

Assessment of metal toxicity in marine ecosystems: comparative toxicity potentials for nine cationic metals in coastal seawater

Y. Dong, R.K. Rosenbaum, M.Z. Hauschild

▶ To cite this version:

Y. Dong, R.K. Rosenbaum, M.Z. Hauschild. Assessment of metal toxicity in marine ecosystems: comparative toxicity potentials for nine cationic metals in coastal seawater. Environmental Science and Technology, 2016, 50 (1), pp.269-278. 10.1021/acs.est.5b01625 . hal-01465753

HAL Id: hal-01465753 https://hal.science/hal-01465753

Submitted on 13 Feb 2017 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Assessment of metal toxicity in marine ecosystems -		
2	Comparative Toxicity Potentials for nine cationic		
3	metals in coastal seawater		
4	Yan Dong ^{†*} , Ralph K. Rosenbaum [‡] , Michael Z. Hauschild [†]		
5	[†] Division for Quantitative Sustainability Assessment, Department of Management Engineering,		
6	Technical University of Denmark, Nils Koppels Alle, Building 424, DK-2800 Kgs. Lyngby,		
7	Denmark		
8 9	[‡] Irstea, UMR ITAP, ELSA-PACT – Industrial Chair for Environmental and Social Sustainability Assessment, 361 rue Jean-François Breton, BP 5095, F-34196 Montpellier Cedex 5, France		
10	ABSTRACT:		
11	This study is a first attempt to develop globally applicable and spatially differentiated marine		
12	Comparative Toxicity Potentials (CTPs) or ecotoxicity characterization factors for metals in coastal		
13	seawater for use in Life Cycle Assessment. The toxicity potentials are based exclusively on marine		
14	ecotoxicity data and take account of metal speciation and bioavailability. CTPs were developed for		
15	nine cationic metals (Cd, Cr(III), Co, Cu(II), Fe(III), Mn, Ni, Pb and Zn) in 64 Large Marine		
16	Ecosystems (LMEs) covering all coastal waters in the world. The results showed that the CTP of a		
17	specific metal varies 3-4 orders of magnitude across LMEs, largely due to different seawater		
18	residence time. Therefore the highest toxicity potential for metals was found in the LMEs with the		

longest seawater residence times. Across metals, the highest CTPs were observed for Cd, Pb and
Zn. At the concentration levels occurring in coastal seawaters, Fe acts not as a toxic agent but an
essential nutrient and thus has CTPs of zero.

22 1 Introduction

Life Cycle Assessment (LCA) "quantifies all relevant emissions and resources consumed"1 23 associated with a good or service in a Life Cycle Inventory (LCI) and assesses "the related 24 environment and health impacts and resource depletion issues"¹ by Life Cycle Impact Assessment 25 (LCIA). LCA has been broadly used to support environmentally informed decisions in policy-26 making, product development and procurement, and consumer choices². It is a valuable screening 27 tool to facilitate identifying environmental hotspots². The uncertainties associated with LCA results 28 can be high due to data and simplified modelling². This can be partially compensated by enhancing 29 30 regional detailed modelling.

31 Metals are often ranked at the top of toxicity concerns in Life Cycle Assessment $(LCA)^3$. Large 32 quantities of metals are released from anthropogenic resources to the natural environment (up to 3×10^5 tons/year for selected metals, e.g. Mn)⁴. Waterborne emissions contribute 50-80%, and 33 34 originate mainly in industrial sectors such as iron or steel production, thermal power stations, mineral oil and gas refineries etc.⁵ Waterborne metal emissions typically reach freshwater first and 35 36 move towards seawater through fluvial pathways, thus potentially causing ecotoxicity in both freshwater and marine compartments⁶. Hitherto, metal toxicity in the aquatic environment has been 37 modelled in LCIA using models developed to simulate the behaviour of organic chemicals with 38 39 poor representation of the speciation behaviour of metals and bioavailability (e.g. USES-LCA 2.0^7 used in ReCiPe, IMPACT 2002+⁸). Following the principles laid out in the Apeldoorn Declaration⁹ 40 and the Clearwater Consensus¹⁰, Gandhi et al.^{11,12} developed a new method to calculate the toxicity 41

Author-produced version of the article published in Environmental Science and Technology, 2016, N°50(1), p.269-278 The original publication is available at http://pubs.acs.org Doi: 10.1021/acs.est.5b01625

42 potential of six metals in freshwater ecosystems (expressed as a Comparative Toxicity Potential 43 (CTP), also known as a Characterization Factor in LCIA), including fate, bioavailability and effect 44 of metals. Their CTP was calculated for a number of archetypical freshwater chemistries. Dong et al.¹³ further adapted the method, expanding its scope of metals and calculated freshwater CTP for 45 14 metals. The results showed that for some metals (e.g. Al, Be, Cr(III), Cu and Fe(III)), freshwater 46 47 CTP was highly dependent on the speciation of metal in a certain water chemistry, thus varying by 2-6 orders of magnitude in different water archetypes. This reveals the importance of 1) including 48 49 metal speciation and bioavailability in the modelling and 2) identifying spatially determined and 50 differentiated water chemistries.

In comparison, marine CTP of metals has received less attention. Following the Apeldoorn Declaration⁹, "the oceans are deficient in essential metals, and the CTP for essential metals should be set at zero for toxicity in the oceans."⁹ In contrast, coastal seawater receives higher anthropogenic metal emissions not just through fluvial pathways⁶, but also from airborne emission and metals resuspended from the seabed¹⁴, leading to the observable metal concentrations in the coastal zones, and even reach the mmol/l level close to wastewater discharges¹⁵. This can lead to exceeding the levels where metal becomes toxic to organisms.

58 Not all metal forms are toxic. Only bioavailable forms, often within the truly dissolved forms, can access a sensitive receptor, the biotic-ligand, and become hazardous^{16,17}. In addition to metal 59 60 availability, also its residence time in the coastal seawater is essential for the exposure and hence its 61 CTP. For most metals, a substantial removal happens after entering coastal zone, where complex 62 binding to Suspended Particulate Matter (SPM) followed by removal through sedimentation is increased⁶. The fate of a metal in coastal seawater is thus strongly influenced by its tendency to 63 adsorb to SPM, its solubility in seawater and its complexation affinity with particulate and 64 dissolved organic matter¹⁸. 65

66 Until now metal marine CTP in the previous LCIA models has either not been calculated (e.g. USE tox^{19} , IMPACT 2002+⁸) or it has been derived neglecting speciation and bioavailability, and 67 using freshwater toxicity data (e.g. $USES-LCA^{7}$), with a questionable representativeness for 68 saltwater organisms²⁰. Moreover, as demonstrated by Gandhi and co-workers, metal freshwater 69 CTP is highly sensitive to water chemistry²¹. While water chemistry parameters such as pH, 70 71 Dissolved Organic Carbon (DOC), SPM and salinity affect the speciation of metals, different 72 seawater residence times (SRT) in different coastal zones also play a large role when determining the fate of metal in coastal compartment^{22,23}. So far, no study has given a coherent treatment of the 73 74 global spatial variability of metal marine CTP, considering speciation and applying toxicity data for 75 marine organisms. As a consequence, toxic impacts on the marine ecosystem were either not at all 76 considered in LCA studies or they were assessed with methods of limited reliability based on 77 questionable assumptions. These shortcomings and the strives for a coherent consideration of 78 marine biodiversity in LCA studies set the objectives of this study.

Aiming for consistency with the methodology developed for characterizing metal toxicity in freshwater^{11,13} and applying marine ecotoxicity data availability in ECOTOX database²⁴, the objective of this paper is to develop new, spatially differentiated and globally applicable marine CTPs for Cadmium (Cd), Cobalt (Co), Chromium(III) (Cr), Copper(II) (Cu), Iron(III) (Fe), Manganese(II) (Mn), Nickel (Ni), Lead (Pb) and Zinc (Zn), taking metal speciation and bioavailability into account, and investigating their variation over 64 Large Marine Ecosystems (LMEs) for emissions received in coastal seawater all over the world.

