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Abstract

In this work, Raman hyperspectral images and Multivariate Curve Resolution Alternating Least
Squares (MCR-ALS) are used to study the distribution of actives and excipients within a
pharmaceutical drug product. This article is mainly focused on the distribution of a low dose
constituent. Different approaches are compared, using initially filtered or non-filtered data, or using
a column-wise augmented dataset before starting the MCR-ALS iterative process including appended
information on the low dose component. In the studied formulation, magnesium stearate is used as a
lubricant to improve powder flowability. With a theoretical concentration of 0.5% w/w in the drug
product, the spectral variance contained in the data is weak. By using a Principal Component Analysis
(PCA) filtered dataset as a first step of the MCR-ALS approach, the lubricant information is lost in the
non-explained variance and its associated distribution in the tablet cannot be highlighted. A sufficient
number of components to generate the PCA noise-filtered matrix has to be used in order to keep the

lubricant variability within the data set analyzed or, otherwise, work with the raw non-filtered data.
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Different models are built using an increasing number of components to perform the PCA reduction.
It is shown that the magnesium stearate information can be extracted from a PCA model using a
minimum of 20 components. In the last part, a column-wise augmented matrix, including a reference
spectrum of the lubricant, is used before starting MCR-ALS process. PCA reduction is performed on
the augmented matrix, so the magnesium stearate contribution is included within the MCR-ALS
calculations. By using an appropriate PCA reduction, with a sufficient number of components, or by
using an augmented dataset including appended information on the low dose component, the
distribution of the two actives, the two main excipients and the low dose lubricant are correctly

recovered.

Keywords: Multivariate Curve Resolution, Alternating Least Squares, Raman hyperspectral imaging,

Spectroscopy, Active and excipient distributions, Low dose compound

1. Introduction

In the last decade, the use of imaging coupled with vibrational spectroscopies (near infrared, mid
infrared, fluorescence and Raman) has grown quickly in research and development environments.
The spatial and spectral information contained in hyperspectral images can be associated with the
distribution of the different constituents within the sample. Different areas such as polymer research
[1], biomedical analysis [2], environment field [3] and pharmaceutical development [ 5] are using
these new analytical tools based on vibrational hyperspectral imaging. During the analytical lifecycle
of a pharmaceutical drug product, hyperspectral imaging became a very powerful technique to
explore the compound distributions on the tablet surface or within a powder mixture [6]. This
technology appeared as innovative and promising to ensure the final quality of the drug product [8]

from the development to the production.
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Because of the huge amount of data contained in hyperspectral images, a direct interpretation of the
acquired images is often not possible. Therefore, several chemometric tools have previously been
applied [10, 11]. Qualitative analyses such as Principal Component Analysis (PCA) have already been
used with near infrared [12] and Raman [13] chemical imaging in order to study the compound
distribution in a sample. Since PCA is mainly linked to the dataset variability and as calculated
loadings do not have chemical meaning, this approach is used as a descriptive method. To extract
guantitative information at a global and pixel level, principal component regression (PCR) and partial
least squares regression (PLS-R) have already demonstrated through several studies that they were
powerful chemometric techniques [15, 16]. However, these methods can be time consuming and
difficult to implement as they usually require a calibration step to develop predictive models. To

overcome this problem, resolution methods seem to be a good alternative.

The aim of resolution methods is to provide the distribution maps and pure spectra related to the
image constituents of a sample from the information contained in the raw image [17]. Multivariate
Curve Resolution-Alternating Least Squares (MCR-ALS) is one of the most famous tools applied on
hyperspectral images [18, 19]. MCR-ALS decomposes the initial data in a bilinear model, assuming
that the observed spectra (i.e. each pixel of the image) are a linear combination of the spectra of the
pure components in the system. In order to ensure an accurate resolution, constraints have to be
used during the optimization process. Indeed, due to rotational or intensity ambiguities, resolution of
a multicomponent hyperspectral image might not be unique [21]. Different constraints were
established and tested [23, 24]. In image resolution, non-negativity, spectral normalization and local
rank analysis are generally the most successful tools. Local rank analysis describes the spatial
complexity of an image by identifying the rank of a pixel neighbourhood area. Combined with
reference spectra of the image constituents, the absence of one or more specific constituent in a
pixel can be highlighted. Some constraints used for the resolution of a chemical process, such as

unimodality, closure or hard-modelling should not be used to analyse hyperspectral images because
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concentration profiles in the pixels of an image do not present the global continuous evolution that

process profiles have [25].

