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ABOUT THE MINIMAL TIME CRISIS PROBLEM ∗

Terence Bayen1 and Alain Rapaport2

Abstract. We study the minimization of the so-called time crisis function that represents the time
spent by a solution of a controlled system outside a given set K. One essential feature of this optimal
control problem is the discontinuity of the functional at the boundary of K. We provide in this paper
properties of the time crisis function together with necessary optimality conditions using the hybrid
maximum principle. We also study an approximation of this problem based on the Moreau-Yosida
regularization of the indicator function of K.

Résumé. On s’intéresse à la minimisation du temps de crise qui représente le temps passé par une
solution d’un système contrôlé à l’extérieur d’un certain ensemble K donné. Une des caractéristiques
principales de ce problème est la discontinuité de la fonctionnelle à minimiser. Dans ce papier, on
donne quelques propriétés du temps de crise ainsi que des conditions d’optimalité du premier ordre
grâce au principe du maximum de Pontryagin hybride. On étudie également une approximation du
problème de contrôle optimal en utilisant la régularisée de Moreau-Yosida de l’indicatrice de K.

1. Introduction
In this paper, we study the so-called time-crisis problem which consists in minimizing (w.r.t. the control) the

total time spent by a solution of a controlled system outside a given set K. This problem has been introduced
in [12] in the viability context whenever controlled systems are subject to state constraints (see e.g. [6, 20]).
Determining a control function for which the time spent outside K is minimal is a crucial issue in several
applications (see e.g. [7, 8]). This problem finds also typical interest whenever the initial condition is chosen
outside the viability kernel of the set K (i.e. the set of initial conditions for which there exists an admissible
control such that the corresponding solution stays in K for any time t ≥ 0, see e.g. [1, 2]).

One essential feature of the time crisis problem is the discontinuity of the cost functional that is expressed
in terms of the characteristic function of Kc, the complementary of the set K. To derive first order necessary
optimality conditions over a finite given horizon, a first approach consists in using the hybrid maximum principle
(see e.g. [9,14,15]). To do so, a transverse assumption is required on optimal trajectories at a crossing time (i.e.
a time where the boundary crosses the boundary of K): this assumption precisely guarantees the computation
of the jump of the adjoint vector at the crossing time (see also [15]). However, it may be difficult to verify
this assumption on optimal trajectories before applying optimality conditions. Therefore, it can be convenient
to introduce a regularization scheme of the time crisis problem for which such an assumption is not required.
Based on the Moreau-regularization of the indicator function of the set K (see e.g. [3, 16,17]), we introduce an
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approximated optimal control problem. By a direct application of the Pontryagin Maximum Principle [18], we
can then obtain necessary optimality conditions on the regularized problem. Note that a similar regularization
scheme was used in [7, 8] for studying an analogous optimal control problem in the context of linear parabolic
equations (describing the continuous casting of steel).

The paper is organized as follows. In section 2, we state the time crisis problem. Necessary optimality
conditions on the time crisis problem are given in section 3. The convergence of extremal solutions of the
regularized controlled problem (for both state and adjoint vectors) to an extremal solution of the original problem
is addressed in section 4. Theorem 4.1 is our main result and guarantees the validity of the approximation
procedure.

The purpose of this paper is to summarize the results of [5]. Most results of section 3 and 4 can be found
in [5]. However, we provide here several different approaches:

• The proof of the convergence of approximated optimal solutions to an optimal solution of the time crisis
problem uses Γ-convergence (see Proposition 4.1).

• The convergence of the adjoint variable is addressed using properties of the adjoint equation (Lemma 4.2)
instead of needle variations (to show the boundedness of adjoint vectors in L∞([0, T ];Rn), see [5, 15]).