86	2 Metho	ds	
87	2.1 Gene	ral framework	
88	For metals, CTP _i for ecosystems is expressed as the Potentially Affected Fraction of species		
89	integrated over time and space [(PAF)·day·m ³ /kg _{emitted}], representing the ecotoxicity potential for		
90	the total metal in compartment i. It is calculated as the product of three factors: Fate Factor (FF)		
91	Bioavailability Factor (BF) and Effect Factor (EF) as presented in Eq. 1 ¹¹ .		
92	$CTP_i = FF_i \cdot BF_i \cdot EF_i$ (Eq.1)		
93	Where:		
94	FF_i :	Fate Factor [day], representing the residence time of <i>total</i> metal in compartment <i>i</i> ,	
95 96 97 98	BF _i :	Bioavailability Factor [dimensionless], representing the ratio between <i>truly dissolved</i> and <i>total</i> metal. Here truly dissolved metal contains metal free ion and inorganic metal complexes. Total metal includes truly dissolved metal, DOC complexed metal and SPM complexed metal.	
99 100	EF_i :	Effect Factor [(PAF)·m ³ /kg], representing the fraction of species potentially affected by the toxicity of the <i>truly dissolved</i> metal in compartment <i>i</i> .	
101	This framework can be used for any single environmental compartment (e.g. freshwater, soil)		
102	When considering a multi-compartment system, the terms of eq.1 become matrices, which besides		
103	residence times also include inter-compartmental transfers ²⁵ . In this paper we focus on metals		
104	received from adjacent environmental compartments or directly emitted into the coastal seawate		
105	compartment. Therefore, FF represents the persistence of the metal in coastal seawater, while B		
106	and EF represent bioavailability and metal ecotoxicity effects in coastal seawater respectively. FF i		
107	modelled for the total metal rather than dissolved metal, due to the fact that this is the entity which		
108	is reported in LCI and that the metal in the water may re-partition between particulate and dissolve		
109	forms during transportation. Note that the partitioning pattern can vary over time and with loca		

environmental conditions. This can have an impact on the FF of metals. For the purpose of LCA temporal variations need to be averaged over a year to be compatible to the information in the life cycle inventory.

113 2.2 Spatial differentiation of environmental conditions and parameters

114 To explore the spatial variability of CTP in coastal seawater, we worked with the LMEs following Cosme et al.²⁶. The coastal compartment that is represented by a LME covers the marine 115 116 area from the coastal line to the seaward boundary of the continental shelf and includes any 117 estuaries. Thus defined, the coastal compartment with its adjacency to the continents receives 118 emissions related to human activity through the influx of continental freshwater or direct discharges 119 to the sea. 80%-90% of marine net primary production occurs in this compartment, which thus 120 comprises the majority of species and biomass that potentially may be affected by metal 121 emissions²⁷. The global coastal seawater zone was divided into 64 LMEs according to "distinct 122 bathymetry (seabed topography), hydrography, productivity and trophically dependent populations"²⁸, where each LME represents a relatively independent coastal zone. Data on SRT, 123 124 seawater surface area, temperature and water chemistry were collected for each LME from literature 125 (Table S1 in Supporting Information (SI)). The values for these parameters show large variations 126 across the 64 LMEs (Figure S1 in SI). SRT varies from 11 days-90 years, surface area from 1.5×10^5 -5.7 $\times 10^6$ km², estuary discharge rate (water flow rate from freshwater to coastal seawater) 127 128 from $0-1.3 \times 10^5$ m³/s, temperature from $-1^{\circ}C-29^{\circ}C$, pH from 7.75-8.35, DOC from 0.6-6.5 mg/l, 129 Particulate Organic Carbon (POC) from 31-802 ug/l, SPM from 0.2-2.9 mg/l and salinity from 6.2-130 40.3‰. For speciation modelling, salinity was translated into concentrations of the major ions (Na⁺, Mg^{2+} , K^+ , Ca^{2+} , SO_4^{2-} , and Cl^-) by scaling from a standard salinity (35 %) and its corresponding 131 132 major ion concentrations (Table S2 in SI), assuming a fixed relationship between the major ion

Author-produced version of the article published in Environmental Science and Technology, 2016, N°50(1), p.269-278 The original publication is available at http://pubs.acs.org Doi: 10.1021/acs.est.5b01625

concentrations at different salinities²⁹. For each LME, the relevant environmental parameter and
water chemistry values were applied to derive a CTP value for each metal.

Note that also within one LME, environmental parameters such as pH, salinity, DOC, POC, and SPM show both spatial and temporal variation. The annual variation ranges are shown for pH, salinity and POC within each LME in Figure S2 in SI. Fe, Mn and Al oxides have been shown to be strong adsorbents for metal ions^{30–32}, because of their large surface area. Due to lack of spatially differentiated concentration data for these oxides, fixed concentrations of 0.15, 0.02 and 0.4 μ g/L for Fe, Mn, and Al oxides respectively had to be assumed across all LMEs³³.

141 **2.3 Model and parameter selection**

142 **2.3.1 Fate model**

With the intended use in LCA in mind, the multimedia fate model embedded in USEtox¹⁹ was 143 chosen for this study. USEtox is an LCIA model for assessing ecotoxicity and human toxicity 144 145 impacts. It has been developed in a scientific consensus process involving LCIA and chemical fate modelling experts. It is the recommended characterization model for toxicity impacts in LCA³⁴. In 146 147 USEtox, the fate is calculated based on a steady-state mass balance. USEtox determines metal FF in 148 the coastal seawater compartment by modelling of metal inflow, metal outflow and metal removal 149 (including sedimentation and sediment burial/re-suspension). Metal inflow and outflow largely 150 depend on the retention time of the coastal seawater. Thus the default SRT of seawater on 151 continental scale in USEtox was replaced by the SRT representative for each LME. To be 152 consistent, also the default surface area of continental seawater and the water flow rate from 153 continental freshwater to continental seawater (estuary discharge rate) were replaced by the 154 corresponding LME-specific data. Water flow from ocean to coastal seawater is then automatically 155 calculated from parameters mentioned above. Details of LME-specific data and calculations are 156 available in Table S1 in SI. Metal removal is simulated by metal sedimentation and diffusion of

Author-produced version of the article published in Environmental Science and Technology, 2016, N°50(1), p.269-278 The original publication is available at http://pubs.acs.org Doi: 10.1021/acs.est.5b01625

157 metal from seawater to sediment. The former process is modelled by metal complexation with SPM, 158 followed by SPM sedimentation. The removal largely depends on the fraction of metal adsorbing to 159 SPM, the concentration of SPM and the SPM sedimentation velocity. Metal diffusion into sediment 160 is determined by the dissolved fraction of metal and the metal's mass transfer coefficient between 161 sediment and water. The metal fraction adsorbed to SPM can be calculated from a spatially 162 differentiated adsorption coefficient Kp_{SS} (L/kg; the ratio of metal concentration between SPM 163 bound metal and truly dissolved metal). The truly dissolved fraction of metals is calculated using 164 both Kp_{SS} and K_{DOC} (L/kg; the ratio of metal concentration between DOC complex bound metal and 165 truly dissolved metal). All parameters mentioned above vary between different LMEs. Thus Kpss and K_{DOC} were recalculated in WHAM VII³⁵ for each metal in each LME respectively, to replace 166 the default values in USEtox. WHAM³⁵ is a metal speciation modelling software. Based on the 167 168 input of target metal concentration and relevant water chemistry, it can deliver the concentration of 169 target metal in a specific form. In WHAM's calculation of Kp_{SS} and K_{DOC} values, it is assumed that 170 metals are in equilibrium with the discrete sites of DOC and the organic fraction of SPM. Here target metals have to compete with other cations (e.g. Ca^{2+} , Mg^{2+} , K^+ and Na^+) to form complexes 171 172 with SPM or DOC. The ratio between the concentration of metal that is truly dissolved in water and 173 the concentration of metal forming complexes with SPM or DOC were calculated for each LME 174 and each metal as the specific Kp_{SS} and K_{DOC} value. Default DOC and SPM concentration in 175 USEtox were also replaced by the corresponding specific parameter values for each LME. Other 176 landscape parameters were kept unchanged. All parameters used in FF calculation are listed in 177 Table S3 in SI. There were no substance parameter values for Mn and Fe in default USEtox 178 inorganic database. They thus had to be collected from literatures. The retrieved values are 179 presented together with substance parameter values for the other metals in Table S4 in SI.

Author-produced version of the article published in Environmental Science and Technology, 2016, N°50(1), p.269-278 The original publication is available at http://pubs.acs.org Doi: 10.1021/acs.est.5b01625

180 2.3.2 Bioavailability model

181 BF, Kpss and K_{DOC} all represent ratios between different metal species in coastal seawaters. They 182 are thus dependent on the metal speciation in each LME. In the modelling of this speciation 183 behaviour, we assumed that metals remained at their background concentration (Table S4 in SI) in 184 coastal seawater before the emission. BF, Kp_{SS} and K_{DOC} were then calculated for each LME with 185 its specific water chemistry. This assumption is based on the fact that LCA assesses impacts caused 186 by marginal changes. Nevertheless, a sensitivity analysis of the dependence of BF, Kp_{SS} and K_{DOC} 187 on background concentration change is performed in section 3.4.5. WHAM VII³⁵ was used to calculate metal speciation in seawater. While originally developed for 188 189 freshwater, its applicability for prediction of metal free ion activity in seawater has been validated³⁶. 190 Furthermore it contains data and has a good reputation for simulating metal binding to DOC, POC, 191 Fe oxide and Mn oxide. These two criteria favoured the choice of WHAM VII over other speciation

192 models (e.g. Visual Minteq³⁷, MINEQL+³⁸, PHREEQC³⁹).