Raman chemical imaging, because of its advantages such as negligible sample preparation, high
chemical specificity and high spatial resolution, emerges as a new analytical tool in the quality
control process of a solid drug product [26]. Final drug products are usually manufactured by using at
least one active pharmaceutical ingredient (API) and several excipients. To improve powder
flowability, most of the pharmaceutical manufacturing process includes a lubricant in the final drug
formulation [27]. This compound is commonly present in a very low concentration in the powder
blend and a spectroscopic bulk analysis will not be able to extract its contribution. Indeed, the
corresponding variance of this constituent is very weak comparing with the other compounds of the
sample. PCA, which aims at describing the directions of maximum global variance in the data, may
have difficulties in retrieving information linked to a low dose constituent when the variance
allocated to this component is similar in level to noise, which is often large in hyperspectral images.
By offering the possibility to acquire images with a high spatial resolution, Raman chemical imaging
coupled with appropriate chemometric methods appears as a promising technique to detect a low

dose compound within a solid drug formulation.

In this work, MCR-ALS was applied on Raman chemical imaging data in order to provide the
distribution of actives and excipients in a commercialised tablet. MCR-ALS was challenged by trying
to identify the low dose lubricant in the hyperspectral image. The effect of using algorithms driven by
finding directions of maximum variance explained is studied. In this sense, the effect linked to the
first step of noise-filtering based on PCA, which is often used in MCR-ALS to remove noise and non-
useful spectral information, is studied. By applying MCR-ALS on a noise-filtered PCA matrix, it is
shown that the information of the low dose constituent may be lost during data reduction. The

comparison between the MCR-ALS decomposition on a filtered and a non-filtered PCA matrix is
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presented. Moreover, to keep the low dose constituent information during the PCA reduction,
calculations are performed on an augmented matrix including the low dose constituent spectrum.
The necessity of using appropriate pre-processing methods and constraints to find out the correct
information linked to these low dose constituents is emphasized. This article shows the strategies to
be followed in MCR-ALS analysis to retrieve correct information for low dose image constituents,

from pre-processing, conditions to drive the iterative optimization to proper inclusion of constraints.

2. Materials and Methods

2.1.Samples

A commercial coated tablet of Bipreterax®, prescribed for arterial hypertension treatment and
commercialised by “Les Laboratoires Servier”, was used for the study. It is also known as
Perindopril/Indapamide association. Final drug product contains respectively 4 mg of Perindopril
(API1) and 1.25 mg of Indapamide (API2). Actives are known to have several solid state forms, but
only one of them is present in this formulation. Major core excipients are lactose monohydrate,
microcrystalline cellulose (Avicel). Magnesium stearate (MgSt), which is used as a lubricant, was
added to the blend before compression with a theoretical mass concentration corresponding to 0.5%
w/w. In order to analyse the tablet core, the coating was removed by eroding the sample with a Leica
EM Rapid system (Leica, Wetzlar, Germany). A visual examination of the tablet did not provide any

information concerning the distribution of the different compounds within the tablet.

2.2.Raman imaging system

The image was collected using a RM300 PerkinElmer system (PerkinElmer, Waltham, MA) and the

Spectrum Image version 6.1 software. The microscope was coupled to the spectrometer and spectra
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were acquired through it with a spatial resolution of 10 um in a Raman diffuse reflection mode.
Wavenumber range was 3200-100 cm ™" with a resolution of 2 cm™. Spectra were acquired at a single
point on the sample, then the sample was moved and another spectrum was taken. This process was
repeated until spectra of points covering the region of interest were obtained. A 785 nm laser with a
power of 400 mW was used. Two scans of 2 s were accumulated for each spectrum. An image of 70

pixels per 70 pixels corresponding to 4900 spectra was acquired for a surface of 700 um by 700 um.

