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Abstract—Safety-critical autonomous systems, like robots
working in collaboration with humans, are about to be used in
diverse environments such as industry but also public spaces
or hospitals. Those systems evolve in complex and dynamic
environments and are exposed to a wide variety of hazards.
Several techniques may be used to ensure that their misbehavior
cannot cause unacceptable damage or harm. One of them is active
safety monitoring. A safety monitor is a component responsible
for maintaining the system in a safe state despite the occurrence
of hazardous situations. In this paper, we study the introduction
of safety monitoring into an airport light measurement robot.
The specification of the monitor follows a principled approach
that starts with a hazard analysis and ends with a set of safety
rules synthesized based on formal methods. This study illustrates
the benefits of the approach, and shows the impact of safety on
the development of an autonomous system.

I. INTRODUCTION

The autonomous operation of mobile robots in unstructured
and human-shared environments is subject to hard safety
constraints. Indeed, the misbehavior of such systems could
cause unacceptable damage or harm. This concern is one of
the major obstacles to the effective deployment of otherwise
technically feasible robots in many real-life situations. As an
example, this paper concerns an autonomous robotic system
for airfield lighting system maintenance, which is being de-
veloped by Sterela. This robot should automate some tedious
light measurement tasks that are done by human operators.
But today, no autonomous system is allowed on runways due
to safety issues. So, whatever the innovative features of the
robot, and however useful the provided service may be, there
will be no market for it unless Sterela provides a solid safety
case to the airport authorities. As a step toward building such
a case, we study the specification of a solution that adds safety
monitoring to the system.

A safety monitor is a device responsible for safety only, and
kept independent from the main control channel. It is intended
to act as the ultimate protection against interaction faults
or arbitrary behavior of the control channel that adversely
affect safety. To serve its protection role, it is equipped with
means for context observation (i.e., sensors) and has the ability
to trigger safety interventions when a potentially dangerous
situation is detected. The monitor behavior is specified by
safety rules of the form: if condition then intervention. While
ensuring safety, the rules should still permit functionality of

the system, a property that we call permissiveness.
Previous work has proposed a systematic process to produce

the safety rules [1]. It starts by a hazard analysis method,
HAZOP-UML [2], from which a set of safety invariants is
derived. The monitor is in charge of maintaining the system
in states satisfying these invariants. After a formalization step,
appropriate safety rules are synthesized by SMOF (Safety
MOnitoring Framework) [3], [4], a framework that uses the
NuSMV model checker. SMOF accommodates both safety and
permissiveness requirements, which we express in terms of
state reachability properties.

The paper reports on the application of this process to the
light measurement robot. Section II presents the characteristics
of the robot. Section III explains the HAZOP-UML method
and gives its outcomes for this specific case study. Section
IV illustrates the synthesis of safety rules on two examples
of invariants derived from HAZOP-UML. After an overview
of related work on Section V, we conclude on the benefits of
the proposed approach, and on the impact of safety on the
development of the studied robot.

II. INDUSTRIAL CASE STUDY

The studied use case concerns maintenance and control of
the lights along the airport runways. The International Civil
Aviation Organization (ICAO) recommends monthly measure-
ment of the light intensity of airfield lighting installations,
using a certified device. If the light intensity does not comply
with the ICAO requirements, no air traffic can be allowed on
the airfield.

Currently, human operators perform the measurements but
this is a burdensome and displeasing task. It has to be done late
at night, typically from 1am to 4am. The repeated exposure to
intense lights in surrounding dark may cause eye strain. The
task would thus be a perfect fit for robotic operation.

The French company Sterela is developing a prototype
system to serve this purpose. The robot consists of a mobile
platform and a commutable payload (Fig. 1). The platform,
called 4MOB, is a four wheel drive vehicle. The payload is
a certified photometric sensor on a support deported on the
side of the platform. The deported sensor moves above the
lights (15-20cm) with a maximum speed of 1.4m/s. A human
operator is supervising the mission with a digital tablet from
the extremity of the runway. As the robot operates at night



Fig. 1. Sterela robot with sensor support

and at long distances, the operator has no direct visual contact
with it. Safety concerns are the main barrier to the deployment
of such an autonomous robot on real airports. Other operators
and service vehicles could be present on the runway on which
the robot evolves, and it must not constitute a hazard to them.
Moreover, even if the robot could be allowed on runways,
there would be airfield areas strictly forbidden to it: it must
be ensured that the robot never traverses them. Finally, the air
traffic controllers should keep the ability to re-open a runway
as quickly as possible in case of a landing emergency. In
that case, Sterela originally considered an automated runway
evacuation procedure according to which the robot aborts its
mission and rushes into a safe area.