193 2.3.3 Ecotoxicity model

194 Currently there are two main ecotoxicity models to explain how cationic metals cause toxicity in 195 organisms. The Free Ion Activity Model (FIAM) assumes that the toxic compound is free metal ion 196 represented by its activity. The Biotic Ligand Model (BLM) further includes the competition between free metal ion and other cations (e.g. Ca^{2+} , H⁺) for binding to biotic ligand – the receptor in 197 198 the target organism where the metal binds to exert its uptake and/or toxicity. Due to lack of BLMs for metals in seawater, FIAM was chosen in this study. It has been validated to assess metal toxicity 199 to marine organisms in saltwater^{40,41}. As stated in Clearwater Consensus¹⁰, we calculated EF based 200 201 on truly dissolved metal, assuming that free ion is a fraction of truly dissolved metal and is 202 responsible for the toxicity. In risk assessment, Predicted No Effect Concentration (PNEC) is 203 typically used as effect indicator to protect the sensitive species of the ecosystem. Compared to

204 PNEC, the geometric mean HC_{50} calculated from EC_{50} , representing the Potentially Affected Fraction (PAF) of species exposed above chronic EC₅₀ values, is more robust but less 205 conservative⁴². The purpose of LCA is to compare alternatives, where robustness is highly required. 206 207 Therefore HC₅₀ values calculated from EC₅₀ are normally applied in LCA. It can use all the 208 available toxicity data for a metal and is a measure associated with less uncertainty than the $PNEC^{43,44}$. Detailed descriptions of calculation methods for the PAF method and HC_{50} can be found 209 in Larsen et al.^{44,45}. EFs were calculated exclusively from data on chronic marine EC₅₀ from 210 literature. The availability of marine ecotoxicity data in the ECOTOX database²⁴ allowed us to 211 212 apply our model to nine cationic metals, including Cd, Co, Cr, Cu, Fe(III), Mn, Ni, Pb, and Zn 213 (Table S5 in SI). For metals where chronic marine ecotoxicity data were insufficient, extrapolation 214 from acute marine ecotoxicity data was performed applying an Acute-to-Chronic Ratio (ACR) 215 derived from the available toxicity data as described in Table S6 in SI. Total metal marine EC_{50} reported in literature were translated into free ion EC₅₀ using WHAM VII³⁵, taking into account 216 217 water chemistry of the test medium in which the reported EC₅₀ was determined. This conversion 218 reduced the standard deviation of the EC₅₀ of each metal by at least an order of magnitude (Table 219 S5), which also justifies the use of FIAM in EF calculation.

The calculation of EF was based on the recommended principles for LCA^{43,45,46}. For each metal at each trophic level (i.e. primary producers, primary and secondary consumers), a free ion activity HC_{50-trophic} was calculated as the geometric mean of the corresponding free ion EC₅₀ for all species with available data. The geometric mean of the resulting three HC_{50-trophic} represents the free ion activity HC₅₀ in saltwater for that specific metal. Then, for each combination of metal and LME, a truly dissolved HC₅₀ was calculated using WHAM VII, based on the free ion activity HC₅₀ and corresponding LME water chemistry. Finally, EF was calculated as 0.5/truly dissolved HC₅₀⁴³.

Author-produced version of the article published in Environmental Science and Technology, 2016, N°50(1), p.269-278 The original publication is available at http://pubs.acs.org Doi: 10.1021/acs.est.5b01625

227 3 Results and Discussion

In this section the results for the spatially differentiated FF, BF, EF and CTP are discussed. The results are shown for all combinations of metals and LMEs in Table S7 in SI.

230 3.1 Fate Factors

Cr, Cu and Fe have the highest log K_{DOC} and log K_{PSS} among all metals, indicating their strong tendency of complexation with Organic Matter (OM, represented by DOC and the organic fraction of SPM (POC)) in seawater (Figure S3 in SI). This is in accordance with previous findings that Cr, Cu and Fe have high affinity for OM⁴⁷. Compared with empirical values, K_{PSS} in this study were generally within an order of magnitude (Table 1).

Both log K_{DOC} and log Kp_{SS} vary linearly with OM concentrations and salinity ($0.31 < R^2 < 0.93$, p<0.001, Table S8) for all metals except Pb and Fe. OM in WHAM is considered as humic molecules, which are "rigid spheres, with proton-dissociating groups at the surface that can bind metal ions."⁴⁸ Metal ion binding to a humic molecule can be simply expressed by the general reaction in Eq.2, which is described by the intrinsic association constant K_M (Eq.3)⁴⁸.

241
$$R^{Z} + M^{Z} = RM^{Z+Z}$$
 (Eq. 2)

242
$$K_M = \frac{[RM^{Z+z}]}{[R^Z][M^Z]}$$
 (Eq.3)

Here R is the humic molecule, M is metal and z is the net charge. Under similar conditions (e.g. pH value, temperature, etc.), K_M stays within a comparably narrow range. Therefore increasing OM concentration leads to a higher concentration of metal-OM complex, resulting in a higher log K_{DOC} and log K_{PSS} . When salinity increases, the metal ions are in stronger competition with major cations in the seawater for the binding sites on OM, thus decreasing log K_{DOC} and log K_{PSS}^{49} . The exception for Pb and Fe is due to the fact that the binding of Pb and Fe to DOC and particles is not only

Author-produced version of the article published in Environmental Science and Technology, 2016, N°50(1), p.269-278 The original publication is available at http://pubs.acs.org Doi: 10.1021/acs.est.5b01625

- 249 influenced by OM concentrations and salinity, but also by other parameters (e.g. temperature and
- 250 pH values).
- **Table 1:** Log Kp_{SS-D}^{a} values (L/kg) in this study compared with empirical log Kp_{SS-D}^{b} values (L/kg)
- 252 developed in other studies.

Metals	log Kp _{SS-D} in this study	log Kp _{SS-D} in other studies
	(mean±standard deviation)	
Cd	2.9±0.3	$\begin{array}{c} 4.0^{50};\\ 4.3^{51};\\ 3.5\text{-}5.5^{52} \end{array}$
Со	2.7±0.2	4.6 ⁵¹ ; 4.5-6.0 ⁵²
Cr	5.5±0.2	5.5 ⁵⁰ ; 5.0-7.0 ⁵²
Cu	5.5±0.2	4.3 ⁵³ ; 4.9 ⁵⁰ ; 5.0 ⁵⁴ ; 3.5-5.5 ⁵²
Fe	5.5±0.2	5.0-7.5 ⁵²
Mn	3.5±0.2	3.5 ⁵¹ ; 3.0-6.0 ⁵²
Ni	3.8±0.2	4.4 ⁵⁰ , 2.5-5.0 ⁵²
Pb	4.8±0.2	$5.5^{50}, \\ 6.0^{53}, \\ 6.0^{54}, \\ 4.0-6.5^{52}$
Zn	4.2±0.2	$3.0^{51};$ $4.5^{50};$ $5.2^{53};$ $5.5^{54};$ $4.0-6.0^{52}$

a. Log Kp_{SS} (L/kg) in this study represents the calculated partitioning coefficient between metal bound to SPM and truly dissolved metal. Log Kp_{SS-D} (L/kg) in other studies represents the partitioning coefficient between metal bound to SPM and total dissolved metal. To make the values comparable, we calculated log Kp_{SS-D} values from the log Kp_{SS} that we determined in this study.

Page 13 of 33

Environmental Science & Technology

Author-produced version of the article published in Environmental Science and Technology, 2016, N°50(1), p.269-278 The original publication is available at http://pubs.acs.org Doi: 10.1021/acs.est.5b01625

b. Log Kp_{SS-D} values in literature were presented as a function of other water chemistry
 parameters (e.g. salinity and SPM). Here we took approximate values derived from water
 chemistry similar to this study (e.g. SPM≈1mg/L, Salinity≈30‰-35‰, etc.)

