the problem was more
subtle and required a deeper investigation to the Corys engineer. His conclusion was
that the convergence criteria (thresholds parametrizing the differential equation solver)
in this simulation were too small. By setting a convergence criterion of 1 (versus 0.1)
for the power, and of 1000 (versus 100) for the flow mass, no oracle is violated, even if
we run the simulation for hours. Since the convergence criterion implies the precision
of sensors computations, we need to modify again the values of Tol_Qm and Tol_P.
Those new convergence criteria are actually the ones that are typically used in Alices
for modeling pipes in power plants, which explain why this problem was (probably)
never triggered before by Alices users.

Name Unit Meaning Version 1 Version 2 Version 3 Involved Req.
Qm kg/s Sum of mass flow Qm1+Qm2 Qm1-Qm2 ditto all
Qe W Sum of powers Qe1+Qe2+Qe_amb Qe1-Qe2+Qe_amb ditto all
P W Node power Qe Qe-h.Qm ditto all
Tol_Qm kg Mass tolerance 0 0.2 2 3,4
Tol_P W Power tolerance 0 300 3000 1,2,5,6

Table 2. Summary of requirements fixes. Version 2 arises from the fixing of the first three prob-
lems. Version 3 arises from the fixing of the fourth problem.

3.4 Discussion and lessons learned from this first experiment

The first three problems were due to a lack of precision when formulating requirements.
One could argue that a specialist in physical systems simulators design would have
interpreted such requirements correctly in the first place. Still, undoubtedly, the less a
requirement is subject to a bad interpretation, the better it is. This experiment stresses
out that Lurette can be seen as an engineering tool that helps to write consistent and
precise requirements. The fourth problem was much more interesting for the Corys
engineers and revealed a real feature of this very frequently used object that behaves
unexpectedly when used with an unusual convergence criterion.

8

The principal lesson of this experimentation is that writing executable requirements
is not that difficult and can be very effective. Indeed, the experiment was conducted
by an engineer that was ignorant about Lustre, Lutin, Alices, and dynamic systems
modeling. Still, he was able to pinpoint four issues in less than one week of work with
a few interactions with the Alices libraries supervisor.

We performed a similar study during the COMON project on voters designed in
Scade by Rolls-Royce. Their voters were much simpler, with no internal state. Hence
their formalization into Lustre oracles ended up into something equivalent to the Scade
implementation. We believe that using oracles in this context is still useful, as it amounts
to have two teams implementing the same specification, which is a classical strategy to
gain confidence in software implementations. In such cases, Lutin stimulators can still
be useful to compare thoroughly two implementations. In the particular case of Rolls-
Royce voters, it was not necessary as we were able to prove their equivalence by state
exploration (using the Lesar model-checker [7]). This illustrates the synergy we can
have between formal-based testing and formal verification.

4 Timed Test Plans Automation

4.1 Test plans: a standard practice in industry

A standard practice in industry is to base test campaigns on test plans. The test plans
of our three partners in the COMON project were actually very similar, and were made
of a three columns table: one for the time (physical or logical); one for the stimulation,
that specifies what the tester should do to perform the test; and one last column that
specifies what the tester should observe in reaction to its stimulations. Corys developed
in collaboration with EDF and AREVA a tool (I&C Simulation) to automate the play
of such test plans, both for the stimulation and the decision parts. This tool processes
scripts, where one can ask to set a variable to a particular value at a specific time; and
then one can check that another variable take a specific value at another specific time.

One problem with such test plans, being automated or not, is that they are overly de-
terministic, both at the data and at the temporal levels. In the case studies we addressed
so far with Lurette, the strategy was different as it consisted in writing high-level con-
straints both for generating several stochastic scenarios (Lutin), and for checking several
traces (Lustre). This allows covering much more cases with the same specifications.

Nevertheless, engineers are used to write test plans, and several years of know-how
are associated to their design. This is why we find interesting to report how Lutin and
Lustre could be used to implement test plans, and to show how easy it can be to add a
little bit of data and temporal looseness.

In this section, we present a test plan provided by Atos, targeting a generic library
object. This plan was extracted from an existing test campaign conducted some years
ago. We first demonstrate how to automate the play of this test plan in a very faithful
and deterministic manner, as it could have been done with the I&C Simulation tool of
Corys for example. Then we demonstrate the benefits of our languages to relax and
generalize the constraints on both the stimulation and the observation part, which leads
to tests that cover more cases, and are easier to maintain.

