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The solution may be expressed using the fundamental matrix
of solutions®(t), which satisfies the differential equation
1 Introduction B(t) = Ae®(t) + A1 ®(t — h) + A, d(t — )
The present paper is concerned with delay systems of neutrglith the initials conditions:

type, i.e. systems described by equations
®0)=1, P(t)=0 for t<0.

Let us give the expression of this matrix. L@t(j) be the
matrices defined by the relations [2, 3]:

_ _ Qi(j) = AoQi—1(J) + A11Qi-1(j — 1) + A1 Qi(5 — 1)

wherez(t) € IR™ is the statep(t) € IRP the input,d(t) €
IR is a disturbance ang(t) € IR™ the output. The matrices With initial conditions:
Ag, A1, A_1, By, Coy and Dy are of suitable dimensions. In . e
this paper we assume that matricBs and C;, are of full @(0) =1, Q:(7) =0 if <0
rank. Then the matrixp(t) may be written as (see [15])

There are more general forms of delay systems of neutral . _
type: with several delays, with distributed delays... Our con- B(t) = i Z Qi) (t—3)"
siderations may be formulated for systems with several com- o i\
mensurate delays in the state, input or output. For the sake
of clarity, we limit our presentation here to a single delay in This relation may be verified by induction. Another expres-
the state and its derivative. For other approaches concerningion of the fundamental matrix may be obtained via the solu-
systems with delay of neutral type see for example [1, 4].  tions of the system

The first part is devoted to the description of solutions of .
the system and transfer function matrix in several ways. The { Enzi(t) = Anze(t) + Byog(t) + Dywy(?) )
new approach is the generalization of the description given wi(t) = Crz(t)
by Olbrot [4] and Zmood [17] for systems with simple delay \yhere the matriceE;, A, B, andCy, k € IN are com-
in state (see [4, 14] for more details on different approaches)posed by(k + 1) blocks as follows.
Then, we describe the structure at infinity of the system (1)

+Boul(t) + Dod(t) (1)

{ () —Aqi(t—1) = Agz(t) + Aix(t — 1)
y(t) = Cox(t)

S for telkk+1][
i=0 j=0 v

and related questions. Applications to control problems are I 0 0 ... 0
considered in the last part. The mains results are the char- —A_ I 0 0
acterization of the solvability of the row-by-row decoupling E;, = 0 —A, T ... 0]

problem and the disturbance rejection for linear time-delay

systems of neutral type. The precompensator solving the 0 O 0 ' I

given problem may be realized by generalized static state

feedback, i. e. feedback which contains the delayed deriva- A 0 0 ... 0
tive of the new control (for the decoupling problem) or the A A 0 ... 0
delayed derivative of the disturbance. An important property Ap=|0 A A ... 0|

is that the formal stability of the neutral-type system is not : : : .
affected by such feedbacks. 0 0 0 ... A



By O 0 0
0 By O 0
B, = 0 0 By 0 7
0 0 0 By
Co O 0 0
0 Cp O 0
Ck = 0 0 Co 0 ;
0 0 0 Co
Dy O 0 0
0 Dy O 0
D.=|0 0 D 0
0 0 0 Dy

As E;, is invertible, the system (2) is regular for all integers

In a similar way the the transfer function matrix between the
disturbance and the output may be written as

Ty(s) 0 0
TPo(s) TP (s) 0
o= . 7, (4)
T,?O(s) T,f)fl(s) T(Po(s)
whereT”° (s) = CoRo(s)R1(s)? Dy As for the fundamental

solution one can write the transfer function through the ma-
trices@;(j), more precisely, the rational matric@$(s) and
T (s) verify

Z CQQ B()S H_l)

and

TDO ZCOQ DOS—(L+1)

k. This system allows to give another expression for the fun-

damental solution [9]:

0 I]eBs Axt=Rz ek k+1],

where the matriceg&, are given by the relations

I
ZO = I7 Zk - |:€E;11Akle1:| .
The transfer function matrix of the system (1) betweemthe
andy is given by the expression
°)

T(s,e %) = Co(sI — Ag — Are™* — A_15¢~°) " By.