261 FF is largely influenced by log K_{PSS} and log K_{DOC} . Metals with high log K_{PSS} and log K_{DOC} (e.g. 262 Cr, Cu and Fe) have an efficient removal, due to complex formation with OM followed by 263 sedimentation. Therefore they have the lowest FF in all LMEs (Figure 1a). In contrast, FFs of Cd 264 and Co are the highest across all metals, due to their low log K_{PSS} and log K_{DOC} . For a given metal, 265 FF increases with SRT across LMEs (Figure S4 in SI). For Cd, Co, Mn, Ni, Pb and Zn, FF and SRT 266 are linearly correlated with SRT (R^2 >0.97, p<0.001, Table S8 in SI). It means that FF variation 267 mainly depends on SRT and metal removal processes play a minor role. For the metals with high 268 log Kp_{SS} and log K_{DOC} (e.g. Cr, Cu and Fe), metal removal processes show a stronger influence on 269 FF. Thus FFs for these three metals are less strongly correlated to SRT, but rather determined by the 270 variation of SRT, log Kp_{SS}, and log K_{DOC} together. Note that the metals with lower Kp_{SS} and log 271 K_{DOC} (Cd, Co, Mn, Ni and Zn) can have a FF that is higher than SRT in some LMEs. The reason is 272 that for these combinations of metal and ecosystem, the removed fraction is insignificant compared 273 to the total input. A non-negligible fraction of the metal flows out to the ocean, from where some of 274 it eventually recirculates back to the coastal seawater system after reaching steady state that USEtox 275 calculates. This results in a longer FF than the water that originally carried them out. The effect is 276 most pronounced in the LMEs with short SRTs because the inflow from the ocean is more 277 important compared to the volume and the freshwater input for these LMEs.

Author-produced version of the article published in Environmental Science and Technology, 2016, N°50(1), p.269-278 The original publication is available at http://pubs.acs.org Doi: 10.1021/acs.est.5b01625

Figure 1. Variation of Fate Factor (FF, 1a), Bioavailability Factor (BF, 1b), Effect Factor (EF, 1c) and Comparative Toxicity Potential

Author-produced version of the article published in Environmental Science and Technology, 2016, N°50(1), p.269-278 The original publication is available at http://pubs.acs.org Doi: 10.1021/acs.est.5b01625

FF varies 2-3 orders of magnitude across LMEs for each metal. Within one LME, FF variation between different metals is within two orders of magnitude (Figure S5a in SI). It indicates that FF is slightly more sensitive to environmental parameters than to properties of metal.

284 We compared our FF with data from other studies. The age of water constituent models the residence time of seawater constituents in particle forms in seawater by simulating particle cycling⁵⁵ 285 286 and is similar to the concept of FF in this study. The constituent age of Baltic Seawater varies between a few days and up to 40 years⁵⁶, which is similar to the range of metal FF in the Baltic Sea 287 288 (LME 23) in this study (3-21 years). The constituent age of Kara Seawater is 1-2 years⁵⁷, which is 289 within the range of the metal FF in the Kara Sea (LME 58) in this study (1-4 years). The constituent 290 age of Norwegian Seawater and North Seawater combined together is 5-8 years⁵⁸, which is slightly 291 larger than the sum of metal FF ranges in the Norwegian Sea (LME 21) and the North Sea (LME 292 22) in this study (1-5 years).

293 **3.2 Bioavailability Factors**

294 Representing the fraction of total metal in coastal water that is truly dissolved, BF of Cd, Co, Mn, 295 Ni, Pb and Zn varies less than a factor of eight across LMEs (Figure 1b). For Cr, Cu and Fe the 296 variations in BF are much larger with 3-4 orders of magnitude, due to their large variations in log 297 K_{DOC} and log K_{PSS} across LMEs (Figure 1b). For all metals, clear correlations were observed 298 between BF and log K_{DOC} or log K_{PSS} (Figure S6). This implies that BF is largely determined by 299 metal binding to DOC (log K_{DOC}) and SPM (log K_{PSS}). Co has the highest BF in all LMEs across 300 metals, due to its low log K_{DOC} and log Kp_{SS}. Similarly, Cr, Cu and Fe have the lowest BF across all 301 LMEs, due to their high log K_{DOC} and log K_{PSS} values (Figure 1b and Figure S6 in SI).

Author-produced version of the article published in Environmental Science and Technology, 2016, N°50(1), p.269-278 The original publication is available at http://pubs.acs.org Doi: 10.1021/acs.est.5b01625

302 3.3 Effect Factors

Some nutrient metals are essential for biota growth (e.g. Co, Cu, Fe, Mn, Ni and Zn)^{59,60}. 303 304 However, some of them may not reach the essential concentration to support biota growth under 305 normal conditions in seawater, due to their low concentrations (at nmol level, Table S4 in SI). 306 Under such circumstances, instead of being a toxic pollutant, a metal emission is more likely to 307 facilitate biota growth. It is meaningless to talk about contribution to ecotoxicity under these 308 circumstances. Therefore a true zero value of coastal CTP is given for those metals, in agreement with the recommendation in the Apeldoorn declaration⁷. For the metals covered in this study the 309 310 essentiality condition appears to be relevant only for Fe, where the essential concentration range lies 311 above its background concentration in coastal waters. This is caused by efficient removal of Fe in the estuary (ca. 90%) via precipitation, flocculation, and sedimentation⁶. Meanwhile, fluvial 312 pathways contribute 75% of Fe inputs to seawater¹⁸, which leads to a low concentration of dissolved 313 Fe in seawater. Morel et al. ⁵⁹ reviewed the essential concentration of metals in seawater and found 314 315 that for the metals Co, Cu, Mn, Ni and Zn, the background concentration in seawater is sufficient to 316 support biota growth. This is in accordance with other studies showing that iron is the only limiting nutrient metal for algae growth in seawater⁶¹⁻⁶³. Therefore, a true zero was given to the EF of Fe in 317 318 all LMEs, which were excluded from the discussions in the rest of this section.

EFs show a modest variation, staying within one order of magnitude difference across all LMEs except for Cr, which shows a larger variation of three orders of magnitude (Figure 1c). Cu has the highest EFs in 90% of the LMEs, while Mn has the lowest EFs in all LMEs.

EF is influenced by temperature, pH, salinity and OM through their impacts on the speciation (the fraction of free ion activity within truly dissolved metal). In general, with increasing pH, the metal may form hydroxide or carbonate complexes, decreasing the metal free ion concentration in solution, which leads to a lower EF^{64} . Increases in salinity leads to a higher ionic strength, which

Author-produced version of the article published in Environmental Science and Technology, 2016, N°50(1), p.269-278 The original publication is available at http://pubs.acs.org Doi: 10.1021/acs.est.5b01625

results in lower free ion activity for a given free ion concentration, and thus a lower EF^{65} . When OM decreases, a fraction of metal may be released into truly dissolved forms, which leads to a higher truly dissolved HC₅₀, thus lower EF.

329 3.4 Comparative Toxicity Potentials

The comparative toxicity potentials are calculated as the product of FF, BF and EF following Eq.1. Results are shown in Figure 1d. Due to its background concentration below essentiality levels in coastal seawater ecosystems, the effect factor of Fe was set to zero and as a consequence its CTP also becomes zero.

334 3.4.1 Spatial variability of Comparative Toxicity Potentials

335 Cr and Cu show the largest variation in CTP across LMEs with four orders of magnitude (Figure 336 1d). For Cr the variation is mainly driven by the variation in EF ($R^2=0.60$, p<0.001, Figure S7 in 337 SI), and less influenced by variation of FF and BF ($R^2<0.15$). For Cu no single individual parameter 338 shows a significant correlation with CTP.

339 CTPs of Cd, Co, Mn, Ni, Pb and Zn vary by three orders of magnitude across LMEs (Figure 1d).

340 These metals have rather stable BF and EF, which vary less than one order of magnitude across

341 LMEs. Thus CTP variations are largely caused by FF. As FF of these metals is linearly correlated

342 with SRT, CTP is overall strongly driven by the variation in SRT ($0.64 < R^2 < 0.96$, Figure S8b in SI),

343 with higher CTP for longer SRT.

344 3.4.2 Ranking of Comparative Toxicity Potentials

Among all metals, Cd has the highest CTP in 45% of the LMEs (Figure S5d in SI), followed by Zn (31%) and Pb (24%). These three metals have high FF, BF and middle to high EF. They are ranked among the top four CTPs in all LMEs. In contrast, Cr has the lowest CTP in all LMEs (apart from Fe, for which CTP is zero). Although its EF is in the middle range compared to the other

Author-produced version of the article published in Environmental Science and Technology, 2016, N°50(1), p.269-278 The original publication is available at http://pubs.acs.org Doi: 10.1021/acs.est.5b01625

metals, its BF and FF are constantly low in all LMEs, due to its high log K_{DOC} and log Kp_{SS}. Also
Mn and Ni are consistently in the lower ranking of CTP in all LMEs (5th-7th), due to their low EFs.
For Cd, Co, Mn, Ni, Pb and Zn, variation in CTP is significantly driven by SRT. Thus, the highest
CTPs for these metals are observed in LME 5 (Gulf of Mexico), LME 26 (Mediterranean), and
LME 62 (Black Sea), which have the longest residence time across LMEs (90 years). In contrast,
the lowest CTP is observed in LME 35 (Golf of Thailand), which has the 2nd shortest SRT among
all LMEs (15 days).