2.3. Pre-processing

Data were preprocessed in order to remove non-chemical biases from the spectra (scattering effect
due to non-homogeneity of the surface, interference from external light source, spikes due to cosmic
rays, random noise). First of all, data were spike-corrected in order to reduce the effect of cosmic
rays [28]. The spectral range was reduced in order to focus only on the region of interest,
corresponding to a Raman shift from 1800 cm™ to 200 cm™. Reduced spectra were preprocessed by
asymmetric least squares (AsLS) to correct baseline variations due to fluorescence contributions [29].
Finally, to enhance slight spectral variations, a Savitzky-Golay first derivative with a 2" order

polynomial smoothing on a 9 points window [30] was applied.

2.4. Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS)

A brief description of the MCR-ALS algorithm is given here. The algorithm was previously described in
detail in Refs. [ 23, 24]. As any resolution methods, the main goal of MCR-ALS is decomposing the
original matrix Dy ) (n samples or rows and p variables or columns) of a multi-component system
into the underlying bilinear model which assumes that the observed spectra are a linear combination

of the spectra of the pure components in the system:

D=CST+E (1)
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where C is the matrix of concentration profiles, S’ the matrix of pure responses (i.e. spectra) and E
contains the experimental error. In resolution of spectroscopic images, D, p) is the matrix of the
unfolded image, C contains the concentration profiles that, conveniently refolded, show the

distribution maps of each image constituent and S contains the associated pure spectra [31].

In order to provide chemically meaningful profiles (i.e., pure spectra and distribution maps) and to
reduce intensity and rotational ambiguities in the MCR solutions, constraints must be properly
chosen during the iterative MCR-ALS process. Since concentrations of the constituents should not be
negative, a non-negativity constraint was applied. Moreover, the calculated spectral profiles in
matrix S’ were normalized at each iteration. To identify where the constituents of the drug product
are present or absent in the image, the Fixe Size Moving Window Evolving Factor Analysis (FSMW-
EFA) method was applied to the data [32]. This method provides the local complexity of a sample by
performing singular value decomposition by moving a window of pixels across the full image. A
window contains a specified number of spectra (at least 4, corresponding to a specific pixel and its
neighbours). By calculating singular value maps of the sample, the presence of overlapped
compounds in a pixel area can be displayed. By selecting a specific threshold, a corresponding local
rank map can be provided by plotting the number of significant singular values above the threshold.
This approach, due to its local character, is particularly well adapted to identify a compound with a
low signal or with a low concentration within the sample because small local areas are analyzed one
at a time. By comparing the local rank information with reference spectral information, missing

constituents on particular pixels can be known [25].

Figures of merit of the optimization procedure are the lack of fit (lof) and the explained variance (R?).
The lack of fit is used to check if the experimental data were well fitted by the MCR-ALS procedure.

These two criteria are calculated as follow:
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1of(%) = 100 (2)

_ XijDf-Tijel;

R2
%D

(3)
where Dj; is the input element of the original matrix D, p) and e;; the related residual element

after using the MCR-ALS model (see equaltion 1). Input element can be the original element from

Dpy or the element of a noise filtered PCA matrix DPCA(n’p) using the same number of components

as in the MCR-ALS. A noise filtered PCA matrix DPCA(n p) €an be obtained as follows:

Decanp) = UmioSaco Vikp)  (4)

where U, S and V" are calculated by singular value decomposition of the original D (y,p) Matrix and k is
the number of the known constituents in the drug product. The PCA reduced matrix corresponds to a
filtered matrix in a reduced space. This matrix should contain the major part of the spectral variance

without noise.