This gives a relation between the approach of Gabasov and
Kirillova based on matrice§;(j) [2, 3, 15] and that of OI-
brot, Zmood and other authors [8, 14, 17] developped for sin-
gle delay system. This relation for delay systems of neutral
type was pointed out in [9].

3 Structure at infinity

The transfer function matrix of a delay system is not ratio-
nal. Moreover, it is not analytical at infinity. The notions of
properness must be precised.

Definition 3.1 A complex valued functiorf(s) is called
weak proper iflim f(s) is finite whens € IR tends tocc.

The transfer function matrix between the disturbance and thqzt is called strictly weak proper if this limit is 0. A matrix

output is

TDO (S, 678) s _ A 75)71D0

And T'(s,e~®) may be decomposed as follows (the same
holds for7o (s, e=*)):

:CQ(SI—A()—Alei 18€e

B(s) is weak biproper if it is weak proper and its inverse is
also weak proper. Weak proper is replaced by strong proper
if the same occurs whéeRe(s) — oo.

Letus putd(e®) = Ag+ A1e * + A_yse”*. We have the
following result for delay system of neutral type (see [9] and
[12] for the case of a simple system with delay)

Z CoRo(s s)Boe™7*, Theorem 3.2 There exist weak biproper matrices
3=0 Bi(s,e~*%) and Ba(s, e~*) such that
where Bi(s,e”*)T(s,e”*)Ba(s,e” %) =
Ro(s) = (sI—Ag)™! Ri(s) = (A1+A_1s)(sI—Ay)~ ! Ao(s) 0 0 0
o(s) = ( 0) 1(s) = (A1 +A_1s)( 0) 0 Ay(s)e—r 0 0
Let T;(s) = CoRo(s)R1(s)? By and©y(s) be the transfer : ; : ]
function matrix between the input and the output for the sys- : : \ ks g
. : . 0 0 Ag(s)e 0
tem (2). As in the case of a linear system with delay [7], one 0 0 0 0
has the following equality:
where
To(s) 0 0 Ai(s) = diag [s7"1, ..., s 0]
Ti(s)  To(s) 0 : o
Ou(s) = _ _ () andn;; <n;j y1, ¢ =1,..., k. The list of integers
Tk(s) Tk_l(s) TQ(S) {ni,jv izl,...,k;j:j1,..-,ji}



is called theweak structure at infinitpf the systerfi'(s, e~*)
and is noted by T'(s,e~*%) or ¥ (Co, A(e™*), By).

This structure at infinity allows to characterize some control
problems as disturbance rejection, row-by-row decoupling,
model matching, etc.

4 Main results

4.1 The row-by-row decoupling problem

The main result for the row-by-row decoupling problem is
given by the following theorem where the system is consid-
ered without disturbance and with= m.

Theorem 4.1 The following properties are equivalent

1. The row-by-row decoupling problem for the delay
neutral-type system (1) is solvable by a weak biproper
precompensator:

T(s,e”*)K(s,e”") =
diag {hl(s7 e %), .y han(s, e_s)} )
2. The weak structure at infinity verifies:
Z&(Cl, A((:’_S, Bo)
%5 (Co, A(e™?), Bo) = :
X5 (cp, A(e™*), Bo)

whereg;’s are the rows of the matrig’.

3. The matrix
c1Qn,—1(k1)Bo
Wy = ;
Canm—l(km)BO
is invertible, where for each rowthe integers; andk;
are such that:CiQ7H_1(l€i)B0 7é 0 andCin(j)BO =0
forl <n;, —1andj < k;.
4. The decoupling problem is solvable by generalized

static state feedback
u=F(e ")z + G(s,e v,
where

F(e™?)
G(s,e?)

F0+F1€78+"',
Go+Gi(s)e™* +---

with (possible) polynomial matrices7;(s),i >
1, Gy = WO_1 and constant matrices8;, i € IN. The
relation between the precompensalo(s, e~*) and the
feedback law

i

u=F(e )z + G(s,e v
is given by
K(s,e )

(I—F(e ®)(sI — A(e™*)) ' By)

- G(s,e™?).

5. For ¢; = (j,; Kerc;, let

VZ(€i7A(e_s)7B0)a i=1,...,m

be the subspaces

{117 S Q:Z :
x = (sI — A(e™*))&(s,e”®) — Bow(s,e*)},

with strictly weak propeg andw such that

E(s,e7%) e € for s> sp.