356 CTPs ranking for Cr and Cu across LMEs are largely determined by SRT and by temperature 357 through its influence on speciation. The highest CTPs are found in LME 64 (Antarctic), where the 358 2nd lowest temperature (-1.20 °C) and long SRT (11 years) are observed. In contrast, they have the 359 lowest CTP value in LME 35 (Golf of Thailand), which has the 2nd highest temperature and 2nd 360 shortest SRT.

361 **3.4.3** Comparison between freshwater and coastal CTPs

Cd, Co, Cr, Mn, Ni and Zn marine CTPs show similar ranges to freshwater CTP determined by 362 Dong et al.¹³ using a parallel approach (Figure 1d). These similarities hide remarkable differences in 363 364 fate and effect behaviour in freshwater and coastal waters, which tend to neutralize each other in the 365 calculation of the CTPs. For these metals, EFs are thus up to two orders of magnitude lower in seawater due to higher free ion activity HC_{50} in seawater (Table S9 in SI). This is in accordance 366 with previous research that freshwater species are more sensitive to metals than marine species 66 . In 367 368 contrast, FFs are up to two orders of magnitude higher in seawater due to longer water residence times in many LMEs (the residence time of freshwater is 143 days at maximum in USEtox¹³). For 369 370 the metals Cd, Co, Cr, Mn, Ni and Zn, BF in freshwater and seawater are rather similar. Cd, Co, Mn, Ni, and Zn were insensitive to variations in water chemistry in freshwater¹³. Thus it may be 371 372 reasonable to expect similar BF in freshwater and seawater for these metals. BF of Cr is correlated

Author-produced version of the article published in Environmental Science and Technology, 2016, N°50(1), p.269-278 The original publication is available at http://pubs.acs.org Doi: 10.1021/acs.est.5b01625

373 to $\log K_{DOC}$ and $\log K_{PSS}$. These two values are negatively correlated with both SPM and salinity in estuaries⁴⁹. From the freshwater end to seawater end, salinity increases and SPM decreases, which 374 375 in combination leads to similar ranges of log K_{DOC} and log K_{pSS} , and thus similar BF ranges in 376 seawater and freshwater for Cr. In summary, a combination of similar BF in sea- and freshwater, 377 lower EF in seawater, and higher FF in seawater results in a similar range of CTP in seawater and 378 freshwater for Cd, Co, Cr, Mn, Ni, and Zn (Figure S9 in SI). 379 Cu has up to two orders of magnitude higher FF in freshwater. It has a similar BF in freshwater 380 and seawater, for similar reasons as Cr. But its EF is 2-4 orders of magnitude lower in seawater, 381 which results in a slightly lower CTP in seawater (Figure S9 in SI). 382 Pb has a FF up to three orders of magnitude higher and a slightly lower EF in seawater than in 383 freshwater. At the same time its BF is 1-2 orders of magnitude higher in seawater, possibly due to 384 lower SPM and OM concentrations in seawater. This results in 1-4 orders of magnitude higher CTP 385 in coastal seawater than in freshwater (Figure S9 in SI). 386 CTP is expressed in potentially affected fraction of species integrated over time and space. However, the species density varies considerably depending on location - from 7×10^{-12} to 5×10^{-4} 387 species/m³ in different freshwater ecosystems at various locations⁶⁷. Thus, even if two different 388 389 archetypes have the same CTP, the number of affected species can in extreme cases differ up to 390 eight orders of magnitude in freshwater. Variation would also be expected for species density in 391 coastal marine ecosystems. Moreover, species density in freshwater is generally about three orders of magnitude higher than in seawater⁶⁸, which should be taken into account when comparing CTP 392 393 values in freshwater and seawater.

394 3.4.4 Comparison of Fate Factors and Bioavailability Factors from USEtox

The current version of USEtox does not provide marine CTP and only has seawater as a fate compartment supporting FF and the eco-exposure factor (XF) calculation for seven of the metals

397 covered in this study (Cd, Co, Cr, Cu, Ni, Pb and Zn). USEtox operates with a default SRT of one 398 year, which is at the middle range of SRTs applied for the LMEs in this study. The default USEtox 399 FF thus falls within the range of the new FF in this study for all the metals (Figure S9 in SI). BF in 400 this study is similar to the concept of eco-exposure factor (XF) in USEtox. The default XF in 401 USEtox falls within or close to the range of BF found in this study for most metals. The only 402 exceptions are Cr and Cu, for which the USEtox XF is 1-6 orders of magnitude higher (Figure S9 in 403 SI). This is because the default K_{DOC} and Kp_{SS} values in USEtox were taken from literature⁶⁹, where 404 it was defined as the ratio between absorbed metal and total dissolved metal. Recall that K_{DOC} and 405 Kp_{SS} calculated in this study represent the ratios between absorbed metal and truly dissolved metal. 406 This results in a lower K_{DOC} and Kp_{SS} in USEtox, which leads to a higher XF.

407 **3.4.5** Sensitivity analysis

Several water chemistry parameters (DOC, POC, SPM, pH, salinity, metal background concentration and concentrations of Fe oxides, Mn oxides and Al oxides) and environmental parameters (SRT, surface area, freshwater inflow and temperature) are involved in the calculation of CTP in this study. In the following section, we will test the sensitivity of CTP to these parameters.

Salinity and pH values were extracted from a complete datasets⁷⁰. Surface area and freshwater inflow were measured data taken from a global database⁷¹. They are well established values and their uncertainty are only caused by measurement error. Thus the uncertainty is hence judged to be low (e.g. uncertainty of pH meter measurement accuracy <0.1⁷², salinity probe <3%⁷³).

LME-specific land surface areas were applied in USEtox to calculate CTPs for metals in this study. Compared to the CTPs calculated by applying default land surface area in USEtox, the differences are less than 2%, caused by slightly different air deposition (which is also proportional to the land area).

Author-produced version of the article published in Environmental Science and Technology, 2016, N°50(1), p.269-278 The original publication is available at http://pubs.acs.org Doi: 10.1021/acs.est.5b01625

The importance of the uncertainty accompanying the Fe, Mn and Al oxide concentrations was tested by changing them by a factor of 10. As a result CTPs varied less than 10% for all metals except Pb, for which the variation amounted to 1-35% across all LMEs.

424 DOC, POC and SPM affect metal partitioning in water, and thus the CTP. These three parameters 425 show a significant positive correlation in natural waters (Figure S10 in SI). The parameter values 426 are accompanied by variation among different seawater and locations, along with the transition 427 from fresh to marine waters. We therefore tested the sensitivity of CTP to these three parameters, by 428 varying them all together by a factor of 0.1-10. These variations can cover DOC, POC, and SPM 429 concentrations ranging from conditions in freshwater to the open ocean. For these variations, CTP 430 of Cr and Cu show the highest sensitivity, varying between a factor of 0.004 and 168. The other 431 metals show very modest sensitivity, varying between a factor of 0.2 and 2.2 (Figure S11 in SI). 432 This indicates that CTP is sensitive to DOC, POC and SPM concentrations for Cr and Cu, but less 433 sensitive for the other metals. Note that within each LME, DOC, POC and SPM vary across 434 locations and time. The average value of these parameters in a specific LME was applied in our 435 study to calculate the corresponding CTP in that LME. Considering the large water volume and 436 surface area in each LME, and the comparatively constant pH, salinity and POC values (Figure S2 437 in SI), the average value of DOC, POC and SPM, thus CTPs are not likely to change dramatically 438 within one LME. However, the uncertainty associated with CTPs of Cr and Cu is still comparably 439 larger than the other metals. This needs to be noted when comparing CTPs across metals.

SRT has a strong influence on FF for all metals and hence also on the CTP. We varied SRT by two orders of magnitude (0.1X-10X of original values) resulting in a variation in CTP by a factor of 0.05-21(Figure S12 in SI). The variations of CTP and SRT show a similar trend, indicating that CTP positively covariates with SRT. Therefore, SRT is an important parameter determining CTP

when comparing metal CTP across LMEs, but it is less relevant for comparing CTP across metalswithin the same LME.