In order to better identify the risks induced by the robot
operation, and the potential solutions to address them, Sterela
and LAAS applied two safety-related methods. The first one,
HAZOP-UML [5], is a hazard analysis method. Based on
its outcomes, the second method, SMOF (Safety MOnitoring
Framework [6]), determines the safety rules to be implemented
by a safety monitor. The methods were applied at an early
stage where some design decisions are still open and can be
tuned to accommodate safety concerns.

III. HAZARD ANALYSIS WITH HAZOP-UML

The first step of the process is to identify a list of hazardous
situations prior to their formalization as safety invariants. This
study has been done using a model-based hazard analysis
technique developed at LAAS called HAZOP-UML [2]. It
combines the well known modeling language UML (Unified
Modeling Language) and a hazard analysis technique called
HAZOP (HAZard OPerability) originally used in petrochemi-
cal industry. As presented in Fig. 2, based on the UML models
and a bunch of predefined guidewords, a systematic deviation
analysis is performed. It results in a list of hazardous situations
that might occur during system operation. An extract of the
produced HAZOP tables is given in Table I. Overall, a total
of 1623 deviations were analyzed as presented in Table II.
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Fig. 2. HAZOP-UML overview

4MOB

Use cases 5
Conditions (pre,post,inv) 24

Sequence diagrams 5
Messages 47

Deviations 1623
Interpreted deviations 226
Interpreted deviations with severity > 0 97

Number of hazards 10

TABLE II
STATISTICS FOR THE APPLICATION OF HAZOP-UML

Being a systematic approach, HAZOP-UML typically in-
duces the analysis of many potential deviations. A first way
to control complexity is by setting the level of detail of the
UML models. This has been done through the number of
UML elements (47 messages and 24 conditions). A second
way is to provide tool support that alleviates the effort. For
this, Sterela has extended their requirement editing tool to
partially generate UML diagrams and HAZOP tables. This
tool is connected to their application lifecycle management
software based on the open source Tuleap platform [7].

A first result of such a study is a list of recommendations for
the use or the design of the robot. For instance, an automated
runway evacuation function was originally planned in case
of emergency landing. However, it became clear that safety
cannot depend on such a complex function. It involves the
whole chain of control including sensors and actuators, the
power supply, the navigation software, and every one of those
would be assigned a high integrity level. The analysis high-
lights potential deviations for these components as in Table
I for the battery: an incomplete charge of the battery could
compromise the success of the evacuation. But commercially
available batteries do not provide a high integrity level for
the battery charge rate information. Ensuring a high integrity
navigation software service would obviously be even more
difficult. The automated evacuation function was then removed
and replaced by a manual evacuation procedure, with a high
integrity on the last known localization of the robot.

A second result is the identification of the hazards to be
treated by the safety monitor. To prepare the synthesis of
safety rules, the hazards are reformulated as the violation of
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[4mob
battery
is being
charged]

Pre-
condition Part of The battery is

partially charged

Not enough battery during the
mission: problem to evacuate the
runway in case of emergency

High
Check the battery rate at any time
and determine minimum value to
be ready to evacuate

TABLE I
HAZOP TABLE EXTRACT

invariants based on observable variables. Not all the identified
hazards can be reformulated this way. Hence, a subset of
hazards are in the scope of the monitor. For the studied robot,
the monitor may address 5 hazards (out of 10):

1) Collision with an obstacle (including lights);
2) Fall of the robot during loading/unloading - the robot can

fall on the ground or on an operator;
3) Movement in an unauthorized zone - some areas of the

airport are not allowed to the robot;
4) Inability for the operator to locate the robot;
5) Dangerous velocity - the robot can go too fast in terms

of linear or angular velocity.
Among the 5 remaining hazards, one has been eliminated by

giving up the corresponding functionality (automated runway
evacuation); and the others will be managed by operating
procedures (availability of the operator in case of emergency
for example).

HAZOP-UML provides a systematic study of hazards. Its
application requires resources and time, but the development
of a dedicated tool, connected to a requirement tool, reduces
the effort to complete the analysis. HAZOP is particularly well
adapted to the context of safety monitoring, since it focuses
on operational hazards (other hazards such as electric shocks,
sharping edges, etc. are not studied). The next section presents
how to infer safety rules from those operational hazards.

IV. FORMAL MODELING AND SYNTHESIS OF SAFETY
RULES

This section illustrates the synthesis of safety rules with
SMOF for two invariants of growing complexity, after an
overview of the basic concepts.