2. Statement and properties of the time crisis problem
We consider a dynamical controlled system:

ẋ = f(x, u), (2.1)

where f : Rn × Rm → Rn is the dynamics, x ∈ Rn is the state, and u ∈ Rm is the control. Throughout the
paper, we consider a non-empty subset U ⊂ Rm and we define the admissible control set UT as:

UT := {u : [0, T ]→ U ; u meas.},

where T ∈ R∗+ ∪ {+∞}. We also suppose that the system satisfies the following assumptions:
(H1) The dynamics f is continuous w.r.t. (x, u), of class C1 w.r.t. x and satisfies the linear growth condition:

there exist c1 > 0 and c2 > 0 such that for all x ∈ Rn and all u ∈ U , one has:

|f(x, u)| ≤ c1|x|+ c2, (2.2)

where | · | is the euclidean norm in Rn.
(H2) For any x ∈ Rn, the set F (x) := {f(x, u) ; u ∈ U} is a non-empty compact convex set.
Given an initial condition x0 ∈ Rn, Cauchy-Lipschitz’s Theorem implies that there exists a unique solution of
(2.1) defined over [0, T ] such that x(0) = x0. This solution will be denoted by xu(·, x0) hereafter.

The time crisis problem can be now stated as follows. Let K be a non-empty subset of Rn and Kc := Rn\K
its complementary. The characteristic function of Kc 1Kc is then defined by:

1Kc(x) :=
{

0 if x ∈ K,
1 if x /∈ K.

We consider the following optimal control problem called time crisis problem:

θ(x0) := inf
u∈U∞

J(u) with J(u) :=
∫ +∞

0
1Kc(xu(t, x0)) dt. (OCP)
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We also introduce the time crisis problem over a finite horizon [0, T ] (with T > 0) that is defined by:

θT (x0) := inf
u∈UT

JT (u) with JT (u) :=
∫ T

0
1Kc(xu(t, x0)) dt. (OCPT )

For convenience, we suppose in the paper that the set K is smooth:
(H3) The set K is a smooth (i.e. its boundary ∂K is of class C1) non-empty closed subset of Rn.
The existence of an optimal control for (OCP) and (OCPT ) is proved in [5, 12]) and follows from standard
compactness arguments (see e.g. Theorem 19.2.3 p.771 of [2]).

The viability kernel of K for the dynamics f is a central notion in this context. It is defined as the set of
points of K from which there exists a control u such that the associated trajectory stays in K for any time
t ≥ 0:

Viab(K) := {x0 ∈ K ; ∃u ∈ U ∀t ≥ 0 xu(t, x0) ∈ K}.
We say that a non-empty subset A ⊂ Rn is reachable from x0 ∈ Rn if there exists an admissible control and
a time t ≥ 0 such that xu(t, x0) ∈ A. The time crisis function is closely related to the minimal time function
v(x0) ∈ [0,+∞] to reach the set Viab(K) (if non-empty) from an initial condition x0 ∈ Rn and it is defined as:

v(x0) := inf
u∈U∞

Tu s.t. xu(Tu, x0) ∈ Viab(K), (2.3)

where Tu ∈ [0,+∞] is the first entry time of xu(·, x0) into Viab(K). We know from [12] (Proposition 4.1 p.11)
that if K is viable (i.e. K = Viab(K)), then v(x0) = θ(x0) for any x0 ∈ Rn. More generally, if Viab(K) is
non-empty, then Viab(K) ⊂ K, thus we obtain the inequality

∀x0 ∈ Rn, θ(x0) ≤ θ̃(x0) = v(x0), (2.4)

where θ̃ is the time crisis function associated to the set Viab(K) for the dynamics f :

θ̃(x0) := inf
u∈U∞

J̃(u) with J̃(u) :=
∫ +∞

0
1Viab(K)c(xu(t, x0)) dt.

In the following, we also denote by d(·,K) the distance function to the set K defined for x ∈ Rn by d(x,K) :=
infy∈K |x− y|. Recall that x 7→ d(x,K) is 1-Lipschitz over Rn.

3. Necessary optimality conditions for (OCP)T

In the rest of the paper, we shall omit the dependance of a solution of (2.1) w.r.t. the initial condition x0.
Given u ∈ U , we will write xu (or x(·) if there is no ambiguity on the control u ∈ U) the unique solution of
(2.1) associated to a control u ∈ U and starting at a given initial condition x0 ∈ Rn at time 0 i.e. xu(0) = x0.