446 Temperature has influence on metal speciation, thus potentially influencing FF, BF, and EF. We 447 calculated CTP by changing temperatures to 10°C lower or 10°C higher than the original values. 448 This variation range covers the surface seawater temperature for the whole year, judging from data in the MODIS database⁷⁴. We found that CTP only varies within a factor of 0.4-2.8 (Figure S13 in 449 450 SI) for all metals. For Cr, BF and EF vary up to one order of magnitude. However, BF and EF have 451 positive and negative correlation respectively with temperature and hence partly compensate each 452 other, which results in a moderate change of CTP. It can be concluded here that CTP is not very 453 sensitive to temperatures.

454 BF, Kp_{SS} and K_{DOC} were calculated from metal background concentration in generic seawater, 455 which may differ in different locations. Therefore we tested the dependence of BF, Kp_{SS} and K_{DOC} 456 on metal background concentration, by varying background concentration by a factor of 10 (0.1X-457 10X of original value). For the metals with higher Kpss and Kdoc values (e.g., Cr, Cu and Fe), BF 458 can vary up to one order of magnitude and K_{PSS} and K_{DOC} can vary up to two orders of magnitude. 459 The variation is largely caused by metal binding with OMs. For the other metals, the variations of BF, Kp_{SS}, and K_{DOC} are less than 2X. This result is similar to the observation in Gandhi et al.²¹. It 460 461 shows that in the systems with higher background concentrations, BFs thus CTPs of metals with higher Kp_{SS}, and K_{DOC} values may be underestimated. However, this might be offset by the 462 463 adaptation of aquatic biota in those systems, which is not considered in the current effect 464 modelling 21 .

465 **3.5 Practical implications**

466 This study is the first attempt to derive marine CTP considering speciation, bioavailability, 467 seawater specific toxicity, and spatial differentiation. The results show that CTP for one metal can

Author-produced version of the article published in Environmental Science and Technology, 2016, N°50(1), p.269-278 The original publication is available at http://pubs.acs.org Doi: 10.1021/acs.est.5b01625

468 vary 3-4 orders of magnitude across LMEs, except for Fe, for which CTP is zero due to its low 469 background concentration and essentiality to marine biota. It was clearly demonstrated that it is of 470 great importance to apply spatially differentiated CTP for metals in coastal seawater, as shown for 471 all metals covered by this study except Fe. This raises the requirement for LCA practitioners to 472 consider the emission location in the inventory. The variation of CTPs is primarily driven by SRT 473 for most metals except Cr and Cu. If there is any updates on SRT in future research, it is strongly 474 recommended to recalculate metal CTPs correspondingly. Due to limited ecotoxicity data for 475 marine species and the metal coverage of the speciation model WHAM VII, it is difficult to derive 476 marine CTP for additional metals at this point. It is recommended to look into methods to estimate 477 marine ecotoxicity data by extrapolation from freshwater ecotoxicity data, or from known metal 478 properties. This can potentially provide ecotoxicity data for more metals and thus allow calculation 479 of additional marine CTPs. Where measured chronic data was missing, acute toxicity data was 480 extrapolated to chronic EC₅₀s for the EF calculation of some metals (e.g. Co, Cr, Mn, Ni, Pb and 481 Zn, Table S5 in SI). It is recommended to revise these data when chronic data is available. The 482 speciation model WHAM VII cannot simulate metal redox reactions and precipitation except Al 483 and Fe hydroxide. Due to the fact that the CTP developed in this study is for metal in coastal 484 seawater where water column depth is modest and presence of oxides are limited, the occurrence of 485 extreme redox conditions will be rare in most LMEs. E.g., When Cr(III) is emitted to coastal 486 seawater, its oxidation to Cr(IV) is limited and slow, unless abundant Mn dioxide and hydroxides exist⁷⁵. However, the lack of precipitation modelling in WHAM can cause some uncertainties, 487 488 especially for metals which may form insoluble compounds with major anions in seawater. 489 Therefore, it is recommended to explore the possibility of applying other metal speciation models to complement WHAM VII (e.g. MINEQL+³⁸, Visual Minteq³⁷, CHEAQS Pro⁷⁶ or PHREEQC³⁹) 490 491 covering other metals and supporting the modelling of precipitation and redox reactions where

492 needed. Literature reported that eutrophication can increase metal bioavailability up to an order of magnitude^{77,78}. However, this may be offset by decreasing EF due to organism adaptation, which is 493 494 not considered in this study. Comparing to 3-4 orders of magnitude variation in CTPs, the 495 uncertainty introduced by differences in eutrophication across LMEs will not have significant 496 influences on the result. FIAM was used to assess EF in this study. However, unlike BLM it does 497 not include competition between free metal ion and other cations for binding to biotic ligands. Thus 498 it is recommended to estimate EFs with marine BLM when available. This study only developed 499 CTP for metals in the water column of the seawater compartment. Ecotoxicity potentials in 500 sediments were not considered here. In LCIA this is typically considered as a separate compartment 501 (if at all) and would require a separate study. 502

503 ASSOCIATED CONTENT

504 Supporting Information

- 505 9 tables and 13 figures addressing additional data were presented in supporting information. This
- 506 material is available free of charge via the internet at http://pubs.acs.org.

507 AUTHOR INFORMATION

- 508 **Corresponding Author**
- 509 *Email: <u>vado@dtu.dk</u>. Phone: +45 4525 4417

510 Funding Sources

- 511 This research is financially supported by the EU commission within the Seventh Framework
- 512 Programme Environment ENV. 2008.3.3.2.1: PROSUITE Development and application of a

Author-produced version of the article published in Environmental Science and Technology, 2016, N°50(1), p.269-278 The original publication is available at http://pubs.acs.org Doi: 10.1021/acs.est.5b01625

standardized methodology for the PROspective SUstaInability assessment of Technologies (Grant
agreement No.: 227078).

515 ACKNOWLEDGMENTS

- 516 The authors thank Dennis Hansell (RSMAS/MAC, University of Miami) and Reiner Schlitzer
- 517 (AWI, Helmholtz center for polar and marine research) for providing DOC data. Dr. Rosenbaum
- 518 gratefully acknowledges the financial support of the partners in the Industrial Chair for Life Cycle

519 Sustainability Assessment ELSA-PACT (a research project of ELSA – Environmental Life Cycle &

520 Sustainability Assessment): Suez Environment, Société du Canal de Provence (SCP), Compagnie

- 521 d'aménagement du Bas-Rhône et du Languedoc (BRL), Val d'Orbieu UCCOAR, EVEA, ANR,
- 522 IRSTEA, Montpellier SupAgro, École des Mines d'Alès, CIRAD, ONEMA, ADEME, and the
- 523 Region Languedoc Roussillon.

References

- (1) EC-JRC. International Reference Life Cycle Data System (ILCD) Handbook General guide for Life Cycle Assessment Detailed guidance; first edit.; Publications Office of the European Union: Luxembourg, LU, 2010.
- (2) Hellweg, S.; Milà i Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. *Science (80-.).* **2014**, *344*, 1109–1113.
- (3) Huijbregts, M. A. J.; Thissen, U.; Guinée, J. B.; Jager, T.; Kalf, D.; van de Meent, D.; Ragas, A. M. J.; Wegener Sleeswijk, A.; Reijnders, L. Priority assessment of toxic substances in life cycle assessment. Part I: Calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES–LCA. *Chemosphere* 2000, *41*, 541–573.
- (4) Pacyna, J. M.; Scholtz, M. T.; (Arthur) Li, Y.-F. Global budget of trace metal sources. *Environ. Rev.* **1995**, *3*, 145–159.
- (5) The European Pollutant Release and Transfer Register. *European industrail annual pollutant release*; European Environment Agency (EEA): Copenhagen, Denmark, 2012.
- (6) Chester, R.; Jickells, T. The transport of material to the oceans: the fluvial pathway. In *Marine Geochemistry*; Blackwell Publishing Ltd., 2012; pp. 11–51.
- (7) Van Zelm, R.; Huijbregts, M. A. J.; van de Meent, D. USES-LCA 2.0—a global nested multi-media fate, exposure, and effects model. *Int. J. Life Cycle Assess.* 2009, 14, 282– 284.
- (8) Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. IMPACT 2002+: a new life cycle impact assessment methodology. *Int. J. Life Cycle Assess.* 2003, *8*, 324–330.
- (9) Aboussouan, L.; Saft, R. J.; Schonnenbeck, M.; Hauschild, M. Z.; Delbeke, K.; Struijs, J.; Russell, A.; de Haes, H. U.; Atherton, J.; van Tilborg, W.; et al. Declaration of Apeldoorn on LCIA of non-ferro metals. Results of a workshop by a group of LCA specialists, held in Apeldoorn, NL. SETAC Globe 2004, 5, 46–47.
- (10) Diamond, M. L.; Gandhi, N.; Adams, W. J.; Atherton, J.; Bhavsar, S. P.; Bulle, C.; Campbell, P. G. C.; Dubreuil, A.; Fairbrother, A.; Farley, K.; et al. The clearwater consensus: the estimation of metal hazard in fresh water. *Int. J. Life Cycle Assess.* 2010, *15*, 143–147.
- (11) Gandhi, N.; Diamond, M. L.; van de Meent, D.; Huijbregts, M. A. J.; Peijnenburg, W. J. G. M.; Guinee, J. New method for calculating Comparative Toxicity Potential of cationic

Author-produced version of the article published in Environmental Science and Technology, 2016, N°50(1), p.269-278 The original publication is available at http://pubs.acs.org Doi: 10.1021/acs.est.5b01625

metals in freshwater: application to copper, nickel, and zinc. *Environ. Sci. Technol.* **2010**, *44*, 5195–5201.

