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Introduction

The present paper is concerned with delay systems of neutral type, i.e. systems described by equations

   ẋ(t) -A -1 ẋ(t -1) = A 0 x(t) + A 1 x(t -1) +B 0 u(t) + D 0 d(t) y(t) = C 0 x(t) (1)
where x(t) ∈ IR n is the state, u(t) ∈ IR p the input, d(t) ∈ IR q is a disturbance and y(t) ∈ IR m the output. The matrices A 0 , A 1 , A -1 , B 0 , C 0 and D 0 are of suitable dimensions. In this paper we assume that matrices B 0 and C 0 are of full rank.

There are more general forms of delay systems of neutral type: with several delays, with distributed delays... Our considerations may be formulated for systems with several commensurate delays in the state, input or output. For the sake of clarity, we limit our presentation here to a single delay in the state and its derivative. For other approaches concerning systems with delay of neutral type see for example [START_REF] Bensoussan | Representation and control of infinite dimensional systems[END_REF][START_REF] Górecki | Analysis and synthesis of time delay systems[END_REF].

The first part is devoted to the description of solutions of the system and transfer function matrix in several ways. The new approach is the generalization of the description given by Olbrot [START_REF] Górecki | Analysis and synthesis of time delay systems[END_REF] and Zmood [START_REF] Zmood | The Euclidean space controllability of control systems with delays[END_REF] for systems with simple delay in state (see [START_REF] Górecki | Analysis and synthesis of time delay systems[END_REF][START_REF] Tsoi | Recent advances in the algebraic system theory of delay differential equations[END_REF] for more details on different approaches). Then, we describe the structure at infinity of the system (1) and related questions. Applications to control problems are considered in the last part. The mains results are the characterization of the solvability of the row-by-row decoupling problem and the disturbance rejection for linear time-delay systems of neutral type. The precompensator solving the given problem may be realized by generalized static state feedback, i. e. feedback which contains the delayed derivative of the new control (for the decoupling problem) or the delayed derivative of the disturbance. An important property is that the formal stability of the neutral-type system is not affected by such feedbacks.

Preliminaries

The solution may be expressed using the fundamental matrix of solutions Φ(t), which satisfies the differential equation

Φ(t) = A 0 Φ(t) + A 1 Φ(t -h) + A -1 Φ(t -h)
with the initials conditions:

Φ(0) = I, Φ(t) = 0 for t < 0.
Let us give the expression of this matrix. Let Q i (j) be the matrices defined by the relations [START_REF] Gabasov | Qualitative theory of optimal processes[END_REF][START_REF] Kirillova | On controllability problem for linear systems with after-effect[END_REF]:

Q i (j) = A 0 Q i-1 (j) + A 1 Q i-1 (j -1) + A -1 Q i (j -1)
with initial conditions:

Q 0 (0) = I, Q i (j) = 0 if ij < 0.
Then the matrix Φ(t) may be written as (see [START_REF] Shklyar | The relative controllability of systems of neutral type with delayed arguments[END_REF])

Φ(t) = ∞ i=0 k j=0 Q i (j) (t -j) i i! for t ∈ [k, k + 1[.
This relation may be verified by induction. Another expression of the fundamental matrix may be obtained via the solutions of the system

E k żk (t) = A k z k (t) + B k v k (t) + D k w k (t) w k (t) = C k z(t) (2)
where the matrices

E k , A k , B k and C k , k ∈ IN are com- posed by (k + 1)
2 blocks as follows.

E k =       I 0 0 . . . 0 -A -1 I 0 . . . 0 0 -A -1 I . . . 0 . . . . . . . . . . . . . . . 0 0 0 . . . I       , A k =       A 0 0 0 . . . 0 A 1 A 0 0 . . . 0 0 A 1 A 0 . . . 0 . . . . . . . . . . . . . . . 0 0 0 . . . A 0       , B k =       B 0 0 0 . . . 0 0 B 0 0 . . . 0 0 0 B 0 . . . 0 . . . . . . . . . . . . . . . 0 0 0 . . . B 0       , C k =       C 0 0 0 . . . 0 0 C 0 0 . . . 0 0 0 C 0 . . . 0 . . . . . . . . . . . . . . . 0 0 0 . . . C 0       , D k =       D 0 0 0 . . . 0 0 D 0 0 . . . 0 0 0 D 0 . . . 0 . . . . . . . . . . . . . . . 0 0 0 . . . D 0      
.