We now provide necessary optimality conditions for problem (OCPT ). As 1Kc is discontinuous, we can use
the hybrid maximum principle by considering the partition of Rn as Rn = K ∪Kc (see e.g. [9, 14, 15]). First,
we define the notion of regular crossing time which means that a trajectory cannot hit the set K tangentially.
Definition 3.1. We say that a crossing time tc ∈ [0, T ] for a solution xu(·) of (2.1) is regular if the following
properties hold true:

(i) The control u ∈ UT associated to the solution xu is left- and right-continuous at tc.
(ii) The trajectory is transverse to K at xu(tc), i.e.

ẋu(t−c ) · n(xu(tc)) 6= 0 and ẋu(t+c ) · n(x(tc)) 6= 0,

where n(z) denotes the unit outward normal vector to the set K at a point z ∈ ∂K and a · b denotes the
usual scalar product of two vectors a, b of Rn.
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Similarly, we define a regular crossing time tc from Kc into K for a solution xu of (2.1) associated to a
control u ∈ UT . Let H : Rn × Rn × R× Rm → R be the Hamiltonian associated to (OCPT ) that is defined by:

H = H(x, p, p0, u) := p · f(x, u) + p01Kc(x).

The next theorem is a direct consequence of the hybrid maximum principle (see Theorem 22.20 p.458 of [9]).

Theorem 3.1. Suppose that an optimal trajectory x∗(·) of (OCPT ) has k ≥ 1 regular crossing times {t1, · · · , tk},
and let u∗ ∈ U be the associated optimal control. Then, the following conditions are satisfied:

• There exists p0 ≤ 0 and a piece-wise absolutely continuous map p∗ : [0, T ] → Rn called adjoint vector
(row vector in Rn) such that (p0, p∗(·)) 6= (0, 0). Moreover, p∗(·) is absolutely continuous on each
interval (ti, ti+1) (i = 0, · · · , k) where we posit t0 = 0, tk+1 = T ), and satisfies the adjoint equation:

ṗ∗(t) = −p∗(t) ·Dxf(x∗(t), u∗(t)) a.e. t ∈ (ti, ti+1) , i = 0, · · · , k − 1. (3.1)

• The Hamiltonian satisfies the maximization condition:

u∗(t) ∈ arg maxα∈Up∗(t) · f(x∗(t), α) a.e. t ∈ [0, T ]. (3.2)

• At every regular crossing time tc ∈ {t1, · · · , tk}, one has the jump condition on the adjoint vector p∗:

p∗(t+c ) = p∗(t−c ) + p∗(t−c ) · (f(x∗(tc), u∗(t−c ))− f(x∗(tc), u∗(t+c ))) + σp0

n(x∗(tc)) · f(x∗(tc), u∗(t+c ))
n(x∗(tc)), (3.3)

where σ = −1, resp. σ = +1 if tc is a regular crossing time from K into Kc, resp. from Kc into K.
• The adjoint vector satisfies the transversality condition p∗(T ) = 0.

Remark 3.1. (i) The term n(x∗(tc)) · f(x∗(tc), u∗(t+c )) is non-zero in (3.3) as tc is a transverse crossing time.
(ii) The jump condition (3.3) follows from the fact that p∗(t+c )− p∗(t−c ) belongs to the normal cone to K at the
point x∗(tc) (see Theorem 22.20 p.458 of [9]) and the fact that the Hamiltonian is globally constant over [0, T ]
(the system is autonomous and the k crossing times are free).
(iii) As x∗(T ) is free, one has the condition p∗(T ) = 0as in the usual classical transversality conditions in
Pontryagin’s Principle.

We now show that each extremal trajectory is normal i.e. p0 6= 0.

Proposition 3.1. Under the assumptions of Theorem 3.1, any extremal trajectory (x∗(·), p∗(·), p0, u
∗(·)) satis-

fying (2.1)-(3.1)-(3.2) together with the transversality condition p∗(T ) = 0 is a normal extremal i.e. p0 6= 0.

Proof. By integrating backward in time (3.1) over (tk, T ] one finds that p∗(t) = 0 for any time t ∈ (tk, T ]. As
p∗(t+k )− p∗(t−k ) belongs to the normal cone to K at x∗(tk) (see Theorem 22.20 p.458 of [9]), there exists α ≥ 0
such that p∗(t+k )− p∗(t−k ) = αn(x∗(tk)). Now, using the constancy of the Hamiltonian and p0 = 0, we get

p(t−k ) · ẋ∗(t−k ) = p∗(t+k ) · ẋ∗(t+k ) + p0 = 0.