- (12) Gandhi, N.; Diamond, M. L.; Huijbregts, M. A. J.; Guinée, J. B.; Peijnenburg, W. J. G. M.; van de Meent, D. Implications of considering metal bioavailability in estimates of freshwater ecotoxicity: examination of two case studies. *Int. J. Life Cycle Assess.* 2011, 16, 774–787.
- (13) Dong, Y.; Gandhi, N.; Hauschild, M. Z. Development of Comparative Toxicity Potentials of 14 cationic metals in freshwater. *Chemosphere* **2014**, *112*, 26–33.
- (14) Bruland, K.; Lohan, M. Controls on trace metals in seawater. In *The Oceans and Marine Geochemistry, Volume 6 of Treatise on geochemistry*; Holland, H. D.; Turekian, K. K., Eds.; Elsevier: Amsterdam, 2004; pp. 23–47.
- (15) Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 2011, 92, 407–418.
- (16) Paquin, P. R.; Gorsuch, J. W.; Apte, S.; Batley, G. E.; Bowles, K. C.; Campbell, P. G. C.; Delos, C. G.; Di Toro, D. M.; Dwyer, R. L.; Galvez, F.; et al. The biotic ligand model: a historical overview. *Comp. Biochem. Physiol. Part C Toxicol. Pharmacol.* 2002, *133*, 3– 35.
- (17) Sunda, W. Trace metal interactions with marine phytoplankton. *Biol. Oceanogr.* **1989**, *6*, 411–442.
- (18) Mason, R. P. Trace metal(loid)s in marine waters. In *Trace Metals in Aquatic Systems*; Blackwell Publishing Ltd, 2013; pp. 219–309.
- (19) Rosenbaum, R. K.; Bachmann, T. M.; Gold, L. S.; Huijbregts, M. A. J.; Jolliet, O.; Juraske, R.; Koehler, A.; Larsen, H. F.; MacLeod, M.; Margni, M.; et al. USEtox-the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. *Int. J. Life Cycle Assess.* 2008, *13*, 532–546.
- (20) Leung, K. M. Y.; Morritt, D.; Wheeler, J. R.; Whitehouse, P.; Sorokin, N.; Toy, R.; Holt, M.; Crane, M. Can saltwater toxicity be predicted from freshwater data? *Mar. Pollut. Bull.* 2001, *42*, 1007–1013.
- (21) Gandhi, N.; Huijbregts, M. A. J.; van de Meent, D.; Peijnenburg, W. J. G. M.; Guinee, J.; Diamond, M. L. Implications of geographic variability on Comparative Toxicity Potentials of Cu, Ni and Zn in freshwaters of Canadian ecoregions. *Chemosphere* 2011, 82, 268–277.
- (22) Tankere, S. P. C.; Price, N. B.; Statham, P. J. Mass balance of trace metals in the Adriatic Sea. *J. Mar. Syst.* **2000**, *25*, 269–286.

- (23) Brodie, J.; Wolanski, E.; Lewis, S.; Bainbridge, Z. An assessment of residence times of land-sourced contaminants in the Great Barrier Reef lagoon and the implications for management and reef recovery. *Mar. Pollut. Bull.* **2012**, *65*, 267–279.
- (24) USEPA. ECOTOX database; http://cfpub.epa.gov/ecotox/.
- (25) Rosenbaum, R. K.; Margni, M.; Jolliet, O. A flexible matrix algebra framework for the multimedia multipathway modeling of emission to impacts. *Environ. Int.* **2007**, *33*, 624–634.
- (26) Cosme, N.; Larsen, H. F.; Hauschild, M. Z. Chapter 3- Spatially-explicit characterisation factors for marine eutrophication. In *Recommended assessment framework, method and characterisation and normalisation factors for ecosystem impacts of eutrophying emissions: phase 3 (report, model and factors). LC-IMPACT deliverable report D3.7 (T3.1: Aquatic eutrophication)*; Azevedo, L. B.; Cosme, N.; Hauschild, M. Z.; Henderson, A. D.; Huijbregts, M. A. J.; Jolliet, O.; Larsen, H. F.; van Zelm, R., Eds.; Kgs. Lyngby, Denmark, 2013; pp. 58–154.
- (27) Chen, C.-T. A.; Liu, K.-K.; Macdonald, R. Continental margin exchanges. In *Ocean Biogeochemistry*; Fasham, M. R., Ed.; Springer Berlin Heidelberg, 2003; pp. 53–97.
- (28) Sherman, K. The Large Marine Ecosystem concept: research and management strategy for living marine resources. *Ecol. Appl.* **1991**, *1*, 349–360.
- (29) Brown, E.; Colling, A.; Park, D.; Phillips, J.; Rothery, D.; Wright, J. Seawater: its composition, properties and behaviour; Bearman, G., Ed.; 2nd editio.; The Open University, 1995.
- (30) Coston, J. A.; Fuller, C. C.; Davis, J. A. Pb2+ and Zn2+ adsorption by a natural aluminum and iron-bearing surface coating on an aquifer sand. *Geochim. Cosmochim. Acta* 1995, 59, 3535–3547.
- (31) Agrawal, A.; Sahu, K. K. Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue. *J. Hazard. Mater.* **2006**, *B137*, 915–924.
- (32) Phuengprasop, T.; Sittiwong, J.; Unob, F. Removal of heavy metal ions by iron oxide coated sewage sludge. *J. Hazard. Mater.* **2011**, *186*, 502–507.
- (33) Slemons, L.; Paul, B.; Resing, J.; Murray, J. W. Particulate iron, aluminum, and manganese in the Pacific equatorial undercurrent and low latitude western boundary current sources. *Mar. Chem.* **2012**, *142-144*, 54–67.
- (34) Hauschild, M. Z.; Huijbregts, M.; Jolliet, O.; MacLeod, M.; Margni, M.; van de Meent, D.; Rosenbaum, R. K.; McKone, T. E. Building a model based on scientific consensus for life cycle impact assessment of chemicals: The search for harmony and parsimony. *Environ. Sci. Technol.* 2008, *42*, 7032–7037.

- (35) Tipping, E.; Lofts, S.; Sonke, J. E. Humic Ion-Binding Model VII: a revised parameterisation of cation-binding by humic substances. *Environ. Chem.* 2011, *8*, 225– 235.
- (36) Stockdale, A.; Tipping, E.; Hamilton-Taylor, J.; Lofts, S. Trace metals in the open oceans: speciation modelling based on humic-type ligands. *Environ. Chem.* **2011**, *8*, 304–319.
- (37) Gustafsson, J. P. *Visual MINTEQ 3.0 user guide*; KTH, Department of Land and Water Resources Engineering: Stockholm, Sweden, 2011.
- (38) Schecher, W. D.; McAvoy, D. C. *MINEQL*+ [4.6]: Environmental Research Software; Hallwell, ME, USA, 2003.
- (39) Parkhurst, D. L.; Appelo, C. A. J. Description of input and examples for PHREEQC version 3- A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations; U.S. Department of the Interior and U.S. Geological Survey, 2013.
- (40) Lorenzo, J. I.; Nieto, O.; Beiras, R. Effect of humic acids on speciation and toxicity of copper to *Paracentrotus lividus* larvae in seawater. *Aquat. Toxicol.* **2002**, *58*, 27–41.
- (41) Sunda, W. The relationship between free cupric ion activity and the toxicity of copper to phytoplankton. Ph.D. Dissertation, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Cambridge, MA, 1975.
- (42) Payet, J. Assessing toxic impacts on aquatic ecosystems in LCA. Ph.D. Dissertation, Ecole Polytechnique Federale de Lausanne: EPFL, CH-1015 Lausanne, 2004.
- (43) Henderson, A. D.; Hauschild, M. Z.; van de Meent, D.; Huijbregts, M. A. J.; Larsen, H. F.; Margni, M.; McKone, T. E.; Payet, J.; Rosenbaum, R. K.; Jolliet, O. USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. *Int. J. Life Cycle Assess.* 2011, *16*, 701–709.
- (44) Larsen, H. F.; Hauschild, M. Evaluation of ecotoxicity effect indicators for use in LCIA. *Int. J. Life Cycle Assess.* **2007**, *12*, 24–33.
- (45) Larsen, H. F.; Hauschild, M. Z. GM-troph: a low data demand ecotoxicity effect indicator for use in LCIA. *Int. J. Life Cycle Assess.* **2007**, *12*, 79–91.
- (46) Jolliet, O.; Rosenbaum, R.; Chapman, P. M.; McKone, T.; Margni, M.; Scheringer, M.; van Straalen, N.; Wania, F. Establishing a framework for life cycle toxicity assessment findings of the Lausanne review workshop. *Int. J. Life Cycle Assess.* 2006, *11*, 209–212.
- (47) Yang, R.; van den Berg, C. M. G. Metal complexation by humic substances in seawater. *Environ. Sci. Technol.* **2009**, *43*, 7192–7197.