As E k is invertible, the system (2) is regular for all integers k. This system allows to give another expression for the fundamental solution [START_REF] Rabah | Structural Properties and Controllability for Delay Systems of Neutral Type[END_REF]:

Φ(t) = [ 0 . . . 0 I ] e E -1 k A k (t-k) Z k , t ∈ [k, k + 1[,
where the matrices Z k are given by the relations

Z 0 = I, Z k = I e E -1 k-1 A k-1 Z k-1 .
The transfer function matrix of the system (1) between the u and y is given by the expression

T (s, e -s ) = C 0 (sI -A 0 -A 1 e -s -A -1 se -s ) -1 B 0 .
The transfer function matrix between the disturbance and the output is

T D0 (s, e -s ) = C 0 (sI -A 0 -A 1 e -s -A -1 se -s ) -1 D 0
And T (s, e -s ) may be decomposed as follows (the same holds for T D0 (s, e -s )):

T (s, e -s ) = ∞ j=0 C 0 R 0 (s)R j 1 (s)B 0 e -js ,
where

R 0 (s) = (sI -A 0 ) -1 R 1 (s) = (A 1 + A -1 s)(sI -A 0 ) -1 .
Let T j (s) = C 0 R 0 (s)R 1 (s) j B 0 and Θ k (s) be the transfer function matrix between the input and the output for the system [START_REF] Gabasov | Qualitative theory of optimal processes[END_REF]. As in the case of a linear system with delay [START_REF] Malabre | Structure at infinity, model matching and disturbance rejection for linear systems with delays[END_REF], one has the following equality:

Θ k (s) =     T 0 (s) 0 . . . 0 T 1 (s) T 0 (s) . . . 0 . . . . . . . . . . . . T k (s) T k-1 (s) . . . T 0 (s)     . ( 3 
)
In a similar way the the transfer function matrix between the disturbance and the output may be written as

Θ D0 k (s) =     T D0 0 (s) 0 . . . 0 T D0 1 (s) T D0 0 (s) . . . 0 . . . . . . . . . . . . T D0 k (s) T D0 k-1 (s) . . . T D0 0 (s)     . ( 4 
)
where T D0 j (s) = C 0 R 0 (s)R 1 (s) j D 0 As for the fundamental solution one can write the transfer function through the matrices Q i (j), more precisely, the rational matrices T j (s) and T D0 j (s) verify

T j (s) = ∞ i=0 C 0 Q i (j)B 0 s -(i+1) ,
and

T D0 j (s) = ∞ i=0 C 0 Q i (j)D 0 s -(i+1) .
This gives a relation between the approach of Gabasov and Kirillova based on matrices Q i (j) [START_REF] Gabasov | Qualitative theory of optimal processes[END_REF][START_REF] Kirillova | On controllability problem for linear systems with after-effect[END_REF][START_REF] Shklyar | The relative controllability of systems of neutral type with delayed arguments[END_REF] and that of Olbrot, Zmood and other authors [START_REF] Olbrot | Algebraic criteria of controllability to zero function for linear constant time-lag systems[END_REF][START_REF] Tsoi | Recent advances in the algebraic system theory of delay differential equations[END_REF][START_REF] Zmood | The Euclidean space controllability of control systems with delays[END_REF] developped for single delay system. This relation for delay systems of neutral type was pointed out in [START_REF] Rabah | Structural Properties and Controllability for Delay Systems of Neutral Type[END_REF].

Structure at infinity

The transfer function matrix of a delay system is not rational. Moreover, it is not analytical at infinity. The notions of properness must be precised.