9

4.2 The SUT: a SCADA generic object

A SCADA (Supervisory Control and Data Acquisition [8]) is a remote management
system for large-scale processing in many real time telemetry and remote control in-
dustrial installations (manufacturing, food processing, energy). It typically handles in
real-time thousands of data (e.g., coming from sensors), and presents a relevant syn-
thesis in graphical form to operators so they can monitor and control the system. Atos
develops and commercialises several SCADA dedicated to the supervisory and control
of power generating plants (nuclear, fuel, gas).

The purpose of the generic object we want to test is to monitor the operating area
of a pair of numeric values (which typically comes from the physical process) and to
raise alarms when dreaded events occur. The space where the monitored point evolves
in is divided into several operating domains (nominal, degraded, etc.), and into several
zones. When the point enters in a forbidden zone, an alarm should be raised; when
it remains in an accumulating zone too long, another alarm should be raised; in an
authorized zone, there is nothing to check. The zones shapes differ for each domain.
The system chooses a domain, depending on various criteria on the evolution of the
operating point. The operator can ask to favor some domain, and he can force it (i.e.,
ask more categorically). The number and the shape of domains (that can overlap) and
zones are parameters of the generic object.

The SUT is such a parametrized object, with four domains and five zones; zone 2
is forbidden; zones 3 and 5 are accumulating; zones 1 and 4 are authorized. The SUT
environment is made of two integers (X and Y) that hold the monitored point coordinates,
and three Boolean inputs per domain so that the operator can ask to choose a domain
(dd1 to dd4), force a domain (fd1 to fd4), or un-force it (ud1 to ud4).

The test plan CRT_019_S04. The existing test campaign we based our work on con-
sisted in 21 test plans. The CRT_019_S04 is one of them, and is shown in Table 3. This
test plan is split into seven logical steps, and four stages. At each step, the operator sets
the values of variables mentioned in the action column, and checks (visually) that the
system behaves as specified in the expected result column.

The Atos I/O stimulator. In order to ease the test of their SCADA objects, Atos devel-
oped an in-house tool called the Input/Output stimulator. This tool processes scripts,
and is basically able to (1) set SCADA internal variable values; (2) display messages;
(3) suspend the script until the operator presses a key (WAIT). This stimulator is used
to ease the play of test plans by automating the run of the action column, and to limit
the intervention of the operator to a few key presses. In the CRT_019_S04 plan, each
of the four stages actually corresponds to a WAIT statement in the corresponding I/O
stimulator script. The tester does the expected results checking.

4.3 Implementing automated test plans with Lutin and Lustre

The first step to implement with Lurette an automated version of this test plan was to
connect our languages APIs to the Atos SCADA. To do that, we re-used the infrastruc-
ture that was set up for the I/0 stimulator. We also added a layer in charge of interfacing
an event-triggered workbench (SCADA) with time-triggered programs (Lutin/Lustre).

10

step nb Action Expected result / Comment
1 Launch stage 1 which elects domain 1 and Check the image display

sets X,Y to (25,40) (in zone 1)
Launch stage 2 which sets X,Y to (40,28) Check the operating point (position, color)

2 in the forbidden zone 2 Check the alarm raised in the alarm function
Write down the timestamp

3 Launch stage 3, which elects domain 2 Check that the alarm above remains
instead of domain 1 at the timestamp of step 2

X,Y remains in the forbidden zone 2
4 Check that the alarm above remains

Force domain 3 at the timestamp of step 2
X,Y remains in the forbidden zone 2

Force domain 4 The alarm above disappear
5 X,Y is now in an authorized zone 4

The alarm is raised at the current timestamp
6 Unforce domain 4 domain 2 is elected

X,Y is back in the forbidden zone 2
7 Launch stage 4 which sets X,Y to (-9,25) The alarm disappears

in the authorized zone 4 X,Y in the authorized zone 4

Table 3. The CRT_019_S04 test plan

From Lurette to SCADA, we generate an event each time a variable value changes (up
to a given threshold). From SCADA to Lurette, we perform a periodic sampling of the
variable values. This sampling is done at 1 hertz, to avoid data race problems and to re-
main deterministic and reproducible: indeed, 1 second is enough for the SUT to address
all events resulting from the change of all interface variables. Note that it would have
been easy and interesting to test what happens at higher rates.