A. Basic concepts

The monitor is responsible for enforcing the safety invari-
ants determined by the hazard analysis. If the system violates
one of these invariants, it enters what we call a catastrophic
state and we assume it to be irreversible. Figure 3 gives a
schematic view of the system state space observed from the
perspective of the monitor. Each safety invariant SI determines
a partition into catastrophic and non-catastrophic states. The
non-catastrophic states can in turn be partitioned into safe and
warning states, in such a way that any path from a safe state to
a catastrophic one traverses a warning state. The warning states
correspond to safety margins on the values of observable vari-
ables. For example, let us assume that the invariant involves a
predicate v < Vmax. The monitor may detect a warning state
when v reaches the value Vmax−margin. It may then decide
to trigger interventions to prevent any evolution toward the
catastrophe. This is done according to safety rules determining

Catastrophic states

SI

Warning states

Safe statesinterv1	 interv2	

Fig. 3. System state space from the perspective of the monitor

which interventions to trigger in the various warning states.
The set of rules form a strategy that must fulfill two properties:
Safety: non reachability of the catastrophic states;
Permissiveness: reachability of every non catastrophic state.
The permissiveness property is necessary to avoid safe strate-
gies that would constrain system behavior to the point of
compromising its functionality (e.g., always engaging brakes
to forbid any movement). We require the monitored system
to keep its ability to reach a wide range of states. The user
can select two levels of permissiveness: simple permissiveness
i.e. every non catastrophic state is reachable from the initial
state; universal permissiveness i.e. every non catastrophic state
is reachable from every other non catastrophic state. The
universal permissiveness is used by default because it is the
less restrictive. If no strategy is found, the user can select
simple permissiveness, or tune the level of permissiveness to
the states under consideration.

SMOF provides a template to formalize the various elements
decribed so far: the behavior model with a partition into safe,
warning and catastrophic states; the available interventions
modeled by their effect on observable state variables, possi-
bly under some preconditions; the safety and permissiveness
properties. The template offers predefined modules, as well as
auto-completion facilities. For example, the template contains
a generic LiveProp module for permissiveness properties, and
its instantiation for all non-catastrophic states is automatically
done. Likewise, the specification of the behavior model and
interventions is much simplified by entering parameters to
declaration modules, and letting SMOF automatically generate
the formal expression of warning states as well as the glue for
associating interventions with warning states. The formaliza-
tion language is the one of the NuSMV model checker [8].

After this formalization step, the synthesis tool uses a
branch-and-bound algorithm to explore intervention strategies.
During exploration, it calls NuSMV to assess the adequacy of



Fig. 4. The robot must not enter a prohibited area

Position of the robot relative
to the prohibited zone

Real distance
interval

Discrete
variable

The robot is too close to the
prohibited zone d ≤ dc d = 0

The robot is close to the pro-
hibited area dc < d ≤ dw d = 1

The robot is far away from the
prohibited area d ≥ dw d = 2

TABLE III
PARTITIONING OF THE VARIABLE d

the candidate rules with respect to safety and permissiveness.
Inadequate subsets of rules, which cannot be part of a complete
safe and permissive solution, are discarded. The tool returns
a list of alternative sets of rules, each forming an adequate
strategy for the given invariant to enforce.

The formalization and rule synthesis is done for each
invariant separetely. Then a last step is to merge the models
and to check for the consistency of the strategies retained for
the different invariants.

This method is illustrated in the next sections, with a zoom
on two invariants.

B. The robot must not enter a prohibited area

We intentionally choose here a simple invariant to illustrate
the method and the tool.

The monitor needs only one observation, d: distance to the
prohibited area (see Fig. 4). The catastrophic state is when
d ≤ dc. In order to detect that the distance gets close to dc,
we define a warning threshold dw.

The distance values, from the perspective of the monitor,
are thus partitioned into three classes: the robot is far away
from the area, close to it, or too close (catastrophic states).
In the NuSMV model, this partition is simply encoded by
introducing an abstract variable d with three values (0, 1, 2)
(see Table III).

The declaration of the variable uses the predefined
continuity module of the SMOF modeling template. Its
parameters determine the range of values of the abstract
variable, as well as its initial value:
--Continuity(lower bound, upper bound, initial

value)

d: Continuity(0,2,2);

As its name suggests, the module also encapsulates a
continuity constraint on the evolution of values. The next value
can only remain the same, or be incremented or decremented

by one:
next(d) = d | next(d) = d+1 | next(v) = d-1;

In particular, the distance cannot directly jump from 2 (far
away) to 0 (too close). Of course, the justification of this
constraint will not come for free: the use of the continuity
module puts an explicit requirement on the implementation of
the observation. The chosen threshold and sampling rate must
ensure that, even in the worst case velocity of the robot, the
monitor will always see an intermediate value in the range
[dw, dc[ before dc is reached.