Definition 3.1 A complex valued function f (s) is called weak proper if lim f (s) is finite when s ∈ IR tends to ∞.

It is called strictly weak proper if this limit is 0. A matrix B(s) is weak biproper if it is weak proper and its inverse is also weak proper. Weak proper is replaced by strong proper if the same occurs when e(s) → ∞.

Let us put A(e -s ) = A 0 + A 1 e -s + A -1 se -s . We have the following result for delay system of neutral type (see [START_REF] Rabah | Structural Properties and Controllability for Delay Systems of Neutral Type[END_REF] and [START_REF] Rabah | On the structure at infinity of linear delay systems with application to decoupling problem. Theory and practice of control and systems[END_REF] for the case of a simple system with delay) Theorem 3.2 There exist weak biproper matrices B 1 (s, e -s ) and B 2 (s, e -s ) such that

B 1 (s, e -s )T (s, e -s )B 2 (s, e -s ) =       ∆ 0 (s) 0 • • • 0 0 0 ∆ 1 (s)e -s • • • 0 0 . . . . . . . . . . . . . . . 0 0 • • • ∆ k (s)e -ks 0 0 0 • • • 0 0       , where ∆ i (s) = diag s -ni,1 , . . . , s -ni,j i and n i,j ≤ n i,j+1 , i = 1, . . . , k. The list of integers {n i,j , i = 1, . . . , k; j = j 1 , . . . , j i }
is called the weak structure at infinity of the system T (s, e -s ) and is noted by Σ w ∞ T (s, e -s ) or Σ w ∞ (C 0 , A(e -s ), B 0 ). This structure at infinity allows to characterize some control problems as disturbance rejection, row-by-row decoupling, model matching, etc.

Main results

The row-by-row decoupling problem

The main result for the row-by-row decoupling problem is given by the following theorem where the system is considered without disturbance and with p = m. Theorem 4. [START_REF] Bensoussan | Representation and control of infinite dimensional systems[END_REF] The following properties are equivalent 1. The row-by-row decoupling problem for the delay neutral-type system ( 1) is solvable by a weak biproper precompensator:

T (s, e -s )K(s, e -s ) = diag h 1 (s, e -s ), . . . , h m (s, e -s ) .
2. The weak structure at infinity verifies:

Σ w ∞ (C 0 , A(e -s ), B 0 ) =    Σ w ∞ (c 1 , A(e -s , B 0 ) . . . Σ w ∞ (c p , A(e -s ), B 0 )    ,
where c i 's are the rows of the matrix C 0 .

The matrix

W 0 =    c 1 Q n1-1 (k 1 )B 0 . . . c m Q n m-1 (k m )B 0    ,
is invertible, where for each row i the integers n i and k i are such that:

c i Q ni-1 (k i )B 0 = 0 and c i Q l (j)B 0 = 0 for l < n i -1 and j < k i .

The decoupling problem is solvable by generalized static state feedback

u = F (e -s )x + G(s, e -s )v,
where

F (e -s ) = F 0 + F 1 e -s + • • • , G(s, e -s ) = G 0 + G 1 (s)e -s + • • • , with (possible) polynomial matrices G i (s), i ≥ 1, G 0 = W -1 0 and constant matrices F i , i ∈ IN.
The relation between the precompensator K(s, e -s ) and the feedback law

u = F (e -s )x + G(s, e -s )v is given by K(s, e -s ) = I -F (e -s )(sI -A(e -s )) -1 B 0 -1 G(s, e -s ).

For

C i = m j =i Ker c j , let V Σ (C i , A(e -s ), B 0 ), i = 1, . . . , m be the subspaces {x ∈ C i : x = (sI -A(e -s ))ξ(s, e -s ) -B 0 ω(s, e -s ) ,
with strictly weak proper ξ and ω such that ξ(s, e -s ) ∈ C i for s > s 0 .