- (48) Tipping, E. Humic Ion-Binding Model VI: An Improved Description of the Interactions of Protons and Metal Ions with Humic Substances. *Aquat. Geochemistry* **1998**, *4*, 3–48.
- (49) Turner, A. Trace-metal partitioning in estuaries: importance of salinity and particle concentration. *Mar. Chem.* **1996**, *54*, 27–39.
- (50) Turner, A.; Martino, M.; Le Roux, S. M. Trace metal distribution coefficients in the Mersey Estuary, UK: evidence for salting out of metal complexes. *Environ. Sci. Technol.* 2002, *36*, 4578–4584.
- (51) Li, Y.-H.; Burkhardt, L.; Buchholtz, M.; O'Hara, P.; Santschi, P. H. Partition of radiotracers between suspended particles and seawater. *Geochim. Cosmochim. Acta* 1984, 48, 2011–2019.
- (52) Benoit, M. D.; Kudela, R. M.; Flegal, A. R. Modeled trace element concentrations and partitioning in the San Francisco estuary, based on suspended solids concentration. *Environ. Sci. Technol.* **2010**, *44*, 5956–5963.
- (53) Baeyens, W.; Parmentier, K.; Goeyens, L.; Ducastel, G.; De Gieter, M.; Leermakers, M. The biogeochemical behaviour of Cd, Cu, Pb and Zn in the Scheldt estuary: results of the 1995 surveys. *Hydrobiologia* **1998**, *366*, 45–62.
- (54) Benoit, G.; Cantu, S. D. O.-M.; Hood, E. M.; Coleman, C. H.; Corapcioglu, M. O.; Santschi, P. H. Partitioning of Cu, Pb, Ag, Zn, Fe, Al and Mn between filter-retained particles, colloids, and solution in six Texas estuaries. *Mar. Chem.* **1994**, *45*, 307–336.
- (55) Deleersnijder, E.; Campin, J.; Delhez, E. J. M. The concept of age in marine modelling I. Theory and preliminary model results. *J. Mar. Syst.* **2001**, *28*, 229–267.
- (56) Markus Meier, H. E. Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. *Estuar. Coast. Shelf Sci.* **2007**, *74*, 610–627.
- (57) Ivanov, L. M.; Margolina, T. M.; Danilov, A. I. Application of inverse technique to study radioactive pollution and mixing processes in the Arctic Seas. J. Mar. Syst. 2004, 48, 117– 131.
- (58) Orre, S.; Gao, Y.; Drange, H.; Nilsen, J. E. Ø. A reassessment of the dispersion properties of 99Tc in the North Sea and the Norwegian Sea. J. Mar. Syst. 2007, 68, 24–38.
- (59) Morel, F. M. M.; Milligan, A. J.; Saito, M. A. Marine bioinorganic chemistry: the role of trace metals in the oceanic cycles of major nutrients. In *The Oceans and Marine Geochemistry*; Elderfield, H.; Holland, H. D.; Turekian, K. K., Eds.; Elsevier, 2006.
- (60) Rengel, Z. Heavy metal as essential nutrients. In *Heavy Metal Stress in Plants: From Molecules to Ecosystems*; Prasad, M.; Hagemeyer, J., Eds.; Springer-Verlag Berlin Heidelberg: New York, U.S.A., 1999.

- (61) Martin, J. H. Iron as a limiting factor in oceanic productivity. In *Primary Productivity and Biogeochemical Cycles in the Sea*; Falkowski, P. G.; Woodhead, A. D., Eds.; Environmental Science Research; Springer US, 1992; Vol. 43, pp. 123–137.
- (62) Sato, G.; Negassi, S.; Tahiri, A. Z. The only elements required by plants that are deficient in seawater are nitrogen, phosphorous and iron. *Cytotechnology* **2011**, *63*, 201–204.
- (63) Barsanti, L.; Gualtieri, P. *Algae: Anatomy, Biochemicstry, and Biotechnology*; 2nd editio.; CSC Press, 2014.
- (64) Millero, F. J.; Woosley, R.; Ditrolio, B.; Waters, J. Effect of ocean acidification on the speciation of metals in seawater. *Oceanography* **2009**, *22*, 72–85.
- (65) Deruytter, D.; Garrevoet, J.; Vandegehuchte, M. B.; Vergucht, E.; Samber, B. De; Vekemans, B.; Appel, K.; Falkenberg, G.; Delbeke, K.; Blust, R.; et al. The combined effect of Dissolved Organic Carbon and salinity on the bioaccumulation of Copper in marine mussel larvae. *Environ. Sci. Technol.* 2014, 48, 698–705.
- (66) Wheeler, J. R.; Leung, K. M. Y.; Morritt, D.; Sorokin, N.; Rogers, H.; Toy, R.; Holt, M.; Whitehouse, P.; Crane, M. Freshwater to saltwater toxicity extrapolation using species sensitivity distributions. *Environ. Toxicol. Chem.* **2002**, *21*, 2459–2467.
- (67) Azevedo, L. B.; Verones, F.; D, H. A.; van Zelm, R.; Jolliet, O.; Huijbregts, M. A. J. Freshwter eutrophication. In *LC-Impact. A spatially differentiated life cycle impact assessment approach*; Huijbregts, M. A. J.; Azevedo, L. B.; Chaudhary, A.; Cosme, N.; Fantke, P.; Goedkoop, M.; Hauschild, M.; Hellweg, S.; Laurent, A.; Mutel, C. L.; et al., Eds.; 2014.
- (68) Goedkoop, M.; Heijungs, R.; Huijbregts, M.; De Schryver, A.; Struijs, J.; van Zelm, R. *ReCiPe 2008: A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endoint level*; 2013.
- (69) Allison, J. D.; Allison, T. L. *Partition coefficients for metals in surface water, soil, and waste*; U.S. Environmental Protection Agency: Washington, 2005.
- (70) National Oceanographic data center (NODC) in United States Department of Commerce. World Ocean Database; http://www.nodc.noaa.gov/OC5/SELECT/dbsearch/dbsearch.html.
- (71) Sea Around us. A global database on marine fisheries and ecosystems; www.seaaroundus.org/lme.
- (72) HANNA instruments. pH meter by accuracy; http://hannainst.com/usa/subcat.cfm?id=044.
- (73) Vernier Software & Technology. Salinity sensor; http://www.vernier.com/products/sensors/sal-bta/.

- (74) NASA. Moderate Resolution Imaging Spectroradiometer (MODIS); http://aqua.nasa.gov/about/instrument_modis.php.
- (75) Sadiq, M. Chapter 6 Chromium in marine environments. In *Toxic Metal Chemistry in Marine Environments*; CRC Press, 1992.
- (76) Verweij, W. CHEAQS Pro, computer program for calculating CHemical Equilibria in AQuatic Systems; http://home.tiscali.nl/cheaqs/.
- (77) Li, S.-X.; Liu, F.-J.; Zheng, F.-Y.; Zuo, Y.-G.; Huang, X.-G. Effects of nitrate addition and iron speciation on trace element transfer in coastal food webs under phosphate and iron enrichment. *Chemosphere* **2013**, *91*, 1486–1494.
- (78) Wang, W.; Dei, R. Effects of major nutrient additions on metal uptake in phytoplankton. *Environ. Pollut.* **2001**, *111*, 233–240.

Author-produced version of the article published in Environmental Science and Technology, 2016, N°50(1), p.269-278 The original publication is available at http://pubs.acs.org Doi: 10.1021/acs.est.5b01625

TOC/Abstract art 63x35mm (96 x 96 DPI)