The definition of catastrophic states uses the keyword cata:
DEFINE cata := d=0. In the template, the safety property
is predefined as !cata, and there is a constraint stating that
a catastrophe is irreversible.

Finally, candidate interventions have to be declared. This
is done by instantiating the predefined Interv module
with parameters describing the effect of the intervention
on observable variables, under some preconditions. Two
types of preconditions are considered: a static precondition
specifies a condition for states in which the intervention can
be triggered; a sequential precondition specifies a condition
on the previous state before entering the triggering state.
The module encapsulates the constraint that the effect is
guaranteed only if the preconditions hold. For example,
consider the following declaration of an intervention that
brakes until the platform is stationary (full stop):
--Interv(static precondition, sequential

precondition, effect)

full_stop: Interv(TRUE, d=2, next(d)=d);

The intervention is allowed in any state (static precondition
is TRUE), but the effect is guaranteed only if the previous
distance was far away from the prohibited zone (d=2, i.e.,
the warning threshold has just been crossed). The declaration
must be seen as an implementation requirement for interven-
tion means, to be justified by appropriate calculation of the
threshold based on the worst case braking distance.

For this simple invariant, the modeling task merely con-
sists of entering the three lines we have just described: the
declaration of the state variable, of the cata predicate and of
the intervention. In particular, the SMOF tool automatically
identifies the warning states, i.e., states having a one-step
transition to the catastrophic ones. Here, the warning states
are trivially d=1. The tool also automatically instantiates the
state reachability properties for permissiveness.

The rule synthesis algorithm explores associations of inter-
ventions with warning states. Since the model has one warning
state and one intervention, there is a single possible strategy: it
triggers the full stop if d=1. Still, the tool returns no solution
with the default universal permissiveness property. One has to
switch to simple permissiveness to get the expected strategy.
Indeed, the full stop freezes the distance to the prohibited area:
its trigger d=1 remains true forever. The robot is blocked at
its current location, requiring an action of the operator.

Another option would be to use a more sophisticated
intervention, which would prevent the robot from going
closer to the prohibited area but would allow moves to get



away from it. This intervention could be modelled as follows:
restrict_moves: Interv(TRUE, d=2, next(d)!=0);

and would ensure universal permissiveness. But this is a matter
of compromise, as the specification of restrict_moves is
much more difficult to implement than the one of the full
stop.

This simple but real-life example allowed us to illustrate
the use of the SMOF template, as well as the exploration of
alternative strategies. Although the modeling is here trivial,
it forces the user to make the implementation requirements
explicit, which is a valuable outcome. The next invariant is
more challenging with respect to both the modeling and the
synthesis of rules.

C. The robot must not collide with an obstacle

The absence of collision is an interesting problem for the
studied robot. The robot should be allowed to move very
close to the lights, so that its deported sensor passes above
them. Still, it must not collide with them. Also, it must not be
allowed to move close to other types of obstacles like humans
or service vehicles.

The formalization of the problem was done in two steps. We
first considered a simple case, with a single idealized obstacle
modeled by a pair of (x, y) coordinates. It helped us to identify
some assumptions on the obstacles to address, as well as
some requirements on how to observe the neighborhood of the
robot and which interventions to provide. The second model
was more complex, accommodating multiple obstacles and
their spatial extension. It allowed us to confirm the strategy
synthesized from the simple case.

1) Simple case: We assume that the robot is not responsible
for rear-end collisions (like in car accidents). It is then
sufficient to monitor the neighbourhood in front of, and at the
sides of the robot. However, the robot must not be allowed
to move backwards, or to make sharp turns (remember it
is with four-wheel steering, it might turn 360 ˚ on the spot).
Such movements would be dangerous for stationary obstacles
close behind it. To avoid this, we add two invariants (not
presented here) that restrict the direction and curvature radius
of movement.

We consider two types of obstacles: high obstacles, includ-
ing humans, which are too tall to pass under the deported
sensor, and low obstacles (20 cm max), which can pass
under it. The robot must be able to make the difference, at
least for obstacles that are located at the same side as the
deported sensor. A solution may be to equip the robot with
2D Lidar units, some on the platform and some on the deported
extension. Fig. 5 shows an exemplary implementation. Please
note that the figure is for illustrative purposes and does not
represent a real implementation. The low obstacles, including
lights, are assumed stationary: otherwise, there would be no
safe strategy allowing the robot to move close to them.