MCR-ALS must be initialised by a first estimate of C or S' matrix. Initial estimates are generally
obtained by purest variable selection methods, such as SIMPLISMA (Simple-to-use Interactive Self-
Modelling Mixture Analysis) [33]. This method identifies the most dissimilar spectra (or sample) in
the dataset. However, due to the homogeneity of a pharmaceutical sample, it could be difficult to
identify a pure pixel corresponding to a single constituent. Most of the time, the theoretical
formulation of the sample is known during the development process. So pure reference spectra
acquired with the same spectrometer and the same acquisition parameters can be selected as initial

estimates to start the optimisation process.
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In this article, three approaches will be tested and discussed in order to display the distribution of
actives and excipients, including the low dose constituent. The first approach starts with the noise

filtered PCA matrix DPCA(np) calculated from (4) using a component number k equal to the

theoretical number of constituents in the formulation. The second approach consists of increasing
the number of components to generate the noise filtered PCA matrix, from k to the maximum
number of variables, the latter meaning working with the raw non-filtered data set. The third
approach consists of using an augmented matrix, where the information of the low dose constituent

is added, ensuring the extraction of its contribution during the noise filtering step.

3. Results and discussion

3.1. Exploratory analysis

Because of the spectral variability, applying multivariate data analysis on raw data would not lead to
accurate results. Spectra were preprocessed in order to remove baseline variations and cosmic rays.
A spike correction algorithm and asymmetric least squares were applied. In order to enhance low
variations, a Savitzky-Golay first derivative with a window size of 9 points and a 2" polynomial order

was calculated (Figure 2).

By observing the mean intensity plot of the image (mean intensity in each pixel), no useful
information about compound distributions was extracted (results not shown). Therefore,
chemometric tools have to be used in order to extract meaningful distributions of the different
compounds. As a descriptive method, PCA was applied on the preprocessed data. By calculating
appropriate principal components, that describe the maximum variance of the data set and are
orthogonal to each other, PCA decomposes the preprocessed matrix in scores (related to distribution

maps) and loadings (related to spectra) matrices [34, 35]. Figure 3 shows the image scores results of
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the five first principal components. Different distributions and agglomerates were highlighted in the
images. In this particular example, by knowing the studied formulation and by observing the
calculated loading vectors, the distribution maps of PC1 and PC5 were linked to the lactose
variability, while distribution maps of PC2, PC3 and PC4 were respectively linked to the distributions

of API1, avicel and API2.

Even if PCA analysis provides a first approximation of the component distribution within the sample,
the contribution of magnesium stearate was not extracted with this approach. Cumulative variance
explained by the PCA model was shown in Figure 4. With 5 components, 98.5% of the variance was
explained which means that 1.5% of the spectral variability was not captured by the model.
Theoretical spectral variance Var; of the magnesium stearate was estimated to 0.5% of the total

variance and was calculated by using the following equation:

Zi,j(CiSiT)Z

Var; = 100 X 5
¥ij(csT)

(5)

where € and S are respectively the theoretical concentrations and the pure reference spectra of
each constituent i. Due to the low concentration of magnesium stearate within the drug product, and
because of the homogeneity aspect of the powder mixture before compression, the spectral variance

of the lubricant might be lower or higher than 0.5%, depending on the studied area of the tablet.

From PC6, the variance contained in the principal components was lower than 0.2% of the total
variance and reached a plateau of 0.02% of variance explained per component, which could be

associated with a non-structured noise contained in the spectral matrix.

Several hypotheses could explain the non-identification of magnesium stearate within the spectral

matrix. Due to its low concentration, the lubricant could either be present on a limited number of

10
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pixels or could either be missing in the studied area. The associated spectral information could have
led to overlapped features with other components or could have been spread into noise

contributions.

PCA is mainly linked to the variability contained within the hyperspectral dataset, expressed as a
combination of orthogonal components. Even if it provides a first approximation of the four major
constituent distributions, the low spectral variability linked to the lubricant was not displayed on the
five first components. Moreover, due to their unclear chemical meaning, loadings are difficult to
interpret. To overcome this issue, MCR-ALS algorithm and appropriate constraints were used to

enhance the chemical information of the decomposition.