Then

Im BO = ZIH}BO n VE(Q:i7A(e_S)7 BO)’

i=1

with Im By N VE(Q:i, A(e‘s), Bo) # 0.

(5)

Proof. The implicationl = 2 = 3 and4 = 5 = 1 may be
shown as for the time-delay system (not of neutral type, that
is A_; = 0 asin[11]). The formal calculations are similar
to the case of system without delay (see also [9]). The only
crucial implication is3 = 4.

Assume thail/, is invertible. Then

T(s,e” %) =

diag {s™ e M5, L 5T e RS L (W + W (s,e7%)),

andW, + W (s, e™*) is weak biproper because

lim
IR>s—o0

(WO + W(s,e_s)) = Wy.

Then K(s,e™ ) ef (Wo + W(s,e=*))" " is also biproper

and

T(s,e *)K(s,e”?)

diag {s*’“e*kls, .oy S

)

7nmefkms}
)

Note thatWW (s, e~*) is strictly weak proper and may be de-
composed as:

W(Sv eis) = Wl(Sa eis) + WQ(Sa 678)7
with
Wi(s, e ) = Z Z CoQitv—1(k+ j)Bos™'e 7 — Wy,
=0 i=0

The integersy and s denote for each row the integersy;
andk; respectively, that is

Wo = CoQu—1(r)Bo.

The matrixiV; (s, e~*) is strictly strong proper. This implies
that the precompensator

Ki(s,e™®) = (Wo+ VVl(Sae_S)Y1



is strong biproper. As for a system without neutral term [10,4.2 The disturbance rejection problem

11,13], this precompensator may be realized with static Stat?n order to show a similar result for the disturbance rejec-

feedback: . . .
tion problem, we need a preliminary result concerning the
Fl(e™®) = Fy+Fie*+Fe 4., systems (2) which permits a representation of the system (1).
Gl(e™®) = Gi+Gle*+Gle ™+, Let V. (Ker Cg, Ay, By) be the maximal A ;, By, )-invariant
. . subspace (see [16]) containedHKrr C,. This subspace is
where, for exampléG:, = W, and feedback invariant, that is, there exists a maljxsuch that
1Qn, (k1) Vi(Ker Cg, Ay, By) is (Ax + BiFy)-invariant. It is well
- _cl ' known that the disturbance rejection problem for the system
0= 7Y0 : (2) with Ey, = I}, (whenA_; = 0) is solvable by feedback
Canm (km)
. . v = Frzi + Grwg
the other matrices are computed as in [10] and [13].
This gives iff
ImD, C V*(Ker Cy, Ax, Bk) + ImBy,.
Kl(sa 6—3) =

The matrixF; may be taken such th&i. (Ker Cy, Ax, By)
(I—F"(e®)(sI — A(e_s))_lBO)_1 G(e™®). is (Ay, + B,F})-invariant. In [7] it has been shown, in the
) . . o case of systems without neutral term, that the matri€gs
Note that in 10, 13] a(_jdltlonal conditions are requwgd_ N O andG,, are lower block triangular matrices. Let us show that
der_ t.o insure strong _blproperness. Here those conditions are the case of system (2), the situation is the same.
verified by construction. def The system (2) is equivalent to the system
Let now defineKy(s,e™*) = K(s,e™®) — Ki(s,e”*),

which gives: Z = Ej'Apz + By 'Biuy, + Ep Dywy
wE = Ckzk.

(6)

K —S — K —S8 K —S8 . .
(s,¢7%) (s e77) + Ka(s,e™), For this system the classical result holds and the correspond-

Taking F(e=*) = F'(e~*) and ing feedback matriceF;, and G;, are lower triangular ma-
) . trices as shown in [7]. A simple calculation shows that the
G(s,e7") = same matrices give a feedback which solves the disturbance
[I— F(e™*)(sI — A(e™®)) "' Bo] Ka(s,e™*), rejection problem for the system (2):
one obtains Cy (sTy — E; Ay, _Engka)‘l %
K2(57e_s) = (E;lBka—FE;le) =
[I—F(e *)(sI — A(e™®)) "' By] - G*(s,e™*) Cy (sEy — Ay — B,F;) ' (ByGy + Dy)
And then, from the expressions of<;(s,e~) and For the disturbance rejection problem we have the following
K (s,e™%), we get result.
K(s,e%) = Theorem 4.3 The following propositions are equivalent:
[I — F(e=®)(sI — A(e_S))_1BO] -1 G(s,e~%), 1. The disturbance rgjection problem for the delay system
of neutral type (1) is solvable by a weak proper precom-
with pensator :

G(s,e™*) ¥ Gl e™*) + G2(s,e7%).