The monitor can use the following observations:
x : abscissa of the obstacle in the robot’s referential
y : ordinate of the obstacle in the robot’s referential
v : robot’s velocity

Fig. 5. Disposition of the lasers on the robot

Fig. 6. Visual representation of the classes of (x,y) coordinates

For x For y

x < xwl x = 0 y > ywf y = 0

xwl ≤ x < xcl x = 1 ycf < y ≤ ywf y = 1

xcl ≤ x ≤ xcrlow x = 2 ycf ≤ y ≤ ycb y = 2

xcrlow < x ≤ xcrhigh x = 3

xcrhigh < x ≤ xwr x = 4

x > xwr x = 5

For v For the type (when x > 2)
The robot is standstill v = 0 The obstacle is low type = 0

The robot is moving v = 1
The obstacle is
high type = 1

TABLE IV
PARTITIONING AND ABSTRACTION OF THE VARIABLES FOR THE SIMPLE

CASE MODEL

type : type of the obstacle (high or low)
Their values are partitioned into classes and abstract variables

are defined to encode them. Fig. 6 gives a visual representation
of how the space around the robot is partitioned, and Table IV
recaps the encoding for all variables.

The (x, y) coordinates are declared with continuity con-
straints. An additional constraint models the stationary as-
sumption of low obstacles (having type = 0). However, the
type of obstacle needs to be observed only on the right side of
the robot (x > 2). In other location areas, the type is forced
to the default value 1 (the obstacle is potentially high and
mobile).

The catastrophic states are collisions with the platform (for
any type of obstacle) or with the deported sensor (for a
high obstacle) at a non-zero velocity. Using the encoding into
abstract variables, cata is defined as:
v=1 & ((x=2 & y=2) | (type=1 & x=3 & y=2))



The full stop intervention is redefined for these variables.
It stops the platform under a threshold crossing precondition,
i.e., the obstacle was previously far away on the left (x = 0),
or on the right (x = 5) or in front (y = 0) of the robot. The
declaration is as follows:
full_stop: Interv(TRUE, x=0 | x=5 | y=0,

next(v)=0);

There is no permissive strategy if this intervention is the
only one available. To ensure safety, the robot stops whenever
any type of obstacle enters the warning zone. But the light
measurement functionality requires the robot to move close to
a low obstacle (i.e., v = 1 & x = 3).

A second intervention is then added: restrict the move
of the robot in direction to the right. The effect works for
stationary obstacles only, that is, for low obstacles only under
our modeling assumption.
restrict_right_curve: Interv(type=0, TRUE,

next(x)!=x-1)

With the two above interventions, the rule synthesis returns
one safe and permissive solution:

• Brake when a high obstacle is close, irrespective of
whether the robot is moving or not:
trigger_full_stop: type=1 &

(x=1 | x=2 | x=3 | x=4) & (y=1 | y=2);

• Restrict the curve when a low obstacle is in the deported
sensor zone and the robot is moving:
trigger_restrict_right_curve: type=0 & x=3

& (y=1 | y=2);

The synthesis took 3.2s on an Intel Core i5-3437U CPU @
1.90 GHz x 4 with 16 GB of memory.

2) Full case: The previous simple case is useful to un-
derstand the problem but not completely realistic. Indeed, the
robot can meet more than one obstacle at a time, and each
obstacle has a spatial extension. For example it could be in
the zones x = 2 and x = 3 at the same time. This is impossible
to model with a single coordinate pair (x, y).

We will therefore think in terms of zones occupied or not.
Five zones are defined as in Fig. 7. Their boudaries are based
on the same thresholds as in the previous (x, y) model, with
possibly some grouping of the coordinate areas. For example,
the warning areas at the left and in front of the robot are
grouped into the same zone: they have similar observation
characteristics (the presence of obstacles is observed but not

Fig. 7. Obstacle zones to avoid collision with an obstacle

Zone z1:
Front and left
side of the
robot

Empty z1 = 0

Occupied by at least one obstacle (type
unknown)

z1 = 1

Zone z2:
Front right
side of the
platform

Empty z2 = 0

Occupied by at least one high obstacle z2 = 1

Occupied by low obstacles only z2 = 2

Zone z3:
Right side of
the robot

Empty or occupied by low obstacles only z3 = 0

Occupied by at least one high obstacle z3 = 1

Zone z4: The
platform
itself

Empty z4 = 0

Occupied by an obstacle (physical con-
tact)

z4 = 1

Zone z5:
Right side of
the platform

Empty z5 = 0

Occupied by at least one high obstacle z5 = 1

Occupied by low obstacles only z5 = 2

TABLE V
PARTITIONING OF ZONE VARIABLES FOR THE FULL CASE MODEL

their type) and the previous analysis suggests that they call for
similar safety rules.