The « Expected result » column of Table 3 in Lustre. In order to detect bad behav-
iors, we formalize the observation column of the CRT_019_S04 test plan with a Lustre
oracle that monitors the following inputs: the step number (sn ∈ [1,7]) ; the current
zone (czone ∈ [1,5]); the alarm of zone 2 (A2); the elected domain (d_elec); the cur-
rent timestamp (ts_c); and the timestamp of alarm A2 (ts_a2). Here again, we have
shortened variable names for the sake of readability.

node crt019_s04(sn:int; czone:int; A2:bool; d_elec ,ts_c ,ts_a2:int)
returns(ok : bool);
var ok1 ,ok2 ,ok3 ,ok4 ,ok5 ,ok6 ,ok7:bool; lts_a2:int;
let
lts_a2 = 0 -> if r_edge(A2) then ts_c else pre(lts_a2);
ok1 = (sn=1 => (czone =1));
ok2 = (sn=2 => (czone=2 and A2));
ok3 = (sn=3 => (czone=2 and A2 and ts_a2=lts_a2));
ok4 = (sn=4 => (czone=2 and A2 and ts_a2=lts_a2));
ok5 = (sn=5 => (czone=4 and not A2));
ok6 = (sn=6 => (czone=2 and d_elec =2 and ts_a2=ts_c));
ok7 = (sn=7 => (czone=4 and not A2));
ok = ok1 and ok2 and ok3 and ok4 and ok5 and ok6 and ok7;

tel

The local variables ok1 to ok7 encode the seven steps of the third column. In order
to « write down the timestamp » at step 2, we define a local variable lts_a2 as follows:

11

initially set to 0, it then takes the value of the current timestamp ts_c when A2 is raised
(r_edge(A2)), and keeps its previous value otherwise (pre(lts_a2)). To encode the
expected result of steps 3 and 4, we compare the timestamp of the A2 provided in input
ts_a2 with its counterpart computed locally lts_a2.

The « action » column of Table 3 in Lutin. We first present a completely deterministic
Lutin program that mimics the behavior of an operator that processes this test plan.
Then we show how slight modifications of this program can lead to a stimuli generator
that covers much more cases. Let us first define a few Boolean macros to enhance the
programs readability. The tfff macro below binds its first parameter to true, and all
the other ones to false.

let tfff(x,y,z,t:bool):bool = x and not y and not z and not t

Similarly, we define ftff, which binds its second parameter to true; f7 and f8 bind
all their parameters to false. The integer input sn is used to choose the instant at which
we change the step. It can be controlled by a physical operator or by another Lutin node
that sequentially assigns values from 1 to 7 (similar to the sn_gen node of Section 2).
The fourteen outputs of this node controls the domain to display (display domain i if
ddi is true), to force (force domain i if fdi is true), or to un-force (un-force domain i
if udi is true).

node crt019_s04(sn:int) returns
(X, Y: real; dd1 ,dd2 ,dd3 ,dd4 , fd1 ,fd2 ,fd3 ,fd4 , ud1 ,ud2 ,ud3 ,ud4: bool) =
loop {

sn=1 and X=25.0 and Y=40.0 and tfff(dd1 ,dd2 ,dd3 ,dd4) and
f8(fd1 ,fd2 ,fd3 ,fd4 ,ud1 ,ud2 ,ud3 ,ud4)

As long as the sn input is equal to 1, the outputs of the crt019_s04 node satisfy
the constraint above that states that only the first domain should be displayed, and no
domain is forced or unforced. X and Y are set in the authorized zone 1. When sn becomes
equal to 2, the control passes to the constraint below, which is the same as the previous
one except that the point is set somewhere in zone 2.

} fby loop {
sn=2 and X=40.0 and Y=28.0 and tfff(dd1 ,dd2 ,dd3 ,dd4) and
f8(fd1 ,fd2 ,fd3 ,fd4 ,ud1 ,ud2 ,ud3 ,ud4)

} fby loop {
sn=3 and X=40.0 and Y=28.0 and ftff(dd1 ,dd2 ,dd3 ,dd4) and
f8(fd1 ,fd2 ,fd3 ,fd4 ,ud1 ,ud2 ,ud3 ,ud4)

} fby loop {
sn=4 and X=40.0 and Y=28.0 and ftff(dd1 ,dd2 ,dd3 ,dd4) and
fd3 and f7(fd1 ,fd2 , fd4 ,ud1 ,ud2 ,ud3 ,ud4)

} fby loop {
sn=5 and X=40.0 and Y=28.0 and ftff(dd1 ,dd2 ,dd3 ,dd4) and
fd4 and f7(fd1 ,fd2 ,fd3 , ud1 ,ud2 ,ud3 ,ud4)