. _ T(s,e *)K(s,e *) + TP (s,e %) =0
If Tr (s, e™®) is the closed loop transfer matrix, we have:

2. The weak structure at infinity verifies:

YU [T(s,e”%) TPo(s,e™%)] =X%[T(s,e~%) 0]

Tra(s,e”®)=T(s,e *)K(s,e”*)

and
s . —ny —kis o —kim s 3. The disturbance rejection problem is solvable by gener-
T —d 1,—k1 o m p—km . i :
ra(se) iag {s™"e S € ; alized static state feedback
Hence 4 is satisfied. |

u=F(e ")z + G(s,e”*)d,

Remark 4.2 The weak proper part of the precompensator with
Ks(s,e™%) is realized by the matrix;?(s,e~*) which acts . s iy
on the new controb. This means that this new control Fle?) = o+ Fe”+FRe @4,

must be sufficiently smooth. If it is not the case, the de- G(s,e™) = Go+Gils)e™ +Gals)e™ + -+,
coupling problem is not solvable by this kind of feedback if with (possible) polynomial matrices;(s), i > 1 and
Ky(s,e™®) #0. constant matrice$’, i € IN.



4. Dy C Vs(KerCy, A, By) + By, whereD, and 3, are
the images ofDy and By respectively, the subspace
Vs (Ker Cy, A, By) being given by

{z € Ker Cy :
x=(sI — A(e™*))&(s,e~°) — Bow(s, e )},

with strictly weak prope€ andw such that
for

&(s,e7?) € Ker Cy 5> 0.

Proof. The equivalence$) < 2) < 4) are obtained as for
sytems without neutral term (see [7, 12]).3If is satisfied,
then1) holds with

K= (I—F(sI—A)"'By) " (F(sI—A)"'Dy+G),

with proper precompensatdy; (s) given by :

Ks) 0 - 0

Ki(s K9(s 0
. :< ) :< ) :

Kis) KMYs) o KO(s)

The matrix©(s) being given by (3) ant@,’?l (s) in a simi-

lar way from the decomposition dP; (s, e™*) (see Remark
4.4). This means that, for eadh the disturbance decou-
pling problem is solvable for the finite dimensional systems
(2) with the new disturbance. Using the geometric approach,
one can design the corresponding matriEg@andG, which

are of lower triangular forms (as pointed out at the beginning
of this section):

Fy 0 0
the arguments, e~*) being omitted for the sake of simplicity F. — F Fy 0 g
and, as noted before, A : : (®)
A(s,e™®)=Ag+ Aje "+ A_1se® B Fima Fo
) o and
Suppose now thatl) is satisfied, the precompensator Go 0 0
K(s,e™®) is decomposed into a strong proper part G Gy 0
K (s,e~*) and a weak proper pai(s,e~*). This gives: Gr= . : : ©)
T(s,e”®) (Ki(s,e %) + Ka(s, e %)) = —TPo(s,e7%) Ge Gr- Go
) Taking
Let us now put . B L
F(e™®) = Fy+ Fie ® + Fhe S+"'27
1 —s _ —s —2s .
Di(s,¢7*) & BoKo(s,e™*) + Do Glee™) = CotGils)e™ +Cols)e ™ 4,
Then (7) may be written as: using the rele_mon between the system (2) and the delay sys-
tem, we obtain
T(s,e ") Ki(s, e ")+ » T(s,e ) Ki(s,e”°) =
Co (3[ — A(s,e )) Di(s,e™)=0 Co (s — A(s, ) — BOF(e*S))fl »
This means that the strong proper precompensator (BoG'(s,e™®) + Di(s,e”%)).

Ky(s,e™®) solves the disturbance
for a new disturbancé) (s,e¢™*) (see Remark 4.4 for the
state space representation of this disturbance).

rejection problem

That is, K (s, e~#) is realized by static feedback.