3.2. MCR-ALS

3.2.1. Non-negativity and local rank constraints

MCR-ALS was initialized by using reference spectra of the five different constituents. Spectra were
acquired with the same system and with the same parameters as the image. Image pre-processing
tools were applied on the reference spectra (see section 2.3). To reduce rotational and intensity
ambiguities, non-negativity and equality constraints were applied on the calculated concentrations.

Lof and R? values were calculated according to equations (2) and (3).

By analysing the image locally, FSMW-EFA provides an estimation of the local complexity of the
image [32]. Local rank map was obtained by calculating singular value decomposition on a 4 pixel
window moving across the whole data. In general, the number of pixels has to be equal or higher
than the total number of the image constituents but in this case, due to the high spatial resolution,

the hypothesis was advanced that the five compounds could not be present in the same pixel. Four

11
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eigenvalues were calculated for each pixel group. Each component singular values were sorted in
increasing order (Figure 5). By choosing an appropriate threshold which separates significant singular
values from noise, the local rank map was displayed (Figure 6). (Note that the threshold is selected
visually, based on the fact that singular values associated with noise are very small and similar among
them and lay at the bottom of plot in Figure 5). The number of missing components for a specific
pixel was calculated by removing the local rank value of the pixel to the total rank of the matrix
(chosen as the number of theoretical constituents). By calculating correlation coefficients between
the raw pixel spectrum and each of the reference spectra, the constituent with the lowest correlation
was identified as absent. The absence of a particular component in a pixel was not confirmed unless
the correlation coefficient between the pixel spectrum and the reference spectrum of that
component is equal or smaller than the largest element in the correlation matrix for that particular
component. Results were afterwards encoded in an absence matrix Cs (Figure 7) containing null
values in the concentration elements of the missing components and “not-a-number” (NaN) values in

other pixels (unconstrained pixels) [25].

3.2.2. Effect of PCA filtering on MCR-ALS results

In all cases, MCR-ALS was applied on the preprocessed data by using the constraints previously
described (see section 3.2.1). The initial preprocessed matrix was reduced (noise-filtering) by using
the five first vectors of the PCA decomposition of D,p). MCR-ALS on the filtered PCA matrix
provides an optimum value after 9 iterations. 97.9% of the variance was explained with a lack of fit

calculated on the initial Dy, ) and the reduced DpcA(np matrices respectively equal to 14.7 and

)

7.9. Correlation coefficients between calculated spectra and reference spectra were displayed in
Table 1. The four first calculated spectra were highly correlated to the two actives and the two major
excipients whereas the fifth component was not correlated to the magnesium stearate or to other

constituents.

12
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By starting MCR-ALS after a PCA reduction of the data, the magnesium stearate contribution was
associated with the non-explained variance. In our example, the theoretical number of components

in the drug product is equal to 5. The matrix DPCA(n ) calculated by (4), is then calculated by using

the five first components of the PCA decomposition. With 5 components, 98.5% of the total variance
was explained, which means that 1.5% of the variance was not included in the iterative MCR-ALS
process. This part of the non-explained variance contains essentially noise but, due to the low
concentration of magnesium stearate, could also contain the spectral contribution of this

constituent.

In order to improve the MCR-ALS results and to extract magnesium stearate contribution, MCR-ALS
analysis on a PCA-filtered matrix including progressively a larger number of principal components

was tested. MCR-ALS decomposition was performed by using a PCA-filtered DPCA(n ) matrix using an

increasing number of components, from 5 to the total number of variables. For the first iteration, the

DPCA(n ) matrix was built by using the five first vector of the PCA reduction. The following MCR-ALS
calculation was performed by adding an additional principal component to calculate the DPCA(np)

matrix. This process was repeated until the number of principal components was equal to the
number of variables, corresponding to the use of the preprocessed non-filtered initial D, p) matrix.
For each MCR-ALS decomposition from 5 to 100 components, the highest correlation coefficient
between the resolved spectra and the pure reference spectrum of magnesium stearate is displayed

(Figure 9).