Thus, we find that αn(x∗(tk))·ẋ∗(t−k ) = 0. As tk is a regular crossing time, we deduce that n(x∗(tk))·ẋ∗(t−k ) 6= 0,
thus α = 0 which together with (3.1) implies that p∗(t) = 0 for any time t ∈ (tk−1, tk). By induction, this
proves that p∗ is zero on each time interval (ti, ti+1), 0 ≤ i ≤ m − 1, and thus over [0, T ]. Hence, we have a
contradiction with the hybrid maximum principle as the pair (p0, p

∗(·)) should be non-zero. �
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4. Regularization of problem (OCP)T

If we have no information on optimal trajectories, we may not be able to verify that optimal trajectories
have a finite number of transverse crossing times before applying Theorem 3.1. In order to avoid to suppose
that optimal trajectories are transverse when hitting the boundary of K, we introduce a regularized version of
the time crisis problem (OCPT ).

4.1. Regularization scheme
The regularization scheme goes as follows. First, we denote by ψK be the indicator function of the set K:

ψK(x) :=
{

0 if x ∈ K,
+∞ if x /∈ K.

We consider the Moreau envelope eε(·) of ψK with parameter ε, defined by (see e.g. [3, 16,17]):

eε(x) := 1
2εd(x,K)2.

It is standard that x 7−→ eε(x) is Lipschitz continuous over Rn. Moreover, one has:

lim
ε→0

eε(x) = ψK(x),

for any x ∈ Rn. If γ(v) := 1− e−v, v ∈ R, we obtain that

∀x ∈ Rn, 1Kc(x) = γ(ψK(x)).

We consider the regularized optimal control problem:

inf
u∈UT

JεT (u) with JεT (u) :=
∫ T

0
γ(eε(xu(t))) dt, (OCPεT )

By standard compactness arguments, we can show similarly as for problems (OCP)-(OCPT ) that for any
x0 ∈ Rn, there exists an optimal control uε ∈ U of (OCPεT ). Next, we denote by xε(·) the associated trajectory.

4.2. Convergence in the state space
Our purpose is now to prove the following convergence result that guarantees that optimal solutions of

(OCPεT ) are close to a solution of (OCPT ) provided that the regularization parameter is small enough.
Proposition 4.1. Let ε ↓ 0 and (xε(·), uε(·)) be an optimal pair for (OCPεT ). Then, there exists an optimal
solution u∗ of (OCPT ) such that up to a sub-sequence, xε(·) uniformly converges to x∗(·) over [0, T ] and
JεT (uε)→ JT (u∗), where x∗ is the unique solution of (2.1) associated to u∗.
Proof. Let εn ↓ 0. Let us show that the sequence (JεnT )n≥0 Γ−converges to JT (see e.g. chapter 12 of [11] for
more details on the notion of Γ−convergence).

We start by proving the liminf inequality. Let (xn(·), un(·)) be a solution of (2.1). By using standard
compactness arguments (see e.g. Theorem 19.2.3 p.771 of [2]), we may assume that up to a sub-sequence,
(xn(·))n≥0 strongly-weakly1 converges over [0, T ] to a solution xu of (2.1) associated to a control u ∈ U . Then,
one deduces that:

JεnT (un) ≥
∫
Eu

γ(eεn(xun(t))) dt,

1We say that (xn(·))n≥0 strongly-weakly converges over [0, T ] to a solution xu(·) of (2.1) if xn(·) uniformly converges to xu(·)
over [0, T ] and ẋn(·) weakly converges to ẋu(·) in L∞([0, T ];Rn) (see e.g. [10], Theorem 1.11, p. 186 for more details on this point).
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where Eu := {t ∈ [0, T ] ; xu(t) ∈ Kc}. Now, if t ∈ Eu, then γ(eεn(xun(t)))→ 1 when n goes to infinity. Thanks
to the dominated convergence Theorem, we deduce that

lim
n→+∞

∫
Eu

γ(eεn(xun(t))) dt =
∫
Eu

dt = JT (u).

This proves the liminf inequality i.e. liminfn→+∞J
εn
T (un) ≥ JT (u).