} fby loop {
sn=6 and X=40.0 and Y=28.0 and ftff(dd1 ,dd2 ,dd3 ,dd4) and
ud4 and f7(fd1 ,fd2 ,fd3 ,fd4 ,ud1 ,ud2 ,ud3)

} fby loop {
sn = 7 and X=-9.0 and Y=25.0 and ftff(dd1 ,dd2 ,dd3 ,dd4) and
f8(fd1 ,fd2 ,fd3 ,fd4 ,ud1 ,ud2 ,ud3 ,ud4)

}

This Lutin program, once run with the oracle of Section 4.3, allows test automation.
However, it suffers from the same flaw as its original non-automated counterpart: it can

12

be tedious to maintain. Indeed, if for some reason, the shape of zone 1 is changed, the
chosen point (25,40) might no longer be part of zone 1. Choosing pseudo-randomly any
point in zone 1 using the Lutin constraint solver makes the plan more robust to software
evolution. Moreover, with the same effort, it covers much more cases. In the same spirit,
we can further loosen this plan by replacing “choose a point in the authorized zone 1”
by “choose a point in any authorized zone” (cf the x_y_gen node of Section 2). In
step 3, 4, and 5, we could also toss the choice of the domain to be forced. Actually, by
loosening this plan in this way, we obtain a plan that covers more cases than the twenty
other plans of the test campaign!

4.4 Discussion and lessons learned from this second experiment

The original test plan was not deterministic, since the time between each step change
was controlled by a physical tester. However, this non-determinism is easy to simulate
with Lutin, for example using the sn generator (sn_gen) presented in Section 2. The
advantage of the Lutin non-determinism over the human one is its reproducible nature.
Indeed, one just needs to store the seed used by the Lutin pseudo-random engine to be
able to replay the exact same simulation.

This test plan does not illustrate the feedback capability of Lurette. However, plans
where the tester should perform some specific actions depending on some behavior of
the SUT are very common.

We have shown a way to use Lurette and its associated languages to automate the
run of an existing test plan, designed to be exercised by a human operator. The initial
set-up for automated plans seems to require more effort, as each variable behavior has
to be described precisely at each step, while the original plan was more allusive. But the
Lurette version has four major advantages: (1) it can be run automatically, (2) each run
is reproducible, (3) it covers (much!) more cases, and (4) it is more robust to software
(or specification) evolutions.

The two last points are the most important. Indeed, Atos experimented with com-
pletely automated test scripts, but gave up as they were too difficult to maintain. One
reason was that their scripts were too sensitive to minor time or data values changes.
The use of languages with a clean semantics with respect to time and parallelism eases
the writing of more abstract and general properties that can serve as oracles for several
test scenarios. The concision and the robustness arguments hold both for the oracles
and the stimulators, and from the data and the temporal points of view.

In previous experimentations ([3,5] and Section 3), the methodology was to derive
oracles and stimulators from informal requirements. The initial stimulator is made of
very general constraints. Then, to increase oracles coverage, Lutin scenarios are de-
signed. During the COMON project, we also experimented with this methodology on
the SCADA object, and the coverage was actually comparable. This “direct formalization
approach” is more modular, as some variables sets can be defined separately, whereas
with test plans, one needs to describe all variables at the same time. Moreover, it al-
lows writing specific scenarios only when it is necessary, as some oracles are covered
in the first place using simple constraints on the environment. Once all the easy cases
are explored at random with a minimal effort, it remains the difficult work that consists
in driving the SUT to set it in some configurations that exhibit interesting cases. This

13

is a work of SUT experts. Leveraging testers from the tedious and systematic part, and
letting them focus on interesting parts using high-level languages could restore the in-
terest in testing, which often has a poor reputation. Writing Lutin programs is a creative
activity, and generalising its use could ease to relocate test teams.

5 Related Work

Automating the test decision with executable oracles is a simple and helpful idea used
by many others. The real distinction between Lurette and other tools lies in the way
SUT inputs are generated. In the following, we group approaches according to the in-
put generation techniques: source-based, model-based, or environment-model based.
We found no work dealing with automated testing of SCADA systems. For dynamical
systems workbenches (such as Alices), the literature is quite abundant, and mostly con-
cerns Simulink [9]. Hence we focus here on works targeting Simulink, and refer to the
related work section of [3] for a broader and complementary positioning of Lurette in
the test of reactive systems.