Table V shows the partitioning of zone variables into occu-
pation classes. Value 0 encodes an empty zone. The meaning
of other values depends on whether or not the type of obstacles
is observable in corresponding zone. For example, variable z1
is two-valued with 1 indicating the occupation by obstacles
of unobserved type. Variable z2 is three-valued in order to
distinguish occupation by at least one high obstacle (= 1),
and occupation by low obstacles only (= 2). The partitioning
of z3 is specific: while the type of obstacles is observed in
this zone, the variable is two-valued. The case of occupation
by low obstacles only is safe for this zone, so we decided
to put it in the same class as emptiness. In practice, note
that the occupation cases are determined by combining the
results of several sensors. Assume that the implementation is
like in Fig. 5: occupation by low obstacles only would be
determined by the fact that the 2D lidar on the platform’s
corner sees something in the zone, while the lidar on the
deported extension (placed at a higher height) sees nothing.

This encoding focuses on the occupation of zones, and
misses information on their spatial adjacency. In the simple
(x, y) model, adjacency was easily captured by the continuity
constraints on x and y. The notion of warning state then
naturally emerged, since the obstacle is always seen with
coordinates in a close area before getting too close. In the new
model, we have to introduce ad hoc constraints to represent
this. For example, a constraint expresses the fact that z4 cannot
be occupied if, at the previous step, it was empty and all its
neighboring zones were empty as well. A similar constraint
is given for z5. The stationary assumption for low obstacles
is also quite difficult to model. In particular, we have to
capture the fact that, if the robot is stopped, low obstacles
cannot appear and disappear in its neighborhood. It is done
by introducing specific auxiliary variables and constraints. For
example, we detect a situation in which the robot stops with
low obstacles only in z5, and constrain this zone to take only
non-empty values as long as the robot remains standstill.



The velocity variable remains the same as in the previous
(x, y) model. We define the catastrophic state as follows:
cata: v=1 & (z4=1 | z5=1);

The SMOF tool identifies 94 warning states before invariant
violation (vs. 16 previously). They account for the combina-
tions of all occupation cases of the zones.

The two available interventions are the same as previously.
The search space of candidate strategies is very large, and

the rule synthesis tool does not succeed in computing the set
of solutions in a realistic amount of time. The tool also has
a fast exploration mode at the expense of potentially skipping
solutions. In the case of this model, the fast exploration
manages to proceed the model in 4 minutes but finds no
solution. We then manually encoded the strategy suggested
by the analysis of simple case model:

• Brake when a high obstacle gets too close to the robot
i.e. enters one of the zones:
trigger_full_stop: z1=1 | z2=1 | z3=1 |

z4=1 | z5=1;

• Restrict curve when a low obstacle is in front, behind or
below the sensor support i.e. in the zone 2 or 5:
trigger_restrict_right_curve: z2=2 | z5=2;

NuSMV confirms that this strategy is safe and universally
permissive. Note that there are now states for which both
interventions are active at the same time, e.g., when both
z1 = 1 and z2 = 2. This is indeed necessary because the
full stop does not prevent from collision with a low obstacle
in z2, which can be closer than the braking distance.

D. Consistency analysis

Once satisfying strategies are found for all invariants, we
have to verify their consistency. Indeed, each invariant has
been modeled separately but the observations and interventions
may not be independent. We aggregate the models from
the different invariants and encode the links between them
in a global model. The gluing logic takes care that if the
monitoring of collisions triggers the full stop, then the full stop
is triggered as well in other invariant models with an effect that
depends on the local preconditions. Variables that appear in
several models are connected by manually adding constraints.
For example, velocity cannot be zero in the monitoring of
collisions and at the same time be above the warning threshold
for the Invariant 5 identified in Section III. Note that forgetting
constraints would keep spurious states into the global model.
This is an issue for the verification of global permissiveness,
which could be too optimistic.

Two main aspects have to be verified on this global model.
The first one is the absence of conflicting interventions,

which would be triggered concurrently with an inconsistent
effect (e.g., both braking and accelerating). In our opinion,
none of the interventions we introduced would be incompatible
with the other ones, and indeed the formal verification finds no
inconsistency. There are cases for which several interventions
are active but this is not a problem. For example, NuSMV
allowed us to find additional cases where both braking and

right curve restriction are needed, this time from the concurrent
decision of different monitors.