Let us now show the limsup inequality. Let u ∈ U and xu(·) the associated solution of (2.1). Using the
dominated convergence Theorem, we obtain

JεnT (u)→ JT (u),

when n → +∞. Thus, given u ∈ U , the constant sequence un := u is such that limsupn→+∞J
εn
T (un) ≤ JT (u)

which shows the limsup inequality.
Now to conclude, let (xn(·), un(·)) be an optimal pair for (OCPεT ) with ε = εn. We know that there exists

u∗ ∈ U such that up to a sub-sequence, xn strongly-weakly converges to x∗ over [0, T ] where x∗ is the unique
solution of (2.1) with u = u∗. To conclude, as the sequence (JεnT )n≥0 Γ−converges to JT , standard results of
Γ-convergence theory (see e.g. [11]) imply that u∗ is optimal for problem (OCPT ) and that JεnT (un)→ JT (u∗)
when n→ +∞, which ends the proof. �

4.3. Transformation into a Mayer problem
We are now in position to apply the Pontryagin Maximum Principle on problem (OCPεT ). However, when

the set K is not convex, the distance function to K is only Lipschitz continuous in Rn. Indeed, the projection of
a point x ∈ Rn onto the set K may not be unique. Therefore, the adjoint equation for problem (OCPT ) (that
involves the derivative of the distance function) becomes a differential inclusion (see e.g. [21] for Pontryagin’s
Principle with Lipschitz datas). Nevertheless, it is possible to avoid the use of a differential inclusion in the
adjoint equation in this setting if we slightly modify (OCPεT ).

To do so, let us consider the admissible control set V defined by:

V := {v : [0, T ]→ K ; v meas.},

and let W := U × V. Next, we call u = (u, v) an element of W and we introduce the augmented system:{
ẋ = f(x, u),
ẏ = γ

( 1
2ε |x− v|

2) , (4.1)

with initial conditions x(0) = x0, y(0) = 0, and (u, v) ∈ W. Next, we consider the Mayer problem:

inf
u∈W

yu(T ), (OCPε′T )

and we show that problems (OCPεT ) and (OCPε′T ) are equivalent. As K is not necessarily convex, we introduce
the set PK(x) defined for x ∈ Rn by:

PK(x) := {ξ ∈ K ; d(x,K) = |x− ξ|}.

Lemma 4.1. Problems (OCPεT ) and (OCPε′T ) are equivalent.

Proof. If u = (u, v) ∈ W, then one has |xu(t) − v(t)| ≥ d(xu(t),K)2, thus as γ is increasing, we deduce that
yu(T ) ≥ JT (u) which shows that if u∗ is a solution of (OCPεT ), then (u∗, v∗) is a solution of (OCPε′T ) where
v∗(t) ∈ PK(xu∗(t)) a.e. t ∈ [0, T ].
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Now, let u∗ = (u∗, v∗) ∈ W be an optimal solution of (OCPε′T ). As γ is increasing, we necessarily have
d(xu∗(t),K) = |xu∗(t) − v∗(t)| for a.e. t ∈ [0, T ]. By optimality of u∗ we deduce that for any control u =
(u, v) ∈ W one has ∫ T

0
γ(eε(xu∗(t))) dt ≤

∫ T

0
γ

(
1
2ε |xu(t)− v(t)|2

)
dt,

where xu is the unique solution of (2.1) associated to the control u. Therefore, choosing v(t) = PK(xu(t)) a.e.
t ∈ [0, T ] yields that JT (u∗) ≤ JT (u) for any u ∈ U . Hence, u∗ is optimal for problem (OCPεT ). This ends the
proof. �

4.4. Pontryagin Maximum Principle

We can now apply the Pontryagin Maximum Principle on (OCPε′T ) in order to derive necessary optimality
conditions. Let Hε : Rn+1 × Rn+1 × Rm × Rn → R be the Hamiltonian associated to (OCPε′T ) defined by:

Hε(x, y, p, q, u, v) := p · f(x, u) + qγ

(
1
2ε |x− v|

2
)
.