Then

Im B 0 = m i=1 Im B 0 ∩ V Σ (C i , A(e -s ), B 0 ), (5) 
with

Im B 0 ∩ V Σ (C i , A(e -s ), B 0 ) = 0.
Proof. The implication 1 ⇒ 2 ⇒ 3 and 4 ⇒ 5 ⇒ 1 may be shown as for the time-delay system (not of neutral type, that is A -1 = 0 as in [START_REF] Rabah | The structure at infinity of linear delay systems and the row-by-row decoupling problem[END_REF]). The formal calculations are similar to the case of system without delay (see also [START_REF] Rabah | Structural Properties and Controllability for Delay Systems of Neutral Type[END_REF]). The only crucial implication is 3 ⇒ 4.

Assume that W 0 is invertible. Then T (s, e -s ) = diag s -n1 e -k1s , . . . , s -nm e -kms (W 0 + W (s, e -s )),

and W 0 + W (s, e -s ) is weak biproper because lim

IR s→∞ W 0 + W (s, e -s ) = W 0 .
Then K(s, e -s ) def = (W 0 + W (s, e -s )) -1 is also biproper and T (s, e -s )K(s, e -s ) = diag s -n1 e -k1s , . . . , s -nm e -kms , Note that W (s, e -s ) is strictly weak proper and may be decomposed as:

W (s, e -s ) = W 1 (s, e -s ) + W 2 (s, e -s ),
with

W 1 (s, e -s ) = ∞ j=0 ∞ i=0 C 0 Q i+ν-1 (κ + j)B 0 s -i e -js -W 0 ,
The integers ν and κ denote for each row i the integers n i and k i respectively, that is

W 0 = C 0 Q ν-1 (κ)B 0 .
The matrix W 1 (s, e -s ) is strictly strong proper. This implies that the precompensator

K 1 (s, e -s ) = W 0 + W 1 (s, e -s )
is strong biproper. As for a system without neutral term [START_REF] Rabah | Structure at infinity for delay systems revisited[END_REF][START_REF] Rabah | The structure at infinity of linear delay systems and the row-by-row decoupling problem[END_REF][START_REF] Sename | Decoupling without prediction of linear systems with delays: a structural approach[END_REF] , this precompensator may be realized with static state feedback:

F 1 (e -s ) = F 0 + F 1 e -s + F 2 e -2s + • • • , G 1 (e -s ) = G 1 0 + G 1 1 e -s + G 1 2 e -2s + • • • ,
where, for example, G 1 0 = W -1 0 and

F 0 = -G 1 0    c 1 Q n1 (k 1 ) . . . c m Q nm (k m )    .
the other matrices are computed as in [START_REF] Rabah | Structure at infinity for delay systems revisited[END_REF] and [START_REF] Sename | Decoupling without prediction of linear systems with delays: a structural approach[END_REF]. This gives

K 1 (s, e -s ) = I -F 1 (e -s )(sI -A(e -s )) -1 B 0 -1 G 1 (e -s ).
Note that in [START_REF] Rabah | Structure at infinity for delay systems revisited[END_REF][START_REF] Sename | Decoupling without prediction of linear systems with delays: a structural approach[END_REF] additional conditions are required in order to insure strong biproperness. Here those conditions are verified by construction. Let now define K 2 (s, e -s ) def = K(s, e -s ) -K 1 (s, e -s ), which gives:

K(s, e -s ) = K 1 (s, e -s ) + K 2 (s, e -s ), Taking F (e -s ) = F 1 (e -s ) and G 2 (s, e -s ) = I -F (e -s )(sI -A(e -s )) -1 B 0 K 2 (s, e -s ), one obtains K 2 (s, e -s ) = I -F (e -s )(sI -A(e -s )) -1 B 0 -1 G 2 (s, e -s )
And then, from the expressions of K 1 (s, e -s ) and K 2 (s, e -s ), we get

K(s, e -s ) = I -F (e -s )(sI -A(e -s )) -1 B 0 -1 G(s, e -s ), with G(s, e -s ) def = G 1 (e -s ) + G 2 (s, e -s ).
If T F,G (s, e -s ) is the closed loop transfer matrix, we have:

T F,G (s, e -s ) = T (s, e -s )K(s, e -s )
and T F,G (s, e -s ) = diag s -n1 e -k1s , . . . , s -n m e -kms .