Source code based testing (white-box). The White-box testing approach consists in
trying to increase structural coverage by analysing the SUT source using techniques
coming from formal verification such as model-checking [10], constraint solving, or
search-based exploration [11,12]. Such approaches are completely automated, but can
be confronted to the same limitations as formal verification with respect to state space
explosion. Several industrial tools use white-box techniques to test Simulink designs,
e.g., Safety Test Builder [13], or Design Verifier [14].

Model-Based Testing (grey-box). A very popular approach in the literature [15,16]
consists in viewing the SUT as a black-box, and designing a more or less detailed model
of it. This model should be faithful enough to provide valuable insights, and small
enough to be analyzable. The model structure is sometimes used to define coverage
criteria. The model is used both for the test decision and the stimuli generation. T-VEC
[17,18] and Reactis Tester [19] are an industrial tools using this approach to generate
tests offline. With Lurette, we also use a model of the SUT, but this model is only used
for oracles. The input generation is developed by exploration of environment models.
A way to combine this approach with Lurette would be to use such models of the SUT
to generate Lutin scenarios to guide the SUT to specific states and increase coverage.

Environment Model based testing (black-box). While the white-box approach in-
tends to increase structural coverage, the main goal of black-box testing is to increase
(functional) requirements coverage [20]. Time Partition Testing (TPT) is an industrial
black-box tool distributed by Piketec [21]. As Lurette, TPT have its own formalism to
model the environment and automate the SUT stimulation [22,23]. It is a graphical for-
malism based on hierarchical hybrid automata that is able to react online on the SUT
outputs. The major difference with Lutin is that those automata are deterministic. It
uses python oracles to automate the test decision, although Lustre is arguably better for
specifying high-level timed properties.

Another way to explore the environment state space, which has been experimented
on Simulink programs [24,25], is to perform heuristic search (evolutionary algorithms,

14

simulated annealing [26]). The idea is to associate to each SUT input a set of possible
parametrized generators (ramp, sinus, impulse, spline). The search algorithms generate
input sequences playing with several parameters, such as the number of steps each
generator is used, their order, or the amplitude of the signal. A fitness function estimates
the distance of the trace to the requirements. Then, another trace is generated with
other parameters, until an optimal solution is found. A limitation of their generators is
that they are not able to react to SUT outputs. More generally, for systems that have
a complex internal state, it can be very difficult to drive it in some specific operating
mode; to do that, the knowledge of the expert is mandatory (and being able to react
to SUT outputs too). Instead of guiding a random exploration via heuristics, Lurette
proposal consists in asking experts to write programs that performs a guided random
exploration of the SUT input state space. A way to combine both approaches could be
to let some evolutionary algorithms choose some parameters of Lutin programs, such
as choice point weights or variable bounds.

6 Conclusion

The main lesson of the first experimentation is that writing executable requirements is
not that difficult and allows to write precise and consistent requirements. This study
gave new insights to Corys engineers on one of their most frequently used object.

The second experimentation demonstrates a way to automate the execution of timed
test plans. Test plans are commonly used in industry, and automating their process
aroused a big interest within our industrial partners. Lutin and Lustre allows improving
their use by permitting the design of more abstract test plans that are more robust to
temporal and data changes. One noteworthy outcome of this study is that the resulting
randomized and automated test plan actually covers more than the 21 test plans of the
original test suite.

There is a synergy between automated oracles and automated stimulus generation.
Indeed, generating thousands of simulation traces would be useless without automatic
test decision. Conversely, designing executable requirements to automate the decision
of a few scenarios generated manually might not be worth the effort.

This work also demonstrates that synchronous languages are not only useful for
designing critical systems (as the success of Scade gives evidence of), but can also be
used to validate dynamic systems models (Alices) or event-based asynchronous systems
(SCADA). The language-based approach of Lurette allows performing several kinds of
test (unit, integration, system, non-regression) on various domains [3,5].

From an industrial use perspective, a general-purpose library and specialized
domain-based ones are still to be done. That situation may progress in the near fu-
ture, as the interest expressed in Lurette by the three industrial partners of the COMON
project is one of the reasons that convinced people to establish in 2013 the Argosim
company. Argosim is developing the Stimulus tool based on the Lurette principles [27].