In order to design the feedback which solves our problem,STEP 2: A formal calculation gives:

we first design the feedback which realizes the precom-

pensatorK; (s,e™*) solving the new disturbance rejection

problem (Step 1), then we deduce the feedback solving th

original problem (Step 2).

STEP 1: The precompensatak’ (s,e~°) may be decom-
posed as:

Ki(s,e™) = K{(s) + K{(s)e™ 4+,

Ky = (I—F(sI—A)'By) " (F(sI — A)"'Dy + G,

Svhere the arguments are omitted for simplicity. This can be

rewritten as:
Ky =F(sI — A)"'Dy + G' + F(sI — A)"'ByK;

ReplacingD; (s, e~*) by its expressioBy K (s, e %) + Dy,

we obtain:

whereK?(s), i € IN are rational and strictly (strong) proper. K; =

As K (s, e~ %) solves the new disturbance problem, using the F(sI — A)~Y (ByKa + Do) + G + F(sI — A)~'ByK,
partial representation by the systems (2) and the correspond-

ing transfer function matrices, we get, for ale IN: and then

Ok(s)Tk(s) + O (s) = 0, Ky = F(sI — A)"'Do+ F(sI — A)"'BoK + G.



Adding K5 (s, e™*) to both parts leads to
K =F(sI — A)™'Dy+ F(sI — A)"'BoK + G' + K,
Let us now put

G(s,e™?) def

we obtain:

K=F(sI —A)'Dy+ F(sI — A)"'ByK + G.

G'e™®) + K*(s,e™ %),

And this gives

K = (I—F(sI—A)"'By) " (F(sI — A)"' Dy + G).
This means thak (s, e~*) is realizable by the feedback

u=F(e )z + G(s,e”*)d

Note that in the classical finite dimensional case, one
can consider the disturbance decoupling problem when the
disturbance is not measurable. In this case, the solution
is a strictly proper compensator and the feedback is of the
form v = Fz. Here, we can also consider the case when
the precompensator is strictly weak proper. The structural
condition may be reformulated in this context. However, the
weak proper part (even if it istrictly proper in the weak
sense) needs, for it realization, the disturbance. Hence, this
problem, except for some classes of systems, cannot be
solved. As for the row-by-row decoupling problem, if the
disturbance is not smooth enough, the problem cannot be
solved by this kind of generalized feedback.

Let us conclude this main section by the following general
remark about the existence of stable solution for both consid-

which may contain the delayed derivative of the original dis- ered problems.

turbance. |

Remark 4.5 The given results allow to discuss the case of

Remark 4.4 Let us precise in some example how the new solving the mentioned problems with stability. According to

disturbance is constructed using the initial one.

the special form of the generalized state feedback, the neutral

Suppose that the initial disturbance is one dimensional actingype of the closed loop systems is not affected by the feed-
on the system a®,d(t). Assume now that for this system back. In particular, the formal stability (or instability) of the
we obtain (see the proof of the Theorem 4.3) a weak propepriginal system is not changed by the feedback. This means

part of the precompensator as:
K?(s,e™%) = s%e™° + se ™.
Then the new disturbance is
Di(s,e %) = Do + Bo(s%e™* 4 se™ %)
and in the time domain, the disturbing term is given by:

Dod(t) + Bod(t — 1) + Bod(t — 2).

Another possibility is to consider a new disturbance vector:

d
q= d )
d
and then, in the time domain, we get
Diq(t) = Doq(t) + D1g(t — 1) + Dag(t — 2),
with o o
Do=[D 0 0], Di=[0 0 By]

and
Dy=[0 By 0].

that if the original system is not formally stable, the general-

ized state feedback solving the disturbance rejection or the
row-by-row decoupling problems cannot stabilize the sys-

tem. This result may be compared with the result by Loiseau
et al. in this Conference [6].

5 Conclusion

The weak structure at infinity of time-delay system of neu-
tral type is used to solve the disturbance rejection and the
row-by-row decoupling problems. Delayed derivative of the
disturbance or of the new control must be used in a general
case. This is the counterpart of the generality. For practical
use this means that if the disturbance or the new control are
not smooth enough, we need in fact very high gain in approx-
imation.
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