The second aspect is the overall permissiveness. Depending
on the intervention retained for prohibited areas (the full stop
or the selective restriction of movement), the overall model
is found universally or simply permissive, hence revealing no
other issue than the ones we already identified.

V. RELATED WORK

Safety concerns have an increasing importance in robotics
research. For instance, several recent European projects con-
sider safety as a main challenge, like [9]–[11]. National
projects can also be mentioned in the UK [12] , in Germany
[13] or in the US [14]. From an industrial perspective, a
few specific safety-related standards have been released: ISO
10218:2011 [15], [16] for robots in industrial environments
and ISO 13482:2014 [17] for personal robots. A standard ded-
icated to collaborative robots is under development, currently
named ISO/TS 15066 Robots and robotic devices – Safety
requirements for industrial robots – Collaborative operation
[18].

The safety monitoring approach studied in this paper is
an instance of a well-established principle for safety-critical
systems: clearly identify the safety functions and separate
them from the main application ones (see, e.g., [19]). It
makes the certification of systems easier, since only those
safety functions (and not the whole system) are assigned a
high level of integrity. Safety monitors – i.e., external and
independent mechanisms that force the system into a safe
state, should some hazardous behavior be detected – have
been used for robotic systems under many different names:
safety manager [20], autonomous safety system [21], checker
[22], guardian agent [23], or emergency layer [24]. In most
of the cases, the specification of the safety rules is ad hoc.
In contrast, our approach provides a complete safety rule
identification process, starting from a hazard analysis and
using formal verification techniques to synthesize the rules.
In [25], the authors also use HAZOP to identify hazards and
then (intuitively) determine a set of If-then-else safety rules.

Safety monitoring is related to runtime verification and
property enforcement. Runtime verification [26], [27] checks
for properties (e.g., in temporal logic) by typically adding code
into the controller software. Runtime enforcement [28] extends
runtime verification with the ability to modify the execution of
the controller, in order to ensure the property. These techniques
consider a richer set of property classes than safety ones,
and, most importantly, can be tightly coupled to the system.
It makes the underlying mechanisms quite different from the
external safety monitors having to rely on limited observation
and intervention means.

VI. CONCLUSION

We presented in this paper a method to formally synthesize
those safety rules with dedicated tools, successfully applied
to an industrial case study: the mobile robot 4mob from
the French company Sterela, developed for airfield lighting



monitoring. The most interesting characteristic of this case
study is the need to accommodate movements in close vicinity
of obstacles (the lights to control).

A hazard analysis performed with HAZOP-UML led to the
identification of 10 hazards. Some hazards were treated with a
modification of the specification (e.g. removing the automated
runway evacuation) and others with operating procedures. But
5 hazards were selected to be covered by the safety monitor
and formalized by invariants. The formalization phase forces
an explicit identification of implementation requirements. In-
deed, we identified a set of observations and interventions to
be made available to the monitor. For example, the analysis
of collision highlighted the need for being able to distinguish
high and low obstacles on specific areas around the robot. A
technical solution currently discussed is to put lidar sensors
on the deported extension, in addition to the ones originally
planed on the platform corners. As regard interventions, we
identified both classical interventions, like the full stop, and
more specific ones to intercept and potentially modify the
commands sent to the wheels. We also identified a set of
thresholds, defining warning regions in which the interventions
are applied. The exact calculation of these thresholds will have
to be done by engineers based on the worst cases for both the
dynamics of the system (e.g. maximal braking distance) and
the execution time of the data processing part.

The rule synthesis algorithm, in its current version, shows
some limitation as the largest model could not be successfully
explored. The strategy synthesized in the simpler version of the
model had to be manually introduced and was verified using
NuSMV. Our previous applications of SMOF to industrial
systems did not encounter this problem. They involved no
invariants of the complexity of the 4mob collision avoidance
one.

As part of a broader programme of work for improving the
SMOF framework, we are working on improving the efficiency
of the SMOF algorithm for large state spaces. The tool set will
also be extended to better support the consistency analysis,
using for example modeling conventions to ease the gathering
of the synthesized strategies. We also intend to extend the
method to a multi-level approach: a cascade of monitors to
maintain an invariant, triggering interventions at several levels
of the system architecture.
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[3] M. Machin, F. Dufossé, J. Guiochet, D. Powell, M. Roy, and H. Waese-
lynck, “Model-checking and game theory for synthesis of safety rules,”
in 16th IEEE International Symposium on High Assurance Systems
Engineering, HASE 2015, Daytona Beach, FL, USA, January 8-10, 2015,
2015, pp. 36–43.