By using less than 20 principal components to reproduce the DpcA(np matrix, the contribution of

)

magnesium stearate was not extracted. Using 20, the correlation between the calculated spectrum
and the reference magnesium stearate spectrum was equal to 0.87 and reached 0.90 after a using 50
principal components to reproduce the matrix. As it is shown in Table 2, where MCR-ALS was applied
on a DPCA(n’p) built with k = 5, 10, 15, 20, 50, the results of the two active principal ingredients and

13
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the two major excipients were not modified. In this case, using less than 20 components to build the

matrix DpcA(n - lose the magnesium stearate contribution.

In order to keep the maximum information, the initial preprocessed Dy ) matrix (i.e. the PCA non-
filtered dataset) was used to start the iterative MCR-ALS process. Non-negativity and local rank
constraints on concentrations were applied. Distribution maps were shown in Figure 10. The
optimum was reached after 3 iterations, with a lack of fit equal to 14.7 and a percentage of variance

explained equal to 97.8.

Correlations between calculated spectra and API1, AP12, lactose and avicel were respectively equal
to 0.98, 0.97, 0.99 and 0.95. Distributions and contributions of the different constituents were then
displayed in Figure 10. Major excipients (lactose and cellulose) are identified across the whole image
in distribution maps 3 and 4. Agglomerates of APl 1 and APl 2 were highlighted in the top left and
right distribution maps. The correlation between the calculated spectrum and the magnesium
stearate reference was equal to 0.90 (Figure 11). By using a non-filtered PCA matrix with appropriate
constraints, the information linked to the low dose constituent was extracted. The non-filtering
option can be the choice when there are no references that can indicate in an objective manner the
number of PCs necessary to include a minor constituent. As shown in Figure 10, only few pixels of the
image contained the lubricant (Copts), which could be explained by its low concentration within the

drug product.

3.2.3.  Pure spectrum augmented matrix
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The preprocessed data matrix was column-wise augmented to form a multiset structure including the
magnesium stearate preprocessed pure spectrum [36]. For this type of matrix augmentation, the

bilinear model can be written as:

Dq\ _ (C1) o1, (E1) _ T
<D2> = (cz)'s + <E2> = Caugm-S” + Eaugm (6)

where ST is the pure spectral matrix of the different compounds present in the considered
preprocessed D4 data matrix and the augmented D, pure spectrum matrix. In these two matrices,
the chemical compounds have to be the same, but their concentration profiles can be different. Non
negativity of concentration and local rank constraints were applied on the data as it was described in
section 3.2.1. In multiset analysis, a new constraint based on correspondence among species can be
used. This constraint fixes the presence or absence of components in concentration matrix, always
taking into account the sequence of components in the initial estimates to encode the information
on presence/absence correctly. This presence or absence information is coded in binary format and
introduced into the MCR algorithm. For D4, the correspondence among species vector was fixed to [
1,1,1,1, 1] as each constituent was supposed to be in the drug product whereas, for D5, only one
value corresponding to the lubricant was fixed to 1, corresponding to the vector [0, 0, 0, 0, 1 ] (Note
that this code is valid as long as MgSt is the fifth profile in the spectral estimates used in the MCR
analysis). When a particular component is not present in a concentration matrix, the elements in the
related profile are set to zero. This type of constraint contributes significantly to the elimination of

rotational ambiguities.

By adding information of the low dose constituent in the matrix, the PCA reduction of the multiset
provides a different model, which ensures the extraction of the lubricant information. The MCR-ALS

can then be performed as usual, by using a first step of PCA reduction with 5 components. The
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optimum was reached after 6 iterations, with a lack of fit equal to 8.3 (with respect to DPCA(n p)) and

16.1 (with respect to Dy p)) and a percentage of variance explained equal to 97.4%.