Proposition 4.2. Let uε = (uε, vε) ∈ W be an optimal control of problem (OCPε′T ) and let zε := (xε, yε) be the
associated trajectory. Then, the following conditions are satisfied:

• There exists a constant qε ≤ 0 and an absolutely continuous function pε : [0, T ] → Rn called adjoint
(row) vector such that (pε(·), qε) 6= (0, 0). Moreover, pε(·) satisfies the adjoint equation:

ṗε(t) = −pε(t) ·Dxf(xε(t), uε(t))−
qε
ε
γ′
(

1
2ε |x(t)− vε(t)|2

)
(xε(t)− vε(t)) a.e. t ∈ [0, T ]. (4.2)

• We have the following maximization condition. For a.e. t ∈ [0, T ] one has:{
uε(t) ∈ arg maxα∈U pε(t) · f(xε(t), α),
vε(t) ∈ arg maxw∈K qεγ

( 1
2ε |xε(t)− w|

2) . (4.3)

• We have the transversality condition pε(T ) = 0 and qε < 0.

Proof. We only prove the last statement (the other statements follows by a direct application of Pontryagin’s
Principle [18] to (OCPT )). As xε(T ) is free one has pε(T ) = 0. Now, if qε = 0, then (4.2) together with
pε(T ) = 0 imply that p ≡ 0 over [0, T ]. Thus, we have a contradiction with (pε(·), qε) 6= 0. Hence, qε < 0. �

We call extremal trajectory a triple (zε, pε, uε) satisfying (2.1)-(4.2)-(4.3). As qε < 0, any extremal trajectory
is normal. Without any loss of generality we may also suppose that qε = −1. Finally, the Hamiltonian condition
(4.3) implies that vε satisfies:

vε(t) ∈ PK(xε(t)), a.e. t ∈ [0, T ].
Notice that if K is convex, then vε(t) is the projection of xε(t) (that is uniquely defined).

Remark 4.1. If the projection onto K is not explicit or difficult to compute, the formulation of (OCPεT ) into
(OCPε′T ) can be useful from a numerical point of view (it does not require an explicit computation of the distance
function to K).

4.5. Convergence of the adjoint vector
We are now interested in showing that up to a sub-sequence, the sequence (xn(·), pn(·), un(·)) converges to an

extremal solution of (OCPT ) i.e. a triple (x∗(·), p∗(·), u∗(·)) satisfying (2.1)-(3.1)-(3.2)-(3.3). This property can
be useful in particular to relate an optimal control of (OCPεT ) to an optimal control of (OCPT ) (see Remark
4.3).
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For convenience, let us write (un, vn) the solution of (OCPε′T ) where ε = εn (recall that εn ↓ 0), xn(·) the
unique solution of (2.1) for the control u = un, and pn the unique solution of

ṗn(t) = −pn(t) ·Dxf(xn(t), un(t)) + 1
εn
γ′
(

1
2εn
|xn(t)− vn(t)|2

)
(xn(t)− vn(t)) a.e. t ∈ [0, T ], (4.4)

satifying pn(T ) = 0. By considering a sub-sequence if necessary, we may assume that there exists u∗ ∈ U such
that xn(·) strongly-weakly converges to x∗(·) over [0, T ] where x∗(·) is the unique solution of (2.1) associated to
the control u∗. We now consider the following assumption on x∗(·) that will be useful to show the boundedness
of pn(·) in L∞([0, T ] Rn).
(H’) The trajectory x∗(·) has k ≥ 1 regular crossing times {t1, . . . , tk} over [0, T ].

Lemma 4.2. Suppose that (H′) holds true and that the set K is convex. Then, the sequence pn(·) is uniformly
bounded over [0, T ].

Proof. As f is of class C1, there exists a constant C ≥ 0 such that for any time t ∈ [0, T ] and n ∈ N one has

∀ξ ∈ Rn, |ξ ·Dxf(xn(t), un(t))| ≤ C|ξ|.

Let us set
qn(t) := pn(T − t), x̃n(t) := xn(T − t), ũn(t) := un(T − t), ṽn(t) := vn(T − t).

We now show that (qn(·))n∈N is bounded over [0, T − tk].
First case. Suppose that x∗(T ) ∈ K. Then, we have pn(t) = 0 for any time t ∈ [tnk , T ] where tnk is the last
entry time of xn(·) into K (recall that xn(·) uniformly converges to x∗). Thus, we have xn(t) − vn(t) = 0 for
t ∈ [tnk , T ]. Integrating (4.4) gives:

∀t ∈ [0, T − tnk ], |qn(t)| ≤ C
∫ t

0
|qn(τ)| dτ.