References
1. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow programming

language Lustre. Proceedings of the IEEE 79(9) (September 1991) 1305–1320

15

2. Raymond, P., Roux, Y., Jahier, E.: Lutin: a language for specifying and executing reactive
scenarios. EURASIP Journal on Embedded Systems (2008)

3. Jahier, E., Halbwachs, N., Raymond, P.: Engineering functional requirements of reactive
systems using synchronous languages. In: International Symposium on Industrial Embedded
Systems, 2013. SIES’13., Porto, Portugal (2013)

4. Halbwachs, N., Fernandez, J.C., Bouajjanni, A.: An executable temporal logic to express
safety properties and its connection with the language lustre. In: ISLIP’93, Quebec. (1993)

5. Jahier, E., Raymond, P., Baufreton, P.: Case studies with lurette v2. Software Tools for
Technology Transfer 8(6) (nov 2006) 517–530

6. Jahier, E., Raymond, P.: Generating random values using binary decision diagrams and
convex polyhedra. In: CSTVA, Nantes, France (2006)

7. Raymond, P.: Synchronous program verification with lustre/lesar. In: Modeling and Verifi-
cation of Real-Time Systems. ISTE/Wiley (2008)

8. Bailey, D., Wright, E.: Practical SCADA for industry. Elsevier (2003)
9. The Mathworks: Simulink/stateflow. http://www.mathworks.com

10. Hamon, G., de Moura, L., Rushby, J.: Generating efficient test sets with a model checker.
In: Software Engineering and Formal Methods, 2004. (2004) 261–270

11. Satpathy, M., Yeolekar, A., Ramesh, S.: Randomized directed testing (redirect) for
simulink/stateflow models. In: Proceedings of the 8th ACM international conference on
Embedded software. EMSOFT ’08, New York, NY, USA, ACM (2008) 217–226

12. Zhan, Y., Clark, J.A.: A search-based framework for automatic testing of MAT-
LAB/Simulink models. Journal of Systems and Software 81(2) (2008) 262 – 285

13. TNI Software: Safety Test Builder. http://www.geensoft.com/fr/article/
safetytestbuilder/

14. The Mathworks: Design verifier. http://www.mathworks.com/products
15. Broy, M., Jonsson, B., Katoen, J.P., Leucker, M., Pretschner, A.: Model-Based Testing of

Reactive Systems: Advanced Lectures (LNCS). Springer-Verlag New York, Inc. (2005)
16. Zander, J., Schieferdecker, I., Mosterman, P.J.: 1. In: A Taxonomy of Model-based Testing

for Embedded Systems from Multiple Industry Domains. CRC Press (2011) 3–22
17. T-VEC: T-vec tester. http://www.t-vec.com
18. Blackburn, M., Busser, R., Nauman, A., Knickerbocker, R., Kasuda, R.: Mars polar lander

fault identification using model-based testing. In: 8th IEEE International Conference on
Engineering of Complex Computer Systems. (2002) 163–169

19. Reactive Systems: Testing and validation of simulink models with reactis white paper.
20. Cu, C., Jeppu, Y., Hariram, S., Murthy, N., Apte, P.: A new input-output based model cover-

age paradigm for control blocks. In: Aerospace Conference, 2011 IEEE. (2011) 1–12
21. Piketec: Tpt. http://www.piketec.com
22. Lehmann, E.: Time partition testing: A method for testing dynamic functional behaviour. In:

Proceedings of TEST2000, London, Great Britain (2000)
23. Bringmann, E., Kramer, A.: Model-based testing of automotive systems. In: Software Test-

ing, Verification, and Validation, 2008 1st International Conference on. (2008) 485–493
24. Vos, T.E., Lindlar, F.F., Wilmes, B., Windisch, A., Baars, A.I., Kruse, P.M., Gross, H., We-

gener, J.: Evolutionary functional black-box testing in an industrial setting. Software Quality
Control 21(2) (2013) 259–288

25. Baresel, A., Pohlheim, H., Sadeghipour, S.: Structural and functional sequence test of dy-
namic and state-based software with evolutionary algorithms. In: Genetic and Evolutionary
Computation. Volume 2724 of LNCS. Springer Berlin Heidelberg (2003) 2428–2441

26. McMinn, P.: Search-based software test data generation: a survey: Research articles. Softw.
Test. Verif. Reliab. 14(2) (June 2004) 105–156

27. Argosim: Stimulus. http://www.argosim.com

http://www.mathworks.com
http://www.geensoft.com/fr/article/safetytestbuilder/
http://www.geensoft.com/fr/article/safetytestbuilder/
http://www.mathworks.com/products
http://www.t-vec.com
http://www.piketec.com
http://www.argosim.com

	 Environment-Model Based Testing of Control Systems: Case Studies