Correlations between calculated MCR-ALS Sop: spectra and the five reference spectra were
respectively equal to 0.98, 0.96, 0.99, 0.95 and 0.99 (Table 3) which ensure an appropriate resolution
of the studied system. In Figure 12, distributions of API1, API2 and the two main excipients were in
accordance with the previous results obtained from MCR-ALS on a PCA filtered or non-filtered
dataset. However, because of the high correlation between the calculated Sqp.s spectrum and the
magnesium stearate reference spectrum, the distribution of the lubricant can be easily observed in
the Copes distribution map. As for the PCA non-filtered approach, only few pixels were highlighted
with the lubricant contribution, which could be explain by its low concentration within the drug

product.

4. Conclusion

MCR-ALS was applied on Raman Chemical images in order to study the distribution of actives and
excipients within a pharmaceutical drug product. This article was focused on the identification of a
low dose constituent within a formulation. Three different approaches were tested. First, MCR-ALS
was performed on a PCA reduced dataset built by using a number of components equal to the
number of constituents within the formulation. Due to the low spectral variability of the lubricant,
the PCA reduction did not extract the corresponding information and the MCR-ALS process was not
able to find out this product. However, distribution of actives and major excipients were in
accordance with the known formulation. In order to ensure the conservation of the low dose
constituent contribution within the dataset, a sequential PCA reduction process was tested. For each

iteration, a new PCA reduced dataset was generated (from 5 to 100 components) and used for MCR-
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ALS calculations. It was shown that the lubricant information was not present in the iterative MCR-
ALS process unless 20 components were used. From a PCA non-filtered dataset, the magnesium
stearate distribution was detected by using appropriate non-negativity and local rank constraint.
Results showed the distribution of the five constituents with high correlations between the
calculated signals and the pure reference spectra. Finally, the initial preprocessed dataset was
column-wise augmented with magnesium stearate preprocessed pure spectrum. By using a
correspondence among species constraint properly defined, the PCA reduction of the matrix kept the
lubricant information and then, the decomposition of the Raman chemical image provided high
correlated calculated spectra with reference and well-defined actives and excipients distribution

map.

This study demonstrates the ability of MCR-ALS to extract the contribution of a low constituent of a
solid drug product from Raman hyperspectral images. The choice of appropriate pre-processing
methods, constraints, data structures used and modus operandi was important to reach the
objective. Raman Chemical images, known as a useful tool to study the distribution of compounds in
a solid drug product, might be used to study the distribution of low dose constituents as a lubricant,

an impurity or a crystalline form transformation.
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Figure captions

Figure 2 : Preprocessed Raman spectra (AsLS and first derivative)
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Figure 3: PCA scores: five first components associated with their explained variances. Different
distributions and agglomerates were highlighted. PC1 and PC5 were linked to the lactose variability,

while PC2, PC3 and PC4 were respectively linked to the distributions of API1, avicel and API2.

Figure 4: Cumulative variance explained of the PCA decomposition. From PC6, the variance contained
in the principal components was lower than 0.2% of the total variance and reached a plateau of

0.02% of variance explained per component.

Figure 5: Singular values plot (top: non-sorted singular values, bottom: sorted singular values)

Figure 6: Local rank map obtained by choosing an appropriate threshold which separates significant

singular values from noise.

Figure 7: Cs, matrix (Orange: absence of the constituent, White: presence of the constituent)

Figure 9: Highest correlation between the calculated spectra (Sqpt) and the reference spectrum of

magnesium stearate (for each iteration of a PCA filtered matrix built from 5 to 100 components)

Figure 10: Distribution maps of drug substance constituents (PCA non-filtered dataset)

Figure 11: S, versus reference spectrum of magnesium stearate

Figure 12: Distribution maps of drug substance constituents (augmented matrix approach)

Table 1: Correlation between MCR-ALS calculated Sqpt and the reference spectra (PCA filtered
dataset)
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Table 2: MCR-ALS results according to the number of components used to build the PCA reduced
DPCA(n ) matrix

Table 3: Correlation between MCR-ALS S, and the reference spectra (column-wise augmented
dataset)
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