By using Gronwall Lemma, it follows that (qn(·)) is uniformly bounded over [0, T − tk].
Second case. Suppose now that x∗(T ) ∈ Kc. Similarly as in the previous case, (4.4) gives:

∀t ∈ [0, T − tnk ], |qn(t)| ≤ C
∫ t

0
|qn(τ)| dτ + 1

εn

∫ t

0
e−

dn(τ)2
2εn dn(τ) dτ. (4.5)

where dn(t) := d(x̃n(t),K). As K is convex, the projection vn(t) of xn(t) onto K is uniquely defined and
t 7→ vn(t) is Lipschitz (recall that the projection is 1-Lipschitz over Rn as K is convex). Hence, dn(·) is
differentiable a.e. and as K is smooth v̇n(t) · (xn(t)− vn(t)) = 0 a.e. t ∈ [0, T ]. Thus, we find that

ḋn(t) = 1
dn(t) (xn(t)− vn(t)) · ẋn(t),

whenever xn(t) /∈ K. Notice that for any time t ∈ [0, T ] the vector xn(t)−vn(t)
dn(t) is unitary and that

lim
t→T−tk,t<T−tk

lim
n→+∞

xn(t)− vn(t)
dn(t) = n(x∗(tk)).

Now, as tk is a regular crossing time, there exists α > 0, N ∈ N and η > 0 such that:

∀n ≥ N, ∀t ∈ [T − tnk − η, T − tnk ], |ḋn(t)| ≥ α.
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Thus, (4.5) becomes:

∀t ∈ [0, T − tnk ], |qn(t)| ≤ C
∫ t

0
|qn(τ)| dτ + ρn + ρ̃n,

where

ρn := 1
εn

∫ T−tnk−η

0
e−

dn(τ)2
2εn dn(τ) dτ, ρ̃n := 1

εn

∫ T−tnk

T−tn
k
−η
e−

dn(τ)2
2εn dn(τ) dτ.

First, we show that ρn → 0 when n→ +∞. As xn(·) uniformly converges to x∗(·) over [0, T ], there exists r ≥ 0
such that for any time t ∈ [0, T ] and n ∈ N one has |xn(t)| ≤ r. Now, there exists N ′ ≥ N and β > 0 such that
if t ∈ [0, T − tnk − η] then one has dn(t) ≥ β (recall that d(x∗(t),K) > 0 for any time t ∈ [tk + η, T ]). This gives
for n ≥ N ′:

1
εn

∫ T−tnk−η

0
e−

dn(τ)2
2εn dn(τ) dτ ≤ 1

εn

∫ T−tnk−η

0
e−

β2
2εn 2r dτ.

Now, the sequence
(

1
εn
e−

β2
2εn

)
n≥0

converges to 0 when n goes to infinity. Thus, we have ρn → 0 as n→ +∞.

Let us now show that (ρ̃n)n≥0 is bounded. We do the change of variable dn(t) = u that gives:

1
εn

∫ T−tnk

T−tn
k
−η
e−

dn(τ)2
2εn dn(τ) dτ = 1

εn

∫ d−1
n (T−tnk )

d−1
n (T−tn

k
−η)

ue−
u2

2εn
1

ḋn(d−1
n (u))

du

It follows that
|ρ̃n| ≤

1
α

1
εn

∫
R+

ue−
u2

2εn du = 1
α
,

using that 1
εn

∫
R+
ue−

u2
2εn = 1 for any n ∈ N. Finally, we obtain

∀t ∈ [0, T − tnk ], |qn(t)| ≤ C
∫ t

0
|qn(τ)| dτ + ρn + 1

α
,

and Gronwall’s Lemma implies that the sequence (qn(·)) is uniformly bounded over [0, T − tk].

To conclude, we repeat this argument on each interval [T − ti+1, T − ti], 0 ≤ i ≤ m − 1 which proves that
pn(·) is uniformly bounded over [0, T ]. �

Remark 4.2. Let us introduce the function ϕn : R → R defined by ϕn(x) := x
εn
e−

x2
2εn . Then, one can

immediately check that
∫ +∞

0 ϕn(x) dx = 1 and supx≥0 ϕn(x) = 1√
εn

(achieved for xn := √εn) for any n ∈ N.
Equation (4.4) then implies:

|ṗn(t)| ≤ |pn(t) ·Dxf(xn(t), un(t))|+ ϕn(|xn(t)− vn(t)|) a.e. t ∈ [0, T ].