[4] M. Machin, G. Jérémie, W. Hélène, J.-P. Blanquart, M. Roy, and
L. Masson, “Smof - a safety monitoring framework for autonomous
systems,” IEEE Transactions On System, Man and Cybernetics: Systems,
Accepted for publication.

[5] HAZOP-UML website, LAAS-CNRS, https://www.laas.fr/projects/
HAZOPUML, 2015, accessed July 2015.

[6] SMOF, “Safety Monitoring Framework,” LAAS-CNRS Project, https:
//www.laas.fr/projects/smof, 2015, accessed 2015-07-01.

[7] “Tuleap home page,” https://www.tuleap.org/.
[8] “NuSMV home page,” http://nusmv.fbk.eu/.
[9] SAPHARI, “Safe and Autonomous Physical Human-Aware Robot Inter-

action,” Project supported by the European Commission under the 7th
Framework Programme, www.saphari.eu, accessed 2015-05-17, 2011-
2015.

[10] SAFROS, “Patient Safety in Robotic Surgery,” Project supported by
the European Commission under the 7th Framework Programme, www.
safros.eu/safros/, 2009-2013, accessed: 2015-04-30.

[11] ROBOT-PARTNER, “Seamless Human-Robot Cooperation for Intelli-
gent, Flexible and Safe Operations in the Assembly Factories of the
Future,” Project supported by the European Commission under the 7th
Framework Programme, www.robo-partner.eu/, 2013-2016, accessed:
2015-04-30.

[12] ROBOSAFE, “Trustworthy Robotic Assistants,” EPSRC-funded project,
UK, www.robosafe.org/, 2013, accessed: 2015-07-30.

[13] SIMERO, “Safety strategies for human-robot cooperation,” Partially
funded by the German Research Foundation, www.ai3.uni-bayreuth.de/
projects/simero/, 2003, accessed: 2015-07-30.

[14] NREC, “National Robotic Engineering Center, Carnegie Mellon Uni-
versity,” www.nrec.ri.cmu.edu/capabilities/safety ops/, 2015, accessed:
2015-07-30.

[15] ISO10218-1, “Robots and robotic devices – safety requirements for
industrial robots – part 1: Robots,” International Organization for Stan-
dardization, 2011.

[16] ISO10218-2, “Robots and robotic devices – safety requirements for
industrial robots – part 2: Robot systems and integration,” International
Organization for Standardization, 2011.

[17] ISO13482, “Robots and robotic devices – safety requirements for
personal care robots,” International Organization for Standardization,
2014.

[18] ISO/TS15066, “Robots and robotic devices – collaborative robots,”
International Organization for Standardization.

[19] J. Rushby, “Kernels for safety,” 1989, pp. 210–220.
[20] C. Pace and D. Seward, “A safety integrated architecture for an au-

tonomous safety excavator,” in International Symposium on Automation
and Robotics in Construction, 2000.

[21] S. Roderick, B. Roberts, E. Atkins, and D. Akin, “The ranger robotic
satellite servicer and its autonomous software-based safety system,”
IEEE Intelligent Systems, vol. 19, no. 5, pp. 12–19, 2004.

[22] F. Py and F. Ingrand, “Dependable execution control for autonomous
robots,” in International Conference on Intelligent Robots and Systems
(IROS), 2004, pp. 1136–1141.

[23] J. Fox and S. Das, Safe and sound - Artificial Intelligence in Hazardous
Applications. AAAI Press - The MIT Press, 2000.

[24] S. Haddadin, M. Suppa, S. Fuchs, T. Bodenmller, A. Albu-Schffer, and
G. Hirzinger, “Towards the robotic co-worker,” in The 14th International
Symposium on Robotics Research (ISRR2011), C. Pradalier, R. Siegwart,
and G. Hirzinger, Eds. Springer Berlin Heidelberg, 2011, pp. 261–282.

[25] R. Woodman, A. F. Winfield, C. Harper, and M. Fraser, “Building
safer robots: Safety driven control,” Internatioanl Journal of Robotics
Research, vol. 31, no. 13, pp. 1603–1626, 2012.

[26] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
Journal of Logic and Algebraic Programming, vol. 78, no. 5, pp. 293–
303, 2009.

[27] N. Delgado, A. Q. Gates, and S. Roach, “A taxonomy and catalog
of runtime software-fault monitoring tools,” Transactions on Software
Engineering, vol. 30, no. 12, pp. 859–872, 2004.

[28] Y. Falcone, J.-C. Fernandez, and L. Mounier, “What can you verify
and enforce at runtime?” International Journal on Software Tools for
Technology Transfer, vol. 14, no. 3, pp. 349–382, 2012.