Hence 4 is satisfied.

Remark 4.2

The weak proper part of the precompensator K 2 (s, e -s ) is realized by the matrix G 2 (s, e -s ) which acts on the new control v. This means that this new control must be sufficiently smooth. If it is not the case, the decoupling problem is not solvable by this kind of feedback if K 2 (s, e -s ) = 0.

The disturbance rejection problem

In order to show a similar result for the disturbance rejection problem, we need a preliminary result concerning the systems (2) which permits a representation of the system (1). Let V * (Ker C k , A k , B k ) be the maximal (A k , B k )-invariant subspace (see [START_REF] Wonham | Linear multivariable control: a geometric approach[END_REF]) contained in Ker C k . This subspace is feedback invariant, that is, there exists a matrix

F k such that V * (Ker C k , A k , B k ) is (A k + B k F k )-invariant.
It is well known that the disturbance rejection problem for the system (2) with E k = I k (when A -1 = 0) is solvable by feedback

v k = F k z k + G k w k iff Im D k ⊂ V * (Ker C k , A k , B k ) + ImB k .
The matrix F k may be taken such that

V * (Ker C k , A k , B k ) is (A k + B k F k )-invariant.
In [START_REF] Malabre | Structure at infinity, model matching and disturbance rejection for linear systems with delays[END_REF] it has been shown, in the case of systems without neutral term, that the matrices F k and G k are lower block triangular matrices. Let us show that in the case of system (2), the situation is the same. The system ( 2) is equivalent to the system

żk = E -1 k A k z k + E -1 k B k v k + E -1 k D k w k w k = C k z k (6)
For this system the classical result holds and the corresponding feedback matrices F k and G k are lower triangular matrices as shown in [START_REF] Malabre | Structure at infinity, model matching and disturbance rejection for linear systems with delays[END_REF]. A simple calculation shows that the same matrices give a feedback which solves the disturbance rejection problem for the system (2):

C k sI k -E -1 k A k -E -1 k B k F k -1 × E -1 k B k G k + E -1 k D k = C k (sE k -A k -B k F k ) -1 (B k G k + D k )
For the disturbance rejection problem we have the following result.

Theorem 4. [START_REF] Kirillova | On controllability problem for linear systems with after-effect[END_REF] The following propositions are equivalent:

1. The disturbance rejection problem for the delay system of neutral type ( 1) is solvable by a weak proper precompensator :

T (s, e -s )K(s, e -s ) + T D0 (s, e -s ) ≡ 0 2. The weak structure at infinity verifies:

Σ w ∞ [ T (s, e -s ) T D0 (s, e -s ) ] = Σ w ∞ [ T (s, e -s ) 0 ]

The disturbance rejection problem is solvable by generalized static state feedback

u = F (e -s )x + G(s, e -s )d, with 
F (e -s ) = F 0 + F 1 e -s + F 2 e -2s + • • • , G(s, e -s ) = G 0 + G 1 (s)e -s + G 2 (s)e -2s + • • • , with (possible) polynomial matrices G i (s), i ≥ 1 and constant matrices F i , i ∈ IN. 4. D 0 ⊂ V Σ (Ker C 0 , A, B 0 ) + B 0
, where D 0 and B 0 are the images of D 0 and B 0 respectively, the subspace V Σ (Ker C 0 , A, B 0 ) being given by {x ∈ Ker C 0 : x = (sI -A(e -s ))ξ(s, e -s ) -B 0 ω(s, e -s ) , with strictly weak proper ξ and ω such that ξ(s, e -s ) ∈ Ker C 0 for s > s 0 .