Hence, we can expect that (pn) is bounded (according to the previous lemma), but (ṗn) may be unbounded.
Thanks to this lemma, we can show that (pn(·)) converges almost everywhere.

Corollary 4.1. Suppose that (H′) holds true and that K is convex. Then, there exists a function p∗ :
[0, T ]\{t1, ..., tk} → Rn satisfying the following properties :
(i) Up to a sub-sequence, one has pn(t)→ p∗(t) a.e. t ∈ [0, T ] when n goes to infinity.
(ii) The function p∗ is (locally) absolutely continuous on each interval (ti, ti+1), 0 ≤ i ≤ k (where tk+1 = T ).
(iii) The function p∗ is bounded over [0, T ] and satisfies :{

ṗ∗(t) = −p∗(t) ·Dxf(x∗(t), u∗(t)) a.e. t ∈ [0, T ],
p∗(T ) = 0. (4.6)
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Proof. The proof follows essentially by using Lemma 4.2. Then, we can apply Theorem 19.2.3 p.771 of [2]
and deduce that there exists a function p∗ is (locally) absolutely continuous on each interval (ti, ti+1), 0 ≤
i ≤ k (where tk+1 = T ) such that the sequence (pn(·)) uniformly converges to p∗ on each compact subset of
[0, T ]\{t1, . . . , tk}. The rest of the proof is standard and can be found in [5]. �

We now provide our main result related to the convergence of an extremal solution (xn(·), pn(·), un(·)) of
(OCPεT ) with ε = εn to an extremal solution (x∗(·), p∗(·), u∗(·)) of (OCPT ) when the regularization parameter
goes to zero.

Theorem 4.1. Suppose that hypotheses (H1)-(H2)-(H3) are satisfied and let εn ↓ 0 and (xn(·), un(·)) be an
optimal pair for (OCPεT ) with ε = εn. Then, there exists a pair (x∗(·), u∗(·)) such that u∗ is a solution of
(OCPT ) and x∗ is the unique solution of (2.1) associated to u∗. Moreover, the following properties hold true:

• The sequence xn(·) uniformly converges to x∗(·) over [0, T ] and JεnT (un)→ JT (u∗) when n→ +∞.
• If in addition assumption (H’) is verified and K is convex, there exists a function p∗ : [0, T ]\{t1, ..., tk} 7→
Rn such that (x∗(·), p∗(·), u∗(·)) satisfies (3.1)-(3.2)-(3.3) and pn(·) converges to p∗(·) a.e in [0, T ].

Proof. The proof of this result is a consequence of Proposition 4.1 and Corollary 4.1. The essential property is
to recover the jump condition (3.3) from the adjoint equation (4.4). The detailed proof can be found in [5]. �

Remark 4.3. Suppose that (2.1) is affine w.r.t. the control u, that is, (2.1) is of the form:

ẋ = f0(x) +
m∑
j=1

ujfj(x), with |ui| ≤ 1, 1 ≤ i ≤ m,

where fj : Rn → Rn, 0 ≤ j ≤ m are smooth vector fields. According to the Pontryagin Maximum Principle, an
optimal control can be expressed as uj(t) = sign(φj(t)), 1 ≤ j ≤ m where φj is the switching function associated
to uj, that is φj(t) := p∗(t) ·fj(x∗(t)). In the case where the u∗ is bang-bang (i.e. u∗j (t) = ±1 which corresponds
to φj(t) > 0 or φj(t) < 0), Theorem 4.1 then allows to relate the value of unj (t) to u∗j (t) if n is large enough.

The convexity of K is also an important ingredient in the proof of Lemma 4.2 and Theorem 4.1. Future
work will explore if these results can be extended to a non-convex smooth subset K of Rn. Another interesting
issue is to characterize a class of controlled systems for which the solution of the time crisis problem consists in
minimizing the time spent in Kc and maximizing the time spent in K.
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