Proof. The equivalences 1) ⇔ 2) ⇔ 4) are obtained as for sytems without neutral term (see [START_REF] Malabre | Structure at infinity, model matching and disturbance rejection for linear systems with delays[END_REF][START_REF] Rabah | On the structure at infinity of linear delay systems with application to decoupling problem. Theory and practice of control and systems[END_REF]). If 3) is satisfied, then 1) holds with

K = I -F (sI -A) -1 B 0 -1 F (sI -A) -1 D 0 + G ,
the argument (s, e -s ) being omitted for the sake of simplicity and, as noted before,

A(s, e -s ) = A 0 + A 1 e -s + A -1 se -s
Suppose now that 1) is satisfied, the precompensator K(s, e -s ) is decomposed into a strong proper part K 1 (s, e -s ) and a weak proper part K 2 (s, e -s ). This gives:

T (s, e -s ) K 1 (s, e -s ) + K 2 (s, e -s ) = -T D0 (s, e -s ) (7) 
Let us now put

D 1 (s, e -s ) def = B 0 K 2 (s, e -s ) + D 0
Then (7) may be written as:

T (s, e -s )K 1 (s, e -s )+ C 0 sI -A(s, e -s ) -1 D 1 (s, e -s ) = 0
This means that the strong proper precompensator K 1 (s, e -s ) solves the disturbance rejection problem for a new disturbance D 1 (s, e -s ) (see Remark 4.4 for the state space representation of this disturbance).

In order to design the feedback which solves our problem, we first design the feedback which realizes the precompensator K 1 (s, e -s ) solving the new disturbance rejection problem (Step 1), then we deduce the feedback solving the original problem (Step 2). STEP 1: The precompensator K 1 (s, e -s ) may be decomposed as:

K 1 (s, e -s ) = K 0 1 (s) + K 1 1 (s)e -s + • • • ,
where K i 1 (s), i ∈ IN are rational and strictly (strong) proper. As K 1 (s, e -s ) solves the new disturbance problem, using the partial representation by the systems (2) and the corresponding transfer function matrices, we get, for all k ∈ IN:

Θ k (s)Γ k (s) + Θ D1 k (s) = 0,
with proper precompensator Γ k (s) given by :

Γ k (s) =     K 0 1 (s) 0 • • • 0 K 1 1 (s) K 0 1 (s) • • • 0 . . . . . . . . . . . . K k 1 (s) K k-1 1 (s) • • • K 0 1 (s)     .
The matrix Θ k (s) being given by (3) and Θ D1 k (s) in a similar way from the decomposition of D 1 (s, e -s ) (see Remark 4.4). This means that, for each k, the disturbance decoupling problem is solvable for the finite dimensional systems [START_REF] Gabasov | Qualitative theory of optimal processes[END_REF] with the new disturbance. Using the geometric approach, one can design the corresponding matrices F k and G k which are of lower triangular forms (as pointed out at the beginning of this section):

F k =     F 0 0 • • • 0 F 1 F 0 • • • 0 . . . . . . . . . . . . F k F k-1 • • • F 0     (8) 
and

G k =     G 0 0 • • • 0 G 1 G 0 • • • 0 . . . . . . . . . . . . G k G k-1 • • • G 0     (9) 
Taking

F (e -s ) = F 0 + F 1 e -s + F 2 e -2s + • • • , G 1 (s, e -s ) = G 0 + G 1 (s)e -s + G 2 (s)e -2s + • • • ,
using the relation between the system (2) and the delay system, we obtain

T (s, e -s )K 1 (s, e -s ) = C 0 sI -A(s, e -s ) -B 0 F (e -s ) -1 × B 0 G 1 (s, e -s ) + D 1 (s, e -s ) .
That is, K 1 (s, e -s ) is realized by static feedback.

STEP 2: A formal calculation gives:

K 1 = I -F (sI -A) -1 B 0 -1 F (sI -A) -1 D 1 + G 1 ,
where the arguments are omitted for simplicity. This can be rewritten as:

K 1 =F (sI -A) -1 D 1 + G 1 + F (sI -A) -1 B 0 K 1
Replacing D 1 (s, e -s ) by its expression B 0 K 2 (s, e -s ) + D 0 , we obtain:

K 1 = F (sI -A) -1 (B 0 K 2 + D 0 ) + G 1 + F (sI -A) -1 B 0 K 1
and then

K 1 = F (sI -A) -1 D 0 + F (sI -A) -1 B 0 K + G 1 .
Adding K 2 (s, e -s ) to both parts leads to

K = F (sI -A) -1 D 0 + F (sI -A) -1 B 0 K + G 1 + K 2 Let us now put G(s, e -s ) def = G 1 (e -s ) + K 2 (s, e -s ),
we obtain:

K = F (sI -A) -1 D 0 + F (sI -A) -1 B 0 K + G.
And this gives

K = I -F (sI -A) -1 B 0 -1 (F (sI -A) -1 D 0 + G).
This means that K(s, e -s ) is realizable by the feedback

u = F (e -s )x + G(s, e -s )d
which may contain the delayed derivative of the original disturbance.

Remark 4.4

Let us precise in some example how the new disturbance is constructed using the initial one. Suppose that the initial disturbance is one dimensional acting on the system as D 0 d(t). Assume now that for this system we obtain (see the proof of the Theorem 4.3) a weak proper part of the precompensator as:

K 2 (s, e -s ) = s 2 e -s + se -2s .
Then the new disturbance is

D 1 (s, e -s ) = D 0 + B 0 (s 2 e -s + se -2s )
and in the time domain, the disturbing term is given by:

D 0 d(t) + B 0 d(t -1) + B 0 ḋ(t -2).
Another possibility is to consider a new disturbance vector:

q =   d ḋ d   ,
and then, in the time domain, we get

D 1 q(t) = D 0 q(t) + D 1 q(t -1) + D 2 q(t -2), with D 0 = [ D 0 0 ], D 1 = [ 0 0 B 0 ] and D 2 = [ 0 B 0 0 ].
This expression allows to consider the system (2) with a new disturbance and to make use of this representation in order to solve the disturbance decoupling problem for the system (2) with a new disturbance:

D 1 k =         D 0 0 0 . . . 0 0 D 1 D 0 0 . . . 0 0 D 2 D 1 D 0 . . . 0 0 0 D 2 D 1 . . . 0 0 . . . . . . . . . . . . . . . 0 0 0 . . . D 1 D 0         .
Note that in the classical finite dimensional case, one can consider the disturbance decoupling problem when the disturbance is not measurable. In this case, the solution is a strictly proper compensator and the feedback is of the form u = F x. Here, we can also consider the case when the precompensator is strictly weak proper. The structural condition may be reformulated in this context. However, the weak proper part (even if it is strictly proper in the weak sense) needs, for it realization, the disturbance. Hence, this problem, except for some classes of systems, cannot be solved. As for the row-by-row decoupling problem, if the disturbance is not smooth enough, the problem cannot be solved by this kind of generalized feedback.

Let us conclude this main section by the following general remark about the existence of stable solution for both considered problems.

Remark 4.5

The given results allow to discuss the case of solving the mentioned problems with stability. According to the special form of the generalized state feedback, the neutral type of the closed loop systems is not affected by the feedback. In particular, the formal stability (or instability) of the original system is not changed by the feedback. This means that if the original system is not formally stable, the generalized state feedback solving the disturbance rejection or the row-by-row decoupling problems cannot stabilize the system. This result may be compared with the result by Loiseau et al. in this Conference [START_REF] Loiseau | A note on BIBO stabilisation of neutral-type time-delay systems[END_REF].

Conclusion

The weak structure at infinity of time-delay system of neutral type is used to solve the disturbance rejection and the row-by-row decoupling problems. Delayed derivative of the disturbance or of the new control must be used in a general case. This is the counterpart of the generality. For practical use this means that if the disturbance or the new control are not smooth enough, we need in fact very high gain in approximation.